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SUMMARY 

This paper generalizes the two-dimensional approximation of models of macroparasites on homogeneous populations 
developed by Anderson & May (1978), focusing on how the dispersion (the variance to mean ratio) of the equilibrium 
distribution of parasites on hosts is related to the stability of the equilibrium. We show in the approximate system that 
the equilibrium is stabilized not by aggregation, but by dispersion which increases as a function of the mean. Computer 
simulations indicate, however, that this analysis fails to capture properly the dynamics of the full system, raising the 
question of whether any two-dimensional system could produce an adequate approximation. We discuss the relevance of 
our results to several empirical studies which have examined the relation of dispersion to the mean. 
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INTRODUCTION 

The interaction of the distribution and dynamics of 
parasites on hosts has been considered from a variety 
of theoretical angles in recent years (Anderson & 
May, 1985; Pacala & Dobson, 1988). A theme 
throughout much of the discussion has been the 
causes and consequences of the widely observed 
pattern of aggregated distributions of parasites 
(clustering of parasites greater than that expected at 
random), data which have traditionally and suc­
cessfully been fit by the negative binomial dis­
tribution (Anderson & May, 1985). Several reasons 
have been proposed for this observation, generally 
falling into the broad categories of host heterogeneity 
and dynamic factors (Anderson & Gordon, 1982; 
Anderson et al. 1982; McCallum, 1982; Pacala & 
Dobson, 1988). 

In a now-classic paper, Anderson & May (1978) 
used this empirical observation to reason about the 
dynamic consequences of such distributions, con­
sidering in particular the stability of interactions in 
which a parasite regulates its host population by 
increasing the mortality of heavily infected hosts. 
Their method consists of a reduction of a complete 
mathematical description of the system to a simple 
analogue of a predator- prey .system- in which only __ 
total population sizes of hos.ts and parasites are 
tracked. To deal with the problem of the distribution 
of parasites among hosts, they assume that the 
distribution retains a 'particular shape regardless of 
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the mean number of parasites per host. They contrast 
the regular positive binomial, the aggregated nega­
tive binomial distribution with fixed clumping 
parameter k, and the random or Poisson distribution, 
showing that the equilibrium point is unstable in the 
first case, stable in the second, and neutrally stable in 
the last. This result seems to imply that aggregated 
distributions enhance stability. 

In this paper, we show that stability in models of 
this form is determined not by the degree of 
dispersion itself, but by the dependence of dispersion 
on the mean. Computer simulations indicate that the 
dispersion does not behave like a function of the 
mean throughout the dynamics, and that the two 
dimensional system is not an accurate approximation 
of the dynamics. We postulate that a 3-dimensional 
system exists, involving the dispersion as a dynamic 
variable, that more accurately approximates the 
dynamics. Further discussion of this approach can 
be found in a companion paper (Kretzschmar & 
Adler, unpublished). We conclude by reviewing 
some recent work regarding the expected and 
observed relation of dispersion to the mean and by 
commenting on the relevance of our work to these 
investigations. 

THE GENERAL MODEL 

Our derivation of the model generalizes that of 
Kretzschmar (unpublished). The model follows the 
dynamics of host birth and death, and of parasite 
death, reproduction and transmission. We ignore age 
structure in the host population, assume -that adult 
parasites die when their hosts die, and neglect the 

15-2 



F. R. Adler and M. Kretzschmar 200 

Table 1. Description of variables 

Variables 

Variable Description 
Number of parasites in a host 
Time 

p, Number of hosts with exactly i parasites 
H Total number of hosts 
P Total number of parasites 
r, Fraction of hosts with exactly i parasite's .. 
x Mean number of parasites per host 
17 Variance to mean ratio of the distribution of parasites on hosts 

dynamics of the free-living stages of the parasite 
(Anderson, 1982). The system is described by 
classifying hosts according to their parasite burden, 
a technique introduced b y Kostizin (1934) and 
extended to include such factors as age-structure 
(Hadeler, 1982; Kretzschmar, 1989 a, b) and host 
heterogeneity (Pacala & Dobson, 1988) . 

We denote by Pi(t) the number of hosts per unit 
area with exactly i parasites at time t. See Table 1 for 
a complete description of variables used in this 
paper. The following parameters, which can all be 
density dependent, describe the dynamics: bi is the 
rate at which hosts with i parasites die, ai is the rate 
at which hosts with i parasites reproduce, Si is the 
relative susceptibility of hosts with i parasites, ui is 
the per capita parasite death rate in hosts with i 
parasites, Ai is the per capita parasite egg production 
rate in hosts with i parasites, (Pt is the rate at which 
hosts with i parasites acquire new parasites. We 
assume that all newborn hosts are born free of 
parasites, i.e. into class Po. 

The model is then described by the following set 
of differential equations 

00 

Po = -(bo +CPo)PO+U1Pl + ~ aiPi' 
i-O 

fit = -(bi +CPi+iui)Pi+(i+1)ui+1Pi+l 
+CPi-lPi- l ' (i = 1, .. . , 00), 

(1) 

where' denotes differentiation with respect to time. 
This set of differential equations describes the time 
evolution of a parasite population and its host 
populations starting from a given initial distribution 
of parasites on the hosts. 
. We define the aggregated variables 

(2) 
i-O i-O i-O 

H is the total density of hosts, P is the total number 
of parasites per unit area and ~ is the total number 
of eggs produced per unit area per unit time. 

We assume that 

CPi = Si ~g(H)· 

The infection rate is assumed to depend linearly on 
the number of eggs produced, with saturation 

described by the function g(H). g(H) is the prob­
ability that a single host is attacked by a single egg as 
a function of the total density of hosts, and will 
necessarily be a decreasing function. Hg(H) is the 
attack probability of a single egg on all hosts in the 
area and will necessarily be an increasing function 
since the probability of an egg finding a host increases 
as the density of hosts increases. Therefore, 

(3) 

We now define the further aggregated variables 

00 00 00 

Hb= ~ biPi' H= ~ aiPi, H= ~ SiPi, a • (4) i-O i-O i-O 
00 00 

Pb = ~ ibiPi' p= u ~ iUiPi' 
i-O i - O 

By summing up equations (2) we arnve at the 
following system for Hand P 

H= -Hb+Ha' (5) 

p = -Pb-Pu+Hsg(H)~· 

This system of equations is not closed in the sense 
that knowledge of Hand P alone is insufficient to 
describe the dependence of the dynamics on the 
other aggregated variables, i.e. these variables cannot 
be described as functions of Hand Palone. 

A special case 

In this section, we reduce the model to the special 
case considered by Anderson & May (1978). First of 
all, we ignore density-dependent effects on parasite 
mortality and fecundity and on host susceptibility, 
although some evidence indicates this may not be 
justified (Michael & Bundy, 1989). We also assume 
that host fecundity is not diminished by parasite 
burden. Using these assumptions, we set the 
subscripted parameters U i , Ai' Si and ai to the constant 
values u, A, S and a, so that Ha = aH, H . = sH, 
~ = AP, and Pu = uP. Following Anderson & May 
(1978), we assume that host mortality increases 
linearly with parasite burden, or that bi = b+ai. 
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Substituting these assumptions into the expressions 
for Hb and Pb' equation (5) becomes 

H= (a-b)H-xP, 
co 

P = -(b+u) P+sitHg(H) P-xL:. i 2 Pi' (6) 
i=O 

The only term not expressed in terms of the total 
population densities Hand P is the last. Anderson & 
May (1978) assumed that the p;/ H have a negative 
binomial distribution with constant k to close the 
system. In the following section, we generalize their 
approach. 

THE VARIANCE TO MEAN RATIO 

We first reformulate equations (6) to show explicitly 
how they can be expressed in terms of the variance to 
mean ratio. Set 

r i = p;/H 

to be the fraction of hosts carrymg a burden of 
exactly i parasites. The mean number of parasites 
per host, P / H, we denote by x, and the ratio of the 
vanance to the mean by 1T. Since the variance V 
satisfies 

co 

V = L:. i2ri-x2, 
i~O 

it follows that 

00 

~ i2ri = X(1T+X). 
/-0 

By changing variables we can rewrite equations (6) 
in terms of H and x as 

if = H(a-b-xx), 
x = x(sitHg(H)-a-u-x1T). (7) 

To close this system, we assume that 1T depends 
only on the mean of the distribution, or that 1T = 1T(X). 
Note that this is equivalent to assuming that the 
variance is a function of the mean. This approach 
was introduced by Taylor (1961), who showed that 
in many natural populations the variance of popu­
lation number is a power of the mean with the 
particular value of the exponent varying from species 
to species. For the negative binomial distribution 
with constant k, the variance to mean ratio is again a 
function of the mean, but this need not hold in 
general as we discuss in the following section. 

With this assumption, the equilibrium must satisfy 

X* = (a-b)/x, 
sitH*g(H*) = a + u + X1T(X*). 

. .' '.'~' 

x* will be positive as long as a > b, and there will be 
a positive solution for H* as long as the product of 
host susceptibility with parasite feoundity, sit, is 
sufficiently large, since Hg(H) is an increasing 
function (equation J). We assume henceforth that a 
positive solution exists. 

201 

The Jacobian matrix at this equilibrium, which 
determines the stability, is 

CSX* d/ dH ~g(H)IH ~ H* 

-xH* ) 
-XX*1T'(X*) . 

Here 1T' denotes the derivative of 1T with respect to 
the mean x. The stability of the equilibrium is 
determined by the determinant and trace of this 
matrix (May, 1973). Equation (3) implies that the 
determinant 

xitsx* H* d/dH(Hg(H) IH~H* 

is positive. The equilibrium is stable if the trace is 
negative, or 

XX*1T'(X*) > 0, (8) 

and unstable if the inequality is reversed (stability 
when the trace is zero is not determined by the 
linearized system). Since x* > 0, the equilibrium 
will be stable if the variance to mean ratio is an 
increasing function of the mean, and unstable if the 
variance to mean ratio is a decreasing function of the 
mean. 

This result complements recent work (Hassell & 
Pacala, 1991) on stability of host-parasitoid models 
where hosts experience a range of risks. They show 
for a wide range of variability-generating mechan­
isms that the system is stable if the coefficient of 
variation of the degree of risk is less than 1. In 
earlier work, Perry & Taylor (1986) showed that 
variability in the clumping parameter k can modify 
the stability of the equilibrium. Note that their result 
resembles that of this paper in that the parameters 
might depend systematically on the mean rather than 
being fixed constants. 

This simple criterion can be used to demonstrate 
and re-interpret the results of Anderson & May 
(1978). In the case of a negative binomial dis­
tribution, one has 

1T(X) = 1 +x/k, 

a linearly increasing function and thus a stable 
equilibrium. A Poisson distribution has constant 
variance to mean ratio of 1 and this produces a zero 
derivative of 1T and neutral stability. In the case of a 
positive binomial distribution, one has 

1T(X) = l-x/M 

for fixed parameter M, a decreasing function of x and 
thus an unstable equilibrium. 

In the case where the variance has a power law 
relation to the mean (Taylor, 1961), one has 

1T(X) = axb-l, 

where a and b are fixed parameters for a particular 
system. Here, the variance to mean ratio is a 
decreasing function of the mean just in case b < 1. 

It is worthwhile to note that this result depends 
very much on the assumptions of density inde-
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Fig. 1. (A) Dynamics of the total density of hosts H 
(- - -) and the total density of parasites P (--) as a 
function of time. (B) Variance to mean ratio (rr) plotted 
against the mean x in a simulation of equation (2) with 
density-independent parasite mortality (y = 0). ;\lote 
that the variance to mean ratio is roughly an increasing 
function of the mean, in accord with the stability of the 
equilibrium. Other parameter values are b = 0'2, a = 1'5, 
u = 1, ,\ = 3, s = 1 and ex = 1. The function g(H) is 
simply the constant value 1. 

pendence and on the particular form of parasite­
enhanced mortality rates used in equations (6). 
Firstly, if the host mortality rates do not increase 
linearly with parasite burden, then the variance to 
mean ratio does not arise naturally from the analysis. 
Secondly, even making the parasite death rate 
a linearly increasing function of parasite burden, 
which preserves the general form of the equations, 
breaks down the simplicity of the above result. In 
particular, assume 

Ui = U +yi. 

Then 

00 

Pu = uP+y L; i2 Pi' 
i~O 
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Substituting this into equation (5) and transforming 
into the variables H and x as before gives the system 

iI = H(a-b-exx), 
x = x(sAHg(H) - a - u - ex7T - y7T + yx). 

The Jacobian ~atrix of this system at this eqUi­
librium is 

-exH* ) 
(- (ex + y) 7T'(X*) + y) x* 

The determinant of this system is unchanged from 
that of the earlier system and therefore is positive. 
The trace at equilibrium is now 

( - (ex + y) 7T'(X*) + y) x*. 

Thus the equilibrium is stable if 

7T'(X*) > -y-
y+ex 

(9) 

and unstable if the inequality is reversed. The 
equilibrium is necessarily unstable if 7T'(X*) < ° as 
before, and is necessarily stable if 7T'(X*) > 1. How­
ever, if ° < 7T'(X*) < 1 the equilibrium will be 
destabilized by sufficiently large y. That is, an 
increasing variance to mean ratio may not be 
sufficient to stabilize the system in the presence of 
sufficiently high density-dependent parasite mor­
tality (Anderson & :Way, 1978) . 

THE DY~AMICS OF THE FULL MODEL 

Two mechanisms could constrain the variance to 
mean ratio to be precisely a function of the mean. 
First, it could be maintained by rapidly acting forces 
not accounted for in the dynamics described by the 
model equations (2); factors which might cause the 
system to quickly equilibrate to, perhaps, a negative 
binomial distribution with constant k. Second, this 
function, and indeed the entire distribution, arises 
only from processes described in model equations (2). 
U sing a generating function approach, Kretzschmar 
(unpublished observation) has found the equilibrium 
distribution of parasites on hosts for equations (2) 
with assumptions embodied in equation (6) and 
shown that it is indeed aggregated, though not 
exactly negative binomial. In order to apply the 
result of this paper, one must ask whether the 
dispersion acts like a function of the mean during the 
course of the dynamics, and whether this functional 
dependence correctly predicts stability. In addition, 
it is interesting to consider whether stability is 
determined by the dispersion itself, as hypothesized 
by Anderson & May (1978). 

Computer simulations of truncated versions of 
equations (2) indicate that all of these questions must 
be answered in the negative. The simulations were 
truncated at i = 20, though due to the low average 
number of parasites per host there were no detectable 
differences among truncation levels above i = 10. 
Initially, each simulated host was infected with 
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Fig. 2. The dynamics in a case with density-dependent 
parasite mortality (y = 1). Notation and parameter 
values are otherwise identical with Fig. 1. Note that here 
the variance to mean ratio is roughly a decreasing 
function of the mean, in contrast to the prediction of 
equation (9). 

exactly 1 parasite. Fig. 1 A illustrates the dynamics 
of Hand P for the case y = 0, the special case of 
density-independent mortality analysed by Ander­
son & May (1978). Fig. 1 B shows that the variance to 
mean ratio is generally increasing with the mean, in 
accord with the stability of the equilibrium as 
indicated by equation (8). In the case of density­
independent parasite mortality (y = 0) we were 
unable to find parameter values producing an 
unstable equilibrium. Given the finding of 
Kretzschmar (unpublished observation) that the 
equilibrium distribution in. th~s. case' is always. 
aggregated, this is consistent with the original 
hypothesis of Anderson & May (1978) that ag­
gregation leads to stability. Fig. 2A and B show the 
dynamics with a positive value of y for which the 
dynamics of Hand P (Fig. 2A) are still stable, but 
for which the variance to mean ratio is roughly a 
decreasing function of the mean (Fig. 2 B). Accord-
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Fig. 3. The dynamics of the third moment around the 
mean plotted against the sum of the mean and the 
variance to mean ratio for the same simulation shown in 
Fig. 2. Note how the third moment appears to behave 
like a function of the lower moments. 

ing to equation (9) such a relation should produce 
an unstable equilibrium. This discrepancy is due to 
the fact that the variance to mean ratio fails to be 
very well described by a function of the mean. Note 
that the equilibrium distribution is under-dispersed 
in this case, which, according the reasoning of 
Anderson & May (1978) should produce instability, 
in conflict with simulation results. 

Fig. 3 illustrates simulation results which indicate 
that there may be a 3-dimensional system tracking 
the dynamics of H, x and 7T which accurately 
describes the dynamics of the infinite system. Shown 
are the same dynamics as in Fig. 2, but here the third 
moment around the mean is plotted against the sum 
of the mean and the variance to mean ratio. The 
third moment of the distribution does seem to be 
well approximated by this function of the lowest 
moments, and the same appears to hold for higher 
moments not illustrated. If this is true in general, 
then the whole distribution, perhaps after a brief 
transient, could be described by only these lower 
moments. We are currently investigating this ap­
proach. A related approach to designing a 3-
dimensional system is to assume, as with the 2-
dimensional approximation of Anderson & May 
(1978), that the distribution remains constrained to a 
fixed family throughout the dynamics, but to allow 
two of the parameters describing that distribution to 
vary rather than just one. For instance, in the case of 
the negative binomial, this amounts to allowing the 
clumping parameter k to vary along with the mean 
(Kretzschmar & Adler, unpublished observation), as 
in Perry & Taylor (1986). 
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DISCUSSION 

Our results indicate that the dependence of the 
degree of 'aggregation on the' mean may have more 
important consequences for the dynamics than does 
the simple presence or absence of aggregation. This 
result meshes well with a number of observations 
regarding the relation between the dispersion and 
the mean. Note that our model considers this relation 
over time in a single population, as opposed to across 
age classes within a population or across different 
populations. Measurements have been made in all 
three of these cases. Most closely related to the 
approach presented in this paper are the results of 
Scott (1987), who found a roughly linear increase of 
the variance to mean ratio as a function of the mean 
in a system of monogeneans infecting guppies. The 
host dynamics in this case depended upon pulsed 
immigration rather than breeding as in our model, 
and tended to produce oscillatory dynamics. 
Whether this is a consequence solely of the im­
migration of naive individuals, a failure of our 
method of analysis, or an indication of the presence 
of important density-dependent factors such as 
parasite mortality is an issue worthy of further 
consideration. In earlier work, Scott & Anderson 
(1984) analysed this data using a negative binomial 
distribution, concluding that the variance to mean 
ratio proved to be a more sensitive statistic. 

Pacala & Dobson (1988) used the behaviour of the 
variance to mean ratio as a function of the mean as a 
test of density independence, showing under very 
general conditions that aggregation within age classes 
increases linearly with the mean burden in those 
classes when density-dependent processes are not 
acting. Variance among individuals is generated in 
their model by host heterogeneity in susceptibility or 
response to parasites. Since the negative binomial 
distribution with constant k produces a linear in­
crease of dispersion as a function of the mean, it is 
thus singled out as an appropriate null model. 
McCallum (1982) and McCallum & Anderson (1984) 
also considered models with fixed host heterogeneity, 
showing that an estimate of the negative binomial 
parameter k remains constant even in the presence of 
some density dependence in the host dynamics. 
McCallum (1982) found no trend toward increasing 
or decreasing k as a function of the mean burden in 
his data. In related empirical work, Evans, Whitfield 
& Dobson (1981) showed that both the mean and the 
variance to mean ratio of the number of metacercerial 
cysts on molluscs increased with the size of the host, 
once again indicating the importance of host het­
erogeneity upon distribution patterns. 

Gordon & Rau (1982) and Lemly & Esch (1984) 
argued that a decrease in the variance to mean ratio 
at high mean infection levels provides evidence for 
parasite-induced mortality. Although such an ar­
gument is consistent with the approach presented in 
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this paper, the results derived here are based on the 
assumption of parasite-enhanced mortality rates and 
cannot be used to test their argument. Guyatt et al. 
(1990) considered the relation b'etween aggregation 
and mean helminth burden in human populations. 
In the case of humans, it is unlikely that the primary 
form _ of density dependence is parasite-enhanced 
host mortality , but it is interesting to note that they 
find ~ linear incre~se in the negative binomial 
parameter" k ' as ' ~ function of the mean. Although it 
might seem that this implies decreased aggregation 
with increased mean, computation of the variance to 
mean ratio in this case shows that this ratio increases 
as long as the intercept of the regression of k on the 
mean is positive, as found in their study. Studies of 
this sort could cast light on dynamics if they could be 
thought of as a cross-section through several similar 
systems at different stages of an oscillation, but it 
seems much more likely that differences are 
generated by differences between populations. 
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