
LegoDB: Customizing Relational Storage

for XML Documents

Philip Bohannony Juliana Freirey� Jayant R. Haritsa+ Maya Ramanath+

Prasan Royy Jérôme Siméony

yLucent Bell Labs +Database Systems Lab, SERC
600 Mountain Avenue Indian Institute of Science

Murray Hill, NJ 07974, USA Bangalore 560012, INDIA

fbohannon,juliana,prasan,simeong fharitsa,mayag
@research.bell-labs.com @dsl.serc.iisc.ernet.in

1 Introduction

XML is becoming the predominant data exchange format
in a variety of application domains (supply-chain, scientific

data processing, telecommunication infrastructure, etc.).

Not only is an increasing amount of XML data now be-
ing processed, but XML is also increasingly being used in

business-critical applications. Efficient and reliable storage

is an important requirement for these applications. By rely-
ing on relational engines for this purpose, XML developers

can benefit from a complete set of data management ser-
vices (including concurrency control, crash recovery, and

scalability) and from the highly optimized relational query

processors.

Because of the mismatch between the XML and the rela-
tional models and the many different ways to map an XML

document into relations, it is very hard to tune a relational

engine and ensure that XML queries will be evaluated ef-
ficiently. Most database vendors already offer solutions to

address the need for reliable XML storage. However, cur-
rent products (e.g., [10]) require developers to go through

an often lengthy and complex process of manually defining

a mapping from XML into relations.

Strategies that automate the process of generating XML-
to-relational mappings have been proposed in the literature

(see, e.g., [2, 4, 7, 8, 9]). Due to the flexibility of the XML

infrastructure, different XML applications exhibit widely
different characteristics (e.g., permissive vs. strict schemas,

different access patterns). For example, a Web site may
perform a large volume of simple lookup queries, whereas

��Contact Author

Permission to copy without fee all or part of this material is granted pro-

vided that the copies are not made or distributed for direct commercial

advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the

Very Large Data Base Endowment. To copy otherwise, or to republish,

requires a fee and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,

Hong Kong, China, 2002

a catalog printing application may require large and com-

plex queries with deeply nested results. As we show in [1],

a fixed mapping or a mapping that does not take the appli-
cation characteristics into account is unlikely to work well

for more than a few of the wide variety of XML applica-

tions.

The purpose of this demonstration is to present the
LegoDB system, which is aimed at providing XML devel-

opers with an efficient storage solution tuned for a given

application.

2 Motivation

We motivate the need for finding appropriate storage map-

pings with an XML application scenario inspired from
the Internet Movie Database (IMDB) [6]. This database,

whose XML Schema is shown in Figure 1, contains a col-

lection of shows, movie directors and actors. Each show
can be either a movie or a TV show. Movies and TV shows

share some elements (e.g., t�t✁✂ and ②✂✄☎ of produc-
tion), but there are also elements that are specific to each

show type (e.g., only movies have a ❜✆✝ ✆♦♦�✞✂, and

only TV shows have s✂✄s✆✟s). Sample data reflective
of real-world information that conforms with this schema

in shown in Figure 2.

Three possible relational storage mappings for the

IMDB schema are shown in Figure 3. Configuration (a)
results from inlining as many elements as possible in a

given table, roughly corresponding to the strategies pre-

sented in [8]. Configuration (b) is obtained from config-
uration (a) by partitioning the ❘✂✠�✂✡s table into two

tables: one that contains New York Times reviews, and

another for reviews from other sources. Finally, config-
uration (c) is obtained from configuration (a) by splitting

the ❙☛✆✡ table into Movie shows (❙☛✆✡ P✄☎t☞) and TV

shows (❙☛✆✡ P✄☎t✌). Even though each of these config-
urations can be the best for a given application, there are

cases where they perform poorly. The key point is that one

cannot decide which of these configurations will perform

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276285235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


t�✁✂ ■✄☎✆ ❂
✐✝✞✟ ❬ ❙✠✡☛✯☞ ☎❉✌✍✎✏✡✌✯☞ ❆✎✏✡✌✯ ✑

t�✁✂ ❙✠✡☛ ❂
s✒✓✔ ❬ ❅t�✁✂❬ ❙✏✌❉✕✖ ✑☞ t✐t✗✂❬ ❙✏✌❉✕✖ ✑☞
❨✍✘✌☞ ❆✙✘f✶☞✶✚g☞ ❘✍✛❉✍☛✯☞
✭✄✡✛❉✍ ⑤ ❚✜✮ ✑

t�✁✂ ❨✍✘✌ ❂ �✂②✢❬ ■✕✏✍✖✍✌ ✑
t�✁✂ ❆✙✘ ❂ ②❛②❬ ❙✏✌❉✕✖ ✑
t�✁✂ ❘✍✛❉✍☛ ❂ ✢✂r✐✂✔❬ ➌ ❬ ❙✏✌❉✕✖ ✑ ✑
t�✁✂ ✄✡✛❉✍ ❂

✟✓❜✣✓✤✤✐✥✂❬ ■✕✏✍✖✍✌ ✑☞ r✐✞✂✓✣s②✗✂s❬ ■✕✏✍✖✍✌ ✑
t�✁✂ ❚✜ ❂

s✂②s✓✦s❬ ■✕✏✍✖✍✌ ✑☞ ✞✂s✥✢✐✁t✐✓✦❬ ❙✏✌❉✕✖ ✑☞
❊✁✐s✓✞✂✯

t�✁✂ ✧★❉✩✡✪✍ ❂
✂✁✐s✓✞✂❬ ✦②✝✂❬ ❙✏✌❉✕✖ ✑☞
❣✫✂st✣✞✐✢✂✥t✓✢❬ ❙✏✌❉✕✖ ✑

✳✳✳

Figure 1: XML Schema for IMDB documents

❁✐✝✞✟✬
❁s✒✓✔ t�✁✂❂✰✱✓r✐✂✰✬
❁t✐t✗✂✬✲✫❣✐t✐r✂☞ ✴✒✂❁✵t✐t✗✂✬
❁�✂②✢✬✶✷✷✸❁✵�✂②✢✬
❁②❛②✬✹✫✤ ✞✂✢ ✲✗✫✥✒t❁✵②❛②✬
❁②❛②✬✲✫❣❣✐t✐r✓☞ ✺✗❁✵②❛②✬
❁✢✂r✐✂✔✬

❁s✫✦t✐✝✂s✬
❁✢✂r✐✂✔✂✢✬✻✓❣✂✢ ❊✟✂✢t❁✵✢✂r✐✂✔✂✢✬
❁✢②t✐✦❣✬✴✔✓ t✒✫✝✟s ✫✁✉❁✵✢②t✐✦❣✬
❁✥✓✝✝✂✦t✬

✴✒✐s ✐s ② ✤✫✦ ②✥t✐✓✦ ✝✓r✐✂☞
❍②✢✢✐s✓✦ ✲✓✢✞ ②t ✒✐s ✟✂st✳

❁✵✥✓✝✝✂✦t✬
❁✵s✫✦t✐✝✂s✬

❁✵✢✂r✐✂✔✬
❁✢✂r✐✂✔✬

❁✦�t✬
✴✒✂ st②✦✞②✢✞ ❍✓✗✗�✔✓✓✞ s✫✝✝✂✢
✝✓r✐✂ st✢✐❛✂s ✟②✥❛✳

❁✵✦�t✬
❁✵✢✂r✐✂✔✬
❁✟✓❜✣✓✤✤✐✥✂✬✶✼✸☞✽✾✿☞✷❀✾❁✵✟✓❜✣✓✤✤✐✥✂✬
❁r✐✞✂✓✣s②✗✂s✬✽✿☞❃✾✚☞✿✿✚❁✵r✐✞✂✓✣s②✗✂s✬

❁✵s✒✓✔✬

❁s✒✓✔ t�✁✂❂✰✴❄ s✂✢✐✂s✰✬
❁t✐t✗✂✬❇ ✲✐✗✂s☞ ✴✒✂❁✵t✐t✗✂✬
❁�✂②✢✬✶✷✷❃❁✵�✂②✢✬
❁②❛②✬✹❛t✂ ❇ ❈ ❋✐✂ ✫✦✒✂✐✝✗✐✥✒✂✦

✲●②✗✗✂ ✞✂s ✲❏✺❁✵②❛②✬
❁②❛②✬✹✫❜ ✤✢✓✦t✐✂✢✂s ✞✫ ✻✂✂✗❁✵②❛②✬
❁s✂②s✓✦s✬

❁✦✫✝✟✂✢✬✶✚❁✵✦✫✝✟✂✢✬
❁�✂②✢s✬✶✷✷✸ ✶✷✷❃ ✶✷✷✾ ✶✷✷❀ ✶✷✷✽

✶✷✷✼ ✶✷✷✷ ✿✚✚✚ ✿✚✚✶❁✵�✂②✢s✬
❁✵s✂②s✓✦s✬
❁✞✂s✥✢✐✁t✐✓✦✬
✹ ✁②✢②✦✓✐✥ ✲❏✺ ②❣✂✦t t✂②✝s ✫✁ ✔✐t✒
② ✤✢✫st✢②t✂✞ ✤✂✝②✗✂ s✥✐✂✦t✐st t✓ ✥✒②s✂
❋❑✹ ✝✓✞✐✤✐✂✞ ②✗✐✂✦s ✤✐✦②✦✥✂✞ ✟� t✒✂ ❑◆✹✳

❁✂✁✐s✓✞✂✬
❁✦②✝✂✬▲✒✓st ✐✦ t✒✂ ✱②✥✒✐✦✂❁✵✦②✝✂✬
❁❣✫✂st✣✞✐✢✂✥t✓✢✬

▼✂✢✢✓✗✞ ✲✢✂✂✞✝②✦
❁✵❣✫✂st✣✞✐✢✂✥t✓✢✬

❁✵✂✁✐s✓✞✂✬
❁✂✁✐s✓✞✂✬

❁✦②✝✂✬✲②✗✗✂✦ ✹✦❣✂✗❁✵✦②✝✂✬
❁❣✫✂st✣✞✐✢✂✥t✓✢✬

❖②✢✢� ◆✒②✔
❁✵❣✫✂st✣✞✐✢✂✥t✓✢✬

❁✵✂✁✐s✓✞✂✬
❁✵s✒✓✔✬
✳✳✳✳

❁✵✐✝✞✟✬

Figure 2: Sample IMDB Document

well without taking the application (i.e., a query workload
and data statistics) into account.

For example, the first storage mapping shown in Fig-

ure 3, which is what would have been generated by pre-
vious heuristic approaches, inlines several fields that are

not present in all the data, making the P◗❯❱ relation wider

than necessary. Similarly, when the entire P◗❯❱ relation
is exported as a single document, the records correspond-

ing to movies need not be joined with the ❲❳❩❭❯❪❫ table,

but this join is required by mappings 3(a) and (b). Finally,
the (potentially large) ❪❫❭❞❴❩❳❵❩❯❝ element need not be

inlined unless it is frequently queried.

3 XML Storage with LegoDB

LegoDB is a cost-based XML storage mapping engine

that automatically explores a space of possible XML-to-
relational mappings and selects the best mapping for a

given application. Experiments in [1, 5] show that the

LegoDB mapping engine is very effective in practice and
can lead to reductions of over 50% in the running times of

queries as compared to previous mapping techniques. The

LegoDB system is based on the following principles:

Logical/Physical independence. An XML application
developer should be able to design her application at

a logical level, i.e., using XML-driven design tools,

and need not be an expert in the underlying relational
technology.

Automatic mapping. The generation of XML-to-

relational mappings must be automatic — developers
should not be required to manually specify mappings.

Application-driven mapping. The storage design should

take into account the requirements of the target appli-
cation. LegoDB takes application characteristics into

account and uses a cost-based approach in order to

find the best storage for a given application.

Leverage existing technologies. LegoDB leverages cur-

rent XML and relational technologies whenever pos-

sible. The target application characteristics are mod-
eled using XML Schema, an XQuery workload, and a

set of sample XML documents. The best among the

derived configurations is selected using cost estimates
obtained by a standard relational optimizer.

Extend existing technologies. LegoDB develops new
specific extensions to existing technologies whenever

necessary. Notably, in [1], we propose novel XML

Schema rewriting techniques to generate a space of
possible relational mappings, and in [5], we extend

XML Schema with statistics in order to support

accurate cost estimation for XQuery workloads.

4 LegoDB Architecture

The architecture of LegoDB, shown in Figure 4, is com-

posed of two main components: storage design and run-



❚�✁✂✄ ❙☎✆✝

✭ ❙☎✆✝✞✟✠ ■✡❚☛

t☞✌✍ ❙❚✎■✡✏☛

t✟t✑✍ ❙❚✎■✡✏☛

☞✍②✒ ■✡❚☛

❜✆✓✞✆✔✔✟✕✍ ■✡❚☛

✈✟✠✍✆✞✖②✑✍✖ ■✡❚☛

✖✍②✖✆s✖ ■✡❚☛

✠✍✖✕✒✟✌t✟✆s ❙❚✎■✡✏ ✮

❚�✁✂✄ ✎✍✈✟✍✝

✭ ✎✍✈✟✍✝✖✞✟✠ ■✡❚☛

t✟✑✠✍ ❙❚✎■✡✏☛

✒✍✈✟✍✝✖ ❙❚✎■✡✏☛

✌②✒✍st✞❙☎✆✝ ■✡❚ ✮

❚�✁✂✄ ✄✌✟✖✆✠✍

✭ ✄✌✟✖✆✠✍✞✟✠ ■✡❚☛

✍✌✟✖✆✠✍ ❙❚✎■✡✏☛

❣✗✍✖t✞✠✟✒✍✕t✆✒ ❙❚✎■✡✏ ✮

✳✳✳✳

❚�✁✂✄ ❙☎✆✝

✭ ❙☎✆✝✞✟✠ ■✡❚☛

t☞✌✍ ❙❚✎■✡✏☛

t✟t✑✍ ❙❚✎■✡✏☛

☞✍②✒ ■✡❚☛

❜✆✓✞✆✔✔✟✕✍ ■✡❚☛

✈✟✠✍✆✞✖②✑✍✖ ■✡❚☛

✖✍②✖✆s✖ ■✡❚☛

✠✍✖✕✒✟✌t✟✆s ❙❚✎■✡✏ ✮

❚�✁✂✄ ✡◆❚✞✎✍✈✟✍✝✖

✭ ✎✍✈✟✍✝✖✞✟✠ ■✡❚☛

✒✍✈✟✍✝ ❙❚✎■✡✏☛

✌②✒✍st✞❙☎✆✝ ■✡❚ ✮

❚�✁✂✄ ✎✍✈✟✍✝✖

✭ ✎✍✈✟✍✝✖✞✟✠ ■✡❚☛

t✟✑✠✍ ❙❚✎■✡✏☛

✒✍✈✟✍✝ ❙❚✎■✡✏☛

✌②✒✍st✞❙☎✆✝ ■✡❚ ✮

❚�✁✂✄ ✄✌✟✖✆✠✍

✭ ✄✌✟✖✆✠✍✞✟✠ ■✡❚☛

✍✌✟✖✆✠✍ ❙❚✎■✡✏☛

❣✗✍✖t✞✠✟✒✍✕t✆✒ ❙❚✎■✡✏ ✮

✳✳✳✳

❚�✁✂✄ ❙☎✆✝✞✘②✒t✙

✭ ❙☎✆✝✞✘②✒t✙✞✟✠ ■✡❚☛

t☞✌✍ ❙❚✎■✡✏☛

t✟t✑✍ ❙❚✎■✡✏☛

☞✍②✒ ■✡❚☛

❜✆✓✞✆✔✔✟✕✍ ■✡❚☛

✈✟✠✍✆✞✖②✑✍✖ ■✡❚ ✮

❚�✁✂✄ ❙☎✆✝✞✘②✒t✚

✭ ❙☎✆✝✞✘②✒t✚✞✟✠ ■✡❚☛

t☞✌✍ ❙❚✎■✡✏☛

t✟t✑✍ ❙❚✎■✡✏☛

☞✍②✒ ■✡❚☛

✖✍②✖✆s✖ ■✡❚☛

✠✍✖✕✒✟✌t✟✆s ❙❚✎■✡✏ ✮

❚�✁✂✄ ✎✍✈✟✍✝✖

✭ ✎✍✈✟✍✝✖✞✟✠ ■✡❚☛

t✟✑✠✍ ❙❚✎■✡✏☛

✒✍✈✟✍✝ ❙❚✎■✡✏☛

✌②✒✍st✞❙☎✆✝ ■✡❚ ✮

❚�✁✂✄ ✄✌✟✖✆✠✍

✭ ✄✌✟✖✆✠✍✞✟✠ ■✡❚☛

✍✌✟✖✆✠✍ ❙❚✎■✡✏☛

❣✗✍✖t✞✠✟✒✍✕t✆✒ ❙❚✎■✡✏ ✮

✳✳✳✳
(a) (b) (c)

Figure 3: Three storage mappings for shows

time support. These components are described in the re-

mainder of this section.

4.1 Storage design

LegoDB takes, as inputs, parameters that describe the tar-

get application (an XML Schema, an XQuery workload,
and a set of sample documents) and outputs an efficient re-

lational configuration (a set of relational tables) as well as

a mapping specification. The modules for storage design
component (see Figure 4) are the following:

StatiX. The first task in the system is to extract statistical

information (about the values and structure) from the

given XML document, and this is done by the StatiX

module. This information is necessary to derive ac-

curate relational statistics that are needed by the rela-

tional optimizer to accurately estimate the cost of the
query workload. Details about statistics extraction in

LegoDB can be found in [5].

Physical Schema Generation. The statistics together
with the XML Schema are sent to the Physical

Schema Generation module, which outputs a physical

schema, or p-schema. An important feature of p-
schemas is that there exists a fixed mapping between

a p-schema types and relational tables.

Physical Schema Transformation. The system then

starts the search for an efficient relational config-

uration. It does that by repeatedly transforming
p-schemas, i.e., generating new p-schemas that are

structurally different, but that validate the same docu-

ments. Note that because p-schema types are mapped
into relations, by performing schema transformations,

LegoDB generates a series of distinct relational

configurations.

Translation Module. For each transformed p-schema, the

Translation Module generates a set of relational ta-

bles, translates the XQuery workload into the SQL
equivalent, and derives the appropriate statistics for

the selected tables. This information is then input to

the optimizer for cost estimation.

The design phase produces an XML-to-relational map-

ping that has the lowest cost among the alternatives ex-
plored by LegoDB. It is important to note that: the rela-

tional optimizer is used by LegoDB as a black box to obtain

cost estimations; and the quality of the selected mapping
depends on the accuracy of the estimates computed by the

optimizer.

For a more detailed description of the various modules,
definitions of the physical XML Schemas and the XML

Schema transformations, the reader is referred to [1].

4.2 Runtime Support

The runtime support component of LegoDB (see Figure 4)

operates as follows: After a configuration is selected, the

corresponding tables are created in the RDBMS. The DB

Loader module shreds the input XML document and loads

it into these tables. Once the relational database is created
and loaded, the Query Translation module is used to per-

form query translation on behalf of the target XML appli-

cation. Note that other tools for mapping XQuery to SQL
mapping tool can be used in LegoDB (for instance [3]).

5 Demonstration

The proposed demonstration will show the complete pro-

cess – storage design and runtime support – for storing and

querying XML in a relational database. We will show for a
variety of schemas and datasets (IMDB, DBLP, etc.) how

LegoDB derives efficient configurations and mappings that

are adequate for a given application scenario. We will also



Physical Schema

Generation

Physical Schema

Transformation

Translation Module

XML 
Resultdocument

XML 
XQuery

StatiX

P−schema

efficient configuration

P−schema

cost

Storage Design

Runtime Support

tuples

DB Loader specification

mapping

XML Schema

Relational Optimizer

SQL query/results

XML document

XML data statistics

mapping specification

XQuery workload

workload

RDBMS

statistics and SQL 

Relational tables,

Query Translation

Figure 4: LegoDB Architecture

show how runtime support components are used to load

the data and run queries. Finally, we will illustrate the
performance improvement obtained by LegoDB by com-

paring query evaluation times of configurations selected by

LegoDB against configurations derived by mapping strate-
gies proposed in the literature.

References

[1] P. Bohannon, J. Freire, P. Roy, and J. Siméon. From XML
schema to relations: A cost-based approach to XML storage.
In Proc. of Intl. Conf. on Data Engineering (ICDE), 2002.

[2] A. Deutsch, M. Fernandez, and D. Suciu. Storing semi-
structured data with STORED. In Proc. of ACM SIGMOD
Intl. Conf. on Management of Data, pages 431–442, 1999.

[3] M.F. Fernandez, W.C. Tan, and D. Suciu. Silkroute: trading
between relations and XML. WWW9/Computer Networks,
33(1-6):723–745, 2000.

[4] D. Florescu and D. Kossmann. A performance evaluation of
alternative mapping schemes for storing XML in a relational
database. Technical Report 3680, INRIA, 1999.

[5] J. Freire, J. Haritsa, M. Ramanath, P. Roy, and J. Siméon.
Statix: Making XML count. In Proc. of ACM SIGMOD Intl.
Conf. on Management of Data, 2002.

[6] Internet Movie Database. http://imdb.com.

[7] A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas. Effi-
cient relational storage and retrieval of XML documents. In
Proc. of Intl. Workshop on the Web and Databases (WebDB),
pages 47–52, 2000.

[8] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. De-
Witt, and J. Naughton. Relational databases for querying
XML documents: Limitations and opportunities. In Proc. of
Intl. Conf. on Very Large Data Bases (VLDB), pages 302–
314, 1999.

[9] T. Shimura, M. Yoshikawa, and S. Uemura. Storage and re-
trieval of XML documents using object-relational databases.
In Proc. of DEXA, pages 206–217, 1999.

[10] Oracle’s XML SQL utility.
http://technet.oracle.com/tech/xml/oracle xsu.


