The Right-to-Left Shunt of Crocodilians Serves Digestion

C. G. Fiznner ${ }^{1 / 2 .}$
T. 1. Litiona'
11). 13. Ofser ${ }^{1}$

甠. Steenblik'
K. Sanders:
'Department of Biologt, University uf Litah, Salt Iake Cily,
 Suite 180, Solt Lake Giry, Litah Bat 103; 'Depuriment of Hadnollogy, Nusculerkeletal Divisinn. Lniversity oil Liat

Abstract

ABSTKACT whis atiaity is phorly understood. We: studied the role af the fhent in aligestion int juwerille American allitutors in the bolDowing ways. Fiest, we characterized the shant int fosting and postprandial animals arid fornd that blood was shumed prast the lunge during digestion, Serond, we elisibled the situmb by surcically sealing the left wortic orifice in onc group oll animals: Snd we pertorned a sham surgery in another. We thers com- paralumes of 19° anal $27^{\circ} \mathrm{C}$ and ates of tigestion of bore at secertion when natasured d! 19^{2} and $27^{\circ} \mathrm{C}$ were significandy hess in the disubled proup than in sham-operated animials. Twenry tous hours porstprandial, a signifizant decrease vas abled snimals. These data suaptest the right-sio-left shan merves tor retain sarbon dioxiste in the body go than it can lex ustell by uhe gasaroiattebtichal syatern. We hepothesige that the foramen dued for the gestointestinal systers to powe protur pumper and other cueraty-demanding proweses of digestion and lhat the rigla-10-hett shant serves en provide cattion thoxide to gas- splagh, apper small intesmes and liver.

[^0]
Anlfoduction

The specilic aian of this sludy is wo test the bypathesis that alime right-ro-left sinuat whood past the lungs in American alligators server digestifan by enablirg high rates of gastric acid tearetitur and that inis fromess is higaly sensitive en temperature. The
 ing of the selterme factors that have shaperal the cardiopul. pmoniasy systenl of amacites.
 of amniotes is understandisg the tutars leations to rhe fully divided circulatory systerns of birds and תาarivaly and understanting , We reasons for the incumplethly divided systems of iall other members of the groul) (Goodith 1930: Liwer 1900; Foxon l950. Onc advantage of the divided circulatots syitern is that high syactuic bhood pressures can be generated willoul Ligh pulapmiary prossures (whi:] can ditrogge the vasiulaluth in the lungs, ant hiflt pressuret. dieliver mete thoud to bissures
 prevents the mixing al orygen rith and oxygern-poor bland Because a primary fanction of the cardiorespiratory syatemin is 10, iteliver ox, and wher "waste" producs in melationlisn to sites where they can be clirninated from the body (e-t., Ine lung ga, gills, 䠌in,

 Alow the the langs, the primeaty ste of gas exchange in ammiutes, and divers this blood back into the sysnemit cirbulailime, the righl-to-telt stunt, Are there advantages tor this pentern of lituoul how, and are nhere trade ufts or comseraints in the evolution of inese systerns?

Miany functions fior illue s. ande hawe ther proposed. Shunting may keep CO, out of the lumg dunntin divin, pacilitating the upliate ow wayger from the turgs and sawing the hettet-oxygenalted hogal of the fefo wentricle for the brain and heart (fietenFielld and Mowrow 1961; Wethly 1979; Grigs l989). The shumt

 digation \{ones and Sheltor 1993) : and it has bect inyputhesized to spced recovery fromia metubolna didosis ly soques.
 bagarbonale stores (Farmer 20nh?).

Carben dioxide is the mulbstrate for the forlotalicun af atid in the oxynlia glands of the stonnathe inld an increase in the parniat possurc of CO , on the basolateral side ot these cellis can intranc 1the rabe of gastria acid secretion ikidder and Montgomery (974; Glauser eq al. 19951 . Work by Kidder und Mromphomery (1974)
sugnests that $C O$, differsion to oxymaic culls is the rate-limiting factor in maximal gastric abig sectretion. Thus, themectionly, shanting bypercapnie thood so the stomach could increase thec naximal rates of gastric acid secretion over whell would be possible trom glands perfused with arterial blood. Importantly. Fastric ateid can bee gecreted when the oxymic cells ane ferrused
 in all binds and marmouls, alheit themetically at a slower maskimal rate-

The cmacodifian ardiovascular systent is highty suitable for grading of Ife shunt, whith can be stopped by sealing the left aotlic orifice. I'tee lefi aurta is an wessel that anisess from the right cardiac ventricle (Figs. 1. 2). The left cartiats watricle gives tise to a large vessel that subutides to form the light aorta, lave cosmmu: (primary) carotid, and the right subclavian. After leawing lue pericardiun, the" aurlas hop over the primery bron chi ind thentin caudad to unite by a shost, wide cornection
 to Eontinue on as the corsal aortal while the left afch semens tor continue on as the celiac artext: The celiac branches to supply bolend to the stomatic. spleen, liwer, parereas, and upper shazll intesting (Reese 1915), The dersid aurta supplies blood to the
 and the atteries of the pelvis, hint leps, and taii. Thus, the Thainerity of bloof wessels of crocodilines originale from the righn-idernind anh complex, while the beft aorta appears to primatily serte the stomacha and ollher organs of dipestion. The lelh and right aeride have anothes sine of tornumatation, an apurture in the interaortic septum just distal to the bicuspid yalvess, the foramen of Panizza ffig. 1A:. The function of this forimen is unknown.

Gremedilians have significant control over the shunt. The sem-
 exceed arterial presures. the withen open and blood is mincted into the aortas. However, in addition to these passive, pressureoperated valves, the patmonisty artery of arocoditions has an attively controlled cog-teeth valve. Epineplrime opems ine valve, and then right ventricular bleod is efected into the pulmonimy

 substance? and histamine cause a portion of the hlood in the right wentricle io tue equeted into the left morta, rather than into the pulmonary astery, hy either inducing clusure af he cog-tecth watwe or causing constriction of jntrapulmonary vasculature (Whe 193f; Greerfind and Mortow IP61; White 1969; Grige and Johansen 1987; Axelsson et al. 1949, 1491; Grige 1999, 1992; Hoimgren el al. 1989; lones 1996; Hicks 1994; Frankin and Axelscom 2twol. Hecaluse hae blood that concodilians shunl into the beft aorsu froma the right wentricle has not pasised ehrough the lungs, it is rith in HH^{\prime} anul CO , but far in O_{2}. compared with blowh that has passet through the langs. Thus, the ledt aorta appeats to curve as a ditect and sulystantial contuit to shunt CO_{2} and H' -rielh blood past the lunge and to the seomach, paniteas, liver, splean, and upper small intestric ilucese 19n5; Wenta 1979; Grigg 1985; Jones and Stelton 1993; Jones 1996). The evolution
of this highly specialived cardiovascular system and the preat degree of control that crocodilians hate over this shunt supgests that this system is uniquely tuitored by autaral selection to seive iniportant functions, bal linase fantions remain poorly understood.

Material and Methods

Several groups of animals were used in a series of experiments aiming to test the hypothesis that the right-to-left shunt serves digetion and to gain insight into why the ability to shunt is found in ectothermic but nol endothermic amnotes. The first step was to determine whether a right-to-left shunt occurs diuriny the postprandial neriod, because if the shunt does not octur af rhis time, then it is impossilad for it hb serve digestion. Five juvenite American alligators were used in these experiments, referred to as the blood flow study. Ini this stud; a single blood flow probe was placed on the lett a@ria, hecause in crocodilians it is porsible to recogriize at right-tom-left slant by this blood flow 1race 'shelton and Jones 1991; Jonits and Shelton 1993; lones 1996; Fig. 2F… Once it haud lienen estabishled that a shunt occurs throughout the postprandial period, the shun was disabled to assess the effects of the shunt on gastrit acid secretion and, therefore, on digestion and to examine the importante of temperature in these protesses.

To disable the shunt, a sitture was placed around the left aortic orifice, afferent to the inranuen of Paniza (Fiper 1 Bi . Catheters of polyethylene tubing were placed in either the right atrium or the right ventricle, and metal sutures were loosely placed around the right and left antas so that the vessels could be identified under huoroscopy, The shaten surgery entailed placement of the atrial or wenlricular wallebery and the marking of the atortas, but the left iortic orifice was not seiled. The effect of his occlusion was studied in two ways: (1) by direct measurement of rates of gistritic atid secrelion and (2) hy radiographicilly fallowing the aigestion of bone.

To study prefered body ceniperature ith, programmable temperature data longers (iRumon Thermochrons, DSA422, Maxim Dallas Semiconductest:) were placed by oral route into the stomachs of six juvenile alligators ranging in size trom 2.3 to 4.1 kg . The temperature bensors tave a range of -40^{4} to $+85^{\circ} \mathrm{C}$ and are accurate to $\pm 0.5^{\circ} \mathrm{C}$. Each logger was 1.4 cm in diameper and 1 cm thick. The animals prese provided a thermal gradient menging from 150 to $40^{\circ} \mathrm{C}$. These animals had not undergone sutgery. After implantation of the probes, alligators were retirned lif their cage, which was kept in a greenhouse with ar dir temperatute of approximately $29^{\circ} \mathrm{C}$. Fxperimental housing consisted of two tankes joined together; each tank was $3.2 \mathrm{~m} \times 2.4 \mathrm{~m} \times 0.6 \mathrm{~m}$. Fresh tap water constantly flowed through one tank, wih a shermal gradicnt from the top to boitom of the rank ranging from 15° to $19^{\circ} \mathrm{C}$. The seand tank wis dry: and heat lamps created a thernyal gradient ranging from 23° ro $45^{\circ} \mathrm{C}$. The basking aroas were targ enough for all of the animals to bask sirmultaneonsly. The allightors were housed together and were free to move about these thermal

 ditng. Subsequenuly core body tempurallute whe recorded ewery 10 rain untill the buiter wils fill, which occurred sfier 2,044 sataples were ol-ained. 142. A aftet programming. The aminalk had finsted fur 2 wk Laclore being insarmented. Severidays aiter data Eatlection commenced, the anmialis whe led ad hilt. In saticty on whole mice. All the end of the experimental periont, the oliatal loggers whet retrieved by gastric lawnge. The last 3 d of the lastimg geriod and the hirst 3 do of the postprandial period were sulected bot andysis.

Antanis

 remperature study the amimals had leern gaght from life wilat al the [kockefeller Wiallife Refuge by the luaisiuna Fresthenter Fish and frime Conmission. Thay were trassported to Ulah.
 tanks contaning areas fom swimmint and hasking. Thery ex-
 be fornd in Table 1.

Sargery

biclore all surgeries, the arinals tosted tior I wh. They mest then weighed, anesthetizad with isadlusame, inubbeded, and wen-
 throunh a wiforiter (Detiger, Lubeck, Germuny). The vepporizer wish intilaily ser to 4% isuflurathe tu indure a surgical plane of
 throughout the mafority of the surgery. The site where the
 rest of the animal was coweted with a sterile drape. The sureqical procolures clitiered betwern the studies and thus sepanate destriptions are givel helow; homenter, the recovery preweduec wiss the sizme. The aninglls were givern 2 j10 to rather lom the rurgers. During teawery, the sile of incision was tented
 clean banduges. The animalls were also given antibionics (Baytrill inaramusulatly tuntil the inciaions were zompletely healed. Thene was no sign of infection in any of the animats. The indwelling vascular catheters wete llushed eqery onk ive divy with

 (Tiransonic bysterns, Ithaiti, Ny) was placed around the wessel. The andal end of he sluentum whiz cut approximealely 2.54 cm (4) actuess fhe wesed.
 divided inte two groups: Ine afligators underwent sham sul geries, and hine andetwinn exporimental surgeries. The sham surgery consisted of a randline vematal incision lob expose the teart und greall wessefs. The mudial eht of the stertitn was cut approximately 2.54 can to enpuse the versels. The leflind riphle

 around tach vessel as a marker. Pedycthylene ativia or wentricular catheters (PE-50) wilh thares ent!) were plated and secured with purse-suribg sullures. The catherest wher filled with a mix-
 neously and cateribrized in a darsal locition. The body wall wab elosed with absurbable suture (0 Dexon If green braded polydycolic almortable; Sherwood Medical, St. Louis, MO). The skian was closed with iedividually flated silk sutures.
 a metal sulure, but the lett aorta was matuded at tero siles. Eirst, we leff anth wiscleared ellerent from whe point at which the leth, tight, and ןulntonaty mbthels share common, wallis ant
 of the atortic and pelmonary vallues were idernifined vismally. A hapered needle wis used to place a second silk suture on the cardiace side of this support budt that the lefe aorta wars nocluded
 selected for catheterization. 7he callieters were harmelech smit? sutaneousty aht exteriorized in a durtall lowation. The body wall wass closed with ahsorbable sulture (i) Dexos 11,. The skin was closed with individtrilly plated silk sututes.

To assess the elfectiveness of the surgical procedute linal sealed the left aortic orifice, a] - -3 -mL boduri of radio opaque material Oninipatue 7onj [whexol]; Nowaplus, Amersham Heathe; was hand injected through the catheters under thoroscopy. Them an

Alligators consumed a meal of chopped sreaz weighima 5\% of lincir malls and were mainataimud at I_{n} of $27^{7} \mathrm{C}$. Steak wils chosen

 (intre) into the Fullmaty artery- © Bhi, while the Lef ventricte elects

 image of hlowd llow palletms. Enoth images shuth the vessels reteiturig

 an sign of contrist medium on the :Ano an infuston uf acelylatholine

 dicates Jove feom the Ryo intothe Lat though the foramen oif fanize

 stornach, thes = hiow how in flut lu:E zoma.
insleat at mioc lot aroid hair in the slomach. Allanugh we

 acid secretiun matiabred. Thus, wh chose a cobler tememerature

 the stombiach ron measome wates at acid secperion for 1 ho by titration with NuHCO, (Fordtran and Walsh l9730, Two weetrs Litter, this same procedure was followad, ercept the hody tento
 mensurement periods. During the measuremut perinds, the

 selected the 10 - min interval of this hour that had the highest mean sate to determine rowamal rates af acid secmetions (Ford| [an Ind winlsh (1473).

Prow dow for Assessimp Rates of Digestient. Using Digida! deridromaphy

Digitall radiogtaphes were used to monitor the eflicels of uedusion tit the lefi sorta on fates af digection of bone. The aligators. were fed a meat cuytuining a single dulleshed, skelctally im-

 hanjhurger containing 2 2\% that and weiphing sho of the body mass usf the abligator, Mier fealing the alnirnuls weme given to mint in an waler batis ($30^{\circ} \mathrm{C}$) 10 ensture that thay were well hybrated. 'The anirnats ware then housed separately' at $2 z^{\circ} \mathrm{C}$. The first x-rays taken wore on the day of fedinp. Sulvequent imates
 1玉, 15, 17, 14, 21, ats 25 following feeding. Twice a week the
 30 C : so that llley botild driak.

 mati (milliamp scounds!. The phourcuciwer was kept horizon-
 experimental sulyjects conuld the placed dieectly on the saltiate of the reactuer. Absinals were allowed to rest in the prome position. Coldimation was restrictud to the' transwerse widh of the animatl :nd ingilulled the: inferior (posturiorl half of the' clvest and enuite pubss. Ar experienced musculonkeletal radiohoght uriar prevent to assess froper posilioning and expesure of each
 of the digital inages to the picture archive ant commonications

 radiograplay unit. Once the images were transfered in the Phos, the individuah idemifise condes were thern minntalizy applied to the imager along with aigital measurement data. I'loe

	Anvimal Mas ig	Bovine Caudial Verkehra（g）	Meil Mas \times Aligator Mass	Days to Complere Digestion
Experimential suigery．				
E1	3，300	11.4	． 0095	17
E2	3，340	$11 . .5$	． 0035	15
F_{5}	2.1100	8.4	． 0040	23
Eis	1，590	5.5	． 0037	21
E 7	2，3100	9.4	． 0041	21
1 A	2,9000	7.0	．0035	21
Meatil \pm S	$2,417=300$	$88 ;=.98$	．0037 $上 .011$	19.6 ± 1.23
Sham surgery：				
＠	2．700	9.7	． 0036	13
$0]$	2,500	9.7	． 0035	21
C3	2，000	7.4	． 0040	21
\bigcirc	1，700	6.2	．0036	17
M以л \pm 骬	$2,225 \pm 224$	$8.38=.84$	$.00138 \pm .0001$	18.0 ± 1.91

final annotated intages were then transformed From digital inm－ aginge and commonications in medicine format（DICOM）bs 24－hir hap and transterred to an indixidual storage file from which they were hifially burned to compate chasc．

Puata Amalysis

Radiographic data from both studters wete antialeat with the same procederge．Medsunements of the hare weter moule using digital calipers al a findips Inturis facs workstation that in－ chated a high－rasulution 4 －megeapixel monitor（ $1,5,36 \times 2,048$ pixels？made by NEC．The images weec displayed two per screen，with the sagittiz］plame orienced verisially．The images were lhen raggaified twice and nin lhrough aredge－enhancing filter lon improve the conspiguity of the bone margins．The hghtness，darkress an well as contrast of each itmage was inter－ milltantly ediusted for optinnen visuadization．Because the in－ gesteall caudal verlebrab were not uniform cylinders，warying degreses al obliquity and rotation affected their appatent di－ nanensiofs de the dimsall to wentrat projuchion．Mcasurement were therefore obtained framelel and fatimembeular to the lony axis of the brifes．The fong awis was egratitished by placing one of the two C．ohbs angle haes atomg the ceatial long axis．＇The scond live of the Cobtr ardele tool was then nowed until the digiral ahgle meansiriment read 90° ，thus setting a reference perpen－ dicular line to the hong axis．As athese lines conded be moved to aray fart of the image，accurate parallel measurements could be made by flacing subsequent lineas measuremerty toolsicid－ ipers urn ot texil to these teference lines．Figure 3 shows low the maximum length，maximum width，and minimum width uf the ingested verthbase were measured in relation to the tep－ dentucellac＇s．The maximumatught was measured trom the most Fontulberant suffices of the epiptsyses parallel to the tong axis．

length was frequently not superimposed on the centail lunes axis．Afler fragmentalion and separation of the epiphymes，the maximum length was measures in the same manner from the most protuberant visible part in the remaining metaphysall ends．The maximum width wass measured from the ouler git－ tical surfaces of the wider metaphyses along the peryendicular reference linc．Thu minimum width was measured from the outer cortical serfaces of the marrowest parl of the diaphyses along the perpendicular referente line．In the initial halif of the study，the limiting factor lar measurenteriz resolution was，the pixel dimension of the monitor，which yicldud reprotucible measurements of ± 0.1 nim In the laner half of the sludy， decreased compicuity of the cortical surface ftom digestion was a larger factor．As the length of the lones shortened，the position of the minimum width measurement shifted．This hat the effect of increasing the mininum width measurement as time pro－ ceeded during the latter phase of digestion．If the bone assunced an elliptical shape during digesion，the minimum width mea－ surement was dropped altogether and only maximum width and length data were collected．

To minimize the effect of syserni performance variation on measurement accuracy，we also obtained a nawimum pelvic widils measurement to be ：used as a stable length reference． Since this measurement wat laken fresa berween the most pro－ tuberant laterai acetabuar margins，it is teferred to as the trans－ acetabular width（laiv）．The TaW line generally fell along，the intervertebral space of 51 and $S \geq$（Fig．3）．Small degrees of pelvic obliquity did affect the TAW mensurement，and it is not clear whether this may have intreduced more or less variahility to the measurement accuracy than would have been seen with normal fluctuation in the radingraphy system itself．

The ingested bone measurement data were then converted to a percentage of the TAW measurement obtained on the same day of imaging．Since each animal as similar in body proportion

despite variation in moss, Iuporting verlobral measuremernos as
 nating scalle frome the final data pultern.

The distribution of thes: measuresmerols as fatratrllagen of TAW wis checkit for monthality, and a one-miled Studeat's rtest was used to deteraninc whether the differentes sempatwern the curnirw wad experimernal gronps were signilumant its A,05:. Once an individunl alligator had conpleted digestion, lhat ankmak was ro longer included in the analysis.

Results

Peefered ? was sigrikicantly derenter and less wariable whor Eectirng than when lastimp; $\mathrm{I}_{\text {hut }}^{-}=26.0^{\circ}-2.02 \mathrm{C}$, mean \pm
 ($P=0.0028$, two laided t-bil)

Ciood Fiow

 sunaption of a meal. Figure shows represcatativedata collented belione and after eatimg Irom unt animal weighing 2 heg. Each value is the mean ralle nt shunat food ociurring oner a lah period.

Gingrig Acid Scoreciman

 sured over the ontire observatura periods if IJ eathj are shown

 $\left[F_{1, s}=18.9,1=40.0421\right\}$ and kemperature $\left(F_{1, n}=9.14, f^{\prime}=\right.$

 group fad significantly ereater jates af acid secretion than the

Left Actulthatajou

 was hand infected. Closure of the pulmonner botionlwe amd

 :lll cases, suicessiul control subjects simpurd a distinct jet wf
 experimental arimals shanded posting of comaloul in the righin

 iil sumputs with atrial catheters. a preater whlume of gontrast anct lthre runs were reguincd in those animals with arrial futh-
 shombed ab bignilicatat innfrowement in right ventricular outhaw

 the study: At the entel of he stuly, he animals were inomed a
 thabyghoet the sudy.

 these anilials were used in the sturdy ITalye ble All five of ehe animals that underwetn is shath surgery were initially inaladed in alle stady. Howeqer, binward the and oflow stady, one ot the exatifuls ife-fi bit ofit mate ane the rip of the tail nif anollyer alligath dilurilg in priod in which they were allowed to swam tugether in the tank of water. J'hus, this ifnimal wins extuded Pro:n thee silluchy.
 quent fragrentakion whe the ingtord wettebrat [eflowed a ste-

 datia was collecind at $27^{\circ} \mathrm{C}$. "The itnimals withe giwen 2 wik rest, ached

 Wats cecorded with a thermonnuplts fremed illaide the catasa
 Modns \pm SEs of the Liomir purnch that gave the largest average rate

 :8.9, $P=0.516+4$) and temperature ($F=9.14, P=0.0165$) as we!

 milhanily grentel vates of acidu wecerion than the erfluded group

 itan: decreate in rater of acid secretion in the bentod group af 1950

 this froup stoped shuntigg due to the rriar enperstre tor the cool

 Sham surger group: flack bar (in $=3$), idigemaly simiped bar $(N=$
 $\hat{N}=3 \mathrm{l}$.
reotyinal segneme (1ife fi). The first radingraphically observahle changes inchuded circucnferential contical thinning. As the wider nettaphysis anatomically had the thinnest corlex, if was the first paint of corticall furtarationifraying. Thes was atosely followed by frayipy of the smalleg melaphyxis. The cartilegge.
 digestimn, ond maximumi length stayed redulively stable for the first half of the dugestion sequence", whik bouth maxianmen and minimum widths sferreased it a atonstant rate. In the last inirad off the digestion sugucerce, separation of the eppophases with framentation and contimad cortical dissolution realted in in accelerated decrease in all thee dimensions. The shapers of the morphonetric curves of this digestion sequence are similar between contrul and experimegtidy inimals as well as loelwhem rapid and slow digestors willist these ohorls.

Ans siggnilicime diflerences wete seen in thic masses of the
 (Table 1: Furlliermore, ho sighificatil differences in aty of the meusurements of the wertelarac :maximum width, minanumi width, lenglth) were seen on the first or thitul atas after leeding (Tiry, T), Thus, the meals ingested thy each group were not signilicantly different. Howewer, the was the meals were processed differed betwesn the experimental and contith grous.
 difference was coutad in the maxirnura width of the wertebrae.

 Berences were seepl it cither the omaximam or the minimen
 cyer, by day 19, sipnifigat differences could mol honger be de. tected ilables 2, 3, and 4;

The total tinae requitod to completely digest lie hotye was highty zariable if wach group ilatile i!, There was no significant difference betwern the sham operated animats and the exper-
jnental animals ($\mathbb{P}^{2}>0$).05). The experimental animas were slighty farger we awcrage than the controls, and there was e
 Usan sutaller aldmails. However, ANCOVA of the andse of the adigator and the time to digest line bone slidl frodaceat of a ab velate 20.051.

Diszussion

The prepmaderance of these inta indicates that the rightetan teft shunt of cromadians serves digeations. The nacthanisni remains to be demonstrated, but the shunt fredbatly, seryes top Cary CO for the gastruitulestinal tract, where it is then used in

 toilhermic but not embothermic ammiones Ome possibility is
 temperature $\left\{T_{2}\right.$, , and since ectotherns canmol olwhys maintain
 while ar the appoppliate tennemart, time is of the escence. In crocodilians, cornpetition for basking sites can be fiesce. with

 predation, which is extremely high in the first two years of life (Thoodward et al. 1987). Thus, it may tre erpecially critical tot
 to obtain the' requisite T_{8} ariges. In contrisith, endothermic lirn-

 predicts the follawinge (1) alter feeding, feptilles will hask (i) inctease $T_{h 1}$ (2) rahes of gaslric acied scotetion will the highly
 greater in ectothergns than endotherms when at their fespechive Fotederal 7_{1}.

 labr day or digectunt.

 oll digesinus, the thimine al ohe masimam width of the vertebrae. Turing rints Tersl pirase of digestion, the wadth of the bones thiraled

 "wace the gratris wore deterted is oue of bouls of the width mensurements on days 6, 9, 13, 15, and 17. Howevec. when the epiphases
 and sorse tut the animats rapirlly frished digestion at thas potit, Ete

 analjze tive dutaí

We found that in Americat allyyators, pufcercd T_{1}, was significantly greater and les.5 variable afier feeding than whell lasting. Althongh our results differ from those in prior research, which found mochange in preferred body tempetature with Eeeding in a crocodilian (Die icnibacts $1975 a, 1975 b$), in the former study, the animals were handled daily to introduce them to the thermal gradient. If the animals were unaccustomed to this handling, it could have altered their behavior and may explain the discrepancy betwern the studies. whe also found a pronounced dectrase in raus al gastric acid secrevion with decreasing body teapermbe. Althourh we initialy attenipted to study rates of gastric achit secretion at the postprandial preferred body temperature of $30^{\circ} \mathrm{C}$, at this temprotiturc, the animals would not sit still for a 1 -in period for ubservation, and thus we chose to use $27^{\circ} \mathrm{C}$. Nevertheless, we measured significanly grater rates of gastric acid wecretion al $27^{\circ} \mathrm{C}$ in both groups of animals. The effect of temperature is more complex than a simple reduction it the turnover rates of enzymes with temperature, hecause we saw less effert of temperature 12 h into digestion than at 24 h . We suspect the prior cooling at 1 ? h shut down digestion, and this became apparent in our measurements at 24 h . The exaci mechanisms by which this occurs merit further study. Nevertheless, as predicled by the hypothesis, rates of gasiric acid secretion are highly sensitive to body temperature. Finally, we found that maximal rates of gastric acid secretion are approximjately an order of magnitude greater in our control group of :aligators than maximal rates reported for endotherms (postyrandial humans with ulcers $=0.9 \mathrm{mEq}$ $\mathrm{kg}^{\prime}{ }^{1} \mathrm{~h}^{-1}$; Fordtran and Wish 1973'. Thus, all three predictions of this hypotheris have proven corted.

However, other faciors may alsos be imporlant and may merit investigation. For example, extremely high rates of gaturic acid secetion may be especially impornant for animals that consume large meajs. Witile endotherma tend to eat small but regular meils, many ectotherms corisume large meali; for example, American alligators will voluntarily eat meals that weigh 23% of their body mass (Uriona and Farmer 2ph6\}). Fiph rates of

Table 2: Mean \pm SE of maximum width of the vertebrat as a pereentage of transinctatoular width in the left aonta ouclusion stidy

Day Postprandial	Experimental		Control	
	Mean \pm SE	N	Mean $=5 \mathrm{E}$	N
0	33.9 ± 1.10	6	$3 \mathrm{~B}, 0 \pm 1.47$	4
3	$30.6 \pm$. $\%$	6	29.1 ± 1.12	4
6	$26.4 \pm .80$	6	$72.5 \pm .56$	4
9	22.3 ± 1.14	6	18.4 ± 1.95	4
13	17.1 ± 1.97	6	16.6 ± 1.12	3
15	15.9 ± 1.71	5	11.7 ± 1.30	3
17	18.5 ± 1.57	4	$13.2 \pm .37$	2
19	$15.6=2.06$	4	$13.1 \pm .65$	2
21	$17.8=.017$	1		
23	$16.4 \leq .00$,		

Table 3: Wean =. Sl: of mimimum width of the wertebrate as a pertentape wf transacetabular widrh in the left aorta ecclonion shudy

[1] Postprandiad	Experimental		Control	
	Meal \pm SE	N	$\mathrm{Magn} \pm \mathrm{SE}$	N
0	22.4 ± 1.39	6	20.4 ± 46	4
3	$18.9 \pm .78$	6	180 ± 1.27	4
6	$17.2 \pm .76$	6	$15.7 \pm .82$	1
4	$15.7 \pm .96$	6	13.8 ± 1.111	4
13	12.7 ± 1.103	6	$10.8 \pm .44$	3
15	$12.2 \pm .90$	4	8.5 ± 00	2
17	110.2 ± 2.04	3	$9.3 \pm .38$	2
19	$93 \pm .49$	3	11.1 ± 0	1
21	17.0 ± 0	I		

acid secrelion may be importan for maintaining an acidie gastric enviromment the preverne putrebation.

Iorphlicalaphe. The role of the shur in digestion may explain some of the noval and curious thatures of the crocedilian circulalion, includisys the function of the foramen of Panizza and Whe allosteric regulation of hemoglobin. Once the acid-producing cells wh the stomach have created hydrogern ions, the fons are pamped into the qustric luanen against one ul the greatest concennation gradients known to exist in the hody of an animal. These punfes reguire ATP, and thus, Lle aciul-producing cells reatire oxyger in addition to carbon diaxide? The faramen of Pamizia enables boli of Q-rich blood to flow from the right assita intes the left aorta and has can crich left-rorlic blood
 of the hlond will help unlond this O_{2} in the gastric circulanon. Crmeoduan hemoglobin is unustinl in decreasisge its affisity for
 ing molecules of CO_{2} : cilareside ions (Cl^{-}) compentively foind to the sime site (Perntz et al. 1981). Beanube gastric acid secretion depletes the blaoi of Cl^{-}but enriches it with HCO_{3}, this allasteric regulation is sujted to unloading O_{2} to the acidsecresing glands of the stomach. A digestive funclion of alhe shunt also explanis the shernical regalation of this blood blow patern. Hany of the newtal and endocine nolecules that anduce a shunt also promote gaspric anid secretion (e.g., atcolylchuline, gastrin-releasing feretide, listamine) or have oller rolles in dinestion (e.g, substance P; White 1956, 19n9; Green-
 al. 1949, 1991; Grige J149, t992; Holngren wid. 1989; Jones 1996; Hicks 1998: frimklin and axelsson 2000 .

Out resulns have several other implications. First, the right-to-1: It shunt is probatuly estential for maximal rates of base prodation, whith are predicled to be equal to the hikh rales of wid secretion found in our suly . The egesta the alligallors are noll lighly icidic (C.G. Farmer, pursonal olshervation!, and therefore, the large volumies of gastric acid produced must be mentralized in the gastroistestinall system by base, As is the case for gastric aciel secretion, misumal ritates of lyate steretion have
been shown in studies of mambitils to depend on blood-borne CO , find counot ocur with the CO , availible solely from endogenous netubolisns of the base producing cells themselves (Flemstron and [senberg 2001; Furukawa ef al. 2005). Recell that the Icll aorla is continunus with the celliat artery', which in luen gines rise to the apleno-inlestinal artury \{adrying blood 10 the splpen and parl of tine smill inmestinc), the gastro-bepatico-intentinal astery \{ Latryng thood to ille stomach, liver, and small intestinel, and to the pancere-irtestinall artere (carrying thond 10 the pancreas and shall infestime?. That maximat rates of base produclion in the pancreas, hves, and small intestine art probably dependent on the right-to-lefit shunt.

Firthemore, we hypolbecize that this shunt serves lo provide rarbon to the liwer, small intestine, and splem for the syrathesis of glulame, lipids, uric anid, and hemoglabirl. Catr-

 son and Hermaridez 1933; Siryer $1945 \dagger$ in importunt to pratein metabolism; the ci-amino group of many aminc acids is transfermat to ri-ketopluturate to form flutamate. Lidulamate cin then combine with ammonia to form gluanmine. Glutantitue plays an kuy role is integrative metabolism; it is important to
 (\$9) , , as a precurior in mucleic acid and ratheotetide biosynUnesis, in inse synthesis of arrino skyars, in intraorgan trangrort
 1998) Coulsen and Hernandez (1985) rupert that the ability of the liwer of lizards to convert CO_{2} and prouveltic to gutarnine is "without precedence:" in that liser glatamiate concentrations were increased sol fold when the animals were given fyrruvale. irurluermore, the fixalion of CO , with pyruvate and the farrmation of oxaloacetane can the stopped ly gizing a arbonic anthydrase inhibitor in caimansand lizards Coulson and Mernumduz 19833. Thus, carbonic anhydrase apprars to be required for this reaction 10 oncur in vivo. Finaty, catbon dioxide is requisite for farty dicid synthe ris. a process thal bumins wilt the carboxylation of acctyl CoA to torm malony) CoA (W2kil 1989;

Tirble f: Mear \pm SE of the lergith of the wertebrae as a percentuge of transacetabudar widh in the left aorta ocellusion study

Day Postprandial	Exptrirmentai				Conisol		
	Mran	$=$	5 F	N	Mearn …	- 5E	N
0	82.2	\pm	2.76	6	74.6. \pm	4.49	4
3	80.8	\pm	2.38	6	79 -	3.30	4
6	78.45	\pm.	2.60.k	6	$75.7=$	2.80	4
9	\%4.33	上	2.73	6	$55.0 \pm$	15.41	4
13	61.2	\pm	-1. $\mathrm{B}_{1} 4$	6	$64 \pm$	3.60	3
15	53.0	\pm	17.17	5	4.73 .4	19.57	1
17	95.4	\pm	15.8 .3	4	47.t	4.22	2
14	11.5	\pm	9.70	4	$22.2=$	13.44	2
21	44.7	\pm	(1)	1			
23	38.6	\pm	. 0	1			

Stryer (995). This irewersible reation is the conumitted atepr in fillty acid spmethesis. In suthatary, CO_{2} is requisite 10 numueruls biechemial procestes carried out by the stmmach, panwhas, splem, liver, anik smatl incestine. It is probalile of hat all of these processes are liacilitated by blood horne Go. Thus, the heppothesis that the right the left shunt of reptriles serwes these digestive functions warrants further juweagigation.

A.cknowfedgretnls

 D. Fetener, and especially T. Ferry for adwice on the statistioal analysis of the datia and R. Elsey and stati' at the thockefeller wilctlife Refuge for prowiding animials. We are gratefil to m. Hewh and Medtronics for assistance with gastric pH meansurcments. 'This work was supported Ly National Science Foto

Literature Cited

 cent adwanes and speculatinis. Contip tiowhern physiol A 14851-62.
Axelsson M. C. \|ramkin, R. Fritsche, G.C. Grigg, and S. Nils son. $194 \bar{T}$. The sutp-pulamolary conus and the artcrial anastomosis as important sites of caldiowacinlar reguation int the crocotide, Grocodylus parosus. J Exp Biol 200:807-8.4.
Axelsinn M. W. Writeche, S. Foltherw, and D.! Grove. 1991. Gut blood tiow in the estrambe crocodide, Croculyhes porasms Acta Plhysiol Scand $142: S(1)=51 \mathrm{c}$.
 the aroctudlean arian. An I Hhysiul 256:R375-R879.
Eurgeren wi: i982. I'ulenonary plasmatilation in the turile:

 3241 in E.L. Probser, ed. Enviranmeratal and Metabolic Animal Physimlogr. Wiley-Liss, New York.
 Comp Biochem Physiol B 74:1-182.
Dellupa A.M. ant D. W. Wilson, Mg4d. A sudy with isotopic carbon of the assimidatitn of carbon dityouder in the rat. I Brol Chern ! 56:73y-746.
Diefenhand C.O. 1975a. Gatric funtion in Campar crocedilws
 motility as a lunten nf femperatere Comp Hincheam Plussiof A $51: 259-165$.
 ondylia: Reptilia), Il. Effects of temperature on pH and pro-

Ewer R.F. 1ggo. Haenowiynamic fatrong in the evolution of the

farmer C.G. 200n. Evaluhion of the vertebratceardiopulmonary
 33.
 allaline secretion and mucusall grotation. News Physiot Sci 1623-28.
Fordtran F.S. and J.H. Wralsh, 1973. Giastric acid secfetion eate inul bulfer content of the stomach atter eating.] Chis Inwestig 52:645-657.
Foxon G.F.T-T. 1950. A descripsion of the coronary arteries in dipnuan lishes and some remarks on their impertance from the evolutionary standpoint. \% Anse \&4:121-131.
Frenkilin C and M. Axelssun. 2C00. do actively controlied heant

Furukaw O., M. Hiroknwe, L. Zhang. T. Takeuchin, L.C. Bi, P.F. Guth, F. Engel, Y. Akiba, and I. Kammiz. 2005. Mechanism of augmented dumtenal HCO, sectetion after clevation of luminal CO_{2}, Ams J Fhysion 288:G557-G563.
Giauser M. P. Baterfeind, R. Fraser, and rit Blum. 1995. Regulation of murine acid secretion by CO_{2}, 放hegerz Arch Exr J latusiol 430:846-85.1.
Goodrichas. 1930. Studies vin the sifucture and Development of Vertebrates Mientilhara Londant.
Girentield I. .) and a. G. Marrow, 1961. The cardiovanular hemodytamics of Crocodila. f 4urg Res 1:97-1013.
Girige G. 1992 Central cardiovisciular anatomy and fiantion in Crocodilia. Pp. 339-3ㅇ․ in S.C. Wood, R.E. Weber, A.R. 1sargens, and R.W. Millard, eth. Physiological Adaptations in Yertebrates: Respiration, Circulation and Merabolism. Delkewr, New York.
Grikk G. and K. Johansen. 198\%. Cacdiovascalas dynamias in Grododytis porosus breathitg air and during volunkary iner* abic dives. $]$ Comp Physial B :57:301-392.
Grigy C.C. 1999. The heart and flow patterns al cardiac outflow in the emcodilia. Proc Aust Itypsinl Phannacal Sac 20:4357.

Griga C.C. and E: Seebacher. 2000. Crocodilian thermal relations. Pp. 297-309 in G.C. Grigg, F. Serbacher, and C. Franklim, eds. Crocodilian Hiologe and Fwblution. Surrey Beatis, Chipping Nortons, Auslralia.
Hicks J.W. 1998. Cardian shanting in reptiles: mechanisms, regulation and physiological function. Pp. 455-493 is C. Gans and A.s. Gaunt, eds. Biontogy of the Reptilia, Vol. G. Society for the Study of anmbibians and Reptiles, lthaca, NY.
Hisk. J.W. and T. Wang. 1999. Lypaxic hypometabolisym in the
 R23.
Holmagen S., A. Axelsson, J. Jensen, G. Aldman, and K. Sundell. 1969. Bombesin-like immanoreactivity and the etFect of bombesin in the gut, circulatory syctem and lurg of the" cainan. Caman cocedy'm arocodylars, and the cractutile, Crotadylas porpsus. Fxp, Biol 48:261-271.
Joncs D.R. 1996. The crocodilian lentral cirülation: reatiaut or avian? Verh Dtsh Zool Ges 堲209-1 18 .
Jones D.R. and G. Shelron. 1993. The physiology of the alligator
 Bial 176:247-264
 G.C. Grige, s. Nisson, and S. Holmgren. [G)S. Neuropepthte
 and autunomic ganglis of ilte entuarine croandile. Crocodydus
 Fept 5u:.25-34.
Kidider G.W. and C.W. Afontponkery. 19-4. CO, difitsiom into frog gastric mucoss as mate-limiting factor in acid secretion. Amil ithysiol $22 \overline{7}$ 300-30न
Krels H. 198U. Speral lecture: gixamine metatolinm in the animal body. Pp. $319-329 \mathrm{in}$ J. Mora and R. Pellacios, eds Glutamine Metabolisti Enzymolog and Regulationi. Aus dunic Press, New York.
Nihara Y., C.R. Zerez, D.s. Aksamı, and K.R. Tanaka. 194 Crall [-glutamine therapy tor sickle tell almernia. I. Silapiective
 redex porentati. Am I Hematol 58:117-121.
Ferutz M.F., U. Batuer. G. Gros, F. Leclercq, C. \}andecasorie,
 Allosters regulation of crocodilian haemoghobin. Nature 291:682-291.

Reese A.M. 1415. The Abligator and [ts Allies. Putnam, New York.

 phragmalicus mugele lo vilal bibscity in push prandial Amer
 3044-3053.
Wakil GJ. L949. Fatty acid syandeme, at paticient multifaunc. Iimall enayme. Monhemistry 28.4323-4530.
Wherstr G. 1979. Comparative cardiac anatomy of the Rejatilat.
 phetion af the intermentrianlar septump of crocodilians and

 stergh Amak Rec 125:129-1 3.

- 190. Redistribution of ©adiaz nulpel in the diving alligator. Copes 1965:567-57)I.

Copyright of Physiological \& Biochemical Zoology is the property of University of Chicago Press and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

[^0]:

