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Abstract—This paper presents two computationally efficient 
recursive least-squares (RLS) lattice algorithms for adaptive 
nonlinear filtering based on a truncated second-order Volterra 
system model. The lattice formulation transforms the nonlinear 
filtering problem into an equivalent multichannel, linear filtering 
problem and then generalizes the lattice solution to the nonlinear 
filtering problem. One of the algorithms is a direct extension of 
the conventional RLS lattice adaptive linear filtering algorithm 
to the nonlinear case. The other algorithm is based on the QR 
decomposition of the prediction error covariance matrices using 
orthogonal transformations. Several experiments demonstrating 
and comparing the properties of the two algorithms in finite and 
“infinite” precision environments are included in the paper. The 
results indicate that both the algorithms retain the fast conver­
gence behavior of the RLS Volterra filters and are numerically 
stable.

I .  I n t r o d u c t i o n

LINEAR FILTERING, because of its analytical simplic­
ity, has progressed quite rapidly. However, there are a 
number of applications in which the performance of linear 

filters is unacceptable and one has to resort to nonlinear 
filters. Nonlinear filters have been used in such diverse areas 
as communications [1], [4], [34] and [35], biological signal 
processing [6], [9], [13], [16], image processing [27], and 
semiconductor modeling [24], [30],

The truncated Volterra series expansion is a commonly used 
nonlinear model. In this model, the output y(n) of any causal, 
discrete-time, time-invariant nonlinear system is represented as 
a function of the input x(n)  using the Volterra series expansion
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where hr (mi ,  m 2 , . . . ,  m r ) is the r-th order Volterra ker­
nel [31], [33] of the system. We will assume, without loss 
of generality, that the Volterra kernels are symmetric, i.e., 
hr ( m i , m 2 , . . . ,  m r ) is left unchanged by any of the r! permu­
tations of the arguments mi, m2, . . . ,  mr . Because of the rel­
atively large number of potential applications, there has been 
quite an increase in the research activities on adaptive Volterra 
filtering in recent years. Early works on adaptive Volterra 
filters [6], [11], [12] were based on the LMS algorithm. Even 
though they are computationally simple, they suffer from 
slow and input signal-dependent convergence behavior and 
hence are not useful in many applications. More recently, Lee 
and Mathews [14] presented a fast transversal algorithm for 
recursive least-squares (RLS) adaptive Volterra filtering. The 
algorithm was derived by transforming the nonlinear problem 
into a multichannel linear filtering problem and then using 
the ideas employed for developing computationally efficient, 
multichannel RLS adaptive transversal filters. The fast RLS 
Volterra filter is rapidly convergent and has good tracking 
properties; however, it suffers from poor numerical properties.

In this paper we present two computationally efficient, RLS 
adaptive lattice second-order Volterra filters. The algorithms 
can be easily extended to higher order nonlinearities. The 
first algorithm extends the conventional RLS lattice linear 
filter to the nonlinear case. The second algorithm is based on 
QR-decomposition (QRD) of the prediction error covariance 
matrices. It can be obtained from the first algorithm by 
Cholesky factorization of the error covariance matrices and 
every component of the algorithm can be implemented using 
Givens rotations [7] alone.

The structure presented in this paper is based on the earlier 
work of Ling and Proakis [17], [18]. It is also very similar to 
the lattice structure developed by Zarzycki [38], It is different 
from the structures presented in [11], [15] in the sense that 
it can be applied to Volterra systems with arbitrary input 
signals and arbitrary shapes for the Volterra kernels. The lattice 
structure presented in [11] requires that the input signals be 
Gaussian and the lattice filter presented in [15] is applicable 
only to systems with very special shapes for the Volterra 
kernels. Our structure does not have these drawbacks. Also, it 
can be extended to more general types of nonlinear models [2]. 
A recent tutorial introduction to nonlinear lattice filters can be 
found in [22], While both the lattice structures are novel, we 
believe that this is the first time that a QRD-based approach 
has been employed in any type of adaptive Volterra filtering 
problem. This paper also presents extensive simulation results 
comparing the performance of QRD-based and conventional
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nonlinear lattice filters in finite precision environments. While 
such studies are obviously new in the context of nonlinear 
filtering, we believe that some of the results will shed more 
light on the properties of these two lattice structures even in 
linear filtering applications.

The rest of the paper is organized as follows. In Section 
II we present the lattice structure and the conventional RLS 
adaptive lattice Volterra filtering algorithm. The QRD-based 
adaptive nonlinear filtering algorithm is presented in Section 
III. Experimental results are presented in Section IV and the 
concluding remarks in Section V.

II. T h e  C o n v e n t i o n a l  R L S  A d a p t i v e  

S e c o n d - O r d e r  L a t t i c e  V o l t e r r a F i l t e r

Consider the problem of recursively estimating the desired 
signal d(n) using a truncated second-order Volterra series 
expansion in the primary input signal x(n)  by minimizing the 
exponentially weighted least-squares cost function

n 2

£*(„) = Y  (d(k) -  dn(k)) (2)
fc=o

where

N- 1
dn(k) =  Y  a-m i (n) x (k -  mi) 

mi =0
N-1 N-1

-  Y  Y  i>mi ,m2(n) x  (k -  mi)x {k  -  m2),
mi =0 m2=mi

(3)

is the estimate of the desired signal at time k obtained 
using the adaptive filter coefficients at time n and A is a 
constant weighting factor in the range (0 , 1 ] that controls the 
speed of convergence and the tracking ability of the adaptive 
filter. am i (n) and bmum2{n) are the linear and quadratic 
coefficients, respectively, of the second-order Volterra filter. 
(The upper limits of all three summations in the Volterra 
series expansion in (2 ) have been set equal only for conve­
nience in presentation. The generalization to arbitrary limits 
is straightforward). Let us define the input vector X jn )  and 
the coefficient vector W_(n), both of size N ( N  +  3 )/2  entries, 
at time n  as

2£(n) =  [ x(n) , x2(n) ,x(n  -  1 )x2(n -  1),
x(n)x(n  -  1 ) , . . . ,  x(n) x (n -  N  + 1)]T (4a)

W i n )  =  ^ai (n) ,bi^(n) , a, 2 {n),b 2 t2 ( n ) ,b i t2 {n),

. . . ,  6i,jv-i(n)J , (4b)

respectively. In the above (•)7 denotes transpose of the matrix 
(•). Equation (2) can be rewritten using (4a) and (4b) as.

£*(„) = ^ A " - fc(d(fc) -  W T(n )X( k ) ) 2. (5) 
fc=0

The optimal solution to the problem can be easily shown to be

= ft-1 (n)p(n), (6)

where
n

fi(„) = Y xn~kK ( k ) X T {k) (7)
fc=o

and
n

P(n)  =  Y  *n~kd(k ) X ( k)- (8)
fc=0

Direct evaluation of (6) is, in general, computationally 
inefficient and often prone to numerical instability. We would 
like to develop computationally efficient and numerically 
stable algorithms to iteratively solve the optimization problem. 
In order to accomplish this we develop a lattice structure for 
second-order Volterra filters. As discussed in the introduction, 
we restrict ourselves to the second-order Volterra structure 
because of the pedagogical simplicity it provides and the ideas 
are equally applicable to higher-order nonlinearities also. It 
should be pointed out here that the computational efficiency 
of our algorithms is only in applications where direct-form 
parameters are not required. The algorithms estimate the 
desired response signal using a lattice parameterization of the 
nonlinear system.

For the development of the lattice structure, it is convenient 
to rewrite the entries of the input vector X(n) in the following 
matrix form. (See bottom of page.) Now, each row of 
the above matrix can be considered as made up of samples 
of signals from different channels. However, the number 
of samples used in the estimation problem is different for 
different channels. There are N  samples used in the first two 
channels, N  -  1 in the third, N  -  2 in the fourth, and so on to 
the (N + l)-th channel which uses only a single sample at each 
time. As is well known, the key step in the development of the 
lattice structure is the Gram-Schmidt orthogonalization of the

and
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TABLE I
Definitions of the Variables Employed in the M-th Stage of 

the LS Lattice Adaptive Second-order Volterra Filter.

f  (") Forward prediction 
error vector

^ . Backward prediction 
-m  I, ) error vector

f  Forward reflection 
m ( n ' coefficient matrix

t  Backward reflection 
m ( n ) coefficient matrix

em («)
Joint process estimation 
error at the m-th stage 

k  y (n )  ^ ° 'nt Process estimation 
™ ' coefficient error

B ackward prediction error 
r  m  \ n ) correlation matrix

Forward and Backward 
A m (n )  prediction error

crosscorrelation matrix

o m (n )  Likelihood variable

Auxiliary reflection 
f c / ( j)  ( n )coefficient vector 

m 0 = m+2,—,N + l)

/  ( n ) A uxiliary prediction error

, !,(] ), . A uxiliary reflection 
m ( n I coefficient vector

? . ro rw ard  prediction error . ...
« ( " )  correlation matrix b ,H ( n "> Auxiliary prediction error

input data to generate an orthogonal basis for the vector space 
(defined by the least-squares optimization criterion) spanned 
by the input data. We can define this orthogonal basis set as 
a set of backward prediction errors. The backward prediction 
error vector bt (n) is a vector of i- f  2  elements and is defined as 
the optimal LS estimation error vector when the i-th column 
vector of the data matrix X^ (n ) ,

[x(n — i ) , x 2(n — i ) , x(n  — i + l ) x ( n  — i ) , . . . ,  x(n)x(n — i)]

[x(n) , x2(n) ,x(n)x(n  -  1 ) , . . . ,  x(n)x(n -  *)]J (11)

(this vector is formed by the most recent samples belonging 
to each of the first i +  2  channels) using the elements of the 
matrix.

' x ( n  - 

x 2 {n

1 ) x ( n  — 2 )

- 1 ) x 2 ( n -  2 )

x ( n  — l ) a : ( j i  ■ 2)

x ( n  -  

x 2 ( n  

x ( n  -
- 0
i +  1 ) x ( n  — i)

x ( n  — 1 ) x ( n  — i)
(12)

Details of derivations of the lattice update equations are 
presented in Appendix A and the relevant equations are given 
in Table II. All the variables used in Table II are defined in 
Table I. Note that we have used 6 ,(n ) and /  .(n) in (T-2.4) and 
(T-2.5) to denote the vectors formed by the first * + 1  elements 
of ftj(n) and / . ( n ) ,  respectively. Fig. 1 is a schematic block 
diagram of the lattice structure for N  =  3.

Derivations of the recursive equations for updating the 
optimal forward and backward reflection coefficient matrices, 
the joint process estimation coefficient vector, and the auxil­
iary optimal coefficient vectors are quite straightforward. For 
example, consider the optimal LS forward reflection coefficient 
matrix k ^ n )  o f the m-th stage. It is the optimal coefficient 
matrix in estimating / m_ 1 (n) using bm_ 1(n -  1). It can be 
directly computed as

kL ( n ) = -  1 )A m(n),

where (•)~h denotes the matrix inverse of ( • )6,

(13)

- l W  = 1,„(*)£-!,„(*) (14)
k = l

t  is the LS autocorrelation matrix of bm_ l n(k) and

(10)
is estimated using the elements of columns 0  through i -  
1. b0(n) is defined to be [x(n), x 2(n))T . (Note that the column 
vectors are numbered from zero onwards.)

Efficient computation of the backward prediction errors 
requires the computation of the forward prediction errors. The 
forward prediction error vector f  , (n) , i  =  0 ,1 ,.. . .  TV -  1, is 
defined as the optimal LS error in estimating the vector

A m(n) =  ' £ \ n- kbm- 1'n( k ) £ ,(*) (15)

is the LS crosscorrelation matrix of bm , „ (k) and /  (A;).—m  i ,n  \ / ± -m — l , n v 7
In (14) and (15) bm n(k) and /  n(k) are the backward and 
forward prediction error vectors of order m at time k  that were 
computed using the optimal coefficient matrices at time n. In 
the sequel, we need to use only vectors of the form bm k(k) and 
/  k(k) and therefore we have dropped the second subscript 
as it causes no confusion. The correlation matrices can be 
recursively updated [10], [17] as

h.m-l(n ~  1 ) / T , ( n )
Amin)  = AAm(n -  1) +  -----  ~ m ~ 1 (16)

Q m _ i ( n  -  1)

and

l^(n)  is defined as [x(n) ,x2(n)]T .
One major difference between traditional multichannel lat­

tice filters and the lattice Volterra filters of this paper is the 
fact that the backward and forward prediction error vectors of 
different orders contain different number of elements in them. 
This in turn implies that as the order of prediction increases by 
one, both the forward and backward predictors must predict 
one extra signal than at the previous step. The new element that 
must be predicted for the i-th order (z >  1 ) is x(n)x(n -  i). 
These additional computations have to be done outside the 
basic lattice structure. In other words, each predictor stage is 
a lattice of one dimension greater than the preceding stage.

a_ 1 (n) =  A r^_1 ( n - l )  +
(n)

(17)

where

a m(n) = a m_ i(n ) +  6^ _ 1 (n)rm6_ 1 (n)6m_ 1 (n) (18)

is the “likelihood” variable for the m-th stage. It is easy to 
show that 0 <  a m(n) < 1. Using the matrix inversion lemma
[10], [17], [18], we can recursively update the inverse of the
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TABLE H
Second—Order Volterra Lattice Filter

Initialization

/o ( n )  =  6o (n )  =  [x (n ) , x 2 ( n ) ] T 
eo {n )  =  d (n )

(T-2.1)

(T-2 .2)

f U) 
J 0 (n )  =  x ( n ) x ( n  — j  +  2 ), j  =  3, . . . ,  N  +  1 (T-2.3)

DO (T-2.4) to (T-2.7) for i= l,  2, N-1

/* ( « )  =
! ,( " )  =  L - 1  ( " )  -  fc /,T ^ - i ( n ) ( ”  -

j \ ' +2\ n )  =  / , (l + 2 )(» )  -  fcf( ,+ 2) T ( n ) 6, _ 1(«  -  1) .
(T-2.4)

- ( fl , g B) = & _ ! ( » - l ) - k f  ( » ) £ _ ! ( » ) (T-2.5)

£
b p V )  =  / ,(r \ 2 ) ( " )  -  fc‘ (!+2)T  ( « ) / , _ ! ( " ) .

DO (T-2.6) for j+ i+2,..., N + l

/} * > („ ) =  / « ( „ )  -  fc f° ')T ( « ) & ,_ ! (n  -  1) 

e t (n )  =  e, i ( n )  -  fc?T (n )  bt ,(n )

(T-2.6)

(T-2.7)

£„[■] - d(l)

Fig. 1. B lock diagram  o f filter structure for Volterra systems w ith N  =  3.

implementations. These problems can be overcome by directly 
updating the coefficient matrices. We will derive the direct 
update equation for the forward reflection coefficient matrix 
k^in ) .  Substituting (16) in (13) we get

k L i n ) =  Xrm - i ( n ~  V&min  -  1 )
r^ n  -  1 )bm_1(n -  1 ) / L i ( n )

Otm — 1 l)
Using (13) and (17) we can express the first term of (20) as

^ m - l ( n -  -  1) = kL ( n -  !)
-  Hkn-1 (n ~ ~  W L ( n ~  !)

+ (20)

Otm—1(^
(21)

autocorrelation matrix as

(») =  (n -  !)
_ A~2r~fe(n -  l ) j w ( n ) C ( n ) ^ 6(n -  ^  (1n) 

a m(n) +  A- 1bJn{n ) rm(n  -  l)bm(n)

Similarly, we can derive recursive equations for updating 
the backward reflection coefficient matrix khm{n), the joint 
process estimation coefficient vector k ^ n ) ,  and the auxiliary 
coefficient vectors kmm\ n )  and fcm (n). Also, an equation 
similar to (19) can be derived for recursively updating the 
forward prediction error covariance matrix.

Equation (13) for computing the forward reflection coeffi­
cient matrix, and similar equations for the other coefficients, 
indicate that the lattice parameters are updated indirectly 
as the ratio of a “prediction error crosscorrelation” and a 
“prediction error autocorrelation.” This indirect method of 
updating the lattice parameters has two drawbacks [20], First, 
it can lead to a degradation in the accuracy of the algorithm. 
Second, it makes the algorithm unsuitable for fixed-point

kL ( n ) =  kL ( n - ! )  +

Substituting (21) in (20) we get the equation

i ( n -  l)frm- i ( » -  1)
OLyn — l (jl 1)

x [ £ - .( » >  J)] <22>

for directly updating the forward reflection coefficient matrix.
Similarly, we can derive direct update equations for the 

other coefficient matrices and vectors. The complete algorithm 
for the fast RLS second-order Volterra adaptive lattice algo­
rithm is presented in Table III. A count of the arithmetical 
operations involved in the implementation of the algorithm 
will show that it requires +  17N 2 + -  27 multi­
plications and +  6 N 2 +  ^  -  21 divisions per iteration. 
Notice that this complexity is comparable to that of the fast 
RLS transversal Volterra filter in [14].

III. Q R D - B a s e d  A d a p t i v e  L a t t i c e  

S e c o n d - O r d e r V o l t e r r a  F i l t e r

In recent years, the quest for numerically stable least- 
squares adaptive filtering algorithms has kindled interest in
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QRD-based fast RLS algorithms. The first involves the QR 
decomposition of the underlying data matrix. This is the 
method that has been adopted by Cioffi [5], Bellanger [3], 
Proudler et al. [25], [26], The second method involves a direct 
transformation of the least-squares lattice algorithm to the QR- 
RLS algorithm by using the Cholesky factorization of the 
estimation error covariances. This method has been adopted by 
Lewis [16] and Yang and Bohme [37]. The method presented 
in [37] is quite straightforward and elegant. We have used 
this method in transforming the conventional LS adaptive 
lattice Volterra filtering algorithm of Table III into a QRD- 
based adaptive algorithm .The basic idea behind the derivation 
is the observation that the complete set of lattice recursions 
((T-3.8MT-3.14) and (T-3.21MT-3.22) in Table III) can be 
reformulated by applying two orthogonal transformations to 
suitably constructed vectors and matrices. We shall give only a 
brief outline of the derivation and refer the interested reader to 
[37] for further details. Once again, the key difference between 
our derivations and those in [16], [37] is the fact that our 
model requires different numbers of coefficients in different 
“channels”.

Recall that the optimal solution to the RLS adaptive filtering 
problem is given by

iZoptW  =  S l - \ n ) P { n )  (24)

where f2(n) and P(n)  are as defined in (7) and (8 ), respec­
tively. It is easy to show from (7) and (8 ) that fl(n) and P(n)  
can be recursively updated as follows.

fi(n) =  An(n -  1) +  X { n ) X T (n)

and

(25)

and

P(n)  =  AP(n  -  1) +  X{n)d{n). (26)

In practice, the autocorrelation matrix f l(n) is positive definite. 
Hence, we can express it in terms of its Cholesky factorization

fl(n) =  R T (n)R(n)

where R(n)  is upper triangular.
Let

S(n)  =  R ~ T (n)P(n)

and

(27)

(28)

IIQ^II2 = IN (33)

where x  is a vector of appropriate dimension and 
denotes the L 2 norm.

2) Let

Bi  QAi  and B 2 — Q A 2.

Then

(34)

(35)B f B 2 =  A l A 2.

Let R(n  -  1) be the Cholesky factor of the least-squares 
autocorrelation matrix fi(n  -  1). Let Q(n)  be an orthogonal 
matrix of appropriate dimensions such that

Q(n) =
V X R ( n - l Y R(n)
. X T (n) 0 T

(36)

where R{n)  is an upper triangular matrix and 0 is a vector 
of all zero elements. Essentially, Q{n) annihilates the input 
vector X (n ) by rotating it into y/XR(n -  1). Q(n)  consists of 
a cascade of K  = (Nfo +3) Givens rotations

Q(n)  = Q k { n ) Q K - i { n )  ■ • • Q i(n)> (37)

where

Qi(n)  =

L - 1
cos 6i(n)

• («)
Ik - i

sin 9i(n) 

cos 6i(n).— sin (. s _
* = 1 ,2 , . . . , *  (38>

and cos9i(n)  and s in 6i(n) are selected such that the i-th 
element of the last row of the product matrix is zero. For 
example, let ri(n)  and x {(n) represent the (*, i)-th element 
and the i-th element of the last row, respectively, of the matrix 
on which Qi(n ) operates. Then, if we choose

r-i(n)

and

/3(n) = R  T {n)2L(n)- (29)

In the above equations, (*)_T represents the matrix transpose 
of (*)_1. Substituting the above definitions in (24), it follows 
that

Ŵ opt (n) =  R _1 (n) S (n ) . (30)

Similarly, we can express the joint process estimation error as

e(n) =  d(n) -  S T (n)P{n).  (31)

The transformation of the conventional RLS lattice algorithm 
to the QR-RLS lattice algorithm is based on the following two 
properties of orthogonal matrices:

1 ) Orthogonal matrices are length preserving, i.e., if Q is 
an orthogonal matrix,

Qt Q = QQT = I  (32)

cos#i(n) =

sin 6i(n) =

yj rf in)  + xf{n)  

Xi(n)_____

(39)

(40)
V rf (n) -I- x?{n)

Xi(n) will be annihilated by Qi{n).  Premultiplying both sides 
of (36) by their respective transposes, we find that

RT {n)R{n) = ART {n -  1 )R(n  -  1) +  X ( n ) X T (n)
=  Afi(n -  1) +  X { n ) X T (n) = fl(n ). (41)

It immediately follows that R(n ) is indeed a Cholesky factor 
of Q(n) and therefore the use of R(n)  in (36) is consistent 
with the notation adopted in (27).

Consider the matrix product

VAR(n  -  1 ) 7 a S(n -  1 ) _
X f (n) d(n)

S(n)  P(n)
0T e(n) a(n)

Q{n)

(42)
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TABLE IV
Relationships Between the Variables Employed in the QRD-Based Least-Squares Lattice 

Second-Order Volterra Filter and the Conventional Least-Squares Lattice Volterra Filter.
a;(ra) = yjai(n) 

e;(n) : ei(»)

7 _ Ll<") Li(n> ~  «j(n —1)

-* ' ) — &i(n)

f i f _ l  ( n )  =  R {  ( n ) R .{ ( n ) s { ( n )  =  r { T  ( n ) k i - 1(n )

n j _ ! ( n  -  1 ) =  ( n ) R * ( n )  s b, ( n )  =  R f  («)fcf_ 1 ( „ )

Pi (") =  R{T sf(n ) =  R f  -  1)

&bt {n )  =  R f  (» )& _ !(«  - 1 )

Premultiplying both sides of (42) with their respective trans­
poses yields several important results.

1) R T (n)S(n) = AR T(n -  1 )S(n  -  1 ) +  X(n)d(n)
= XP(n  -  1) +  X_(n)d(n) =  P(n).  (43)

2) R T (n)(3(n) = X (n )  (4 4 )

3) S T (n)(3(n) + e(n)a(n) — d(n) = S T (n)/3(n) +  e(n)

(45)

Also, it can be shown [8 ] that a(n)  and the likelihood variable 
a(n) are related as.

a (n ) — \Ja(n) . (46)

Direct evaluation of a(n),  after writing Q(n)  as a product 
0f JV̂ +3  ̂ matrices in (37) and noting the structure of each 
individual matrix, will show that

AT(JV+3)/2 

a (n) = J J  cos Oi » (47)
i —1

where 9i(n) is the angle that defines the i-th Givens rotation. 
Also, from (45),

e(n) =
e(n)
a(n) (48)

3) Evaluate a(ri) as in (47). The estimation error e(n) can 
be calculated immediately as in (42).

The derivation of a lattice filter that is implemented solely 
using Givens rotations can be done by adapting the above 
approach for solving the forward prediction, backward pre­
diction, and joint process estimation problems associated with 
each stage. The first task is to define the appropriate variables 
for each problem and the definitions are tabulated in Table 
IV. Let Q{ (n) define an orthogonal rotation matrix so that it 
zeroes out / i_ 1 (n) into the rows of %/AR { (n — 1). Also, let 
Qi(n ) be another orthogonal rotation matrix that annihilates
~T
h i - i ( n — 1) into the rows of y / X R ^ n - l ) .  Then, the following 
matrix equalities hold.

\ / X R {  (ti — 1) y / X S { ( n - l )  V \ S { (i+2\ n -  1)

/ T - »
\R{ (n)  sUn) S « i+2\ n )

Q{(r r ( i+ 2 ) ,  ,
Li-1 (»)

o h  i.n ) bi +2\ n )
(49)

The update strategy for a general estimation problem should 
be clear from the above derivations. Assuming that we have 
R(n  - 1 ), S(n  - 1 ), and (3(n - 1 ) available to us at time n — 1 , 
the procedure consists of the following operations:

1) Find the appropriate set of orthogonal rotations Q(n) 
that zeros out the vector X T (n) that contains all the 
“new” input data samples at time n  into the rows of 
VXR(n  -  1). The resulting triangular matrix is R(n).

2) Rotate d(n) (the new sample of the desired response 
signal at time n) into ' / \ S ( n  — 1 ) using the same Q(n) 
obtained in part 1. The bottom element is e(n) and the 
rest of the elements will form the vector S(n).

The equalities can be easily verified as follows. Premul­
tiplying both sides of (49) by their respective transposes 
we essentially obtain (T-3.12) and (T-3.18) of Table III. 
Similarly, (50) essentially leads to (T-3.8), (T-3.11), (T-3.14), 
and (T-3.16). Equations (49) and (50) completely specify the 
updated equations for the QRD-based algorithm for adaptive 
Volterra filtering. The complete algorithm is given in Table 
VI. An operations count will show that this algorithm requires 

+ 37V2 -|- -  2  multiplications and N 2 + 3N  square
roots.

IV. E x p e r i m e n t a l  R e s u l t s

In this section we present the results of several experi­
ments that were performed to evaluate the performance of 
the two algorithms presented in the previous sections. In 
these experiments the adaptive filters were used in the system 
identification mode. The system that was identified was a





TABLE VI
Linear and Quadratic Coefficients of the Unknown System Used in the System Identification Experiments

~ btt
j  0  1 2 3 4  S f* H Q n
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-0.052

0.723

0.435

-0.196

-0.143

0.812

0.354

0.077

-1.379

2.251

1.020 -1.812

1.389
-1.138 -0.592 -0.144 -0.966 -1.454 1.820 -4.022 5.562
-2.608 -1.486 -1.382 -2.308 4.256 0.626 -0.264 2.890
-0.635 -0.468 -1.508 0.812 1.284 1.580 -1.800 0.748

-1.044 0.536 -2.092 -0.774 -3.314 -0.348 0.272

0.011 2.918 0.698 0.752 -3.496 0.460

-0.987 3.940 2.926 -0.508 1.648

0.198 -0.362 -2.402 1.646

-1.732 -1.334 -3.070

0.860 0.648

0.305

computer and by using a given precision. The long-term 
behavior of the two algorithms was evaluated by repeating 
the experiments with a million samples and was found to be 
similar to that exhibited in the shorter duration experiments.

The plots of the ensemble averaged a posteriori mean- 
squared error and the norms of the linear and quadratic error 
coefficients are given in Figs. 2—4. These plots demonstrate 
the rapid convergence of the two algorithms, which is a 
characteristic of all RLS algorithms. Both the algorithms 
appear to be numerically stable, at least for the signal con­
figuration used in the experiments. In Table VII we have 
given values of the mean-squared difference between the joint 
process error computed using the maximum precision available 
in the computer (64-bit floating-point arithmetic with 16-bit 
exponent) and that obtained using a given precision. These 
values were obtained by time averaging the mean-squared 
difference over the last 1 0 0 0  samples.

The results presented in Figs. 2 -4  and Table VII indicate 
that both the algorithms perform well in a finite precision 
environment, even though the unknown nonlinear system had 
a fairly large number of coefficients. The results presented in 
Table VII also give some idea of the dynamic ranges of the 
internal variables of the two algorithms. In the case of the 
conventional lattice Volterra filter, it was observed that when 
the number of bits for the fractional part was less than 1 0 , 
the learning curve converged to a value that was greater than 
the variance of the measurement noise by a factor greater than 
two. In the case of the QRD-based lattice Volterra filter, it was 
observed that below 1 2  bits for the fractional part the learning 
curve converged to a value that is more than four times 
the variance of the measurement noise. Comparing the two 
algorithms, it appears that the conventional lattice algorithm 
has an edge over the QRD-based lattice filter in numerical 
accuracy, whereas the QRD-based filter seems to have a slight 
edge over the conventional lattice filter when it comes to the 
dynamic range of the internal variables.

In Tables VIII and IX we present the steady-state mean- 
squared numerical errors at different stages of the conventional 
RLS and QR-RLS lattice Volterra filters, respectively. From

t a b l e  v n
Values of the Time Averaged Mean-Squared Difference Between the 

“Infinite” Precision Implementation and the Implementation With a 
Fixed Number of Bits for Both the Integer and Fractional Parts

QR Lattice Volterra Filter Conventional Lattice Volterra Filter

A =0.995, SNR=20 dB
Int./Frac.

Bits
M ean-Squared 

Num erical Error Bits M ean-Squared 
N umerical Error

6-14 5 .87  x l 0 “ 5 7-12 4.92  x lO - 4
6-16 2.01 x  1 0 - 6 7-14 3 .2 0 x  10 - 5

6-18 l.O O x 1 0 - 7 8-16 2 .0 9 x  1 0 ~ 6

A =0.9975, SNR=20 dB

6-14 1 .5 8 x  10 - 4 6-10 7.56  x l 0 ~ 3
7-16 3 .4 4 x  1 0 - 6 6-14 6 .9 4 x l 0 - 5

7-18 1 .3 4 x  10 - 7 6-16 2 .8 4 x  1 0 - 6

A =0.995, SNR=30 dB
Int./Frac.

Bits
M ean-Squared 

N um erical Error Bits M ean-Squared 
Numerical Error

6-14 5 .7 9 x  10- 5 7-12 4 .8 6 x  10- 4

6-16 1 .9 8 x  1 0 - 6 7-14 3 .1 6 x  1 0 - 5

6-18 9 . 9 2 x l 0 - 8 8-16 2 . 0 6 x l 0 - 6

A =0.9975, SNR=30 dB
Int./Frac.

Bits
M ean-Squared 

N um erical Error Bits M ean-Squared 
N um erical Error

6-14 1.57  x  1 0 - 4 6-10 7 .4 6 x l 0 - 3

7-16 3 .4 3 x  10- 6 6-14 7 .2 6 x  10- 5

7-18 1 .2 9 x l 0 - 7 6-16 2 .8 3 x 1 0 -®

these results we observe that the numerical errors are larger 
for higher stages of the lattice than the lower stages. This 
is generally true of all lattice structures [23], [32], [36], 
One interesting observation is that the rate of growth of 
the accumulated numerical error from a lower stage to a 
higher stage seems to be somewhat larger for the QRD- 
based algorithm than for the conventional lattice filter. Further 
analysis must be done before it can be verified that this 
statement is true in general.



V . C o n c l u s i o n

In this paper we presented a lattice structure for second- 
order Volterra systems. The structure is different from most 
previously published lattice Volterra structures in that it is 
applicable to arbitrary planes of support of the Volterra kernels 
and arbitrary input signals. Computationally efficient conven­
tional RLS lattice and QR-RLS lattice adaptive algorithms 
based on this structure were also presented. These algorithms 
share the fast convergence property of fast RLS transversal 
Volterra filters without suffering from problems of numerical 
instability. Both the algorithms appear to be numerically robust 
under finite precision conditions. The conventional lattice 
Volterra filter appears to be numerically more accurate than 
the QR-based Volterra filter; however, the QR-based Volterra 
filter seems to have a slight edge in terms of the dynamics of 
the internal variables. Both algorithms can be easily extended 
to higher-order nonlinearities. Also, both the algorithms are 
amenable to parallel implementations. A theoretical finite- 
precision error analysis of the RLS and QR-RLS Volterra 
lattice could be highly complex; however, one could expect 
that the numerical properties of the nonlinear lattice filters 
would be similar to their linear counterparts and analysis 
of the numerical properties of such filters [21], [28], [36] 
have shown that they indeed possess the good finite precision 
characteristics that were demonstrated in the experimental 
results presented.

A p p e n d i x  A

Let

xm (n) — [x (n )i x2(n )> x(n)x(n  — 1 )... . ,  x(n)x{n  — to)] T
(A -l)

and

Xm( n ) =  [x (n  ~  m )> X2(n  — to ),

x(n  — to + 1 ) ... ,x(n)x(n — m)]T (A-2) 

For m =  0, we will define these two vectors as

xo (n) = x o(n) = [x(n) ,x2(n)]T . (A-3)

Clearly, the above vectors can be partitioned as

The above partitionings are useful in deriving the order update 
equations.

The m-th order backward prediction error vector bm (n) is 
defined as the optimal LS error in estimating xbm (n ) using 
Xq(ji), . . .  ,x*ln_ 1(n), where b0(n) =  xq(n). Similarly, the ru­
th order forward prediction error is defined as the optimal
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N o rm  of L in e a r  C o e ffic ie n t E r r o r  V e c to r. TABLE V in
Steady—State Mean—Squared Values of the Numerical Errors at 
Different Stages of the Conventional RLS Volterra Lattice Filter.

A=0.995, SNR=20 DB

(a)

N o rm  of Q u a d ra tic  C o e ffic ie n t E r r o r  V e c to r.

(b)

Fig. 4. N orm  o f coefficient error vector for Q R lattice adaptive Volterra 
filter. W eighting factor =  0 .995 . N um ber o f bits for integer part =  6 and 
num ber o f bits for fractional part =  14. Solid curve: 20 dB measurement 
noise. D ashed curve: 30 dB m easurem ent noise.

LS error in estimating x ^ n )  using x{t(n -  m ) , x { ( n  -  
m  + 1 ) ,. .  ■, x{n_1(n -  1). As is well known, the backward 
prediction error vectors, bm(n) ,m  =  0 , 1 , . . . , -/V -  1 form 
an orthogonal basis set for the vector space spanned by the 
input vectors Xi(n), i =  0 , 1 , N  — 1. Hence the desired 
signal y(n)  can be estimated as a linear combination of the 
orthogonal backward prediction error vectors.

Similar to (A-4) and (A-5) we can partition the prediction 
error vectors as

7„(n)

Int/Frac
Bits

Stage 1 Stage 5 Stage 10

7-12 1 .0 2 x  1 0 - 4 1 .7 3 x l 0 - 4 4.92  x l 0 ~ 4

7-14 4 .0 2 x  10- 7 4 .81  x lO - 6 3 . 2 0 x l 0 - 5

8-16 2 .6 8 x l 0 - 8 3 .1 9 x  1 0 - 7 2 . 0 9 x l 0 - 6

A=0.9975, SNR=20 DB

Int/Frac
Bits

Stage 1 Stage 5 Stage 10

6-10 6 .62  x  1 0 - 4 2 .5 3 x  1 0 - 3 7 .5 6 x  1 0 - 3

6-14 2.71 x  1 0 - 5 3 .8 2 x  1 0 - 5 6 .9 4 x  1 0 - 5

6-16 3 .27  x  1 0 - 7 7 .9 5 x  1 0 - 7 2 .8 4 x  1 0 - 6

A=0.995, SNR=30 DB

Int/Frac
Bits

Stage 1 Stage 5 Stage 10

7-12 l.O O x 1 0 - 4 1 .7 3 x  1 0 - 4 4 .8 6 x  10- 4

7-14 3.91  x  1 0 - 8 4 .8 0 x  1 0 - 6 3 . 1 6 x l 0 - 5

8-16 2 . 6 3 x l 0 - 8 3 .1 8 x  1 0 - 7 2 . 0 6 x l 0 - 6

A=0.9975, SNR=30 DB

Int/Frac
Bits

Stage 1 Stage 5 Stage 10

6-10 6 . 5 8 x l 0 - 4 2 .5 1 x  1 0 - 3 7 . 4 6 x l 0 - 3

6-14 2 . 7 0 x l 0 - 5 3 .8 5 x  1 0 - 5 7 . 2 6 x l 0 - 5

6-16 3 . 2 8 x l 0 - 7 7 .9 5 x  1 0 - 7 2 . 8 3 x l 0 - 6

U n) =

km(n ) =
l m{n )

L b £ \ n )

(A-6 )

(A-7)

where f  {n) and the bm (n) are the error vectors in estimating 

x m - i ( n ) 311(1 i —i ( n _  x)’ respectively. Similarly, f ^ \ n )  
and b%?\n) are the errors in estimating x(n)x(n -  to) using 
the elements of the sets {x sQ (n -  1 ), x{  (n -  2 ) , . . . ,  x(n_ 1 (n -  
m)}  and {®&(n),x5)(n),. . . .a r ^ .^ n )} ,  respectively. Now, 
f (n) is the error in predicting a ^ _ i(n )  using x b0(n -=-m — 1 v '
l),a:5 (n -  1) , . . .  , x bm_ 2(n -  1 ) and 6m_ i(n  -  1 ) is the 
error in predicting ar^_1(n -  1 ) using x b0{n -  l),a:?(n -  
l ) , . . . , x bm_ 2(n -  1). Hence, / m(n), which is the error in
predicting x ^ ^ n )  using a:^(n-l),ar5 ( n - l ) , 2(n -

l) ,a :^ _ i(n  -  1 ) can be computed as

ZmM  = L m - l (n) ”  l(Tl “  ^  (A' 8)
because bm_ 1 (n -  1 ) is orthogonal to the space spanned by 
4 ( n - l ) , ^ ( n - l ) , .. . , x bm_2( n - 1). fc£ (n )is * e  LS optimal 
coefficient matrix in estimating / m_ 1(n ) using bm_ 1(n -  1 ) 
and can be computed as

kU^) =  r - b- 1( n - l ) X n ( n )  (A-9)

where rbn_ l (n -  1) is the LS autocorrelation matrix of the 
backward prediction error vector bm_i „(k) and A m(n) is 
the LS crosscorrelation matrix of km- !,»(*) “ d l m- !,„(*)• 
Similarly, one can show that

lm(n)  =  k n - lfa  -  1) -  * £  > )  (A' 10)

f ^ \ n )  = -  1) (A-11)
W  =  (A-12)

where / i m)(n) and bl™\n)  are auxiliary estimation errors 
that have to be computed outside the basic lattice structure. 
It can be shown that f j m\ n ) , j  — 1 ,2, . . . , m  -  1, can be 
recursively updated as

/<"*>(„) =  /<™>(n) -  k“ m)T( n ^ i n  -  1) (A-13) 

where fom\ n )  = x m(n).
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TABLE EX
Steady—State Mean—Squared Values of the Numerical Errors at 

Different Stages of the Conventional Q R -R L S Volterra Lattice Filter.
A=0.995, SNR=20 DB

Int/Frac
Bits

Stage 1 Stage 5 Stage 10

6-14 1 .6 3 x 1 0 -® 8 .67  x  1 0 - 6 5.87  x  1 0 - 5

6-16 1 .5 5 x l 0 - 9 3 .2 3 x  10 - 7 2.01 x  1 0 ~ 6

6-18 6 .9 6 x lO -1 0 2 .0 3 x 1 0 -® l.O O xlO - 7

A =0.9975, SNR=20 DB

Int/Frac
Bits

Stage 1 Stage 5 Stage 10

6-14 2 . 0 4 x l 0 - 6 2 .5 3 x  1 0 - 5 1 .5 8 x l 0 - 4

7-16 2 .1 3 x  1 0 - 9 4 . 9 0 x l 0 - 7 3 .4 4 x 1 0 —6

7-18 3 .2 8 x lO -1 0 1 .9 8 x l 0 - 8 1 .3 0 x l 0 - 7

A =0.995, SNR=30 DB

Int/Frac
Bits

Stage 1 Stage 5 Stage 10

6-14 1 .5 8 x  10- 8 8 .6 9 x  10- 6 5 .7 9 x  1 0 - 5

6-16 1 .5 4 x l 0 - 9 3 .22  x 1 0 ~ 7 1 .9 8 x 1 0 -®

6-18 6 .91  x  1 0 -1 0 2 .0 1 x 10 -® 9 .9 2 x 1 0 -®

A=0.9975, SNR=30 DB

Int/Frac
Bits

Stage 1 Stage 5 Stage 10

6.14 2 .0 2 x l 0 - 6 2 . 5 3 x l 0 _ s 1.57 x 1 0 - 4

7-16 2 .0 8 x  1 0 - 9 4 . 8 8 x l 0 - 7 3 .4 3 x  1 0 - 6

7-18 3.31  x  1 0 _ 1 ° 1 .9 7 x 1 0 -® 1.29 x  1 0 “ 7

Since the backward prediction error vectors (n), b^n),
. . . ,  bN_ 1(n) span the same space as the elements of the input 
matrix I w (n), the joint process estimation error em(n) can 
be recursively computed as

m
em{n) =  y { n ) - ' Y ^ , k yj (A-14)

3 =  1

=  em_i(n ) -  kvm

where fc,yn(n) is the LS optimal coefficient vector in estimating 
em_i(n) using 6m_i(n), e0(n) =  y{n).  The rest of the 
derivations are very similar to the above and omitted here.
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