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Motivated by a simplified multiperipheral model, we formulate a general qualitative description of the 
momentum spectrum of secondaries, resulting from a collision of two hadrons a t high energies. Arguing 
from two fundamental multiperipheral concepts, (a) that transverse momenta are limited and (b) that 
distant particles on the multiperipheral chain are uncorrelated, we predict that at sufficiently high incident 
energies, the momentum spectrum of particle X  in the reaction a + 6 —> X +anything, when presented in 
the variables pi and y = sinh~I[^n/(/>i2+m x2)U2], develops a central plateau in the y dependence, which 
elongates and flattens to a value that is normalized by the total cross section as the incident energy in
creases. Moreover, it is shown that the resultant particle density distribution is consistent with the hypoth
esis of limiting fragmentation. We contrast this description with the predictions of the two-fireball model, 
the isobar-pionization model, and the statistical thermodynamical model.

I. INTRODUCTION

IN TER EST in multiperipheral models for particle 
production has revived recently in theoretical efforts 

to incorporate multiparticle unitarity into a bootstrap 
program1-6 and in phenomenological work in fitting 
production data a t accelerator energies.6 They are 
attractive models for studying particle production at 
high energies, since bootstrap constraints can provide a 
measure of uniqueness in the construction of the models, 
and they are ideally suited for extrapolating phenom
enological studies to higher energies.

The variety of multiperipheral models in current use 
is considerable. The pion-exchange model of ABFST7 
is still of great theoretical interest.4,6 A version of the 
Bethe-Salpeter model has been applied to multiparticle 
production .8 The multi-Regge exchange model9 has 
enjoyed considerable success in the study of reactions 
with three-body final states10 and the CLA model6 has 
performed remarkably well in fitting production data .6,11

These models have the following common features.
(a) The distribution in transverse momentum is limited.
(b) They describe particle production in terms of a 
linear chain of repeating links (with incident particles
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attached to the ends), along which only “neighboring”  
particle momenta are correlated. For present purposes 
we shall say two particles are neighboring if their 
invariant mass—more specifically, the Lorentz boost 
parameter tha t relates their rest frames—is less than a 
prescribed constant value. Alternatively, one could 
define a neighboring particle in terms of the number of 
intervening particles on the chain. In  most models both 
definitions are closely related, and both can serve as a 
basis for constructing a Fredholm equation for summing 
multiparticle contributions to unitarity  equations. 
However, there is an advantage for us in the first defini
tion in tha t it  relates more directly to the momentum 
spectrum. Furthermore, as a hypothesis it has the 
advantage of experimental verifiability, since it does not 
require tha t observed particles be ranked according to 
an arbitrary sequence on a chain. By a lack of cor
relation between two particles we simply mean tha t the 
functional dependence of the production cross section 
upon the momenta and other quantum numbers of the 
particles be factorizable. In  particular, a power behavior 
in the subenergy Si,= (P i+ ^y )2 is factorizable in the 
momenta, provided tha t greatly exceeds the squared 
transverse momenta and masses of the particles. This 
follows from the result, when puj^>pm (see the Appen
dix), tha t , , , , „

~Pm/ puiipif+mf2). (1.1)
Since the subenergy factors in its momentum depen
dence, any amplitude which incorporates simple power 
behavior a t large adjacent-particle subenergies (Regge 
behavior, elementary particle exchange) with a factored 
coefficient provides for a dynamical decoupling of 
particle momenta at high invariant masses. If the 
particles are not adjacent on the chain, the large 
number of intervening particles (with direct factoriza
tion a t low subenergies as, for example, in the ABFST7 
model) or factorization a t large subenergies (or both), 
results in decoupling at large invariant masses in most 
models. We shall demonstrate with a simple model that 
there is reason to expect th a t dynamical decoupling 
survives kinematical constraints, provided transverse 
momenta are small, and carries over into the production
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cross section itself. At the end of Sec. I l l  we show that 
the cross section for producing two particles in con
junction with anything else should have the same power 
behavior a t large subenergies as does the total cross 
section in the total energy (and therefore decouples). 
Therefore, for the present discussion, we shall adopt the 
above two conditions as the defining criteria of multi- 
peripheralism.

We shall be primarily concerned here with general 
qualitative features within multiperipheral models of 
the spectrum d?cr/dpidpu for the momentum of particle 
X  in the process a-\-b —> X +anyth ing . In  particular 
we shall study the evolution of the spectrum with in
creasing energy, as contrasted with the predictions of 
the two-fireball model and the isobar-pionization model. 
Of course, a detailed prediction of the spectrum requires 
a careful study within a particular model. Caneschi and 
Pignotti12 obtained a quite satisfactory fit to data for 
the reactions pp —> ^+ any th ing  and pp  —> x ±+ any- 
thing within the context of the multi-Regge model. 
Using a similar model, Silverman and Tan13 fitted data 
for the low-energy part of the missing-mass spectrum 
in w~p —> />+MM.

However, a comprehensive analysis of the common 
features of spectra predicted by multiperipheral models 
has yet to be accomplished. This work is a contribution 
to such an effort. We shall motivate our discussion of 
the secondary momentum spectrum with a simplified 
multiperipheral model. Nevertheless, we shall deal with 
the deficiencies of this model, and in so doing, shall 
avoid adopting a specific model; rather, we shall 
attem pt to identify the broad features of the spectrum, 
which any multiperipheral model should produce.

In  Sec. I I  we introduce a particularly useful set of 
variables in which to represent the momentum spec
trum. They are the transverse momentum pL and a 
longitudinal boost variable14'15

y  =  s i n h _1[ ^ , i i a b /  ( p i 2+ f n 2) i n 2 -

We reformulate the Chew-Pignotti multi-Regge model 
in terms of these variables in Sec. I l l  and produce a 
simplified spectrum with the model. Following a critique 
of the assumptions of the Chew-Pignotti model we 
discuss in Sec. IV modifications tha t would bring the 
model more nearly in accordance with reality, and 
estimate the attendant modifications to the simplified 
spectra. The reader may, if he wishes, omit Secs. I l l  
and IV, since the concluding sections are self-contained. 
In  Sec. V we argue on the basis of our general criterion 
for multiperipheral models tha t a t sufficiently high 
energies, the particle density (the production spectrum

12 L. Caneschi and A. Pignotti, Phys. Rev. Letters 22, 1219
(1969).

13 Dennis Silverman and Chung-I Tan, Phys. Rev. D 2, 233
(1970).

14 Feynman (Ref. IS) has mentioned that this variable would
be useful.

16 R. P. Feynman, Phys. Rev. Letters 23, 1415 (1969); in High 
Energy Collisions (Gordon and Breach, New York, 1969), p. 237.

Fig. 1. Diagram for the production of n particles, showing the 
definition of the subenergies and momentum transfers.

divided by the total cross section) for particle X  in the 
process a+b —> X + anyth ing  should approach the form

rA x {py,y) for y < A  

fx (p i )  ioi A < y < Y —A

.Bxipx, Y - y )  for Y —A < y ,  (1.2)

where s = mum l,eY for large s, A x  depends only upon 
particles a and X ,  and B x  depends only upon b and X.  
The constant A is chosen to be appropriately large and 
is related, roughly speaking, to the correlation distance 
in the Lorentz boost parameter y. The function f x  is 
universal, depending only upon the particle X .

Finally, in Sec. VI we contrast the predictions of the 
multiperipheral model with those of the two-fireball 
model, the isobar-pionization model, and the statistical 
thermodynamical model.

II. KINEMATICAL VARIABLES

To simplify the discussion of the momentum spectrum 
of secondaries, we have found a useful set of kinematical 
variables, which emphasize the different roles of the 
longitudinal and transverse directions.

We view the process (Fig. 1)

« + 6 - > 0 + l H ------- ( - « + ( « + 1 )  (2.1)

in the laboratory system, in which particle a is a t rest 
and particle b moves along the positive z axis. We may 
write

P a = ( m a,0 , 0 , 0 ) ,

Pb= {mi coshF,0,0,t»6 s in h F ), (2 .2 )

Pi=  (wi coshyi,pix,piy,Wi sinhy*-),
where

, p l i  —  I P x i I , P i i  =  ( p i x i p i y )  *

We call the variable y, the longitudinal boost. I t  
specifies the z boost that relates the rest frame of 
particle a to the frame in which particle i moves in a 
direction perpendicular to the beam.

(crabt0ty
d~Uab

dpidy
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Fig. 2. Comparison of the longitudinal boost plot (a) with the 
Pevrou plot in the center-of-mass frame (b) and lab frame (c). 
The phase-space boundary is indicated with a heavy line for the 
process pp ir+ anything with beam momentum 25.6 GeV/c 
(j»p sinh4). The shaded band denotes the position of pions that 
result from the process pp —♦ AmoAim in the near forward 
direction. The band corresponds to a mass width of 120 MeV.

The phase space in terms of these variables is simply

»+i dzpi n+1
I I  — s4( Z  P i - P . - P t )
i— o i=0

n - f l  n .+  l  n - f l

=  '2 I I  d 2$ u d y i 5 2( J 2  P ± i) 5 ( X !  •wie t, i— m a — m be Y )
i~0  4=0 2=0

tt-fl
X5(23 ma—m b( r Y) . (2.3)

i=0

The latter two 5 functions are obtained by rewriting the

conventional constraints on the energy and z com
ponents of the momenta in the form

M E  CEi+Pis) -  (E a+ P az) -  (Eb+ P b.))
X 5(E  ( E i - P it) -  (E a -P a .) -  (Eb—Pbt)) ■ (2.4)

In  the Appendix we relate these variables to the familiar 
invariants Si,<+i, U, etc. In  particular, for large 5 
=  (Pa+jPb)2, s (therefore the beam momentum) is 
exponentially related to F :

s = ma2-\-nih2-\-2mami, coshY ~ m anibeY. (2.5)

There are several advantages to presenting distri
butions in the longitudinal boost variables y and pi 
rather than in a Peyrou plot (p„ vs p±). (a) All longi
tudinally moving frames are put on equal footing, since 
a linear scale change in y  connects them all. There is 
complete symmetry between the rest frame of the 
projectile and the lab frame in the plot, (b) We will 
argue below tha t the distribution in the variable y  is 
constant for the part of the spectrum tha t arises from 
positions of the multiperipheral chain tha t are suffi
ciently distant from the ends. Hence, on the average, 
particles will be uniformly spaced in the variable y  for 
A < y  :..Y — A., where A is suitably chosen, (c) The sub
energy of a particle pair depends upon the relative 
spacing of points in y. The decay spectrum of a reso
nance has the same shape anywhere in the plot for any 
total energy, provided the transverse momentum of the 
resonance is the same. Thus the variable y  would be a 
natural choice for studying models that emphasize the 
role of final state resonances a t arbitrary longitudinal 
momenta, (d) For puub^pD ^m ,  y =  ln(2/tan0iab), 
thereby providing a simple connection with the Lindern 
plot [da/dlog tan0).16 In particular, a measurement of 
the production spectrum a t fixed angle and large 
momentum corresponds to a measurement a t fixed y 
and large pi.

Figure 2 illustrates the correspondence between lab 
momenta, center-of-mass momenta, and the longitu
dinal boost variable for pp '—> 7r+anyth ing  a t 25.6 
GeV/c (corresponding to a value of F  =  4). The absolute 
kinematical limits on the longitudinal boosts may be 
deduced from the last two 5 functions in (2.3). These are

Wi/ma< e ^ < e Ymblwi ,  (2.6)

shown as bold lines in Fig. 2. Note that the c.m. Peyrou 
plot and the lab-frame plot concentrate a large part of 
the spectrum in y into a small region about p u — 0 (as is 
expected from the Jacobian dy= dpu/E ) .  Also shown in 
Fig. 2 is the location in this plot of pions that would 
result from the process p p —* A(1236) A (1236) for small 
pi&. Note the energy-dependent elongation of the spec
trum  in the momentum-space plot. Although the spec
trum d2a/dydpx is easily related to the spectrum 
d2a/dpudph the spectrum d<r/dy, obtained by integrat
ing with y  fixed, obviously gives a quite different

16 L. v. Lindern, Nuovo Cimento S, 491 (1957).
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representation of the production mechanism from the 
spectrum dtr/dpu, obtained by integrating with p u 
fixed.

Another currently popular variable, x — p n c .m .  /P a ,  c .m .j  

was introduced by Feynman .15 This variable has the 
attractive feature tha t the spectrum lies within the 
fixed limits —1< x <  1 as the energy increases. For finite 
x and sufficiently large energies, the variables x and y  
are logarithmically related:

[ (Wi/mb)ey~ Y for 7 / 2 « y <  F+ln(w&/wi)
—  J

\ — {w ifm ^e-y for —ln(t»0/w f) < ;y « F /2 .  (2.7)

Hence, a distribution tha t is limiting in x for x ' —xa,min 
and %>%b,min is limiting in y for y ya,min and y > Y  
—yb,min for the corresponding ya,min, yb.min- In  either 
variable the existence of a limiting distribution can be 
checked by superposing the appropriate part of the 
distribution at various energies without a scale change.

From the standpoint of most models with limiting 
fragmentation that predict divergent multiplicities, the 
variable x  suffers from the property tha t the predicted 
spectrum cPa/dxdpL develops a sharp peak a t or near 
x = 0 , which becomes sharper with increasing energy. 
This difficulty can be circumvented by using the tech
nique of Bali et al.,17 writing the cross section as

d2(r/dpudpi = f{p L,x,s)/E ,  (2.8)

where E  is the energy of the observed particle, and 
studying the behavior of /  as s is increased. However, 
it would be sensible to take advantage of the high sta
tistical precision a t “wee”16 x (x < W i/ \ / s ) and present 
the data on an expanded scale. For this purpose Feyn
man suggested an alternative variable equivalent to the 
variable y. For the reasons outlined above, we therefore 
propose tha t this variable be used for the entire 
spectrum.

III. SIMPLE MODELS

A. Chew-Pignotti Model

To establish a heuristic foundation for the discussion, 
we shall calculate the secondary momentum spectrum 
in a simplified multiperipheral model. We consider first 
a model equivalent to tha t of Chew and Pignotti1 in 
simplicity. The model assumes tha t subenergies are all 
very large (“ strong-ordering limit”) and tha t the cross 
section for producing n particles is

C n+l
g2n U{si,i+i)2ad3>n. (3.1)

In  the strong-ordering limit,18

i , Ei2>Wi, (3.2)

and the last two 5 functions in the phase space (2.3) may

17 N. F. Bali, Lowell S. Brown, R. D. Peccei, and A. Pignotti, 
Phys. Rev. Letters 25, 557 (1970).

18 F. Zachariasen and G. Zweig. Phys. Rev. 160, 1326 (1967).

be approximated by

e~Y/ m amiS(y0—xa)S(Y—Xb—yn+i) , (3.3)
where

xa = ln(wc,/ma) for Xb = \n{ivn+i /m b) . (3.4)

In  this same limit the subenergies become (see the 
Appendix)

Si-i,i= (,Pi+Pi- i )2~ W i-1wiezi , (3.5)
where

zi = y i—yi- i .

Changing variables and integrating yo, we obtain a 
vastly simplified phase space analogous to tha t of Chew 
and P ignotti:

e~Y n+l n+l
d<$>n~ -------- I I  dlpj.;52( £  pii)

2m amb i~a i~°
ra-f-1 n + l

X n  dzi8(X— £  Zi) , (3.6)
4 =  1 4 = 1

where
X = Y —xa—Xb,

and the lower bound on z,- is, roughly speaking,

zi i i  ~  (%i-{-Xi-1) , where X; =  ln(w,/?«;). (3.7)

The strong-ordering approximation is not realistic for 
the large bulk of production events. One obvious draw
back is that as far as the process a + 6 —> 0+ ( m + 1) is 
concerned it describes only approximately elastic scat
tering, because the produced particles 1, 2, . . . ,  n  carry 
off a vanishing fraction of the total energy. Neverthe
less, the enormous simplification obtained permits us 
to draw some useful conclusions. We shall later estimate 
the modifications necessary for a more rigorous trea t
ment.

There are two im portant simplifying features of the 
strong ordering approximation, (a) The longitudinal 
momentum and cluster energy 5of= (5L'=o* Pj)2 are 
related to the variables in a simple w ay :

su~2mapiu~ 'mawiey<. (3.8)

(b) The phase space can be cast in a recursive form, 
making it a suitable basis for constructing an integral 
equation. We shall not demonstrate the last statement, 
but shall draw upon the results of the completely 
analogous treatm ent with the conventional invariants 
s0i and <;.2'19

We make the further kinematical simplification that 
transverse momenta may be ignored. Then w ^ n i i  and 
the lower bound on 2, is about 0. If for notational con
venience we pu t * 0= » i) and mb=mn+i, we obtain for 
an the expression

/
n-f 1 n + l

TT dzid(Y— £  Zi)
i-i  i-1 (3.9)

a- g 2 n g Y  (2a  2) Y n  j  %  ! ,

19 Marvin L. Goldberger, Chung-I Tan, and Jiunn-Ming Wang, 
Phys. Rev. 184, 1920 (1969).
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(a) (b)

F i g .  3. Distribution in longitudinal momentum of the »th produced particle in a simplified Chew-Pignotti model; dtn/dy for the ith 
particle is given in a rb i tra l  units and y /Y  is proportional to logJ>|| (see text). Distributions are shown for (a) six and (b) eleven pro
duced particles.

and the total cross section is simply
00

<rtot= E  <rn °: exp[Y(2a — 2+g2)']. (3.10)
71=0

Chew and Pignotti put 2a — l+ g 2 =  l to obtain a con
stant total cross section. For the remainder of this 
section we shall assume that the total cross section is 
asymptotically constant.

The distribution in \ n { p Ui / m / ) ~ y ,  for the M-particle 
production cross section a t the energy er may be 
obtained by fixing y i—^ j ^ Z j  in the phase-space 
integration above. Thus

(l(Tn { r  n+1 "'I 1
■----------— e Y { 2 a - 2 ) g 2 n  J J  d Z j § ( Y  —  Z j )

dy J 1 i

n,i(Y ̂ y} 

dy
—  g Y  (2a—2)g2 n, y

X S ( y - Y . Z j ) ,  (3.11) 

( Y - y ) n-~i

( i—1)! (n—i)l

obtain the spectrum for producing one particle in 
conjunction with n — 1 others. I t  is a Hat distribution 
in y,

d<rn n dan,i(Y,y) Y n~ 1
---- =  £ -------- ---- = e y(2«-2)g2,,----- -----_ (3.1.2)
dy *“ i dy (n — 1)!

The “inclusive”15 spectrum is obtained by summing 
over n, and is also constant in y. The average m ulti
plicity is obtained from the Poisson distribution (3.9) 
and is

(n ) =  g W .  (3.13)

The average spacing of the particles in y is therefore 
constant, independent of the total energy:

{Ay) = Y / (n )  = \ / g \ (3.14)

This distribution is illustrated in Fig. 3 for n = 6 and 11
and has the following interesting properties, (a) The 
maxima occur a t regular intervals in y a t y /F  =  (i — 1 )/n.
(b) The distributions for the central part of the chain
are approximately equivalent under translation. This 
effect improves as n is increased, (c) The distributions 
are well confined in y;. Since the invariant mass of 
particles 0 through i  is related exponentially to y,- 
through Eq. (3.8), Fig. 3 can also be regarded as a 
distribution in the logarithm of the invariant mass of 
groups of particles. The distributions give the appear
ance of diffuse resonances whose masses grow exponenti
ally with multiplicity .20 If we lump together the distri
bution for all particles produced along the chain, we

20 Since the width and decay multiplicity of the mass enhance
ments depend on the total number of produced particles, one would 
presumably have to consider an event with average multiplicity 
in order to attach any significance to the mass enhancement as a 
resonance.

since the spacing is uniform along the chain. These 
results are all well-known consequences of the multi
peripheral model.7

Suppose a model of particle production allowed a 
particle of type X  to appear only a t every other position 
on the chain. The spectrum for particle X  would no 
longer be a constant as indicated in Eq. (3.12) but would 
oscillate.21 The central part of the spectrum would have

T a b l e  I. Correlation fraction Fy, giving a measure of the 
correlation in the Chew-Pignotti model between produced 
particles i  and j  on the multiperipheral chain, when six particles 
are produced.

\ (
* \

1 2 3 4 S 6

1 0.124 0.030 0.013 0.006 0.002
2 0.164 0.043 0.016 0.006
3 0.176 0.043 0.013
4 0.164 0.030
S 0.124
6

211 am indebted to W. R. Frazer for calling this possibility to 
my attention.
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T a b l e  II. Correlation fraction Fa for the production of eleven particles.

133

\ (
* \

1 2 3 4 5 6 7 8 9 10 11

1 0.156 0.041 0.021 0.013 0.009 0.006 0.004 0.003 0.002 0.001
2 0.199 0.063 0.033 0.020 0.012 0.008 0.005 0.003 0.002
3 0.230 0.080 0.042 0.025 0.015 0.009 0.005 0.003
4 0.247 0.089 0.046 0.026 0.015 0.008 0.004
S 0.255 0.092 0.046 0.025 0.012 0.006
6 0.255 0.089 0.042 0.020 0.009
7 0.247 0.080 0.033 0.013
8 0.230 0.063 0.021
9 0.199 0.041

10 0.156
11 • ' *

a period of Y / \n .  If we sum (3.12) over all multiplici
ties, we obviously obtain a flat distribution. However, 
if we omitted every other particle in the sum, the result
an t distribution would be neither constant nor periodic, 
but could be rather lumpy. In an average sense, however, 
it would be a constant in y. The amplitude of oscillation 
depends on the sharpness of the localization of particles 
from a given position on the chain. The more localized 
they are, the more pronounced the oscillation. In  the 
critique of the strong-ordering approximation in Sec. 
IV, we will conclude that in a more realistic model 
overlapping of longitudinal momenta is rather common. 
Hence the contribution from a given position on the 
chain is probably rather less concentrated in reality than 
Fig. 3 would suggest, and the net single-particle spec
trum obtained by selecting every other particle in the 
model above is smoother than might be expected.

One of our criteria of xnultiperipheralism is that 
distant particles on the multiperipheral chain decouple. 
Although dynamical decoupling is easily achieved in 
practice by requiring that the amplitude factor in its 
momentum dependence, it is interesting to ask whether 
the kinematical constraint of energy and momentum 
conservation would permit a real decoupling of the 
momenta of produced particles.

Such kinematical correlations could conceivably be 
strong when the energies of particles are of comparable 
magnitude. However, it is a surprising consequence of 
the strong-ordering assumption tha t a kinematical 
decoupling takes place. To demonstrate this effect with 
the cross section (3.1), we have calculated a quantity, 
which we call the “correlation fraction,” which gives a 
measure of the degree to which the longitudinal 
momenta of two particles on the chain, particles i and 
j ,  are correlated. We first calculate the joint distribution 
cPan-i,j/dyidyj from Eq. (3.9),

d 2<rn-,i,j (y i ) i_1_____ —gY(a~ 2)g2n______
d j i dy j  ( i — 1)!

(y j—yiV'- *-1 ( Y —y,)n~ix  --- ------- -------------
( j —i - l ) l  ( n - j ) l  

for j > i  and F > y J> y 1> 0 .  (3.15)

For y j< yi  the distribution vanishes. If the momenta are 
uncorrelated, then

1 d 1 d(rnri (LcTyi'j
------------= --------- ----------. (3.16)
an dyidyj an2 dyt dyj

If we compare Eq. (3.15) with Eq. (3.11), it is obvious 
that this condition is not satisfied exactly. However, the 
relation is approximately correct. Let Zy and R n  denote, 
respectively, the left- and right-hand sides of Eq. (3.16). 
As a measure of their equality we calculate the fraction

From the Cauchy-Schwartz triangle inequality, it can 
be shown that

0 <  Fij<  1. (3.18)

If Lij=Rij  everywhere, then F {, = (.), and the dependence 
on yt and y3- is not correlated. When F tJ~  1, the de
pendence is strongly correlated. In  Tables I and I I  we 
give the values of F y  for n = 6 and 11. Note that more 
distant particles are indeed less strongly correlated. 
Because of the localization of the spectra of Fig. 3, a 
decoupling of particles widely separated in rank on the 
chain is equivalent to a decoupling of pairs of particles 
with large invariant masses.

B. Model with Nonconstant Total Cross Section

We now consider a somewhat more sophisticated 
model, which admits a general energy dependence for 
the total cross section, while keeping the strong-ordering 
approximation and the approximation of ignoring 
transverse momenta. We take as a model for the square 
of the production amplitude, the factorized expression

l A a ^ v G a K i z ^ K i z ^ - ■ -K (zn)Gb, (3.18')

where K(z)  may be thought of as the square of a 
propagator and g2, the square of a vertex. They can be 
matrices in the channel indices. With such a model, one
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may determine the total cross section 

<rab = T,  [ d $ n\ A abn| 2 (3.19)

by means of an integral equation. This procedure has 
been discussed in considerable detail.2 For our model, 
we have the following vastly simplified equations :

Ba{Y)  = I B a(y)g2K ( z ) S (Y —y —z)dydz-\-GaK ( Y ) ,

(3.20)
aab{Y)=e-~YB a{Y)Gb.

I t  is easy to verify by iterating (3.20) tha t aab is given 
by (3.19) with the simplified phase space of (3.9).

We want to derive an expression for the spectrum in 
\n (pn/ m ) ^ y  for the production of one particle in con
junction with anything else. As before, the distribution 
daab/dy is obtained by undoing the integration in the 
variable y  in the total cross section. Keeping in mind 
tha t the cross section for producing n  particles aabn 
must be weighted by n  in the inclusive spectrum, we see 
that we obtain d<rab/dy by removing the integration 
over y  in the expression

d<ra

dy
-rfy =  cra61+2(7ai,2+3crai,3+ -  • • =(n)<rab, (3.21)

where (n) is the average multiplicity of the observed 
produced particle per event and crab is the production 
cross section. Equation (3.21) may be written formally 
as

GaK f K G b+ 2 G aK f K f K G h
+ 3  GaK f K £ K g * K G b +  • • ■. (3.22)

Since
B a = GaK + G aK f K - + G a K fK £ K +  ■ • • , (3.23)

{n)aab= B ag2Bb. (3.24)
we see that 

More explicitly,

{n)aab = e - Y f B a(y)g*Bh(y')dydy,8 ( Y - y - y ' ) .  (3.25)

right-hand side should correspond to that vertex, which 
emits the type of particle in question.

The simplified Chew-Pignotti model of Sec. I l l  A 
generated a constant total cross section from a kernel 
K{z)  = e(-ia~"r>z, with

B a( y )= G aey fo ry > 0 . (3.27)

The production spectrum was rectangular with constant 
height and with a base of length Y :

d(T a 

dy
= GaglGb for 0 < y < F . (3.28)

As the energy increased, the rectangle lengthened at a 
rate consistent with a logarithmic increase in multi
plicity (F~log.s).

If we suppose, however, that the model reproduces a 
more reasonable total cross section, the distribution is 
modified. At both ends of the distribution a resonance 
region occurs, which extends a finite distance towards 
the middle. At sufficiently high total energies a plateau 
develops in the middle. The plateau shrinks in height 
to a constant limit as the energy increases. For purposes 
of illustration let us suppose in the spirit of duality24 
that the resonance region is represented on the average 
by an extrapolation of two Regge-pole terms; i.e.,

B a( y ) ~ G a(ev+cea*) , 

so that from (3.20),

<ra4(F )= G oG6[ l + Ce(“- 0 y] . 

The distribution (3.26) is then of the form

d(J ab

dy

(3.29)

(3.30)

=  G ag 2G 6[ l + c V ““ l)F

-\-ce(-Y~~y)l'a~ 1)-\-cey(-a~ l) \̂, (3.31)

This distribution is illustrated in Fig. 4 for c=  1, 
Gaf G b =  1, and a =  0.5. The first term represents the 
constant limit of the plateau, the second represents 
the shrinking component of the plateau, and the third 
and fourth cause the ends of the plateau to turn up. 
This distribution is evidently consistent with the

Undoing the integration over y, we get, finally,22'23 

daab(Y ,y )

dy
- e - YB a(y)g*Bb{ Y - y ) .  (3.26)

(Note that the total area is {n)aab, as it should be.)
In general, (n) should be replaced by the m ulti

plicity of the observed particle type, and g2 on the

22 In the simplified treatment of Sec. I l l  we have omitted 
particles 0 and » + l ,  since they always appear at the elastic 
position in the strong-ordering limit. Hence the distributions 
which we obtain should be augmented by a 5 function at both 
ends for these particles. The 5 function has a weight equal to the 
total cross section.

23 The expression (3.26) can be generalized in a rigorous treat
ment. See Refs. 7, 12, and 13 for details.

Fig. 4. Distribution in longitudinal momentum of produced 
secondaries in a simplified two-power model for Y=  1, 3, 5, 
corresponding to proton beam energies 1.5, 9.3, 69.6 GeV, respec
tively; dcr/dy has arbitrary units.

21 G. F. Chew and A. Pignotti, Phys. Rev. Letters 20, 1.078 
(1968).
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hypothesis of limiting fragmentation.21 The distribution 
is symmetric under y —> Y —y. This result is a conse
quence of the simplicity of the model. In  general the 
spectrum a t the ends of the distribution differs depend
ing on the incident particle a t the end. The upward 
slopes a t the ends can be made less prominent by 
decreasing the value of c.

A further consequence of this model is that the aver
age multiplicity is no longer linear in logs. The slope in 
logs decreases as logs increases, and the curve ap
proaches a straight line asymptotically. This result 
seems to be a general consequence of the two-power 
form for the total cross section, and was first discovered 
in the model of Chew and Snider.5'26 The average 
multiplicity is obtained from (3.25) by integrating the 
distribution (3.31) over y  and dividing by the total 
cross section (3.30). We find that

( n ) = f Y + g ‘
2c f l - e ( “- » F

-I
1- a l l + c V “- 1)F

(3.32)

For large Y «logs, the slope has the usual ABFST form. 
For small logs the slope is related to the sum of the 
coefficients of the two powers in the total cross section, 
and for large logs, to the coefficient of the higher power,

g2( l + c)F

Y-
2c

1-

for Y

for Y

•0

(3.33)

The characteristic energy a t which the multiplicity 
reverts to its asymptotic form may be found by equating 
the two expressions in (3.33). This yields Y  =  2 /(1 —a). 
If a = § , this would imply that s«OTaWje4, a rather low 
energy. Present experimental evidence for pp collisions27 
indicates an unchanging slope in logs from accelerator 
energies up to cosmic-ray energies. Since the model of

F ig . 5. Longitudinal momentum distribution of recoil proton 
in a simplified two-power model for Y — 1, 3, 5, corresponding to 
proton beam energies l.S, 9.3, 69.6 GeV, respectively; da/dy has 
arbitrary units.

26 J. Benecke, T. T. Chou, C. N. Yang, and E. Yen, Phys. Rev. 
188, 2159 (1969).

26 Carleton E. DeTar and Dale R. Snider Phys. Rev. Letters 
25, 410 (1970).

27 K. N. Erickson, University of Michigan, Ann Arbor report,
1970 (unpublished). See also Ref. 1 for multiplicities at ac
celerator energies.

this section would, through its overly simplified factori
zation property, also make the prominently resonant 
ftp cross section proportional to the obscurely resonant 
pp cross section, we are not particularly concerned with 
the difficulties in reproducing the experimental m ulti
plicities with this model.

The presence of an upward slope a t the ends of the 
spectrum implies a greater concentration of particles in 
this region. This would seem to contradict the expecta
tion that the distribution in the subenergies, hence the 
interval between particles, should be the same anywhere 
in the chain in the strong-ordering limit. The paradox 
is resolved when one realizes tha t the particle a t the end 
of the chain is rigidly fixed at the elastic position in the 
strong-ordering limit. The position in the spectrum of a 
given particle depends upon the accumulated intervals 
between particles up to the ends of the chain. If the 
distribution in subenergies has a suitable form (e.g., it 
has a two-power form) the average position of particles 
will not be uniform even if the average spacing is. We 
discuss below (Sec. IV) the consequences of incorporat
ing a realistic elasticity.

C. Distribution of Final Baryons

The techniques of Sec. I l l  B can be applied to a study 
of the spectrum of recoiling baryons. In  the discussion 
so far, we have ignored distinctions between types of 
particles. The foregoing description applies best to 
meson-meson scattering, since most of the produced 
particles are observed to be mesons. I t  would also be 
applicable to the spectrum of produced particles in 
baryon-baryon scattering if we ignored those m ulti
peripheral diagrams in which the baryons emerge at 
positions other than the ends of the chain. Caneschi and 
Pignotti have emphasized, however, tha t in a multi- 
Regge model, baryon exchange m ust occur for an 
average distance of a couple of links from the ends in 
order to reproduce the observed proton spectra a t 
accelerator energies.12 Following the model of Ting ,28 
they obtained a fit to the data assuming tha t the 
baryon-antibaryon ladders build a trajectory with 
intercept ou(0) =0.5. The spectrum of recoiling protons 
may then be deduced from Eq. (3.26), if we stipulate 
that B a be constructed strictly from baryon-antibaryon 
ladders. The function Bb should be the same as before, 
however. We then have

(3.34)

The target recoil distribution is illustrated in Fig. 5 for 
®a(0)=0.5 and with other parameters the same as in 
Fig. 4. Note tha t the distribution is concentrated a t low 
values of y, as expected.

To obtain the spectrum for p p - ^ p - \ - anything, one 
must, of course, add to the recoil spectrum in Fig. 5 the 
beam-scattering spectrum with y —> Y —y. In practice, 
the distribution should not shrink to zero in the middle,

28 Peter Ting, Phys. Rev. 181, 1942 (1969).
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y
F ig . 6. Location of pions in the longitudinal boost plot, resulting 

from the decay of a p meson at y = 0, pi — 0. The band corresponds 
to a mass width of 125 MeV.

because of the small, finite production of pp pairs. If we 
incorporated pp pair production into the model, the 
central part would gradually approach the spectrum for 
PP P +anything, which in this simplified model 
conforms with Fig. 4.

D. Two-Particle Spectrum
Using arguments similar to those which led to Eq.

(3.26), it is possible to show that the two-particle 
spectrum is simply

iPtJab
------  =e~YB a(y)g* C ( V - y ) f B h( V - y ' )  (3.35) 
dydy

for y '> y ,  where, formally,

C = K + K £ K + K f K f K +  ■ ■ • (3.36)

is a ladder without “ends.” The function C is simply 
related to B a through the expression

B a(Y) = GaC (Y ) .  (3.37)

The double integral over the spectrum (3.35) yields 
{n(n— \)/2)<Tab- Combining this with the integral for 
y '< y ,  we obtain a net integral of (n(n— l))<rab, the 
expected result, since each contribution to the spectrum 
must be weighted by the number of ways two particles 
can be chosen from a multiplicity of n.

If C shows resonant structure, this is reflected in the 
correlation between particle momenta in the usual way. 
Measuring two-particle correlations is a particularly 
valuable technique for studying the kernel K.  Note also 
that through (3.20) and (3.37), C has the same behavior 
a t large Y  as the total cross section, except for kine
matic factors.

IV. REFINEMENTS

In  the foregoing section we derived the secondary 
momentum distribution using a simplified model, in 
which transverse momenta were completely ignored 
and the particles were assumed to be strongly ordered. 
Among the features of these simplified distributions 
were (a) a plateau for the central part a t high energies,
(b) an upward slope away from the center a t the ends, 
and (c) a sharp cutoff a t the ends and a 5-function spike

for the left-most and right-most particles on the chain.22 
In this section we estimate the modifications to these 
conclusions, which result from bringing the model more 
in accordance with reality.

I t  is not hard to show th a t the strong-ordering 
assumption for individual particles is poorly justified. 
D ata27 for the average multiplicity of secondaries per 
inelastic event in pp collisions a t energies up to 880 
GeV/c fit the expression {n) = a\ns-\-b for a = 1.10. In 
the model the distribution is of length F  ~  logs. The 
particles are spaced uniformly in the center, so that an 
increase in Y  of Ay =  1/a increases the average m ulti
plicity by one. Therefore, the average spacing of 
particles in the center of the distribution in the variable 
y  is (A y )~ l. If this spacing occurred as a rule, the 
strong-ordering assumption would be marginally cor
rect. However, there is reason to expect a substantial 
spread in Ay, permitting “crossing” or negative values 
of Ay. In a comparison of the CLA multiperipheral 
model with experimental data, Ajduk et al .29 have shown 
that particles do tend to cross. I t  is easy to understand 
why, since they find tha t the average value of a tttt 
subenergy is about nt/.  To estimate the spread in | Ay j , 
we consider the decay of a p meson, traveling along the 
s direction. The resultant distribution of pions in the 
space pi, y  is illustrated in Fig. 6 . Note that | Ay | ranges 
from 0 to about 3. The lower (negative) bound on Ay 
may be estimated from the peripheral constraint on the 
momentum transfers. Since [see Eq. (A9)]

— W{W{+ie~-&vi — (J2 pit-)2; (4.1)
0

the more negative Ay, the larger the absolute value of 
li for a given set of transverse momenta. If the ampli
tude has an exponential cutoff for large U, and if 
W i- p i i^ m * ,  a variation in Ay that doubled the magni
tude of the first term would not reduce the amplitude 
severely. A value as low as — 1 for Ay is not unexpected. 
Therefore, crossing between adjacent particles is rather 
common. The stronger the cutoff in ti, the more rigorous 
the constraint from Eq. (4.1) becomes. The sharpest 
cutoff in ti typically occurs for large values of Sit,-+i, 
i.e., large (positive) values of Ayit where this constraint 
does not operate. However, a t moderate subenergies, 
we estimate there is frequent crossing in y. Of course, 
if the constraint imposed by (4.1) with an attenuation 
at large U is not sufficient, the particles can cross into a 
region of phase space where the amplitude for the new 
arrangement is large. If this overlap effect is important, 
it would appear to contradict the multiperipheral 
concept of a linear chain.

Many of these difficulties can be resolved4if we follow 
the ABFST approach7 and construct the chain from

29 Z. Ajduk, L. Michejda, and W. W6jcik, Acta Phys. Polon. 
A37, 285 (1969). See also A. Jurewicz, L. Michejda, J. Namyslow- 
ski, and J. Turnau, in Proceedings of the Colloquium on High 
Multiplicity Hadronic Interactions, Paris, 1970 (unpublished), 
for a similar study with the ABFST model.
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larger units. Suppose the units consist of two particles 
each. The analysis above is readily adapted to this 
model, if we treat pairs of particles formally as single 
decaying resonances. I t  is necessary to provide for 
variable masses, but the resultant distributions of 
di-particles is essentially the same as described in Sec.
II I . The average Ay between di-particles is then twice 
the average spacing between single particles, or (A y)« 2, 
and the effective lower bound on Ay from (4.1) is 
correspondingly higher for a given distribution in ti, 
since wt increases with the mass of the emitted “di
particle.” Hence the ordering improves as the number 
of particles in the repeating unit is increased, thereby 
vindicating the concept of a linear chain.

One of the consequences of the strong-ordering 
assumption was tha t the end particles on the chain are 
produced as though the collision were elastic. Let us see 
how a model based on one- and two-particle units 
agrees with this hypothesis, given the empirical result 
th a t (A y)~ 1 per particle.

From (A ll)  it is possible to estimate the average 
elasticity, if we assume tha t the transverse momenta 
are equal on the average:

( l+ e " 1+ e - 2+ -  • -)- ' = \ - \ l e ~ m % .  (4.2)

Because of the considerable range of multiplicities (and 
the correspondingly large spread in Ay) the distribution 
in i\\, is broad. However, the average elasticity in a 
di-particle model (defined as the fraction of the beam 
energy imparted to the most energetic di-particle) is 
considerably greater. Using the same methods, we find 
th a t with an average spacing (A y)~ 2 ,

< W « 1 - 1 A 2« 8 5 % . (4.3)

Although we have assumed in keeping with experi
mental results th a t the distribution in transverse 
momentum is confined and small, it  is interesting to 
speculate on the dynamical origins of this phenomenon. 
One factor which could constrain the value of the trans
verse momentum is a peripheral limitation on the 
momentum transfer. Referring again to Eq. (4.1), we 
see th a t if the distribution in ti is governed by an 
exponential exp(i/), the distribution in piz would be, 
roughly speaking, exp (bpi2), if the pl3- were uncor
related. However, other constraints could operate as 
well; for example, the presence of strong low-energy 
resonances (such as the p) help to confine the transverse 
momentum distribution. The p decays a t rest into two 
pions with momentum 350 MeV/c. If the decay were 
isotropic, the average transverse momentum of the 
pions would be consistent with the observed average of 
about 400 MeV/c, if the average transverse momentum 
of the p were about 500 MeV/c, quite a reasonable 
value. The distribution in the transverse momentum 
reacts upon the distributions in the subenergies through 
kinematical constraints of the following type, which 
may be derived in the strong-ordering limit (see the

Appendix):

OoiSl2' ' -Sn,n+1)/(W lW - ' "Wr?). (4.4)
Generally speaking, the smaller the transverse mo
menta, the smaller the subenergies. Unfortunately, the 
subtleties of many-body kinematics prevent a more 
precise definition of the constraints upon the transverse 
momenta within the confines of a simple argument. We 
believe, however, th a t insofar as the transverse mo
menta are small compared with the masses of the 
particles, the results of the previous section are not 
substantially altered with the introduction of a finite 
transverse momentum. In  particular, in a di-particle 
model, the masses exceed the typical transverse 
momenta.

If we suppose tha t the results of Sec. I l l  are correct 
for a di-particle model, we can discover the sorts of 
features tha t a more realistic single-particle distribution 
should have, simply by convoluting the simplified 
distributions of Sec. I l l  with the mass and decay 
spectrum of the di-particles. The resulting single
particle distributions will have the following general 
features: (a) a limiting form a t high energies, (b) a flat 
distribution in y  for the central part a t high energies,
(c) a smooth drop to zero a t the ends over a typical 
range for a decaying resonance of A y « 1  to 2. (Only the 
genuinely elastic events will contribute to the elastic 
spike.) I t  is possible, however, tha t the upward slope 
away from the center of the distribution of Eq. (3.31) 
will be washed out.

V. GENERAL DESCRIPTION OF SPECTRUM AND
EXPERIMENTAL CONSEQUENCES

We are now in a position to formulate a general 
description of the single-particle production spectrum 
based on two assumptions: (a) tha t transverse momenta 
are limited and (b) tha t short-range order prevails along 
the multiperipheral chain.

We will argue tha t the “particle density” (crtot)— 
dydpx is limiting in the sense of Yang and collaborators,26
i.e., as the energy is increased, the low-lab-momentum 
part of the particle density approaches a constant 
function of ps. and y,  which depends only on the target 
and the observed particle, and the high-lab-momentum 
part of the particle density approaches a constant func
tion of px and Y —y,  which depends only on the beam 
and the observed particle. Moreover, in the central part 
of the spectrum, a region A < y < F —A for some fixed 
A, the particle density is constant in y,  depending only 
upon the observed particle. These conditions may be 
summarized by asserting tha t as the energy is increased, 
the spectrum of particle X  in the process a+Z>—> X  
+ anything approaches the form

d2ffobx  \ A x(pL,y)  for y< A  
(o-a6tot)_1-------- = '  f x ( p i )  for A < y < Y —A

dpidy  b x (Pl ,Y —y)  for Y < A < y  (5.1) 
for some fixed A.
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p (GeV/c)

Fig. 7. The distribution do/dpn for pions obtained by inte
grating d<T/dp^dpu = \_E(piiY]~l exp(—pi2/(p i)2) a t fixed pn for 
(top to bottom) {pj.y = 0.05, 0.10, 0.15, 0.20, and 0.25 (GeV/c)2.

We argue first tha t the particle density is limiting. 
Since particles tha t are distant in the sense of relative 
velocity are assumed to be uncorrelated, particles 
produced with small transverse momenta and y< A  for 
some fixed A are correlated only with particles produced 
for a finite distance in y. In  particular, a t asymptotic 
energies the spectrum a t y< A  depends neither upon the 
chain length nor upon the beam particle, except by way 
of a normalization factor. The particle density in the 
variables y and pi is itself uncorrelated with the chain 
length and the beam particle, since the particle spacing 
in y  and pL is determined by local correlations. There
fore the spectrum divided by the total cross section 
approaches a constant function of y and pi for y <A as 
the energy is increased, and this function depends only 
upon the target particle and the observed particle. An 
analogous argument holds for the other end of the 
spectrum with y -+  Y —y.

Finally, we argue tha t for the central region of the 
spectrum (A < y <  F —A) the particle density is constant 
in y, independent of the beam and target. More pre
cisely, given an e, there is a F 0 and a A (which may 
depend on X), such that for F > F 0 and A < y < F —A 
the particle density is within a fraction e of f(p i) .  The 
result depends on the homogeneity of the central part 
of the multiperipheral chain, which can be viewed as a 
consequence of short-range order. Because any portion 
of the central region of the spectrum is generated by 
particles tha t decouple from remote parts of the m ulti
peripheral chain, the spectrum in the central region 
must be independent of both beam and target, except 
for over-all normalization. Moreover, any two points at 
different values of y  in the central region are equivalent 
with regard to factors that determine the spectra at 
these points. The particle spacings in px and y  depend 
only upon local correlations; and, insofar as any two 
points in the central region are equivalent in these

correlations, the particle density is constant in y 
throughout the central region.30

I t  is tempting to identify the region A < y < F —A 
with the pionization component and the rest of the 
spectrum with the components of beam and target 
fragmentation in the language of Yang and collabora
tors, although the components merge with one another 
in a continuous fashion. If pionization in this sense were 
absent, then f x (pi) = 0 , and the production of particle 
X  would be connected in some way with the particular 
choice of beam or target. I t  is possible to construct a 
multiperipheral model for which this would occur. 
Imagine a model for pp —»■ ^+ any th ing  that did not 
include the possibility of producing pp  pairs. The ob
served protons would then correspond to the persisting 
baryons a t the ends of the chain. In  practical models, it 
may even be desirable to ignore small production rates 
of this sort. However, in principle, it is plausible to 
expect that the production of an arbitrary number of 
pairs X X  occurs whenever sufficient energy is available. 
In  terms of the multiperipheral model this possibility is 
realized by allowing the production of any pair X X  in 
the repeating portion of the chain. Assuming this 
indefinite proliferation of particles, it follows that f x  
is nonvanishing and that the average multiplicity of 
particle X  is linear in Ins a t asymptotic energies. The 
coefficient of Ins is given by

gx =  y  fx(p i)dpi  (5.2)

and the relative probability for producing various 
particles is given by the relative values of gx■ A recent 
experiment a t cosmic-ray energies27 gives gv*—!, a 
value which Bali et al.17 find to be in quite good agree
ment with the central part of the particle density for 
pions in present experiments (see below). This is strong 
evidence for the presence of pionization.

A model with limiting fragmentation, bu t without 
pionization would develop a zero in the center of the 
distribution. The fragmentation components would 
approach zero a t large distances in y  from the respective 
ends. Under these conditions, the average multiplicity 
would necessarily grow less rapidly than logs.

If f x  is nonvanishing, and if for asymptotic F,

<rai,toK Y ) ~ G aGbe“r  (5.3)

(the latter follows from all known multiperipheral 
models), one can then recast (5.1) in a language strongly 
reminiscent of Feynman’s:

d2aabx
-----------JA x '{p i ,y )B x '{p i ,Y —y) ,  (5.4)

_________ dp d y
30 To say that all points in the central region are equivalent is 

only approximately correct. As we noted in Sec. I l l  it is con
ceivable that the spectrum, when restricted to events of a given 
multiplicity, could be periodic in y. Strictly speaking, we cannot 
rule out the possibility that the net inclusive spectrum has some 
fine structure, but any fluctuations will occur about a constant 
average. I t is in this sense that we speak of a flat distribution.
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where A ' is related to the probability for finding a 
parton in particle a with coordinates pi and y  and B' is 
the analogous probability for particle b. Moreover, both 
A x '(pi,y) and Bx'(pi,y)  have the power behavior eay 
for asymptotic y. Putting a = 0  gives Feynman’s result 
tha t the production cross section is limiting and that 
the central part is constant in y.

There are several simple but im portant consequences 
of the result (5.1) which should be emphasized here.

1. In  all longitudinally moving frames, in which 
particles with p u ~ 0 come from the central portion of 
the chain, there will be a peak in the distribution of the 
form d p id p u /E  a t p „ =  0. The experimental results 
reported by Erwin31 show a peak in do/ 'dp n a t p u = 0  in 
several longitudinally moving frames.

2. The distribution da/dy obtained by integrating 
over pi a t fixed y  develops a constant plateau in y  which 
elongates with energy. However, the shape of the peak 
a t pu  = 0 in the distribution d a /d p n  obtained by inte
grating over p L at fixed p u depends upon the form of the 
distribution in transverse momentum. In  Fig. 7 we show 
the distribution d a /d p n  obtained when d2a /d p i2d p u 
=  (E (p i2))~ l exp(—p / / { p i ) )  for various choices of
(Pi2)- . .

3. The angular distribution in any longitudinally 
moving frame, d a /d  cosd, has a forward and backward 
peak, whenever particles from the central part of the 
chain can move in these directions. The exact shape 
depends, of course, on the distribution in transverse 
momentum and the spectrumJfrom the ends of the 
chain. This follows from the approximate identification 
;y«ln(2/tan0) for piC$>pi>m. Hence d y ^ d  cosf?/sin20 
for |sin0 |<<Cl.

4. The Duller-Walker plot32 (the logarithm of the 
ratio of the forward to backward fraction vs log tanfl) 
shows a “break” a t the center, which has been used33 
as partial evidence for the two-fireball model. The 
forward/backward fraction F / ( l —F) is simply y /  
( F —y) for the flat part of the distribution. The resulting 
Duller-Walker plot is shown in Fig. 8 .

5. Bali et al.17 relate the height of the distribution in 
the center to the coefficient of lnj in the expression for 
the average multiplicity. With the distribution (5.1), 
this is simply expressed as follows: If the total cross 
section is constant, and the distribution has reached its 
limiting form, then { n x )~ g x  lm + const, where {nx) is 
the average multiplicity of particle X  per event. The 
constant gx is given by (5.2) and is independent of beam 
or target.

There remain several questions, which can not be 
answered except within the context of a specific model. 
Some of these questions are: (a) A t what energy does 
the plateau in da/dy begin to develop? (b) Does the

31 A. R. Erwin, “Multiparticle Production—Experimental,” 
presented at the Conference on Expectations for Particle Reac
tions at the New Accelerators, Madison, Wisconsin, 1970 (un
published).

82 N. M. Duller and W. D. Walker, Phys. Rev. 93, 215 (1954).
33 Giuseppe Cocconi, Phys. Rev. I l l ,  1699 (1958).

y/Y

F ig . 8. Duller-Walker plot for the longitudinally invariant 
distribution, logioCi?/ ( l —i7)]  vs y /Y ,  where y is linearly related to 
logw tan0.

plateau slope upwards from the center a t either end of 
the distribution; i.e., is the plateau in a valley? (c) 
Given tha t the total cross section approaches a con
stant, how rapidly is the limiting distribution reached?
(d) W hat is the limiting shape of the distribution?

To stimulate experimental interest in these questions, 
we will venture a guess a t the answer to the first one. 
In  a sense, the answer depends on the assumed effective 
correlation length and the density of particles^at the 
ends of the distribution. Let us assume tha t it' is per
missible to neglect correlations tha t involve more than 
two particles, though it is im portant to represent the 
two-particle resonance region correctly, and further
more, tha t the strong-ordering approximation is 
marginally acceptable for pairs of particles. Because 
the p resonance is prominent in the -inr cross section and 
the A in the irp cross section, we would then expect tha t 
as the total energy was increased, a plateau would begin 
to develop in the pion spectrum from %p —> 7r+ a n y 
thing after the process wp —> pA represented a significant 
fraction of the inelastic cross"section. A t what energies 
does this occur? Experimentally, it  is observed that the 
process ir+p —»■ A++p° accounts for |  to f  of the events 
ir+p —»pir+ir+TT~ a t energies in the range 3-8 GeV/c.34 
The four-body process tt~p —> pir+ir~x~ represents a 
significant fraction of the inelastic cross section up to 
about 10 GeV/c.35 This would suggest tha t one should 
look for the plateau above 10 GeV/c. For p p - ^ w  
+any th ing  the characteristic process would be p p —>AA. 
The cross section for pp —>• A++A° peaks strongly in the 
region 5-7 GeV/c.36 This gives one indication of the 
energy beyond which one should look for the plateau.

34 G. Goldhaber et al., Phys. Rev. Letters 12, 336 (1965); 
Aachen-Berlin-Birmingham-Bonn-Hamburg-London (I.C.)-Mun- 
chen Collaboration, Phys. Rev. 138B, 897 (1965); P. Slattery 
et al., Nuovo Cimento S0A, 377 (1967); ABC Collaboration: M.
Deutschmann et al., Phys. Letters 19, 608 (1965).

36ABBCCHW Collaboration: R. Honecker et al., Nucl. Phys. 
B13, 571 (1969). _

36 R. Panvini, in High Energy Collisions (Gordon and Breach, 
New York, 1969), p. 497.
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a limit at accelerator energies. Kali el al. studied the 
spectra in the variables x  and pL. They fitted data for 
tt,: at. 12.2,39 19.2,40 and 30 GeV/c41 to the expression

da 7r
—  =  F(pi)G(x) 
t>i dp 11 E

(5.5)

F ig . 9. Sketch of the longitudinal momentum distribution 
da/dy of secondaries predicted in the multiperipheral model, 
showing the evolution with increasing energy, Y — 1, 3, 5. The 
spikes represent the elastic scattering events, (a) i r p  —> ir+any- 
thing; (b) p p  —> ir+anything; (c) p p — > p - \ - anything.

We obtain another estimate by comparing the irp 
reaction with the p p  reaction. For a comparable-sized 
plateau, the spacing in the y variable between the p and 
A should be the same as between the A and A. Since 

the spacing is the same, if s r p ^ m l>tn \e A!/. 
Hence for >̂iab,T =  10 GeV/c, ^iab,P~ lS  GeV/c. Com
bining our estimates, we suggest that for tt beam 
momenta above about 5-10 GeV/c and p  beam mo
menta above about 7-15 GeV/c one should begin to 
expect a plateau.

In  Fig. 9 we present freehand sketches of the evolu
tion with energy of the spectra da/dy  for the following 
reactions exhibiting the general features which we have 
identified in the analysis above:

(a) irp —> 7r+anything,
(b) p p - ^ i r + anything,
(c) p p - ^ p + anything.

W hat is the experimental evidence for this descrip
tion? In  the past few months considerable evidence has 
accumulated in support of limiting fragmentation. In 
addition to evidence presented by Yang and collab
orators25 and Smith ,37 the recent work of Vander Velde38 
and Bali et al.,17 examining experimental data for 
pp  —> i r i - f  anything and pp  —>■ ^+anyth ing , also indi
cates that a significant part of the spectrum approaches

37 Dennis B. Smith presented data for the reaction pp —>ir~+ 
anything at various energies, and showed that the low-energy 
part of the distribution in the lab system was remarkably constant 
as a function of beam momentum [Bull. Am. Phys. Soc. 15, 
659 (1 9 7 0 )].

38 J. C. Vander Velde, University of Michigan, Ann Arbor
report, 1970 (unpublished).

and found agreement among individual points within 
factors of 1.5 or better. We translated their fitted ex
pression at 30 GeV/c into the variables pL and y  and 
present in Fig. 10 the resultant spectrum da/dy, ob
tained by integrating over pL a t fixed y. Strictly speak
ing, only three points on this curve are determined by 
the experiment of Anderson et al.il a t 30 GeV/c, since 
the experiment was carried out a t three laboratory 
angles, which correspond essentially to three values of 
y  through the relation y —y ^ ln ^ ta n f l) .  These points 
are indicated in Fig. 10. However, the curve is qualita
tively similar to those obtained at lower energies. In 
general, therefore, there seems to be some evidence that 
limiting fragmentation occurs a t accelerator energies, 
and that there is a tendency for the spectrum to level 
off as y increases. If we accept the evidence for limiting 
fragmentation, then the observation27 that the average 
multiplicity is linear in Ini implies tha t the central part 
of the spectrum is constant. Bali et al. noted that at 
30 GeV/c the height of the spectrum a t x = 0  (y =  2.1) 
is within 10%  of what would be expected from the rate 
of increase of (n) with Ins a t cosmic-ray energies. This 
would suggest that the spectrum has attained the height 
of the plateau in Fig. 10 and that this height should 
prevail between the points y ~ 2  and y ~ Y  — 2 as the 
energy is increased.
& We join Bali et al. in urging that experiments be 
carried out for a larger range of laboratory angles to

F ig . 10. The low-y portion of the spectrum da/dy for pp —> ir* 
-1-anything at 30 GeV/c derived from the fitted formula of Bali 
et al. (Ref. 17). Shown are the three points in y where the data of 
Anderson et al. (Ref. 41) are concentrated.

39 J. L. Day, et al., Phys. Rev. Letters 23, 1055 (1969).
40 J. W. Allaby et al., CERN Report No. 70-12, 

(unpublished).
41 E. W. Anderson et al., Phys. Rev. Letters 19, 198 (1967).

1970
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test limiting fragmentation, and, in particular, near 
Pmo.m. = 0  to investigate the development of the plateau.

VI. COMPARISON WITH OTHER MODELS

A. Two-Fireball Model

Although there is presumably considerable leeway for 
modifying the two-fireball model, inasmuch as it is 
basically phenomenological, we will use the model as 
proposed by Cocconi33 for the purposes of comparison. 
In  this model a collision between two hadrons, viewed 
in the center-of-mass system, is supposed to result in 
two persisting hadrons with momenta reduced by a 
fraction, which is fixed on the average, and two fire
balls, which decay after separating relatively slowly 
from the point of collision along the incident directions. 
The decay is thought to be isotropic in the center-of- 
mass system of the fireball with secondary energies fixed 
on the average, so tha t the transverse momentum does 
not increase with the total energy.

With such a model, it is impossible to obtain a non
trivial limiting distribution for the contribution to the 
momentum spectrum from the fireballs and still have 
increasing multiplicities. Suppose tha t in the center- 
of-mass system, the fireball associated with the target 
particle moves with velocity /Jf .o.m.. Then the energy 
of the fireball in the center-of-mass system is

—y  F,c .m.MF~y  F,o.m.EflF ~ K-Eo,o.m., (6 .1)

where M  f is the fireball mass, E  is the fixed average 
energy of the decay products, is the average m ulti
plicity of the decay, k is the inelasticity, and /in,c.m. is 
the energy of the target particle in the center-of-mass 
system. Since £o,c.m.=7 c.m.7M0, where ma is the mass of 
the target particle, we conclude that

n F = 2Kmay FM b / E , (6.2)

since 7 0.m.®:527 f ,c.m.7 F1iab- (In terms of the longitudinal 
boost variables, 7 F,iab =  coshyF.) Equation (6.2) shows 
that, if the average multiplicity increases, the velocity 
of the fireball in the laboratory frame also increases. 
The center of the decay spectrum of the fireball must 
then shift to the right in y. Since the energy E  is fixed, 
the spectrum in y will not increase in width as it shifts, 
only in height. The spectrum in p n\ab will also shift to 
higher values of the m om entum ; hence, the distribution 
is clearly not limiting except in a trivial sense. This 
behavior is sketched in Fig. 11.

Another quite obvious feature of the momentum 
spectrum in the fireball model is the presence of a 
distinct dip in the center of the spectrum in y, reflecting 
the distinguished role of the center-of-mass frame.

Actually, the multiperipheral model does permit 
individual events to have fireball-like features. In 
collaboration with Snider,26 the author has studied 
various multiperipheral mechanisms, which could 
produce gaps in the spectrum for individual events. I t

Fig. 11. Sketch of the longitudinal momentum distribution 
da/dy of secondaries predicted in the two-fireball model, showing 
evolution with increasing energy a, b, and c.

was found tha t substantial gaps could occur; but, 
because they could occur a t any point in the spectrum, 
the average spectrum had no gaps or pronounced dips.

B. Isobar-Pionization Model

The isobar-plus-pionization model in its purest form42 
is orthogonal to the two-fireball model in tha t it pre
dicts not a dip, but a peak in the center of the spectrum 
da/dy, which comes from the pionization component. 
Nevertheless, there is practically a continuous gradation 
of models between this model and the two-fireball 
model.43 The model was originally proposed by Pal and 
Peters to explain the unexpectedly large momenta of 
some secondaries. Viewed in the center-of-mass system, 
the collision of two hadrons is thought to result in 
excited states of the hadrons (isobars), moving along 
the incident directions, which carry off a substantial 
fraction of the energy, and a cloud of mesons. The 
meson cloud decays according to a fixed isotropic 
distribution (perhaps with some anisotropy favoring 
the forward-backward directions) in the center-of-mass 
system, the secondaries carrying a fixed energy on the 
average.42

The decay of the isobars could be brought into accord
ance with the hypothesis of limiting fragmentation, 
since the model is flexible on this point. The pionization 
component is not limiting as long as its decay distri
bution remains fixed in the center-of-mass system. I t

42 Yash Pal and B. Peters, Kgl. Danske Videnskab. Selskab, 
Mat.-Fys. Medd. 33, No. 15 (1964).

43 M. Koshiba, in High Energy Collisions (Gordon and Breach 
New York, 1969), p. 161.
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F ig . 12. Sketch of the longitudinal momentum distribution 
da/dy of secondaries predicted in the isobar-pionization model 
with a limiting distribution for the isobar component.

contributes a peak in da/dy which shifts to the right 
with increasing energy, as shown in the sketch in Fig. 12.

If distinct dips are seen in the experimental spectrum 
between the “ isobar” and “pionization” contribution, 
then the isobar-pionization model would definitely be 
confirmed. Otherwise, a prominent central hump in the 
distribution, which persisted to high energies, would be 
strongly supportive. Some recently proposed models 
with extreme forward-backward anisotropy in the 
center-of-mass system actually predict a central dip,44 
however, and it is conceivable that with clever manipu
lation, it should be possible to imitate the predictions 
of the multiperipheral model for a finite range of total 
energies.

One of the applications of the isobar-pionization 
model has been an attem pt to understand the propa
gation of the high-energy component of cosmic-ray 
secondaries through the atmosphere, since the selection 
of certain prominent isobars implies a definite popula
tion of energetic decay products.42 In  particular, the 
model could explain the observed excess of positive to 
negative high-energy muons in cosmic-ray showers. 
Koshiba has applied the model with great zeal to a 
study of the population ratio of low-energy pions to 
kaons in cosmic-ray events observed in emulsions.43 
(These would come from the decay of the recoiling 
target isobar.)

Limiting fragmentation alone could provide a valu
able tool for clarifying these questions. Rather than 
assuming ad hoc that certain isobars are present, one

44 The distribution a+b  cos"0 for the pionization component 
(see Ref. 44) can be made to produce a dip in the log tanfl plot if 
a/b is sufficiently small and n sufficiently large.

could simply extend the observed ratios of 7r+ / V “  and 
■k/ K  a t accelerator energies to cosmic-ray energies for 
the corresponding part of the secondary spectrum. 
Except for the parameter that marks the separation 
between the limited and nonlimited part of the spec
trum, the extrapolation would be parameter-free and 
the predictions would provide a test of limiting frag
mentation.

C. Statistical Thermodynamical Model

The model of Hagedorn and Ranft46 describes the 
single-particle spectrum in terms of a local statistical 
distribution

dlp'
/(e ' ’r ) c c ~ ^ r T ’ (6-3)et lkT^. \

where e' =  [(^ /)2+ w 2] 1/2, and a function which specifies 
the collective longitudinal motion of the hadronic 
“fluid,” F(X), where

7  — 1 cosh(y—^F) — 1 
X =  ±  —— = ± - — ----------------- .. (6.4)

To— 1 coshi F — 1

The parameter X defines a longitudinal boost (y—JF ), 
which relates the center-of-mass frame to the local rest 
frame in which a portion of the fluid decays according 
to the distribution (6.3). The sign of X specifies the 
direction of the boost. The spectrum for producing one 
particle X  in conjunction with anything else is then 
obtained by convoluting the distribution (6.3) with a 
longitudinal Lorentz transformation L(X) according to 
the weight function F{\),

dax

dpndpj
= Qx(E0) j  d \ F x ( \)L ( \) f(ex ',T(X)), (6.5)

where E 0 is the beam energy. Depending upon the 
particle type, different expressions appear in place of 
F(k ), according to the specifications of the model. The 
expressions all have in common an energy independence, 
and the form of F  is determined phenomenologically. 
The normalization Q depends upon the particle type 
and is in principle determined by the model, but in 
current practice from the data. I t  is allowed to vary 
with energy. The variation usually amounts to factors 
of 1.5 to 2. This is partly a consequence of systematic 
errors in the data. The temperature T  is a function of 
X, but for most of the range of X, varies slowly around a 
value of 0.8 r 0, where Z’0=  160 MeV.

Since the distribution f ( e ,T )  is peaked for small local 
momenta, the longitudinal momentum distribution is, 
roughly speaking, described by F ( \ ) :

dN/d\~Q FQ \) . (6.6)

45 We discuss the latest published version of the model, as it 
applies to the production spectrum: R. Hagedorn and J. Ranft, 
Nuovo Cimento Suppl. 6, 169 (1968); see also R. Hagedorn, 
ibid. 56A, 1027 (1968).
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For e '^ F/2Î > l and ey/22>l,

X =  (ma/w )x  =
e (v-Y)

- e \ (6.7)

where x is the Feynman parameter [see (2.7)]. There
fore, for fixed x  (or fixed y  or Y —y) and sufficiently 
large energies, the distribution is a fixed function of 
x  (or y  or F  —y), provided Q approaches a constant. 
Hence, the distribution is limiting,46 if Q is constant.47

Is it possible to choose a form for F (\)  so tha t the 
central part of the distribution is invariant under 
longitudinal boosts?48 To obtain an invariant distri
bution we require that

(6.8)
r(A) =  const,

F(\)dX = dy for |A|<Xo

for some constant Ao. From Eq. (6.4) this implies that

F(X) =X~1( l+ 2 e _y/2/X)_1/2, (6.9)

which depends on Y  as well as A. Thus it is impossible 
for a fixed function of A to give an invariant distribution 
in the same sense as the multiperipheral model. If we 
choose

F(X) =  1 A , (6-10)

as suggested by Ranft and R anft,48 the distribution is 
eventually invariant for s1/2/ 2w =  ey/2̂ >A'_1, for any 
fixed nonzero X, whereas one would expect a much more 
uniformly limiting distribution in the multiperipheral 
model.

As in the case of the Feynman variable x, the diffi
culty lies in the choice of variable. If a closer cor
respondence between the multiperipheral model and the 
statistical thermodynamical model were desired, one 
might use the variable y  in place of A so tha t Eq. (6.5) 
would read

d m  r Y
- ------=  dy F(Y,y)L(y)f(e ',T) .

dpndpx J 0
(6.11)

For not too small X, the change in variable is trivial,

F(Y,y) = [X|F(X) for [X[» e ” y/2 =  2ms~112, (6.12)

with X given by (6.7). The present fits to experimental 
data can be used to construct the function F(Y,y).  
Since these were obtained with pp collisions up to 30 
GeV/c, the lower bound on [X| in (6.12) is at least 0.25. 
This function should be comparable to the distribution

F ig . 13. The low-y portion of the Lorentz boost weight function 
F{y,Y) in the statistical thermodynamical model. The vertical 
scale is in arbitrary units.

dtTab/dy in (3.26) and is limiting in the same sense, i.e., 
it may be written as

F ( Y ,y ) = A ( y ) B ( Y - y )  , (6.13)

46 Liland and Pilkuhn state that the statistical thermodynamical 
model does not “scale” : A. Liland and H. Pilkuhn, Phys. Letters 
29B, 663 (1969). However, their scaling is not the same as limiting 
fragmentation. Therefore there is no contradiction here. See 
Vander Velde (Ref. 38) for a discussion of this point.

47 Hagedorn has also discussed this point. See R. Hagedorn, 
Nucl. Phys. B24, 93 (1970).

48 Ranft and Ranft have considered this question. See G. Ranft
and J. Ranft, Phys. Letters 32B, 207 (1970).

where both A  and B  have a constant limit in y  as 
y —> =o. The condition (6.13) replaces the requirement 
tha t F  be independent of energy. If A ^-B ,  then F  is 
symmetric under y —> Y —y. We have taken the func
tion F (\) ,  given by R anft and Ranft,

F(X)<x (l-|X |)e-«IM

with a=5.13 and constructed the function F(Y,y)  for 
0 < y < 2 , which corresponds roughly to — 1< X <  —0.15. 
The result is plotted in Fig. 13. Evidently it exhibits 
some of the qualitative features of Fig. 10, even though 
the functions are indirectly related through Eq. (6.11). 
The function F(Y,y)  rises over a region in y  of A y ~  2 
and begins to level off. I t  is tempting to take this as 
evidence for the onset of a plateau (or a downward slope 
to a fiat valley), but in view of the aforementioned 
complications in interpreting distributions a t small 
values of X, and because of limitations in the data, we 
cannot draw a definite conclusion from this result.

In  summary, the statistical thermodynamical model 
in its present form is not entirely compatible with the 
multiperipheral model, bu t with a slight modification
(6.11) can be brought into accordance with it. Its  chief 
distinctive feature is a characteristic distribution in 
transverse momentum, given by The success of
the fits of Hagedorn and R anft46'49 to a broad collection 
of single-particle production spectra can be understood 
largely as a demonstration tha t limiting fragmentation 
is valid a t accelerator energies to within normalization 
factors of 1.5 to 2. I t  seems tha t the predominant 
experimental support for the model amounts to little 
more than this. In  any case proponents of limiting 
fragmentation will undoubtedly find the phenomeno
logical expressions of Hagedorn and Ranft to be a useful 
summary of the data.

49 J. Ranft, Rutherford Laboratory Report No. RHEL/R165, 
1968 (unpublished); Phys. Letters 3IB, 529 (1970).
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In  their description of the single-particle distribution, 
three current models of multiparticle production, the 
multiperipheral model with a constant total cross 
section, the Feynman parton model, and the liquid 
droplet model (as understood by Cheng and W u60) are 
in agreement. This poses some interesting theoretical 
questions about the similarities among the models. The 
perturbation diagrams which Cheng and Wu have 
studied to support their intuitive conclusions50 do seem 
to satisfy our criteria of a multiperipheral model— 
namely, factorization (short-range order) and small 
transverse momenta. However, it is difficult to deter
mine from its published form15 whether the parton 
model fulfills these criteria.

Experimenters who enjoy resolving intense theo
retical controversy will doubtless find such unanimity 
rather disappointing. Nevertheless (even though they 
are outnumbered), the isobar-pionization and two- 
fireball models do give rather different predictions. If 
limiting fragmentation continues to hold true, the 
two-fireball model is in trouble, and if a central plateau 
in the distribution da/dy  is observed, the multiperiph
eral model, the parton model, and the liquid-droplet 
model would be strongly supported.
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APPENDIX

We derive here the relationship between the con
ventional Lorentz invariants and the longitudinal boost 
variables, and obtain some expressions required in the 
text. ’

Let us define the subenergy 

. S i , i + i = { P i + P i +i ) \  (Al)

the cluster energy

s o , i = ( i : p 3) 2, (A2)
4 -0

and the momentum transfer

t i = ( t P > - P a ) 2. (A3)
1=0

If we write the Lorentz scalar product consistently as 

_________  P 2= { P t - P * ) ( P l+ P z ) - V i 2 (A4)

•'“Hung Cheng and Tai Tsun Wu, Phys. Rev. Letters 23, 1311
(1969).

D. Conclusion and use the definitions (2.2), we easily obtain the follow
ing expressions:

s i, <+i =  2 WiWi+1 cosh ( j i—yi+1)+ w i2+ w f+12—2pH • pi!+], 

•so, i = [ E  wjevqt t  -  (Z  py)2, (A5)
3=o i=o 0

i i i 
/< = [ £  w}e ^ - m aJ[X, VuY-

j-o j-o y- o

If we use the conservation constraint given by the 
second 8 function in (2.3) we can rewrite the last 
expression;

i n-f 1
£  Wje~v>— « 6e '1']

- ( L P i i ) 2- (A6) 
j= 0

In  the strong-ordering limit yi<Kyi+i, the expressions 
then become

, (A7)

(A8)
i

h ~  —w(wi+1eyi- vi+l — {YJ piy)2. (A9) 
j= 0

If particle » + 1  is the persisting counterpart of particle 
b, the elasticity is defined to be

T]b = En+l/Eb. (A10)

From (2.2) and the first conservation constraint in
(2.3) we obtain

7Ji,=  [ l +  ( i v n/ w n +  i)e* » -» » + i

+  (wn_i/w n+1)e>'"-‘“ ‘'»+H----- ] _I. (A ll)

In the strong-ordering limit, energy-momentum 
conservation is expressed by the 5 function in (3.6). In 
terms of the definitions (3.4) and (3.5) and the relation
(2.5), we have

Y  = xa+ z i+ z 2-i-------M n+i+tfi, (A12)
or

5 \  / W» \  /  S»1 \  /  -*12 \
-------W ln f —  J + ln f -------)+■ ■ ■
M aM b '  \ m a/  \WqW 1/  XW1W2/

Therefore

■? =  (-S-01-S12- • •s»,»+1)/(® i!ifj2' • -wn2) , (A 14)

an expression analogous to one given by Chew and 
Pignotti.


