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Automatic Painting with Economized Strokes 
Category: research 

Abstract 

We present a method that takes a raster image as input and produces 
a painting-like image composed of strokes rather than pixels. Un
like previous automatic painting methods, we attempt to use very 
few brush-strokes. This is accomplished by first segmenting the im
age into features, finding the medial axes points of these features, 
converting the medial axes points into ordered lists of image tokens, 
and finally rendering these lists as brush strokes. Our process cre
ates images reminiscent of modern realist painters who often want 
an abstract or sketchy quality in their work. 

CR Categories: I.3.7 [Computing Methodologies ]: Computer 
Graphics-2D Graphics 

Keywords: painting, skeleton 

1 Introduction 

Most art relies on representation and abstraction. In "realist" paint
ing, the abstraction occurs when the detail of real images is ap
proximated with limited spatial resolution (brushstrokes) and lim
ited chromatic resolution (palette). Economy is a quality of many 
good paintings, and refers to the use of only those brushstrokes and 
colors needed to convey the essence of a scene. This notion of econ
omy has been elusive for computer-painting algorithms. We explore 
an automated painting algorithm that attempts to achieve economy, 
particularly in its use of brushstrokes. Paintings with economy may 
be useful for creating real paintings using robots. creating physical 
painting "replicas" using molded canvases that include brushstroke 
features l, creating painterly digital images, and for compression of 
painterly images. 

There are two main tasks involved in the creation of a digital 
painting. First is the creation of brushstroke positions. The second 
is the "rendering" of brushstrokes into pixel values. If the brush
stroke positions are manually created by a user, then this is a classic 
"paint" program. If the brushstroke positions are computed algo
rithmically, then this is an "automatic" painting system. In either 
case, once the brushstroke geometry is known, the brushstrokes 
must then be rendered, usually simulating the physical nature of 
paint and canvas [4,15,21], 

The economy of painting is determined when brushstroke paths 
and widths are created. We present an algorithm that carefully 
chooses brushstroke parameters in a way that we believe achieves 
economy. This method is summarized in Figure I. The digi
tal image is first converted into a set of "tokens" which are mini
brushstrokes with position, orientation, width, and color. These to
kens are then collected into longer stroke-sets. Finally these stroke
sets are each converted into a single brushstroke. We usc a variation 
of standard algorithms to render these brushstrokes. 

We review previous digital painting strategies in Section 2. We 
give an overview of our algorithm in Section 3. The conversion 
from a single segment of an image to a set of planned brushstrokes, 
which is the core of our contribution, is covered in Section 4. We 
then show some resulting paintings in Section 5, and discuss possi
ble improvements to our method in Section 6. 

l The Artgraphs company has a proccss to create such painting replicas: 
www.artagraphs.com. 

Figure 1: An overview of the painting process. Top to bottom: The 
source image. The source image segmented into tokens. The tokens 
assembled into ordered lists. The final painting with the token lists 
rendered as brush strokes. 

2 Background 

Two basic approaches to digital painting and drawing are used in 
computer graphics. The first simulates the characteristics of an 
artistic medium such as canvas and paint. The second attempts to 
automatically create drawings or paintings by simulating the artis
tic process. These approaches can be combined as they are dealing 
with different aspects, one low-level and one high-level, of paint
ing/drawing. A thorough overview and history of digital painting 
and techniques is provided by Smith [19]. 

Work intended to simulate artistic mediums can be further di
vided into those which simulate the physics of making a work of 
art, and those which simulate the "look and feel" of a particular 
medium. Strassmann simulated the look of traditional sumi-e paint
ing with polylines and a unique raster algorithm [21]. Later Pham 
augmented this algorithm using b-splines and offset curves instead 
of a polyline to achieve a smoother brush path [15]. Williams pro
vides a method of merging painting and sculpting by using the 
raster image as a height ficld [23]. 

Smith points out that by using a scale-invariant primitive for a 
brush stroke, multi-resolution paintings can be made [19]. Berman 
et al. showed that multi-resolution painting methods are efficient 
in both speed and memory usage [I]. Perlin and Velho used multi
resolution procedural textures to create realistic detail at any scale 
or dimension [14]. This work emphasizes that digital paintings 
stored as strokes may be useful for transmitting stylized images 
across a network. 

Several authors have simulated the interaction of paper/canvas 
and a drawing/painting instrument. Cockshott simulated the sub
strate, diffusion, and gravity in a physically-based paint system [4]. 
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Figure 2: The basic steps in the algorithm. The image is segmented 
and each segment is independently decomposed into brushstrokes. 
Each brllshstroke is then "rendered" into a raster image. 

Curtis et al. modeled fluid flow, absorption, and particle distribution 
to simulate watercolor [6]. Sousa and Buchanan simulated pencil 
drawing by modeling the physics and interaction of pencil lead, pa
per, and blending tools [20]. 

While the works discussed above are concerned with the low
level interaction of pigment with paper or canvas, other authors aid 
a user in the creation of an art work, or automate the process al
together. Haeberli built a paint system that re-samples a digital 
image based on a brush, and then automated this system using a 
second control image [8]. Wong built a system for charcoal draw
ing that prompts the user for input at critical stages of the artistic 
process [24]. Meier produced painterly animations using a particle 
system [13]. Litwinowicz produced impressionist-style video by 
re-sampling a digital image and tracking optical flow [12]. Hertz
mann refined Haeberli's technique by using progressively smaller 
brushes to create a hand-painted effect from a photograph automat
icly [9]. Gooch et al. automaticly generated technical illustrations 
from polygonal models of CAD parts [7]. 

The algorithm described in this paper should be grouped with the 
latter set of works that simulate the high-level results of the artistic 
process rather than the physics of the painting process. Our work 
uses computer vision algorithms to paint an image that is reminis
cent of the wayan artist might paint it. Our technique results in a 
resolution-independent list of brush strokes which can be rendered 
into raster images using any brush stroke rendering method . 

3 Algorithm 

The steps of the algorithm are as follows (Figure 2): 

I. Decompose the images into segments. 

2. Decompose each segment into brushstrokes . 

3. Render brushstrokes in some order. 

Artists are taught to paint by first producing tonal sketches of the 
scene they are painting [19]. In addition, recent work in computer 
graphics has shown that a first order approximation to the tone map
ping operator should probably be achromatic [17]. We therefore 
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Figure 3: Colored brush strokes modeled on a Filbert brush. 

segment an image based on pixel luminance, and color brushstrokes 
using the color ratios suggested by Schlick [17]. We allow a user to 
set the number of intensity thresholds the image will be segmented 
into. A set of approximately perceptually uniform grey levels is 
then created, and the image is segmented. Each segment is inde
pendent ; two segments of the same luminance are treated indepen
dently (i .e. the letters T and H in Figure 2). A more sophisticated 
segmentation strategy could be used without changing the rest of 
our pipeline. 

Brushstroke path generation is the most complex part of our sys
tem. The algorithm finds a discrete approximation to the central 
axis of each segment , called the ridge set, which determines a brush 
path. Elements of the ridge set are laced together into tokens. The 
tokens are then spatially sorted into ordered lists. The algorithm 
also estimates the "thickness" along the central axis to control brush 
width. The details of the brushstroke generation are the main con
tribution of this paper and are covered in the next section. 

Strokes in our system are drawn top-to-bottom and left-to-right 
to emulate a right handed painter standing at an easel. The topmost 
end of the brushstroke is used as the comparison point. We use a 
modjfied version of Strassman [21] and Pham 's [15] algorithms to 
render brush strokes to the screen. We use the center points of the 
tokens as the control points for cubic b-spline curves. We also make 
a spline curve of the widths of the stroke at the control points so that 
the widths will blend nicely. 

Strassman and Pham modeled sumi-e brushes which taper on 
and taper off to a point during a brush stroke. We instead choose 
to model a Filbert brush used in oil painting. Filbert brushes are 
made as round brushes with round tips, and then flattened. They 
are good all around brushes combining some of the best features of 
flat and round brushes [19]. To model a Filbert brush, we constrain 
the "taper-on" to a circular curve and the "taper-off" to a parabolic 
curve. We also add an additional control point to the beginning and 
end of the stroke list to account for the length lost in building the 
b-spline. The additional front point is found by constructing a unit 
vector in the direction from the second control point to the first, 
scaling this vector by the width at the first control point, and adding 
this to the first control point. The additional end control point is 
found in a similar fashion. 

4 Stroke path generation 

The input to this process is a set of image segments, which are 
connected regions of similar intensity. The output of this process is 
a set of brush strokes with control paths and widths. The key to this 
process is to determine the dominant orientation of the segment, 
and to use this to create a brush path and width that closely follows 
the shape of the segment. 

Originally, we attempted to use image moments for stroke path 



• J •. _.,~ ',. 

" .. -... ' ', .. 

,,~ .... / 

\. 

? 

\ 

" . - .~--' 

------
/ 
I 

.~ ........ -.. --
I 

\. 
\ 

, 

... /"j 
. I' 

. \1. 
\ i 
\, i 

'" 

. ... -.,' , .. 

Figure 4: Stages of transforms. Upper-left: input image. Upper
right: distance transform. Lower-left: Ridge-set extraction. Lower
right: After thinning. 

generation, inspired by Shira et al [18]. Image moments will find 
the dominant orientation and eccentricity of each segment and are 
scale and rotation invariant. Unfortunately they do not give infor
mation about how a stroke would vary along that orientation. We 
attempted to use a hierarchy of image grids and moments but found 
that the results were highly sensitive to the underlying grid struc
ture. The problems we encountered with grids can be appreciated 
by studying the sign painter images in I. The grid size should be 
small enough to recognize the hole in the A, yet large enough to 
regonize the I as a single stroke. We found this to be impossible for 
all but a small set of grid alignments and sizes. 

The problems with grid artifacts led us to the medial axis trans
form. Like image moments, the medial-axis transform yields scale 
and rotation invariant measures for a segment, but the medial-axis 
is independent of a grid structure. In addition the transform yields 
width information along the medial axis. The path-generation step 
proceeds as follows: 

I. Perform a distance transform to compute a set of ridge points 
which approximate the medial axis of a segment. 

2. Use a thinning algorithm to remove artifacts from the ridge 
set. 

3. Group the ridge set points into tokens, and merge these tokens 
into strokes. 

4.1 Medial Axis Transform 

The purpose of this step is to obtain a good approximation of the 
medial axis, or skeleton, of an image segment. The medial axis 
was first presented by Blum [2], and has been shown to be use
ful in coarsely approximating 20 [II] and 3D objects [10]. It has 
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also been shown to be a good approximation of the way the hu
man visual system perceives shape [3]. Although there are several 
equivalent definitions, we think of the medial axis as the loci of the 
centers of all circles that are tangent to the object boundaries at 
more than one point. 

While the medial axis is a continuous representation, there are 
several types of algorithms for computing the medial axis in im
age space, including thinning algorithms and distance transforms. 
Thinning algorithms, like Rosenfeld's parallel algorithm [16], pre
serve the connectedness of components and produce smooth medial 
axis lines, but are sensitive to noise along the boundary, which pro
duces undesirable spikes (spurs). Although it is possible to filter 
some of the spurs, this can often result in losing important infor
mation. Another drawback is that these algorithms do not produce 
information about the distance to the boundary, which is needed for 
brush stroke width estimation. The distance transform algorithms 
are not as sensitive to boundary noise and produce width informa
tion, but they tend to produce double lines and often don't preserve 
the connectedness of the medial axis lines. The double lines result 
from medial axis lines which should fall between pixels . 

4.2 Hybrid Method 

As we cannot rely entirely upon one method, we attempt to com
bine the positive aspects of both techniques into a hybrid method. 
We first apply the distance transform to extract a discrete approxi
mation of the medial axis called the ridge set. We then thin the ridge 
set to remove spurs, caused by boundary noise, and double lines, 
caused when the medial axis falls between pixels. The combination 
of techniques results in a ridge set with distance information with 
reduced sensitivity to noise along the boundary. 

For each pixel in the image, we compute the shortest distance to 
the boundary using a distance transform [II]. The distance trans
form assigns a distance of one to each pixel on the boundary, a 
distance of two to the next layer in, and so on until we reach a pixel 
which is closer to another boundary (Figure 4). Given the binary 
image representation Ia we iteratively compute II ... In at each 
pixel (x, y) using the following equations [11]: 

Ii(X, y) = Ia(x, y) + min(ji_1 (p, q)) 

V(p, q) in 8-neighborhood of (x, y). This algorithm terminates 
when In = In-I. The ridge points now satisfy the equation: 

In(x, y) ;::: In(P, q)) 

V(p, q) in 8-neigbborhood of (x, y). This process yields a set of 
ridge points, which are points that are further away from the bound
aries than the surrounding points. These ridge points form a discrete 
approximation to the medial axis. Notice that any pixel affects only 
the next level of pixel values (analogous to the next layer in an 
onion skin). Since the value at a pixel represents the distance to the 
boundary, the number of passes over the image is proportional to 
the radius of the largest circle that touches both boundaries. 

To address the problem of double lines in the distance transform, 
we treat the ridge set as a binary image and run a thinning algorithm 
over the set. The connectivity problems are covered in Section 4.3. 
We use Rosenfeld's parallel thinning algorithm [16], which runs 
over each point in an image and removes the point if it is not 8-
simple. A pixel is called 8-simple if it cannot be removed without 
destroying the 8-connectivity of the set. We used a fast algorithm to 
test the 8-simpleness of a pixel (Appendix). The thinning algorithm 
eliminates most double-lines and other noise from the ridge set. 
The thinning algorithm typically requires 2-3 passes over the binary 
ridge set data. 

This combination of algorithms yields a set of approximate me
dial axis points. We then group spatially coherent points into small 



tokens consisting of three or four points, as shown in Figure I. A 
token is a small rectangle that encodes color, position, orientation, 
length, and width information. Grouping the medial axis points into 
tokens facilitates merging and tends to smooth small perturbations. 

4.3 Merging Overview 

We use the information in the set of tokens to create a set of brush 
strokes. This process is a variant of Prim's minimum spanning tree 
algorithm [5]. We create a set of links connecting every pair of to
kens that are within a distance tolerance. We then compute edge 
weights by maximizing the desired stroke properties such as ori
entation and color. A priority queue is used to select the highest
weighted edge eij. The algorithm then attempts to merge that edge 
with the existing strokes. We represent a stroke as an ordered set of 
tokens S = {to, ... , t n }. A merge is successful only if both tokens 
being merged are at the beginning or end of a stroke. 

4.4 Edge Weighting 

The crucial component of this algorithm is the weighting of the 
edges. The optimum weighting function would assign a weight of 
one to every link which preserved the continuity of the encompass
ing stroke, and a weight of zero to all other tokens. We devised a 
simple weighting function which behaves well in a wide range of 
cases. Our weighting function is: 

Wij = wdproximitYij + woorientationij + weintensitYij, 

where 

Ii + Ij 

proximitYij = 211Pi _ Pj II ' 

where I'i is the length of token i, Pi is the center of token i, 

'intensitYij = { 6 
and 

if lintensitY'i - intensitYj I < Ctot 
otherwise 

orientationij = I v ' h I 

given h as the normalized half-vector of the two vectors defined by 
the tokens (along the medial axis) and v as the normalized vector 
between token centers. We use weights Wd = 0,55, Wo = 0,35, 
and We = 0,10, The weight values, along with the Ctot value, are 
parameters that can be adjusted by a user to obtain various artistic 
effects, For example, increasing Wd will weight the spatial local
ity of moments more than the orientation, this will result in short, 
crooked or twisting strokes. Increasing Wo will emphasize long 
smooth strokes. 

The merging process will generate a set of strokes which cover 
the original set of tokens, Each token in the stroke has a width, 
By using a spatial b-spline to connect token centers and a scalar 
b-spline to interpolate widths, we create a smoothly varying form 
which approximates the shape of the segment and maps directly to 
a brush stroke. 

5 Results 

We use a simple three step algorithm for rendering brush strokes 
that mimics the process a painter might use. First we prepare the 
substrate to be painted on, Next we make an under-painting, Fi
nally we render our brush strokes onto the image. A full run of 
our algorithm is shown in Figure 5, The under-painting is done 
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Figure 5: Top to bottom: final painting with 2035 brushstrokes, 
original photo, under-painting, close-up. 



Figure 6: Monument Valley. 

Figure 7: Still life (origiMI photo courtesy Cornell Program of 
Computer Graphics). 

with very coarse strokes and ensures that gaps between final brush 
strokes look reasonable. The final painting has 2035 brush strokes. 

For the substrate of our images we use tileable cloth or paper 
textures. An under-painting is created by blurring the original im
age, segmenting the blurred image with a small (5 - 9) number of 
intensity levels and painting the segmented regions. An unblurred 
image is then segmented at the user defined number of intensity 
levels and painted over the under-painting. Our only attempt to 
emulate paint mixing is a weighted-average alpha blend of the sub
strate and under-painting at a = 0.1 and of the paint strokes with 
the under-painting at a = 0.8. 

6 Conclusion and Future Work 

Our method achieves the basic goal of keeping the number of brush
strokes small compared to previous methods. The method is suit
able for a variety of image types as shown in the previous section. 
However, there are a variety of image types where the method is 
poorly suited. These include images that require sophisticated seg
mentation, and images where viewers are highly sensitive to spe
cific features of the image, such as detailed portraits. 

We think productive future work would include improvements 
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Figure 8: Grand Tetons. 

to every stage of the algorithm. Better segmentation , such as that 
given by anisotropic diffusion [22], would give immediate improve
ments in linking brushstrokes to salient features of the image. The 
computation of medial axes could be made less sensitive to noise 
if a continuous medial axis algorithm based on Voronoi partitions 
were used. This would simplify the job of the token-merging step in 
our algorithm which currently must account for noisy input. A sim
ple improvement would be more sophisticated ordering of brush
strokes, such as optimizing order based on edge correlation with the 
original image. Once brushstroke order is known, more physically
based paint-mixing would give a look more reminiscent of oil paint
ing. Our system could benefit from a user-assisted stage at the end 
to improve brushstroke-ordering. An estimate of fovial attracters 
in the image could allow brushstroke size to be varied with proba
ble viewer interest. Most challenging, our method could probably 
be extended to animated sequences, using time-continuous brush
stroke maps to ensure continuity. However, it is not clear what 
such animated sequences would look like, or to what extent they 
are useful. The most exciting potential future effort is to create ac
tual stroke-based hardcopy using robotic or other technology. 

Appendix: Thinning Algorithm 

At the core of Rosenfeld's parallel thinning algorithm is a test for 
the 8-simpleness of a pixel. We present a fast method for determin
ing whether a pixel neighborhood is 8-simple. 

input for each pixel c in image, N = {i liE 8nbd of c, i E 5} 

output boolean simple, noLsimple 

Definitions 

Let 5 = set of pixels in the current segment. Adjacency refers to 
8-connectedness (pixels on sides or diagonals) . 

• An 8-neighborhood is a collection of all pixels that are adja
cent to a center pixel. 

• P E 5, q E 5 are 8-connected if they are adjacent. 

• An 8-neighborhood is 8-simple if Vp E 5 , the removal of the 
center pixel does not change the 8-connectedness of p (i.e. the 
center pixel is a redundant path). 



Figure 9: The graph representation of an 8-neighborhood. 

Observations 

Construct a graph G (V, E) as such: let V = {v I v E 8-nbd} and 
let E = {eij I Iii - j II ::; .J2}. This is illustrated in Figure 9. 

The graph G represents the 8-connectedness paths of the neigh
borhood. The intersection of our input set N with the graph G re
sults in a new graph, G' (V, E). Now our test for 8-simpleness 
just becomes a test for the connectedness of the planar graph G' . 
This means that we can use Euler's Theorem for connected planar 
graphs, which states that v + r - 2 = e, where v denotes vertices, 
r denotes regions of plane, e denotes edges. Rearranging the terms 
yields two conditions for 8-simpleness in a pixel 8-neighborhood: 
I) there can be no isolated pixels; 2) v-I::; e. 

Method 

Represent G (V, E) as Ei = {j Illi - jll ::; .J2}. Then, 
Vi E N { 

} 

if ( Ei n N = cP ) return nOLsimple; II isolated pixel 
else edges += degree( Ei n N ); 

if ( edges ~ v-I) return simple; 
else return noLsimple 

Notes 

The Ei can be encoded in binary, resulting in a fast test. The only 
storage requirements are the eight sets E i , which can be stored as 
eight integers. Most previous thinning algorithms in the computer 
graphics literature enumerate and store every case, resulting in a 
large overhead. 
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