
Evolution, 40(6), 1986, pp. 1312-1327

A l a n  R . R o g e r s

Department o f  Anthropology, 3H01 Forbes Quad, University o f  Pittsburgh, Pittsburgh, PA 15260

AND

H e n r y  C. H a r p e n d i n g  
Department o f  Anthropology, 409 Carpenter Building, Pennsylvania State University, 

University Park, PA 16802

Abstract. —In humans and many other species, mortality is concentrated early in the life cycle, and 
is low during the ages o f dispersal and reproduction. Yet precisely the opposite is assumed by 
classical population-genetics models o f  migration and genetic drift. We introduce a model in which 
population regulation occurs before migration. In contrast to the conventional model, our model 
implies that geographic variation in the allele frequencies o f newborns should exceed that o f  adults. 
Thus, it is important to distinguish genetic variation o f  adults from that o f  newborns in species 
with human-like life cycles.

Classical models deal with the variance o f group allele frequencies about the allele frequency of 
a hypothetical “continent” or “foundation stock.” Empirical studies, however, can only measure 
“reduced” variance, i.e., variance about the current population mean. Our model deals with reduced 
variance, and should therefore be more relevant to field studies. We show that reduced variance 
converges faster, which implies that populations are more likely to be at equilibrium with respect 
to reduced than unreduced variance.

To summarize the effect o f migration on genetic population structure, we introduce a new  
parameter, the effective migration rate. Unlike m ost population structure statistics, it does not 
confound the effects o f  mobility and population size, and it should therefore be useful for com ­
parisons between populations. Finally, we show that the difference between geographic variation 
o f newborn and adult allele frequencies contains information about both effective population size 
and effective migration rate.
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M IG R A TIO N  A N D  GENETIC D R IFT  IN  H U M A N  PO PULATIO NS

T he causes an d  consequences o f  genetic 
varia tion  am ong local groups have  been 
cen tral concerns o f  p o p u la tio n  genetics for 
m any  years. T here  is an  extensive th eo re t­
ical lite ra tu re  an d  an  even m ore  extensive 
em pirical literature. H ow ever, it often seems 
th a t the  tw o have little  to  do  w ith  each other. 
T heoretical w ork generally seeks qua lita tive  
insights ra th e r th a n  q u an tita tiv e  p red ic ­
tions, whereas em pirical w ork has often been 
based  on ad  hoc m easures o f  genetic d is­
tance o r sim ilarity  th a t have no connection  
w ith theory . These m easures have  p roved  
useful as guides to  in tu itio n  b u t p rov ide  no 
basis for inference.

T he m ajo r exception  to  these generaliza­
tions is the  fam ily o f  m odels, collectively 
called “ m igration  m atrix  m odels,” th a t were 
in troduced  by M alecot (1950), B odm er an d  
C avalli-Sforza (1968), an d  S m ith  (1969). 
T hey are appealing  because they  deal grace­
fully w ith  pa tte rn s  o f  m obility  th a t are  n ea r­
ly as com plex as those o f  real popu lations. 
T heir generality, how ever, is also th e ir  p rin ­
cipal failing. T heir use in  theore tica l w ork

has been lim ited  by the difficulty o f  ob tain­
ing explicit, general form ulas (Felsenstein,
1976). T h e y  re m a in  p o p u la r , h ow ever, 
am ong em piric ists. M any  au tho rs have 
com pared  observed genetic varia tion  among 
a set o f  local p opu la tions w ith  th a t predicted 
by a m igration  m atrix  m odel.

Such stud ies m ay one day  allow  us to 
evaluate  ideas ab o u t the  effects o f  d rift and 
m igra tion  on  genetic varia tion , b u t so far 
they seem  to  have  taugh t us little. Som e­
tim es the  variance  observed  is reasonably 
close to  th a t p red icted , an d  som etim es it is 
n o t (B odm er an d  C avalli-Sforza, 1974; 
Jo rde , 1980). In  e ither case, little can be 
in fe rred —observations m ay differ from  pre­
d ictions for so m any  reasons th a t it is im ­
possible to  in te rp re t the  concordance be­
tw een theo ry  an d  data.

W hen  observed  an d  p red ic ted  variances 
differ, the  d iscrepancy  is often  a ttribu ted  
e ither to  failure o f  the  assu m p tio n  o f  equi­
lib rium  o r to  som e k ind  o f  n o n -M a rk o v ia n  
m igration . F o r exam ple, d ispersal m ay in ­
volve kin  groups ra th e r th an  individuals
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|(Fix, 1978; N eel and  Salzano, 1967;Sm ouse 
et al., 1981), o r the  tendency  to  m ove m ay 
be inherited  cu lturally  (H iom s et al., 1977). 
These factors are surely im p o rtan t, bu t they 
are no t the  only sources o f  d iscrepancy  be- 

[tween theory  and  observation .
In  th is paper, we argue th a t classical pop- 

ulation-genetics m odels o f  m igration  and  
genetic drift, as developed  by W right, M a- 
[ecot, and  o thers invo lve  assum ptions th a t 
are inapp ro p ria te  for h u m an s and  o ther 
fcpecies w ith  sim ilar life cycles. W e in tro ­
duce a m odel th a t is m ore ap p ro p ria te  for 
such species. In ad d ition , we in troduce  a 
m a x im u m -lik e lih o o d  e s t im a to r  th a t  is 
com patib le w ith the assum ptions o f  o u r th e ­
ory. Finally, we com pare the pred ictions o f  
our theory  w ith published  genetic statistics 
for several h u m an  populations.

Models o f  the Life Cycle and  
Their Effects

Assum ptions.—M odels o f  m igration  and 
genetic d rift usually  inco rpo ra te  assu m p ­
tions ab o u t the  life cycle o f  the  organism s 
studied. Som e o f  the conclusions o f  popu- 
lation-genetics theory  are  ro bust w ith re ­
spect to  these assum ptions, w hile o thers are 
quite sensitive. In th is  section we discuss 
the assum ptions em bod ied  in som e m odels 
that have been used as a basis for analysis 
o f hum an  genetic data.

T he set o f  ind iv iduals th a t disperses from  
the ith  to  the  7th  local group will be referred 
to as the  “ z/'th m igran t set.” R egardless o f  
a species’ life cycle, we can w rite

Pj =  2  mo<lo- (0
i

where

Qij =  the  frequency o f  allele A in the (/th  
m igran t set, 

m 0 =  the  p rop o rtio n  o f  group j  after m i­
g ration  derived  from  group i, and 

Pi = the  frequency o f  A in group j  after 
m igration .

I Clearly, is the allele frequency o f  a sam ple 
o f  ind iv iduals o b ta ined  from  group 1. U n ­
less the propensity  to  m igrate depends on 

■ genotype, the expecta tion  o f  qtJ is equal to  
I the allele frequency in  group  i p rio r to  m i­

gration. T he variance o f  q0 depends on  the 
size o f  the  y th  m igran t set, and  th is  depends

on the life cycle o f  the  species being studied . 
C onsider, for exam ple, m odel A below.

M odel A
population

m igration regulation
N ew borns -> A dults ->

(00) (00)
reproduction

-> A dults -> N ew borns 
(n) (00)

H ere, the  qu refer to  infinite sam ples and  
are  therefore equal to  th e ir  expectations. 
M igration  can be described by the d e te r­
m in istic  equation

p *  =  2 m i jP . ' ’ ( 2 )
i

w here p *  is the allele frequency in  group j  
after m igration  b u t before p o pu la tion  reg­
ula tion , p/' is the  allele frequency in group 
i before m igration. G enetic d rift occurs when 
density  regulation reduces th e  popu la tion  to  
size njt add ing  a random  increm en t w ith 
m ean  zero and  variance p * (1 — p*)/2nj. 
W right (1931, 1943) p ioneered  th is  ap ­
proach to  the problem , an d  it is central to 
m ost theore tica l w ork on m ig ra tion  and  ge­
netic d rift (for exam ple, B o d m er and  C aval- 
li-Sforza, 1968; S m ith , 1969; C ourgeau, 
1974; C arm elli and  C avalli-S forza, 1976).

M odel A is a reasonable  descrip tion  o f 
the  life cycle o f  species in w hich dispersal 
occurs a t the gam ete stage, as  in  m ost plants, 
or in  w hich large num bers o f  ju ven iles are 
involved , as in m any  o th e r species. H ow ­
ever, it is a poor descrip tion  o f  species such 
as ou r ow n, in w hich m ost m o rta lity  occurs 
before dispersal (Coale, 1972). N onetheless, 
results derived  using m odel A have often 
been used to  in te rp re t h u m a n  genetic da ta  
(see for exam ple, B odm er a n d  C avalli-Sfor- 
za, 1974). A s an a lte rna tive , consider:

M odel B
population
regulation

Zygotes -> N ew b o rn s ->
(00) (n)

m igration  rep ro d u ctio n
-> A dults -> Zygotes

(n) (00)
T his m odel assum es th a t n o  m orta lity  oc­
curs during  m igration  a n d  reproduction , 
w hich is p robably  m ore  rea listic  th an  m odel 
A for hum ans and  o ther species w ith  low
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m orta lity  after infancy. I t is particu larly  ap ­
p rop ria te  in  h u m an  genetics, w hen the 
b irthp laces o f  adu lt subjects are rou tinely  
recorded, an d  ind iv iduals m ay be classified 
e ither by adu lt residence or by b irthp lace. 
Such d a ta  refer n o t to  the  b irth  cohort, bu t 
to  th a t p o rtion  o f  it th a t su rv ives to  m a tu ­
rity. W ith  th is  life cycle, the  qu o f  equa tion
( 1 ) are based  on sm all sam ples so th e ir  v a ri­
ances are no  longer negligible. T hus, genetic 
d rift occurs during  m igra tion  as well as d u r­
ing p o pu la tion  regulation.

Som e au tho rs view  (2) as a d e term in istic  
app ro x im atio n  to  dynam ics u n d er life cycle 
B ra th e r th an  as a m odel o f  dynam ics under 
A (Sved an d  L atter, 1977; L a tte r an d  Sved, 
1981; H arpend ing  an d  W ard , 1982). L a tte r 
an d  Sved use the te rm  “ stochastic  m igra­
tio n ” to  refer to  m odels incorpora ting  the 
stochastic  effects on  allele frequencies p ro ­
duced  by m igration  u n d er life cycle B, and  
also to  m odels in  w hich the  m l: them selves 
are ran d o m  variab les (see also N agylaki,
1979, 1980, 1983). T he geographic v a ria ­
tio n  p red ic ted  by all these m odels is sub­
stan tia lly  greater th an  th a t p red ic ted  by 
analogous d e te rm in istic  m odels. T hese sto ­
chastic  m odels are o f  lim ited  value for co m ­
parisons w ith  n a tu ra l popu la tions, how ever, 
because o f  restric tive  assum ptions. All as­
sum e e ither th a t m igra tion  follows som e 
sim ple sym m etric  p a tte rn  w ith  equal group 
sizes, o r else th a t the  ra te  o f  m igra tion  is 
extrem ely  high.

All o f  the  m odels discussed above refer 
to  allele frequencies o f  adu lts  after m igra­
tio n  and  pop u la tio n  regulation. M alecot 
(1948, 1969), on  the o th e r hand , a ttem p ts  
to  deal w ith  new borns, b u t h is analysis con­
ta in s a subtle error. O n  page 67 o f  the (1969) 
English tran sla tio n  o f  his book, he says th a t 
i f  genes are d raw n from  in d iv idua ls  b o m  in 
generation n +  1 in  locations C  an d  D, whose 
paren ts are b o th  know n to  com e from  lo ­
cation  E , th en  “ they  will have cond itiona l 
probability  l /[2 8(E)dSE] o f  com ing from  the 
sam e locus [gene copy] o f  the  sam e p a ren t 
an d  p robab ility  1 — 1 /[2 8(E)dSE] o f  com ing 
from  loci infinitely close b u t d is tin c t,” th a t 
is, o f  being copies o f  d is tinc t genes from  
ind iv iduals b o m  a t location  E  in  generation  
n. H ere  8(E )dSE is the  n u m b er o f  in d iv id ­
uals b o m  at location  E  an d  m ust be greater 
th a n  zero  (see Felsenstein , 1975). B ut, since

M aleco t’s m odel does no t allow  for the pos­
sibility  th a t ind iv iduals m ay breed  in  more 
th an  one location , genes from  individuals 
bo rn  in  C  an d  D  can n o t possibly be copies 
o f  the  sam e paren ta l gene unless C  =  D. If 
C  = D, the  p robab ility  th a t they are copies 
o f  the  sam e paren ta l gene is 1/2n EC, where 
nEC is the  n u m b er o f  ind iv iduals th a t dis­
perse from  E  to  C, and  will be sm aller than 
the n u m b er b o m  a t E.

M alecot’s theo ry  can be rescued by re­
defining h is te rm s so th a t ind iv iduals are 
identified  w ith  the  locations in  w hich they 
breed  in stead  o f  w ith  th e ir birthplaces as 
L alouel (1977) has done. For exam ple, M a­
leco t’s g(E ,C )d S E becom es the  probability 
th a t an  in d iv idua l breeding in  C  was born 
in  E. H is analysis th en  rests on  the as­
su m p tio n  th a t  tw o  d is t in c t  in d iv id u a ls  
breeding in  C b o th  derive from  E  w ith  prob­
ab ility  [g{E ,C )dSE]2. T h is a ssum ption  is in­
com patib le  w ith  life cycle B since

[ nEC
g (E ,C )d S E =  E ' ^

\ 2 j  n x c

w hereas the  p robab ility  th a t tw o distinct 
adu lts breeding in  C  w ere bo th  b o m  in E  is

r nEc — i
\.8{E,C)dSh\ E  \ ^

\ 2 j  nx c ~
^  X

w hich is n o t th e  sam e as M aleco t’s formula 
unless the nu m b ers  o f  ind iv iduals  migrating 
(the nxl.) are  large. T hus, M alecot’s theory 
refers to  adu lts  un d er life cycle A and  ap­
p lications o f  th is  theo ry  to  hu m an s should 
be regarded  w ith  som e skepticism .

In  sum m ary , no  theo ry  has been devel­
oped  describing the dynam ics o f  migration 
an d  genetic d rift un d er life cycle B. Con­
sequently , stud ies o f  the p o pu la tion  struc­
tu re  o f  hu m an s an d  sim ilar species have 
been based  on  a theory  th a t m ay be inap­
propria te .

T he D istinction  between A du lts  and  New­
borns.— U nder  life cycle A, no  changes in 
allele frequency occur at reproduction , so 
the allele frequencies o f  new bom s should 
equal those o f  th e ir  parents. U n d e r life cycle
B, on  the o th e r hand , allele frequencies of 
new borns differ from  those o f  th e ir parents
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because o f  the  effect o f  the p o pu la tion  reg­
u la tio n  com ponen t o f  genetic drift. Since 
drift tends to  increase varia tion  am ong local 
groups, varia tio n  o f  new borns should  ex­
ceed th a t o f  th e ir parents. S im ilarly , since 
m igration tends to  reduce v aria tion , the  
varia tion  o f  a single cohort should  be sm all­
er after m igration  th an  before. F o r bo th  rea­
sons, varia tio n  o f  new borns should  exceed 
that o f  adults. A t equ ilib rium  these effects 
are in balance so th a t varia tion  am ong adults 
o f  ad jacen t generations is the sam e, yet the 
difference betw een new borns and  adu lts 
persists. T h is effect has also been no ted  by 
Long (1986).

M o d e l

T his section  in troduces a revised  version  
o f the m igration  m atrix  m odels developed 
by M alecot (1950, 1973), B odm er and  C a­
valli-Sforza (1968), and  S m ith  (1969). T his 
revised m odel is used in the  append ix  to 
derive the expectations o f  several m easures 
o f local genetic varia tion .

Migration and Genetic Drift
Let nif deno te  the size o f  the ij th  m igran t 

set. W e assum e th a t m igra tion  w ith in  a gen­
eration  follows a d iscrete M arkov  process. 
T he allele frequencies o f  m igran ts are trea t­
ed as random  variab les as life cycle B im ­
plies, b u t the are assum ed  co nstan t in 
tim e. In the  real w orld, o f  course, the n u m ­
bers o f  m igran ts m ay be far from  constan t. 
L atter and  Sved (1981) have investigated  
the effect o f  th is a ssum ption  under W righ t’s 
(1943) “ island m odel” o f  po pu la tion  s truc­
ture. T hey find th a t the variance am ong 
groups im plied  by o u r assu m p tio n  is sm all­
er th an  th a t im plied  by the assu m p tio n  th a t 
in d iv id u a ls  m ig ra te  in d e p e n d e n tly . T h e  
m odel o f  in d ep en d en t m igration , how ever, 
m ay n o t be m ore  realistic. I f  there  is density  
regulation w ith in  groups, the probability  th a t 
an ind iv idual m oves in to  a group m ay d e ­
pend on the n u m b er there  already. It is no t 
clear w hich m odel is the  b e tte r ap p ro x i­
m ation to  reality.

W e assum e th a t each local group is pan- 
mictic so th a t its effective size (W right, 1969) 
equals its actual size. If, in  ad d itio n , in d i­
v iduals m igrating  from  group / to  j  are a 
random  subset o f  g roup  i, then  each o f  th e ir

genes can be trea ted  as an independen t, ran ­
dom  draw  from  the gene pool o f  group / in 
the  p rev ious generation. H ence, the  num ber 
o f  copies o f  allele A  in m igran ts from  i to  j  
in generation  / +  1 is a b inom ia l random  
variable w ith  param eters 2n0 and  pfK

System atic Pressure
T o ensure th a t the process will have in ­

ternal equilib ria , we assum e that, in ad d i­
tion  to  m igration  am ong groups, a fraction 
s o f  the  residents o f  each group are im m i­
grants from  a “ co n tin en t” w ith unchanging 
allele frequency it. T h is linear system atic 
pressure could  also be in terp re ted  as m u ­
ta tio n  or w eak selection. W ith o u t it, the  p ro ­
cess w ould have no equilib ria  sho rt o f  fix­
ation . C on tinen ta l m igration  is assum ed to  
occur after p o pu la tion  regulation  so th a t it 
also contribu tes a com ponen t to  genetic drift.

W e estim ate  s as the  fraction o f  im m i­
gran ts from  outside the study area, although 
th is is a lm ost certain ly  an  overestim ate. 
M o st e x te rn a l im m ig ra n ts  d e r iv e  from  
neighboring popu la tions w ith  sim ilar allele 
frequencies, so th e ir im pact on local genetic 
structure  will be sm aller th an  th e ir num bers 
im ply. P red ictions ob ta ined  by setting s =
0 m ay often be b e tte r app ro x im atio n s to  
reality.

O ur a ssum ptions th a t the  fraction  o f  ex­
ternal im m igran ts in each local group is the 
sam e and  th a t external im m igran ts are all 
d raw n a t ran d o m  from  the sam e p o pu la tion  
are also unrealistic , and  reduce the  variance 
pred icted  am ong local groups (W agener, 
1973; H arpend ing  and  W ard, 1982). T h is 
effect is negligible w hen local genetic s truc­
tu re  is dom in a ted  by the effects o f  local m i­
gration, b u t it m ay be im p o rtan t w hen sys­
tem atic  pressure is strong relative to  local 
m igration . T hus, the m odel we are build ing 
is m ost ap p ro p ria te  for popu la tions th a t are 
relatively iso lated  from  the  ou tside w orld.

Measures o f  Local Variation
O u r basic defin itions are no t o f  p a ram e­

ters bu t o f  functions o f  allele frequencies. 
These functions are random  variables, and  
we a ttem p t to  characterize  th e ir  first and  
second m om en ts u n d er the m odel described 
above. In  w hat follows, the term  “ expec­
ta tio n ” refers to  an  average over a hy p o ­
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thetical infinite ensem ble o f  popu la tions 
represen ting  different realiza tions o f  the  
sam e stochastic  process. W e neglect the 
sam pling p rob lem  entirely , assum ing  tha t 
allele frequencies o f  local groups are  know n 
w ith o u t error.
Let

n.. = 2  nip the  to ta l p o pu la tion  size,
ij

Wj =  2  the  re la tive size
i

o f  the /th  group,

P = 2  wiPh the m ean  allele
1 i

frequency, and  

g  =  the n u m b er o f  local groups.

Follow ing H arpend ing  an d  Jenk ins (1974), 
we define the genetic co rre la tion  o f  allele 
frequencies in  groups i an d  j  as

=  iP , ~  P ) iP j ~  P )  

r "  p ( l  -  p )  '

T he genetic co rre la tion  m atrix  fo r adu lts  is 
T he analogous q u an tities  for new ­

b o rn  allele frequencies are r ,/ an d  R '.
A useful m easure o f  varia tio n  am ong 

groups is (for adults)

2 w-(a -  P)2
/= 1

=  2  w-r-i • (3) 
■ /= i

r0 is a  ran d o m  variable, an d  we deno te  its 
expecta tion  by p. A n unb iased  estim a te  o f  
p can  be o b ta ined  by inserting  estim ates o f  
group allele frequencies in to  (3), since the 
cond itional expectation  o f  r0 g iven p  is in ­
dependen t o f  p  (see A ppendix). O u r r0 is 
e q u iv a le n t  to  th e  “ W a h lu n d  v a r ia n c e ”  
(W ahlund, 1928, 1975), an d  to  one o f  the 
several m eanings th a t have  been a ttached  
to  W righ t’s (1951) F Sj  (see W ood, 1986). 
T he analogous q u an tities  for allele frequen­
cies o f  new borns are  deno ted  by r0' an d  p'.

N ote  th a t p is defined in  term s o f  v a ria ­
tio n  ab o u t the  cu rren t pop u la tio n  m ean  p. 
A re la ted  p aram ete r describ ing the  expected 
varia tio n  ab o u t the  con tinen ta l allele fre­
quency, tt, is

[ 8 I
£ | 2  wj(Pj ~  7r) j

Follow ing C avalli-Sforza and  P iazza (1975) 
an d  Felsenstein  (1982), we refer to vari­
ances ab o u t p  as “ reduced  variances.” Most 
theore tica l results refer to  <j>, w hile da ta  an­
alysts generally w ork w ith  estim ates o f  r0. 
T he d istinc tion  betw een these m easures is 
often  ignored, an d  has p roduced  a good deal 
o f  confusion. T his confusion can be avoided 
e ither by rew riting  the theory  in  term s of 
reduced  variances (H arpend ing  an d  Jen­
kins, 1974) o r by a ttem pting  to  estimate 
u n re d u c e d  v a r ia n c e s  f ro m  g en e tic  data 
(M orton  et al., 1968, 1971; M orton , 1975; 
W eir an d  C ockerham , 1984).

T h e o r e t i c a l  R e s u l t s  

E x a c t F orm ulas  
Exact form ulas for the expectations o f  R 

an d  R' are derived  in  the  appendix , and p 
an d  p' can  be o b ta ined  from  these using (3). 
These form ulas are unw ieldy, b u t do pro­
vide a  m eth o d  fo r p red icting  genetic vari­
a tio n  from  dem ographic  data , an d  a com ­
pu te r p rogram  to do th is is available. 
A nalogous form ulas are derived  by Malecot 
(1950, 1973; B odm er an d  Cavalli-Sforza, 
1968; Sm ith , 1969; C ourgeau, 1974).

A pproxim a tions  
A variety  o f  ap p rox im ations an d  simpli­

fying assum ptions have been used in theo­
retical w ork  on  p o pu la tion  structure. For 
exam ple, M aleco t (1973) assum es that M is 
sym m etric, th a t group sizes are  equal, and 
th a t (in expectation) r„ =  /•„, for all i and j. 
T he last assu m p tio n  shou ld  often hold ap­
proxim ately , b u t the  o thers are unfortu­
nately restric tive . W e assum e instead that 
the n u m b er o f  ind iv iduals m oving  from 
group i to  group j  in  a generation  is the same 
as the  n um ber m oving from  j  to  i. This seems 
reasonable i f  the  sizes o f  local groups are 
stable, an d  in o ther situa tions an  e q u il ib ­
riu m  theory  is o f  little  in terest anyway. In 
ad d ition , we use the  approx im ation  r,, ~ 
rn —  r0. In  the  appendix , we derive e x p re s ­
sions for R a n d  R', an d  show  th a t

p =* 1 ~  p V ________------------ , (4)
2n.. 1 -  (1 -  s)2\ 2
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and

1 <5)• • »=? A2 n (1 -  s )% 2
w here A, is the  /th  eigenvalue o f  M . U nless 
local groups are equally  iso lated  from  each 
o ther an d  exchange betw een each p a ir  o f  
groups is sym m etric, these form ulas are only 
approx im ate. T h e ir accuracy is investigated  

| in the app lications section  below.

Variances o f  N ew borns a n d  A dults  
In  th is section, we investigate the m ag­

n itude  o f  the difference betw een new born  
and  ad u lt variances an d  define an  “ effective 
m igra tion  ra te ,” w hich sum m arizes the  ef­
fect o f  m igra tion  on p a t equ ilib rium . E q u a­
tions (4) an d  (5) im ply  th a t ad u lt an d  new ­
bo rn  W ah lund  variances are re la ted  by 

1 — p
(6)p' = p +

2ng /(g  -  1 ) ’

1
P = 4m„n/, + 1 ’

w here m e is the effective m ig ra tion  rate, d e ­
fined by

s)2 V

O u r m e is sim ply  a n u m b er th a t sum ­
m arizes the  effect o f  m obility  on p , an d  has 
no connection  w ith  the  effective m igra tion  
rate  defined by W right (1969). A s (8) shows, 
m e depends on the eigenvalues o f  M  an d  on 
system atic pressure, b u t does no t depend  on 
p op u la tio n  size. T he effective m igration  rate 
ranges from  0 to  lh. T he m ax im al value is 
reached  w hen all the  A, equal zero, w hich 
occurs un d er “ ran d o m  dispersa l,” i.e., when 
co m m unity  o f  residence is in d ependen t o f  
co m m unity  o f  origin. U sing  (6) an d  (8), a 
little  algebra produces

p =  p (1 +  2m e). (9)

T hus, the ra tio  o f  ad u lt an d  new born  W ah­
lu n d  variances depends only on m obility .

In ferring  m e a n d  n . . f r o m  Genetic D ata
Solving equa tions (6) an d  (9) fo r n.. an d  

m e p roduces

w here n  =  n .J g  is the  average g roup  size. 
Except for the factor g /(g  -  1), the  increase 
in p a t rep roduc tion  is iden tical to  the  in ­
crease in  inbreeding  betw een generations in  
a finite p o pu la tion  (Crow  an d  K im u ra , 1970 
p. 320). T he effective p o p u la tio n  size is in ­
flated by  th is  a m o u n t since we are dealing 
w ith reduced  variances. T hus, we refer to  
ne = ng/(g  -  1 ) as the  “ reduced  variance 

. effective group size.”
U sing (4) we can also w rite

n.. = I - P  g -  I

an d

m c P ~  P

2 p

( 10)

(11)

(7)

(8)

E quation  (7) is a  generalization  o f  W righ t’s 
(1943) fo rm ula fo r the  inbreed ing  coeffi­
cient. H ow ever, W righ t’s fo rm ula  assum es 
th a t the  n u m b er o f  groups is large, th a t the 
rate o f  m obility  betw een each p a ir o f  groups 
(m ) is the  sam e, an d  th a t m  is sm all. E q u a­
tion  (7), on the o th e r han d , relies only on 
the assum ptions th a t nu =  « an d  th a t s is 
m uch sm aller th an  p. U n like  W righ t’s fo r­
m ula, it is va lid  for large m e. I t can  be show n 
tha t, u n d er W righ t’s assum ptions, m e a p ­
proaches m  as m  approaches 0, so (7) re ­
duces to  W righ t’s fo rm ula  w hen m e is sm all.

T hese equations express n. . an d  m e in  te rm s 
o f  q u an tities th a t are readily  estim ated  from  
genetic data , an d  they m ay prove useful as 
e s t im a to rs . T h e ir  s ta t is t ic a l  p ro p e r t ie s , 
how ever, are as yet unknow n.

A S ym m etr ic  E stim a to r  o f  the  M igra tion  
M a tr ix

Before th is  theo ry  can be used  to  p red ic t 
genetic v aria tio n , one m u st estim ate  M  =  
[m,,]. T he sim plest e s tim a to r o f  m n is the  
p ro p o rtio n  o f  the  ad u lt residen ts in g roup  j  
th a t originated in  group i. Som e authors, 
how ever, p refer to  im pose som e k ind  o f  
sym m etry  constra in t (B odm er an d  C avalli- 
Sforza, 1968; M orton , 1973). T hese differ­
ing approaches apparen tly  arise from  slight­
ly different evo lu tionary  m odels. A ll m e th ­
ods o f  p red icting  genetic v a ria tio n  assum e 
th a t local group sizes are unchanging. F o r 
som e au tho rs, th is  invariance  is a conse­
quence o f  p o pu la tion  regulation  (Lalouel,
1977). T h is app roach  im poses no  co n ­
stra in ts  on  the  p a tte rn  o f  m igra tion , so we
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refer to  it as the “ unrestricted” model. O th­
ers view unchanging group sizes as an ap­
proxim ation that is reasonable provided that 
m igration is conservative (i.e., has no ten­
dency to change the sizes of local groups). 
This, the “ conservative” model, does im ­
pose constraints since it implies that 1TN  = 
N 1 , where N  = [«.,,] is the m atrix o f m igrant 
set sizes, and 1 is a colum n vector with each 
entry equal to unity.

The approxim ations discussed above rely 
on the somewhat stronger assum ption that 
exchange between each pair o f groups is 
symmetric, i.e., that N  =  N T. We refer to 
this as the “ sym m etric” model. N ote that 
it does not imply that M  is sym m etric unless 
local group sizes are equal. Let a:j = w,mu 
denote the jo in t probability of being in group 
i before m igration, and in group j  after. The 
sym m etric m odel imposes g(g -  l )/2  con­
straints o f the form

a u = ajr ( 12)

Since Wj is the m arginal probability o f being 
in the /th group, the au m ust also satisfy g  
constraints of the form

*/ = 2 X .  (i3)
j

N one o f the estim ators that have previously 
been proposed satisfy all of these con­
straints.

Let Yjj denote the observed num ber of 
individuals that m ove from  group i to  group 
j. If  m obility am ong groups follows a M ar­
kov process with transition matrix M  =  [my], 
it can be shown that the unconstrained m ax­
im um  likelihood estim ate o f m it is t h y  = 
Yjj/ 2  Yy (Smouse and W ood, unpubl.). This 

j
estim ate  em ploys g  co n stra in ts , since 
the sum of each colum n m ust equal 1. It is 
appropriate under the unrestricted model, 
but it does not satisfy the constraints im ­
posed by the conservative or sym m etric 
models. The easiest way to obtain a sym ­
m etric estim ate o f M  is to replace Y,j and 
Yjj by their average, and then com pute M  
as above (Bodmer and Cavalli-Sforza, 1968; 
M orton, 1973). Although this estim ator sat­
isfies ( 12), it does not satisfy (13), and it is 
not consistent with any m odel that we know 
of.

To obtain an estim ator that obeys both 
( 12) and (13), we estim ate ai} first, and then

use the relation m u =  dy/Wj to obtain M. 
The log likelihood of our observations is

1 = 2 2  Y'jlog a,}
/=! ,/=l

+  2  -  2

+ 2  i M u  -  aj'),
i+j

where the \p,/s are Lagrange multipliers 
(Chiang, 1974). M axim um  likelihood esti­
m ators o f ay can be obtained by setting the 
partial derivatives with respect to a0 and \p0 
equal to zero. We find that

a 'J 20//,, -  \pu +  xPj,) ’

and

fe  -  ^  •

Hence, the m axim um  likelihood estimate 
o f m,j is

Y  + Y
thy = -- .

WjWH + vU
The \pi, obey

1 + 1"

They can be estim ated by starting with a 
trial value (say \pu =  ^  =  2  Y0), and ap-

ij
plying this relation iteratively. In our ex­
perience, this algorithm usually converges 
rapidly, but we have no guarantee that it 
will always do so. A com puter program for 
doing these calculations is available from 
the authors.

A p p l ic a t io n  t o  H u m a n  M ig r a t io n  
D a t a

The theory developed here avoids the ef­
fects o f  several factors that have reduced 
the realism  o f previous versions o f the mi­
gration m atrix model. To assess the mag­
nitude o f these effects, we analyzed pub­
lished m igration data for several human 
populations, listed in Table 1. In  m ost cases,
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the raw m igration data were cross tabula- 
| tions o f birthplace against residence, or of 
j parent’s birthplace against offspring’s birth- 
| place. For the Bundi, however, the raw data 
' comprise a m atrix whose (/th entry is the 
num ber o f husbands in clan j  whose wife is 
of clan i. This m atrix was converted to the 

I origin-residence form at by adding the col­
um n sums to the m ain diagonal. Local group 
sizes for the G idra and Oxfordshire could 
not be found in published literature, so these

i were approxim ated by the harm onic m eans 
of the row and colum n sums o f the raw 
m igration matrices (N). Consequently, re­
sults for these populations are tentative.

The m igration m atrix for Bougainville Is-
I land is not irreducible, as our theory re­
quires; four of the villages are completely 
isolated from the others. We applied our 
formulas to these data anyway, but also ana­
lyzed the largest irreducible subset o f  the 
Bougainville villages.

To obtain num erical results, we replace 
the symbol n.. in  our formulas with esti­
m ates o f the variance-effective population 
size (Crow and K im ura, 1970), taken as one 
third the actual population size. This p ro ­
cedure is only an approxim ation both be­
cause the estimates of variance-effective size 
are crude and because our analysis assumes 
that the variance-effective size is equal to 
the actual population size.

E ffect o f  the L ife  Cycle. —Equation (19) 
(see Appendix), which refers to adults under 
life cycle B is nearly identical to  Carmelli 
and Cavalli-Sforza’s (1976) equation 1.17, 
which refers to  adults under life cycle A. 
Consequently, life cycles A and B have sim ­
ilar im plications for the differentiation of 
local groups at the adult stage. Conclusions 
about the genetic statistics o f adults are little 
affected by assum ptions about the life cycle. 
They do, however, affect conclusions about 
newborns.

The Difference between N ew borns and  
Adults. —Equation (9) indicates that varia­
tion o f newborns exceeds that o f adults by 
a factor of 1 +  2 m c. Values o f m e calculated 
from the sym m etric estim ate o f M  can be 
found in Table 1, along with g  (the num ber 
o f local groups), 5 (estim ated as the fraction 
o f external migrants), and ne (estim ated as 
one-third the census size o f  the total pop­
ulation divided by g  — 1). Effective m igra­
tion rates for the hum an populations we

T a b l e  1. Number of groups (g), systematic pressure 
(s), effective group size (ne), and effective migration 
rate (m e) in several human populations.

P o p u la iio n s ne
m,

s * 0 i  = 0

Aland'1 

All periods 12 0.028 581 0.160 0.130
Pre-1900 11 0.021 607 0.102 0.069

Bedikb 6 0.018 113 0.227 0.213
Bougainville0 

All groups 17 0.250 52 0.278
Subsetd 14 0.250 54 0.294 0.045

Bundie 15 0.122 114 0.325 0.247
Gainjf 11 0.119 32 0.284 0.201

Gidrag 13 0.050 50 0.143 0.078
!Kungh 

All groups 9 0.010 125 0.270 0.262
Subset1 6 0.010 140 0.294 0.288

MakiritareJ 6 0.278 88 0.279 0.033
Oxfordshirek 8 0.353 133 0.326 0.051
Papago1 10 0.080 189 0.247 0.184

3 Jo rd e , 1979; J o rd e  e t a l.,  1982. 
b J a c q u a rd . 1974; L an g a n ey  a n d  G o m ila , 1973. 
c: F r ie d la e n d c r , 1975.
d T h e  la rg e s t ir re d u c ib le  se i o f  g ro u p s  on  B o u g a in v ille  Is la n d . V illages 

N u p a to ro . T u ru n g u m , M o ro n e i, a n d  O ld  S iw ai a re  ex c lu d ed . 
c M a lc o lm . 19 7 0; M a lc o lm  e t a l., 1971. 
f W o o d  el a l., 1982; W o o d , 1986.
£ O h ls u k a  e t a l.. 1985.
11 H a rp e n d in g  a n d  J e n k in s . 1 974.
1 S ix  re la t iv e ly  “ p u r e ”  !K u n g  lo ca l g ro u p s .
J W a rd  a n d  N e e l. 1970. 
k H io rn s  e t a l., 1969.
1 W o rk m a n  a n d  N isw a n d e r, 1970; W o rk m a n  e t a l„  1973.

studied range between 0.10 and 0.33, so 
W ahlund variances of newborns should ex­
ceed those o f adults by 20 to 70%. Where 
m obility is great, m e can be as large as Vi, 
so p' m ay be twice as large as p. V ariation 
of newborns will be substantially greater than 
that of adults unless m e is small. These re­
m arks also apply to m etric characters since 
the variance am ong groups is proportional 
to  p for any neutral m etric character with 
an additive genetic basis (Wright, 1951; 
Rogers and Harpending, 1983). Thus, un ­
less only an order o f m agnitude estim ate is 
wanted, the genetic variance of newborns 
should not be confused with that o f adults 
in populations whose life cycles resemble 
model B. The discrepancy between new­
borns and adults is undoubtedly sm aller in 
studies o f variation at larger scales o f dis­
tance, since there is less m obility between 
continents than between neighboring vil­
lages.

W hen genetic data are collected, some in ­
vestigators sample only adults, while others 
sample individuals of all ages. Since there 
can be a substantial difference between the
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T a b l e  2. A comparison o f p and p using the unrestricted (U ), symmetric (S), and approximate (A) formulas. 
For each population, systematic pressure (s) is set to zero for one run and to the fraction o f  external migrants 
for the other.

Population S
Newborns Adults

u S A u S A

Aland
All periods** 0.000 0.006 0.004 0.004 0.005 0.003 0.003

0.028 0.004 0.003 0.004 0.003 0.003 0.003
Pre-1900 0.000 0.007 0.007 0.007 0.006 0.006 0.006

0.021 0.005 0.005 0.005 0.004 0.004 0.004

Bedik* 0.000 0.016 0.015 0.015 0.012 0.010 0.010

0.018 0.015 0.014 0.014 0.011 0.009 0.010

Bougainville
All groupsf 0.000 0.335 0.279 — 0.328 0.272

0.250 0.024 0.023 0.026 0.014 0.014 0  017
Subset 0.000 0.164 0.099 0.102 0.156 0.091 0.094

0.250 0.022 0.022 0.025 0.013 0.013 0.016
Bundi** 0.000 0.032 0.013 0.013 0.028 0.009 0.009

0.122 0.013 0.010 0.011 0.009 0.006 0.007
Gainj** 0.000 0.053 0.053 0.053 0.038 0.037 0.038

0.119 0.040 0.040 0.042 0.024 0.024 0.027

G idraff 0.000 0.076 0.068 0.070 0.067 0.059 0.061
0.050 0.043 0.042 0.044 0.033 0.032 0.034

!Kung
All groups** 0.000 0.011 0.012 0.012 0.007 0.008 0.008

0.010 0.011 0.011 0.011 0.007 0.007 0.007
Six groups** 0.000 0.009 0.010 0.010 0.006 0.006 0.006

0.010 0.009 0.010 0.010 0.006 0.006 0.006

Makiritare* 0.000 0.073 0.081 0.083 0.068 0.076 0.078
0.278 0.014 0.014 0.016 0.008 0.008 0.010

Oxfordshireff 0.000 0.044 0.039 0.039 0.040 0.035 0.036
0.353 0.008 0.008 0.009 0.004 0.004 0.006

Papago** 0.000 0.012 0.010 0.010 0.009 0.007 0.007
0.080 0.008 0.008 0.008 0.006 0.005 0.005

* Hypothesis that underlying pattern o f migration is symmetric and consistent wiih census sizes of local groups can be rejected at the 0,05 
significance level.

** The hypothesis above can be rejected at the 0.005 level, 
t  Algorithm did not converge, and was stopped after 700 iterations.

tT Local group sizes were approximated by the harmonic mean o f row and column sums o f the raw migration matrix (M) since independent data 
were unavailable. No significance test is possible.

genetic variances o f adults and newborns, 
the age structure o f the sample from which 
genetic data are obtained is an im portant 
confounding influence.

E ffect o f  the  A pproxim a tions U sed.— T a­
ble 2 presents predictions o f p and p' for 
several hum an populations. For each pop­
ulation, there are two rows, one for the val­
ues expected in the absence o f systematic 
pressure (s =  0), and one for the values ex­
pected if s is equal to the frequency o f ex­
ternal immigrants. The “ unrestricted” and 
“ sym m etric” columns were com puted it­
eratively using equations (17) and (18), and 
the “approxim ate” columns were com puted

using (4) and (5). The “ unrestricted” col­
um ns are based on the restricted estimate 
o f the m igration m atrix, and the “ symmet­
ric” and “approxim ate” colum ns are based 
on the sym m etric estim ate o f M .

The approxim ate predictions involve the 
additional assum ption that s  is m uch small­
er than p. This assum ption fails, however, 
for all groups except the !Kung, as indicated 
by colum n “s ” o f Table 2. Nonetheless, the 
symmetric and approxim ate predictions are, 
with one exception, in close agreement, in­
dicating that our approxim ate formula is 
remarkably robust to failures o f this as­
sum ption.
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( T a b l e  3. The second eigenvalue (X2) o f the symmetric estimate o f  M , half-life (HL) o f  convergence in the 
[absence o f external migration, p as predicted by migration data for newborns (N), adults (A), and by previous 
[studies (P), and published estimates o f  p from genetic data.

1 P o p u la tio n 2̂ H L

p

N

M ig ra tio n  d a ta  

A p G e n e tic  d a ta

IKung (subset) 0.829 2 0.010 0.006 0.004 0.0067
Bedik 0.878 3 0.014 0.010 0.022 0.012

Gainj 0.899 3 0.042 0.027 0.0201 0.03323
IKung (all) 0.890 3 0.011 0.007 — —

Papago 0.911 4 0.008 0.005 0.0077 0.0208
Bundi 0.916 4 0.011 0.007 0.002 0.008
Aland (all) 0.944 6 0.004 0.003 0.013 0.0097
Gidra 0.981 18 — — — —

Aland (pre-1900) 0.982 19 0.005 0.004 — —

Makiritare 0.986 24 0.016 0.010 — —

Bougainville (subset) 
Bougainville (all)

0.992 43 0.025 0.016 — —

1.000 00 0.026 0.017 0.0337 0.0477
a J . W . W o o d . pers . c o m m .

The only substantial difference between 
the sym m etric and approxim ate predictions 
occurs with the full Bougainville data set, 
which violates our assum ption that the m i­
gration m atrix is irreducible. The num erical 
results for this data set should be regarded 
with profound suspicion, and we provide 
them  only as an example o f how our for­
mulas behave when applied to  inappro­
priate data.

E ffects o f  D ifferent E stim a to rs  o f  M . — 
The only appreciable discrepancies in Table
2 are between the unrestricted and sym ­
m etric columns, and are especially p ro ­
nounced when system atic pressure is ig­
nored (i.e., when s =  0). They m ay be due 
either to  asym m etric m igration or to dis­
crepancies between the census sizes o f local 
groups and the group sizes im plied by the 
unrestricted estim ate o f M . Since both  es­
tim a to rs  are m ax im u m  lik e lih o o d  e s ti­
m ators, a likelihood ratio  test (Rao, 1973) 
with g(g — l )/2  degrees o f freedom can be 
used to  test the hypothesis th a t the under­
lying pattern o f m igration is sym m etric and 
compatible with census sizes o f local groups. 
It was possible to  reject this hypothesis (P <
0.05) in m ost o f the matrices studied (see 
Table 2). Thus, discrepancies between the 
symmetric and unrestricted colum ns are not 
surprising.

The difference between sym m etric and 
unrestricted predictions is often small, even 
when m igration does not conform  to our 
assum ptions. Thus, our results are reason­

ably robust to m inor asym m etries in the 
pattern  o f m igration. In some populations, 
however, the difference between sym m etric 
and unrestricted predictions is large. For the 
Bundi, the unrestricted m odel yields a pre­
diction that is three times as large as that 
o f  the sym m etric model. For the irreducible 
subset o f the Bougainville villages the pre­
diction o f the unrestricted m odel is larger 
by about 65%. Curiously, this is one o f the 
cases in which it was not possible to reject 
the hypothesis that m igration conforms to 
our m odel (P  = 0.40). Thus, although the 
unrestricted and sym m etric estim ates o f M  
lead to substantially different predictions o f 
p, there is little reason to  prefer one to  the 
other. The sym m etric estim ate is in m uch 
better agreement with that obtained from 
genetic data for the full set o f villages (p =
0.0477, Friedlaender, 1975).

Even when the sym m etric model can be 
rejected, it is not clear that the unrestricted 
m odel is m ore realistic. Although it makes 
no assum ption about the pattern o f m igra­
tion, it does assum e that group sizes are 
prevented from changing by population reg­
ulation. The changes in group size produced 
by m igration each generation m ust be re­
versed by differential m ortality and fertility 
o f local groups. W hen m igration is highly 
asym m etric, this requires high fecundity, a 
questionable assum ption in species that re­
produce slowly, such as our own. Thus, the 
unrestricted m odel may not be m ore real­
istic. The sym m etric estim ate o f M  is prob­
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ably more reliable since, involving fewer pa­
rameters, its sampling variance m ust be 
smaller. We suspect that the sym m etric es­
tim ate is less sensitive to “ noise” in the data 
and will often be closer to reality even when 
the underlying pattern o f m igration is m od­
erately asymmetric.

C onvergence  o f  R e d u c e d  Variances. — 
Unless the environm ent is extremely stable, 
natural populations are unlikely to be close 
to equilibria that take dozens o f generations 
to reach. As shown in the appendix, p con­
verges half way to its equilibrium  value in 
log('/2)/2 log [(1 — .s')X2] generations. The half­
life o f convergence for several hum an pop­
ulations is tabulated in Table 3, assum ing s 
to be zero and using the eigenvalues o f the 
sym m etric estim ate o f M . Even without 
systematic pressure, m ost o f these popula­
tions approach equilibrium  rapidly. The 
half-life o f convergence is often less than 
five generations, and convergence is even 
faster for realistic values o f s. Thus, there is 
reason to be optim istic about the relevance 
o f this theory to hum an populations. Sim ­
ilar results have been reported by W ood 
(1986).

C om parison with Genetic D a ta .— In T a­
ble 3, predictions of p and p' obtained from 
(7) and (9) are tabulated along with the pre­
dictions o f previous studies and some es­
tim ates o f  p from genetic data. Except for 
the genetic value for the Bedik, which was 
com puted from data in Jacquard (1974), the 
genetic values are also from previous stud­
ies. The figure for Bougainville in the “ pre­
vious studies” colum n was calculated, using
(3), from Friedlaender’s (1975) published R 
matrix.

Except for Aland and Bougainville, our 
results fit the genetic data better than do the 
predictions o f previous studies, especially 
in those populations where convergence is 
fastest. In the populations with fastest con­
vergence, the estim ate of p obtained from 
genetic data falls between the values pre­
dicted for newborns and adults. W here con­
vergence is slower, the fit between obser­
vations and predictions is less impressive. 
This is to be expected for several reasons. 
Obviously, populations that converge slow­
ly are less likely to be at equilibrium . Even 
at equilibrium , moreover, our m odel is 
probably a poor description o f such popu­

lations. As discussed above, our treatm ent 
o f external m igration is m ost appropriate in 
populations that are relatively isolated from 
the outside world. W hen the effect o f ex­
ternal m igration is large com pared with that 
o f local migration, local genetic structure is 
strongly influenced by factors that are ig­
nored by our model. Notice that, for most 
populations in Table 2, there is little differ­
ence between the predictions o f p and p' 
obtained by setting s = 0 , and those ob­
tained with realistic values o f s. In these 
populations, local genetic structure is dom ­
inated by the effects o f local mobility and 
is little affected by assum ptions concerning 
.s. For the Papago, Aland (all periods), the 
G idra, the M akiritare, and Bougainville 
(subset), the values o f p predicted without 
systematic pressure exceed those with sys­
tem atic pressure by 33%, 23%, 79%, 678%, 
and 507%, respectively. The populations in 
which the effect o f systematic pressure is 
largest are also those that fit our theory most 
poorly.

Inferring  m£ and  n ..fr o m  Genetic Data. — 
We know o f only one population for which 
published data allow estim ates o f n.. and m e 
to be m ade from (10) and (11). W orkman 
et al. (1973) published two estim ates of p 
for the Papago, one com puted by assigning 
individuals to village o f origin, and the oth­
er by assigning them  to village o f residence. 
These are probably fair approxim ations to 
p' and p. Their figures are p' =  0.0208 and 
p = 0.0162, and there are 10 groups in their 
sample. The estim ate obtained from (10) is 
h.. =  962. The census size of this population 
is 5,102 and W orkm an et al. (1973) used 
one-third the census size as a rough estimate 
o f effective size. Equation (10) suggests that 
their estim ate may have been too large. The 
estim ate o f effective migration rate obtained 
from ( 11) is m e =  0.142, in only rough agree­
m ent with that obtained, using (8), from the 
migration m atrix (see Table 1). This anal­
ysis should not be taken too seriously, since 
the statistical properties o f ( 10) and ( 11) are 
as yet unknown.

This m ethod is m ost likely to be useful 
with alleles o f interm ediate frequency since 
rare alleles provide little inform ation about 
p. Slatkin (1981, 1985) has developed a 
m ethod for estim ating m obility from ge­
netic data that should work better with rare
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alleles and distantly related populations. An 
alternative m ethod has been developed by 
M orton (1982).

D is c u s s i o n  a n d  C o n c l u s i o n s  

In hum ans and m any other species, m or­
tality is concentrated early in  the life cycle 
and is low during the ages o f dispersal and 
reproduction. Yet precisely the opposite is 
assum ed by classical population-genetics 
models o f m igration and genetic drift. We 
have developed a theory incorporating a life 
cycle that is m ore appropriate for hum ans 
and species with sim ilar life cycles.

These differences in the life cycle tu rn  out 
to have a substantial effect on genetic sta­
tistics referring to newborns (i.e., ind iv id­
uals before migration). The expected value 
o f r0 (our synonym for W right’s fv r)  o f  new­
borns can be twice as great as that o f  adults. 
On the other hand, these differences in the 
life cycle have little effect on genetic statis­
tics o f adults.

These results im ply that, in species like 
our own, geographic variation will appear 
larger if  newborns are sam pled for genetic 
data than if  only adults are sampled. Thus, 
the age structure o f the sam ple is a potent 
confounding influence in studies o f popu­
lation structure. This rem ark also applies to 
quantitative characters with additive ge­
netic bases, since am ong-group variance in 
such characters is proportional to p (Wright, 
1951; Rogers and Harpending, 1983).

We define a new m easure o f  m obil­
ity, the effective m igration rate, and show 
that W right’s (1931, 1943) formula, p = 
(4nem e +  l ) 1, applies m ore generally than 
has been appreciated. An estim ate o f m e can 
be obtained either from M  or from  genetic 
data, and this statistic should be useful for 
com parisons between populations. Unlike 
m ost statistics used in studies o f  population 
structure, it does not confound the effects 
o f  m obility and group size.

Some authors predict genetic variation 
using sym m etrized estim ates o f the m igra­
tion m atrix and others use unconstrained 
estimates. These differences arise from dif­
ferences in the evolutionary m odels being 
used, and can lead to substantially different 
answers, even when the data provide no ba­
sis for preferring one to the other. Hence, 
some o f the differences between em pirical

studies m ay arise from the statistical m eth­
ods that are used. To resolve this problem, 
we introduce a m axim um  likelihood esti­
m ator o f the m igration m atrix that is com ­
patible with the assum ptions o f our model.

In  m ost o f  the populations studied, the 
predictions o f  our m odel are closer to es­
tim ates o f p obtained from genetic data than 
are those o f previous versions o f  the m igra­
tion m atrix model. The genetic estim ates 
frequently fall between the values predicted 
for adults and newborns. The fit is not as 
good in populations where local m igration 
is weak com pared to external migration, but 
this is as it should be since our m odel is 
m ost appropriate for populations that are 
relatively isolated from the outside world.

Although the age structure o f the sample 
has been a confounding influence, it is po­
tentially rich in inform ation. I f  genetic sta­
tistics are com puted separately for ind iv id­
uals befo re and  a fte r m ig ra tio n , the  
difference between p and p' can be used to 
estim ate both effective population size and 
effective m igration rate directly from ge­
netic data. ,
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A p p e n d ix

In this appendix we modify the recurrence equations 
ofM alecot (1950), Bodmer and Cavalli-Sforza (1968), 
and Smith (1969) to deal with: a) the stochastic cffccts 
o f migration implied by model B o f the life cycle (see 
above), b) variance about p  rather than about tt, and 
c) both newborn and adult allele frequencies. We derive 
expressions for the equilibrium matrix o f genetic co­
variances and for the Wahlund variances o f newborns 
and adults.

Definitions
The expectation o f a random variable will be de­

noted by a superposed tilde, i.e., x  = E:,v-. The set o f

individuals that disperses from the ;'th to the ,/th local 
group will be referred to as the “yth migrant set.” Let

n}J = the size o f  the z/th migrant set,
n-i =  2  n«> t*le size ° f  grouP j  after migration,

ni■ =  2  n,j> size o f group i before migration,
j

n•• = 2  nu> the total population size,

N  =  [n,y], a matrix o f migrant set sizes, and 
m„ =  n^/n.j, the fraction o f the j'th local group com ­

prising immigrants from group i.

As is customary, we assume that the m :J and nu are 
constant from generation to generation, and that the 
stochastic matrix M  =  [m,-,] is ergotic and aperiodic 
(so that it has exactly one eigenvalue equal to unity). 
We also define

g:j =  the frequency o f allele A  in the i/th migrant 
set,

q,. =  the frequency o f A  in local group i prior to 
migration,

q.j =  2  the frequency o f A  in the jth  local

group among adults after migration among 
local groups,

5 =  the proportion o f each local group cxchangcd 
each generation with a “continent” with un­
changing allele frequency ir, 

u, =  the frequency o f allele A  among external m i­
grants to group /, and 

p: =  the allele frequency in group j  after both local 
and continental migration.

Where it is necessary to distinguish quantities referring 
to particular generations, we write p f‘\  q<}'\ etc.

These definitions and assumptions imply that

p u+1) =  (i -  s) 2  +  s u f '  ". (14)

The moments o f pj depend on those of the qr. If selec­
tion is absent and migratory propensities are indepen­
dent o f genotype, then the conditional expectation o f  
q,[‘~n, given the genetic structure o f the previous gen­
eration, is p,<0, the frequency o f A  among adults in group
i in the previous generation. Consequently, equation 
(14) can be rewritten in matrix notation as

pf-1' '> = (1 -  5)M>W
+ Sirl +  €<'+" (15)

where 1

p  = a column vector o f  group allele frequencies 
after local and continental migration, 

e« + n =  pU+1) — E{p('^l)|pw}, a column vector o f  de­
viations produced by genetic drift, and

1 = a column vector with each element equal to 
unity.

This recursion is fundamental to the migration matrix 
model as developed by Bodmer and Cavalli-Sforza 
(1968) and Smith (1969). These authors and others 
after them have used this equation to study dispersion 
o f  group allele frequencies about tt, the continental 
allele frequency. Since ir is ordinarily unknown and 
unknowable, however, empirical studies o f  population
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structure necessarily deal with dispersion about p, the 
current population mean allele frequency.

Let

tv, =  n .Jn .., relative population size, 
w — [wi]> a column vector o f  relative population 

sizes,
p = wTp, the weighted mean o f group allele fre­

quencies,
C* = the conditional expectation o f « T, given p', 

that is, the matrix o f  variances and covari­
ances o f the effects o f  one generation o f  genetic 
drift, and

C =  the expectation o f « T/p( 1 -  p), a matrix o f  
normalized variances and covariances.

Note that (I -  1 wT)p is a vector o f  deviations from 
p, where the superscript “T” denotes matrix transpose, 
and I is the identity matrix. We define a vector o f  
normalized deviations,

_  (I -  1 wT)p

Z 0(1 -  p)P '
Applying this transformation to both sides o f  (15) pro­
duces

z<'+'> = (1 -  s)LTz<'>
+ (I -  l>VT)€«'>[p(l -  p )]-‘h ,

where L = M(I -  w lT). Our assumption that M  is 
ergotic and aperiodic implies that it has exactly one 
eigenvalue equal to unity and that its associated right 
and left eigenvectors are w and 1T, respectively. Con­
sequently, L = M -  w V . Note that (I -  >vlT)2 =  (I — 
w lT), implying that L' = M'(I -  w lT). It is convenient 
to define the zero’th power o f  L as L° = M°(I -  >vlT) =
I  -  w V.

The normalized dispersion matrix is R = [rtf] = zzT, 
and follows, in expectation,

R(-+i> = (1 -  s)TLTR«L
+ (L°)TCL°. (16)

Equation (16) can be applied iteratively to obtain, for 
large t,

ru+d = 2  (I -  s)2,(LOTCL'. (17)

This equation differs from the analogous formulas o f  
Malecot (1973), Carmelli and Cavalli-Sforza (1976), 
and Smith (1969) only in the definitions o f  L and C. 
If the form o fC  is known, successive terms in (17) can 
be added in a computer program until the result no 
longer changes. The result is a prediction o f the nor­
malized genetic dispersion matrix at equilibrium be­
tween migration and genetic drift.

The Effect o f  One Generation o f  
Genetic Drift

Under life cycle B, genetic drift occurs during m i­
gration as well as during population regulation, and the 
variance introduced depends on N, the matrix o f  sizes 
o f migrant sets. We assume that mating within local 
groups is random so that the effective size o f  local 
groups (Wright, 1969) is the same as their actual size, 
and also that individuals migrating from i to j  are a

random subset o f group i. Each gene can therefore be 
treated as an independent, random draw from the gene 
pool o f group i in the previous generation, and the 
number o f  copies o f  allele A among migrants from i to 
j  in generation / +  1 is binomially distributed with 
parameters 2n0 and p f '\  Thus, E{0 !/ '+l)} = pf-'\ and

Vari^,y('+,)} = p /°(l -  p,(,))/2nv-.

We are interested in the dispersion o f  p, which de­
pends on the first and second moments o f

1 = (i -  s) 2  miAq,j

+ s(u f’+') -  it).

p n

The expectation o f tj is zero, as are the offdiagonal 
entries o f  C*. The diagonal entries are

C /  = (1 -  s f  2  m l/ ' V a T { q u \ p i }

+ s2Var{w,}, 

(I -  s)
2 n..

■V7r( 1 — 7T)

2  n., ’

since =  n,/n .j. The substitution sp( 1 — p) — stt( 1 -  
?r) should have little effect on the answer because when 
s is small the contribution o f this term is negligible and 
when it is large p — ir. We also substitute p( 1 -  p) (1 -  
0 >) =  Pi (1 “  Pi)’ where r„ is the ;th diagonal entry of 
R. With these substitutions,

C * - p( 1 -  P)
2 n..

p( 1 -  p)hj

where hj is the term in brackets above. Thus, the matrix 
o f  variances and covariances o f  the increments due to 
genetic drift is C* = p( 1 -  where H  = Diag{/?,}
and W = Diagfvi',}.

C is obtained from C* as follows: C = E{«T/p 
(I -  p)} =  E{E[«T|p]//>( 1 -  P)) =  E{C*//5(1 -  P)) 
= C */p(\ — p) = W ~'H, since C*//>(1 ~  P) is a con­
stant. Note that although C is conditioned on p, it is 
not a function o f  p. This implies that p, which is also 
conditioned on p, is also independent o f  p. Our “un­
restricted” and “symmetric” predictions o f  p for adults 
were obtained using this formula and (17), as discussed 
above.

Dispersion o f  Newborn Allele Frequencies
Let p 'm denote the vector o f allele frequencies among 

newborns in generation t. Our assumptions about the 
life cycle imply that the population regulation com­
ponent o f  genetic drift occurs at reproduction. Hence, 
newborn allele frequencies are related to those o f their 
parents by p' = p  +  e, where e is a vector o f  deviations 
due to that component o f  drift. Under random mat­
ing, the expectation o f e, is zero and its variance is p, 
(1 _  Pi)/2nr . The conditional expectation o f e*'*0 
(e<,+ l))T, given p̂ ‘\  is /^"(l — p(,,)W_1D, where D = 
Diag{(l -  r„)/2n..}. The newborn dispersion matrix is

R' = R + (L°)TW -'D L° (18)
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Approxim ate Results
These results can be greatly simplified if N  is as­

sumed symmetric, that is, if the number of migrants 
traveling from group i to j  in a generation is the same 
as the number traveling from j  to This should often 
hold approximately where migration is conservative. 
Let A = NIn ... The yth element of A is the proportion 
of the entire population that moves from group i to 
group j  in a generation, and our assumption implies 
that A is symmetric. It is related to M by M =  AW 1.

Consider the matrix X = W AW . Since A is 
symmetric, so is X, and the spectral theorem (Strang, 
1976) ensures that it can be written as X = SA*ST, 
where S is an orthogonal matrix of eigenvectors, and 
A* is a diagonal matrix o f eigenvalues. This im­
plies that the diagonal form of M  is M  = [Wy’S]A* 
[STW -'] = UA*VT.

We denote the eigenvalues of L and M by X, and X,*, 
respectively, and assume that those of M are indexed 
in descending order. 1 and wT are eigenvectors of MT 
with eigenvalue X,* = 1, and the definition of L1 implies 
that they are also eigenvectors of that matrix, but with 
eigenvalue X, = 0. For i >  1, X,* = X,, and the corre­
sponding eigenvectors of L and M are identical. Thus, 
L = UAVT, where A = Diag{XJ.

In addition to the symmetry assumption, we use the 
approximation

2  ~ 2  wf n = p-
Consequently, ht = h =  [2n..]~'[(l -  j)2(l -  p) +  j], 
and C = AW-1. Note that (L')TW -|L' = VA2' VT. Using
(17) and the formula for the sum of a geometric series, 
we have, as t -> oo

R = VBVT, (19)

where B is diagonal with diagonal entries f3, =  0, and 

= (1 -  p)(l -  s)2 + 5 
2n..[l  -  (1 -  s )2X,2]

1 -  p

2n..[ l -  (1 -  ,s)2X,2]

if i ¥= 1 and s -c p. Equation (19) is not necessarily the 
diagonal form of R because, unless group sizes are 
equal, the matrix V = W ’S is not orthogonal. On the 
other hand, we have found the diagonal form of the 
weighted R-matrix, R* = W R W  = SAST.

Using the same approximations we obtain, for new­
borns,

. R' = VB'VT, (20)

where the diagonal entries of B' are 8 ,' = 0, and

a  A - p \  2 — (1 — ,)2X,2 
Pl \  2 n.. /  1 — (1 — s)2X,2

These matrices are related to p and p' by p =_
= Trace{R*}, and p’ = 2  wfn = Trace{R'*}.

The Rate o f  Convergence

The convergence of R is governed by the conver­
gence of the which is measured by

a<~> _ g<o
^ -------- z -  =  1 -  {1 -  [(1 -  ^)X,]2}

t - 1

• 2  id -  j) \ p ,7-0 .

= [0 -  ^)M2' ■

Since X2 is the largest eigenvalue of L, the convergence 
of R is asymptotically determined by [(1 -  v)X2]2/. The 
process converges halfway to equilibrium in log(0.5)/ 
{2 log[(l -  i)X2]} generations. I f ( l  -  )̂X2 = 0.9, this 
half-life is about three generations, and it is only 34 
generations when (1 — s )\2 = 0.99. The second eigen­
value is often a good deal less than 1.0 in human data, 
so convergence is rapid.


