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Abstract. —In humans and many other species, mortality is concentrated early in the life cycle, and
is low during the ages of dispersal and reproduction. Yet precisely the opposite is assumed by
classical population-genetics models of migration and genetic drift. We introduce a model in which
population regulation occurs before migration. In contrast to the conventional model, our model
implies that geographic variation in the allele frequencies of newborns should exceed that ofadults.
Thus, it is important to distinguish genetic variation of adults from that of newborns in species
with human-like life cycles.

Classical models deal with the variance of group allele frequencies about the allele frequency of
a hypothetical “continent” or “foundation stock.” Empirical studies, however, can only measure
“reduced” variance, i.e., variance about the current population mean. Our model deals with reduced
variance, and should therefore be more relevant to field studies. We show that reduced variance
converges faster, which implies that populations are more likely to be at equilibrium with respect
to reduced than unreduced variance.

To summarize the effect of migration on genetic population structure, we introduce a new
parameter, the effective migration rate. Unlike most population structure statistics, it does not
confound the effects of mobility and population size, and it should therefore be useful for com-
parisons between populations. Finally, we show that the difference between geographic variation
of newborn and adult allele frequencies contains information about both effective population size

and effective migration rate.
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The causes and consequences of genetic
variation among local groups have been
central concerns of population genetics for
many years. There is an extensive theoret-
ical literature and an even more extensive
empirical literature. However, it often seems
thatthe two have little to do with each other.
Theoretical work generally seeks qualitative
insights rather than quantitative predic-
tions, whereas empirical work has often been
based on ad hoc measures of genetic dis-
tance or similarity that have no connection
with theory. These measures have proved
useful as guides to intuition but provide no
basis for inference.

The major exception to these generaliza-
tions is the family of models, collectively
called “migration matrix models,” that were
introduced by Malecot (1950), Bodmer and
Cavalli-Sforza (1968), and Smith (1969).
They are appealing because they deal grace-
fully with patterns of mobility that are near-
ly as complex as those of real populations.
Their generality, however, is also their prin-
cipal failing. Their use in theoretical work
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has been limited by the difficulty of obtain-
ing explicit, general formulas (Felsenstein,
1976). They remain popular, however,
among empiricists. Many authors have
compared observed genetic variation among
a setoflocal populations with that predicted
by a migration matrix model.

Such studies may one day allow us to
evaluate ideas about the effects of drift and
migration on genetic variation, but so far
they seem to have taught us little. Some-
times the variance observed is reasonably
close to that predicted, and sometimes it is
not (Bodmer and Cavalli-Sforza, 1974;
Jorde, 1980). In either case, little can be
inferred—observations may differ from pre-
dictions for so many reasons that it is im-
possible to interpret the concordance be-
tween theory and data.

When observed and predicted variances
differ, the discrepancy is often attributed
either to failure of the assumption of equi-
librium or to some kind of non-Markovian
migration. For example, dispersal may in-
volve kin groups rather than individuals
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|(Fix, 1978; Neel and Salzano, 1967;Smouse
et al., 1981), or the tendency to move may
be inherited culturally (Hioms et al., 1977).
These factors are surely important, but they
are not the only sources of discrepancy be-
[tween theory and observation.

In this paper, we argue that classical pop-
ulation-genetics models of migration and
genetic drift, as developed by Wright, Ma-
[ecot, and others involve assumptions that
are inappropriate for humans and other
fcpecies with similar life cycles. We intro-
duce a model that is more appropriate for
such species. In addition, we introduce a
maximum-likelihood estimator that is
compatible with the assumptions ofour the-
ory. Finally, we compare the predictions of
our theory with published genetic statistics
for several human populations.

Models ofthe Life Cycle and
Their Effects

Assumptions.—Models of migration and
genetic drift usually incorporate assump-
tions about the life cycle of the organisms
studied. Some of the conclusions of popu-
lation-genetics theory are robust with re-
spect to these assumptions, while others are
quite sensitive. In this section we discuss
the assumptions embodied in some models
that have been used as a basis for analysis
of human genetic data.

The setofindividuals that disperses from
the ith to the 7th local group will be referred
to as the “z/th migrant set.” Regardless of
a species’ life cycle, we can write

Fi- 2 modo (0]

where
Qj = the frequency ofallele A in the (/th
migrant set,
mO = the proportion ofgroupj after mi-
gration derived from group i, and
Pi = the frequency of A in groupj after
migration.
I Clearly, isthe allele frequency ofa sample

of individuals obtained from group 1. Un-
less the propensity to migrate depends on
mgenotype, the expectation of qtJis equal to
I the allele frequency in group i prior to mi-
gration. The variance of q0 depends on the
size ofthe yth migrant set, and this depends
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on the life cycle ofthe species being studied.
Consider, for example, model A below.

Model A
population
migration regulation
Newborns =>  Adults >
(00) (00)
reproduction
> Adults > Newborns
(n) (00)

Here, the qu refer to infinite samples and
are therefore equal to their expectations.
Migration can be described by the deter-
ministic equation

p * = 2mijP.” (2)

1

where p* is the allele frequency in group j
after migration but before population reg-
ulation, p/' is the allele frequency in group
i before migration. Genetic drift occurs when
density regulation reduces the population to
size njt adding a random increment with
mean zero and variance p*(l — p*)/2nj.
Wright (1931, 1943) pioneered this ap-
proach to the problem, and it is central to
most theoretical work on migration and ge-
netic drift (for example, Bodmer and Caval-
li-Sforza, 1968; Smith, 1969; Courgeau,
1974; Carmelli and Cavalli-Sforza, 1976).

Model A is a reasonable description of
the life cycle of species in which dispersal
occurs at the gamete stage, as in most plants,
or in which large numbers ofjuveniles are
involved, as in many other species. How-
ever, it isa poor description ofspecies such
as our own, in which most mortality occurs
before dispersal (Coale, 1972). Nonetheless,
results derived using model A have often
been used to interpret human genetic data
(see for example, Bodmer and Cavalli-Sfor-
za, 1974). As an alternative, consider:

Model B

population
regulation
Zygotes > Newborns >

(00) (n)

migration reproduction

> Adults > Zygotes
(n (00)
This model assumes that no mortality oc-
curs during migration and reproduction,
which is probably more realistic than model
A for humans and other species with low
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mortality after infancy. It is particularly ap-
propriate in human genetics, when the
birthplaces of adult subjects are routinely
recorded, and individuals may be classified
either by adult residence or by birthplace.
Such data refer not to the birth cohort, but
to that portion of it that survives to matu-
rity. With this life cycle, the quofequation
(1) are based on small samples so their vari-
ances are no longer negligible. Thus, genetic
drift occurs during migration as well as dur-
ing population regulation.

Some authors view (2) as a deterministic
approximation to dynamics under life cycle
B rather than as a model ofdynamics under
A (Sved and Latter, 1977; Latter and Sved,
1981; Harpending and Ward, 1982). Latter
and Sved use the term *“stochastic migra-
tion” to refer to models incorporating the
stochastic effects on allele frequencies pro-
duced by migration under life cycle B, and
also to models in which the ml:themselves
are random variables (see also Nagylaki,
1979, 1980, 1983). The geographic varia-
tion predicted by all these models is sub-
stantially greater than that predicted by
analogous deterministic models. These sto-
chastic models are oflimited value for com-
parisons with natural populations, however,
because of restrictive assumptions. All as-
sume either that migration follows some
simple symmetric pattern with equal group
sizes, or else that the rate of migration is
extremely high.

All of the models discussed above refer
to allele frequencies of adults after migra-
tion and population regulation. Malecot
(1948, 1969), on the other hand, attempts
to deal with newborns, but his analysis con-
tains a subtle error. On page 67 ofthe (1969)
English translation of his book, he says that
ifgenes are drawn from individuals bom in
generation n+ 1in locations C and D, whose
parents are both known to come from lo-
cation E, then “they will have conditional
probability 1/[28(E)dSE]ofcoming from the
same locus [gene copy] of the same parent
and probability 1 —1/[28(E)dSE]ofcoming
from loci infinitely close but distinct,” that
is, of being copies of distinct genes from
individuals bom at location E in generation
n. Here 8(E)dSE is the number of individ-
uals bom at location E and must be greater
than zero (see Felsenstein, 1975). But, since
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Malecot’s model does not allow for the pos-
sibility that individuals may breed in more
than one location, genes from individuals
born in C and D cannot possibly be copies
of the same parental gene unless C = D. If
C = D, the probability that they are copies
of the same parental gene is 1/2nEC, where
nECis the number of individuals that dis-
perse from E to C, and will be smaller than
the number bom at E.

Malecot’s theory can be rescued by re-
defining his terms so that individuals are
identified with the locations in which they
breed instead of with their birthplaces as
Lalouel (1977) has done. For example, Ma-
lecot’s g(E,C)dSE becomes the probability
that an individual breeding in C was born
in E. His analysis then rests on the as-
sumption that two distinct individuals
breeding in Cboth derive from E with prob-
ability [g{E,C)dSE]2 This assumption is in-
compatible with life cycle B since

[ nEC
g(E,C)dSE = E' ~

whereas the probability that two distinct
adults breeding in C were both bom in E is

r nEc —i _
\.8{E,C)dSh\E \» ;

\2j nxc~ 1

~n X

which is not the same as Malecot’s formula
unless the numbers ofindividuals migrating
(the nxl.) are large. Thus, Malecot’s theory
refers to adults under life cycle A and ap-
plications of this theory to humans should
be regarded with some skepticism.

In summary, no theory has been devel-
oped describing the dynamics of migration
and genetic drift under life cycle B. Con-
sequently, studies of the population struc-
ture of humans and similar species have
been based on a theory that may be inap-
propriate.

The Distinction between Adults and New-
borns.—Under life cycle A, no changes in
allele frequency occur at reproduction, so
the allele frequencies of newboms should
equal those oftheir parents. Under life cycle
B, on the other hand, allele frequencies of
newborns differ from those of their parents
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because of the effect of the population reg-
ulation component of genetic drift. Since
drift tends to increase variation among local
groups, variation of newborns should ex-
ceed that of their parents. Similarly, since
migration tends to reduce variation, the
variation ofa single cohort should be small-
er after migration than before. For both rea-
sons, variation of newborns should exceed
that of adults. At equilibrium these effects
are in balance so that variation among adults
of adjacent generations is the same, yet the
difference between newborns and adults
persists. This effect has also been noted by
Long (1986).

Model

This section introduces a revised version
of the migration matrix models developed
by Malecot (1950, 1973), Bodmer and Ca-
valli-Sforza (1968), and Smith (1969). This
revised model is used in the appendix to
derive the expectations of several measures
of local genetic variation.

Migration and Genetic Drift

Let nifdenote the size of the ijth migrant
set. We assume that migration within a gen-
eration follows a discrete Markov process.
The allele frequencies of migrants are treat-
ed as random variables as life cycle B im-
plies, but the are assumed constant in
time. In the real world, of course, the num -
bers of migrants may be far from constant.
Latter and Sved (1981) have investigated
the effect of this assumption under Wright’s
(1943) “island model” of population struc-
ture. They find that the variance among
groups implied by our assumption is small-
er than that implied by the assumption that
individuals migrate independently. The
model of independent migration, however,
may not be more realistic. Ifthere is density
regulation within groups, the probability that
an individual moves into a group may de-
pend on the number there already. It is not
clear which model is the better approxi-
mation to reality.

We assume that each local group is pan-
mictic so that its effective size (Wright, 1969)
equals its actual size. If, in addition, indi-
viduals migrating from group / to j are a
random subset ofgroup i, then each of their
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genes can be treated as an independent, ran-
dom draw from the gene pool of group / in
the previous generation. Hence, the number
of copies of allele A in migrants from itoj
in generation / + 1 is a binomial random
variable with parameters 2n0Oand pfK

Systematic Pressure

To ensure that the process will have in-
ternal equilibria, we assume that, in addi-
tion to migration among groups, a fraction
s of the residents of each group are immi-
grants from a “continent” with unchanging
allele frequency it. This linear systematic
pressure could also be interpreted as mu-
tation or weak selection. Withoutit, the pro-
cess would have no equilibria short of fix-
ation. Continental migration is assumed to
occur after population regulation so that it
also contributes acomponent to genetic drift.

We estimate s as the fraction of immi-
grants from outside the study area, although
this is almost certainly an overestimate.
Most external immigrants derive from
neighboring populations with similar allele
frequencies, so their impact on local genetic
structure will be smaller than their numbers
imply. Predictions obtained by setting s =
0 may often be better approximations to
reality.

Our assumptions that the fraction of ex-
ternal immigrants in each local group is the
same and that external immigrants are all
drawn atrandom from the same population
are also unrealistic, and reduce the variance
predicted among local groups (Wagener,
1973; Harpending and Ward, 1982). This
effect is negligible when local genetic struc-
ture is dominated by the effects of local mi-
gration, but it may be important when sys-
tematic pressure is strong relative to local
migration. Thus, the model we are building
ismostappropriate for populations that are
relatively isolated from the outside world.

Measures ofLocal Variation

Our basic definitions are not of parame-
ters but of functions of allele frequencies.
These functions are random variables, and
we attempt to characterize their first and
second moments under the model described
above. In what follows, the term “expec-
tation” refers to an average over a hypo-
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thetical infinite ensemble of populations
representing different realizations of the
same stochastic process. We neglect the
sampling problem entirely, assuming that
allele frequencies oflocal groups are known
without error.

Let
n.. = 2 nip the total population size,
ij
W= 2 the relative size
olfthe /th group,
1 P = 2i wiPh the mean allele
frequency, and
g = the number of local groups.

Following Harpending and Jenkins (1974),
we define the genetic correlation of allele
frequencies in groups i andj as
= iP, ~ P)iPj ~ P)
r p(l - p)
The genetic correlation matrix for adults is
The analogous quantities for new-
born allele frequencies are r,/ and R".

A useful measure of variation among
groups is (for adults)

/% w-(a - P)2

- = ;=i W-r- (3)
rOis a random variable, and we denote its
expectation by p. An unbiased estimate of
p can be obtained by inserting estimates of
group allele frequencies into (3), since the
conditional expectation of rOgiven p is in-
dependent of p (see Appendix). Our rOis
equivalent to the “Wahlund variance”
(Wahlund, 1928, 1975), and to one of the
several meanings that have been attached
to Wright’s (1951) F§ (see Wood, 1986).
The analogous quantities for allele frequen-
cies of newborns are denoted by r0' and p'.

Note that p is defined in terms of varia-
tion about the current population mean p.
A related parameter describing the expected
variation about the continental allele fre-
quency, tt, is

A. R. ROGERS AND H. C. HARPENDING

[8 |
£12 wiPPji~ 7 j

Following Cavalli-Sforza and Piazza (1975)
and Felsenstein (1982), we refer to vari-
ances aboutp as “reduced variances.” Most
theoretical results refer to §xwhile data an-
alysts generally work with estimates of r0.
The distinction between these measures is
often ignored, and has produced a good deal
ofconfusion. This confusion can be avoided
either by rewriting the theory in terms of
reduced variances (Harpending and Jen-
kins, 1974) or by attempting to estimate
unreduced variances from genetic data
(Morton et al., 1968, 1971; Morton, 1975;
Weir and Cockerham, 1984).

Theoretical Results
Exact Formulas

Exact formulas for the expectations of R
and R' are derived in the appendix, and p
and p' can be obtained from these using (3).
These formulas are unwieldy, but do pro-
vide a method for predicting genetic vari-
ation from demographic data, and a com-
puter program to do this is available.
Analogous formulas are derived by Malecot
(1950, 1973; Bodmer and Cavalli-Sforza,
1968; Smith, 1969; Courgeau, 1974).

Approximations

A variety of approximations and simpli-
fying assumptions have been used in theo-
retical work on population structure. For
example, Malecot (1973) assumes that M is
symmetric, that group sizes are equal, and
that (in expectation) r,, = /s, for all i andj.
The last assumption should often hold ap-
proximately, but the others are unfortu-
nately restrictive. We assume instead that
the number of individuals moving from
group ito groupj in a generation is the same
asthe number moving fromj to i. This seems
reasonable if the sizes of local groups are
stable, and in other situations an equilib-
rium theory is of little interest anyway. In
addition, we use the approximation r, ~
rn - r0. In the appendix, we derive expres-
sions for Rand R', and show that

p=1-pV
2n.. R
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and

bre A (- %2 9

where A is the /th eigenvalue of M. Unless
local groups are equally isolated from each
other and exchange between each pair of
groups is symmetric, these formulas are only
approximate. Their accuracy is investigated
|in the applications section below.

Variances of Newborns and Adults

In this section, we investigate the mag-
nitude of the difference between newborn
and adult variances and define an “effective
migration rate,” which summarizes the ef-
fectof migration on p at equilibrium. Equa-
tions (4) and (5) imply that adult and new-
born Wahlund variances are related by

1 —

pr=p + P

2ng/(g -

where n = n.Jg is the average group size.

Except for the factor g/(g - 1), the increase

in p at reproduction is identical to the in-

crease in inbreeding between generations in

a finite population (Crow and Kimura, 1970

p. 320). The effective population size is in-

flated by this amount since we are dealing

with reduced variances. Thus, we refer to

ne = ng/(g - 1) as the “reduced variance
. effective group size.”

Using (4) we can also write

1
" 4m,nl + 1°

(M

where meis the effective migration rate, de-
fined by

g @

Equation (7) is a generalization of Wright’s
(1943) formula for the inbreeding coeffi-
cient. However, Wright’s formula assumes
that the number of groups is large, that the
rate of mobility between each pair ofgroups
(m) is the same, and that m is small. Equa-
tion (7), on the other hand, relies only on
the assumptions that nu= « and that s is
much smaller than p. Unlike Wright’s for-
mula, itis valid for large me. It can be shown
that, under Wright’s assumptions, me ap-
proaches m as m approaches 0, so (7) re-
duces to Wright’s formula when meis small.
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Our me is simply a number that sum-
marizes the effect of mobility on p, and has
no connection with the effective migration
rate defined by Wright (1969). As (8) shows,
medepends on the eigenvalues of M and on
systematic pressure, but does not depend on
population size. The effective migration rate
ranges from 0 to h. The maximal value is
reached when all the A equal zero, which
occurs under “random dispersal,” i.e., when
community of residence is independent of
community of origin. Using (6) and (8), a
little algebra produces

p =p( + 2me. (9)

Thus, the ratio ofadult and newborn W ah-
lund variances depends only on mobility.

Inferring meand n..from Genetic Data

Solving equations (6) and (9) for n.. and
me produces

1-P g- | (10)

and

2 (11)

These equations express n..and mein terms
ofquantities that are readily estimated from
genetic data, and they may prove useful as
estimators. Their statistical properties,
however, are as yet unknown.

A Symmetric Estimator ofthe Migration
Matrix

Before this theory can be used to predict
genetic variation, one must estimate M =
[m,]. The simplest estimator of mn is the
proportion of the adult residents in group j
that originated in group i. Some authors,
however, prefer to impose some kind of
symmetry constraint (Bodmer and Cavalli-
Sforza, 1968; Morton, 1973). These differ-
ing approaches apparently arise from slight-
ly different evolutionary models. All meth-
ods of predicting genetic variation assume
that local group sizes are unchanging. For
some authors, this invariance is a conse-
quence of population regulation (Lalouel,
1977). This approach imposes no con-
straints on the pattern of migration, so we
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refer to it as the “unrestricted” model. Oth-
ers view unchanging group sizes as an ap-
proximation that is reasonable provided that
migration is conservative (i.e., has no ten-
dency to change the sizes of local groups).
This, the “conservative” model, does im-
pose constraints since it implies that 1TN =
N1,where N = [«,] is the matrix of migrant
set sizes, and 1is a column vector with each
entry equal to unity.

The approximations discussed above rely
on the somewhat stronger assumption that
exchange between each pair of groups is
symmetric, i.e., that N = NT. We refer to
this as the “symmetric” model. Note that
itdoes notimply that M is symmetric unless
local group sizes are equal. Let a;j = w,mu
denote the joint probability ofbeing in group
i before migration, and in groupj after. The
symmetric model imposes g(g - 1)/2 con-
straints of the form

au= ajr (12)
Since Wj is the marginal probability ofbeing
in the /th group, the au must also satisfy g
constraints of the form
*=2X
j
None ofthe estimators that have previously
been proposed satisfy all of these con-
straints.

Let Yjj denote the observed number of
individuals that move from group ito group
j- If mobility among groups follows a Mar-
kov process with transition matrix M = [my],
it can be shown that the unconstrained max-
imum likelihood estimate of mit is thy =

ij/2 Yy (Smouse and Wood, unpubl.). This

(i3)

j
estimate employs g constraints, since
the sum of each column must equal 1. It is
appropriate under the unrestricted model,
but it does not satisfy the constraints im-
posed by the conservative or symmetric
models. The easiest way to obtain a sym-
metric estimate of M is to replace Y,j and
Yjj by their average, and then compute M
as above (Bodmer and Cavalli-Sforza, 1968;
Morton, 1973). Although this estimator sat-
isfies (12), it does not satisfy (13), and it is
not consistent with any model that we know
of.

To obtain an estimator that obeys both
(12) and (13), we estimate ai}first, and then
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use the relation mu = dy/Wj to obtain M.
The log likelihood of our observations is

1 =22 Yiloga,
/= A Jlog a}

+ 2 _ iMu - g,
i+j

where the \p,/s are Lagrange multipliers
(Chiang, 1974). Maximum likelihood esti-
mators of ay can be obtained by setting the
partial derivatives with respect to a0and \p0
equal to zero. We find that

ad 20/, - \pu + xPj,)’

and

fe - " .

Hence, the maximum likelihood estimate
of mjis

The \pi, obey

1+ 1"

They can be estimated by starting with a
trial value (say \ou=" =2 YO0, and ap-

ij
plying this relation iteratively. In our ex-
perience, this algorithm usually converges
rapidly, but we have no guarantee that it
will always do so. A computer program for
doing these calculations is available from
the authors.

Application to Human Migration
Data

The theory developed here avoids the ef-
fects of several factors that have reduced
the realism of previous versions of the mi-
gration matrix model. To assess the mag-
nitude of these effects, we analyzed pub-
lished migration data for several human
populations, listed in Table 1. In most cases,
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the raw migration data were cross tabula-
|tions of birthplace against residence, or of
jparent’s birthplace against offspring’s birth-
| place. For the Bundi, however, the raw data
‘comprise a matrix whose (/th entry is the
number of husbands in clanj whose wife is
of clan i. This matrix was converted to the
lorigin-residence format by adding the col-
umn sums to the main diagonal. Local group
sizes for the Gidra and Oxfordshire could
notbe found in published literature, so these
iwere approximated by the harmonic means
of the row and column sums of the raw
migration matrices (N). Consequently, re-
sults for these populations are tentative.

The migration matrix for Bougainville Is-
Iland is not irreducible, as our theory re-
quires; four of the villages are completely
isolated from the others. We applied our
formulas to these data anyway, but also ana-
lyzed the largest irreducible subset of the
Bougainville villages.

To obtain numerical results, we replace
the symbol n.. in our formulas with esti-
mates of the variance-effective population
size (Crow and Kimura, 1970), taken as one
third the actual population size. This pro-
cedure is only an approximation both be-
cause the estimates of variance-effective size
are crude and because our analysis assumes
that the variance-effective size is equal to
the actual population size.

Effect of the Life Cycle. —Equation (19)
(see Appendix), which refers to adults under
life cycle B is nearly identical to Carmelli
and Cavalli-Sforza’s (1976) equation 1.17,
which refers to adults under life cycle A.
Consequently, life cycles A and B have sim-
ilar implications for the differentiation of
local groups at the adult stage. Conclusions
about the genetic statistics ofadults are little
affected by assumptions about the life cycle.
They do, however, affect conclusions about
newborns.

The Difference between Newborns and
Adults. —Equation (9) indicates that varia-
tion of newborns exceeds that of adults by
a factor of 1 + 2mec. Values of mecalculated
from the symmetric estimate of M can be
found in Table 1, along with g (the number
of local groups), 5 (estimated as the fraction
of external migrants), and ne (estimated as
one-third the census size of the total pop-
ulation divided by g — 1). Effective migra-
tion rates for the human populations we
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Table 1. Number of groups (g), systematic pressure
(s), effective group size (ne), and effective migration
rate (me) in several human populations.

m

Populaiion S ne s*o i =0
Aland1

All periods 12 0.028 581 0.160 0.130

Pre-1900 11 0.021 607 0.102 0.069
Bedikb 6 0.018 113 0.227 0.213
Bougainvilleo

All groups 17 0.250 52 0.278

Subsetd 14 0.250 54 0.294 0.045
Bundie 15 0.122 114 0.325 0.247
Gainjf 1 0.119 32 0.284 0.201
Gidrag 13 0.050 50 0.143 0.078
'Kungh

All groups 9 0.010 125 0.270 0.262

Subset1 6 0.010 140 0.294 0.288
MakiritareJ 6 0.278 88 0.279 0.033
Oxfordshirek 8 0.353 133 0.326 0.051
Papago1 10 0.080 189 0.247 0.184

3Jorde, 1979; Jorde et al., 1982.

bJacquard. 1974; Langaney and Gomila, 1973.

c Friedlaendcr, 1975.

d The largest irreducible sei of groups on Bougainville Island. Villages
Nupatoro. Turungum, Moronei, and Old Siwai are excluded.

¢ Malcolm. 1970; Malcolm et al., 1971.

fWood el al., 1982; Wood, 1986.

£Ohlsuka et al.. 1985

N Harpending and Jenkins. 1974.

1Six relatively “pure” !'Kung local groups.

JWard and Neel. 1970

k Hiorns et al., 1969.

1Workman and Niswander, 1970; Workman et al, 1973.

studied range between 0.10 and 0.33, so
Wahlund variances of newborns should ex-
ceed those of adults by 20 to 70%. Where
mobility is great, me can be as large as Vi,
so p' may be twice as large as p. Variation
ofnewborns will be substantially greater than
that of adults unless meis small. These re-
marks also apply to metric characters since
the variance among groups is proportional
to p for any neutral metric character with
an additive genetic basis (Wright, 1951;
Rogers and Harpending, 1983). Thus, un-
less only an order of magnitude estimate is
wanted, the genetic variance of newborns
should not be confused with that of adults
in populations whose life cycles resemble
model B. The discrepancy between new-
borns and adults is undoubtedly smaller in
studies of variation at larger scales of dis-
tance, since there is less mobility between
continents than between neighboring vil-
lages.

When genetic data are collected, some in-
vestigators sample only adults, while others
sample individuals of all ages. Since there
can be a substantial difference between the
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Table 2.
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A comparison of p and p using the unrestricted (U), symmetric (S), and approximate (A) formulas.

For each population, systematic pressure (s) is set to zero for one run and to the fraction of external migrants

for the other.

Newborms
Population S u S
Aland
All periods** 0.000 0.006 0.004
0.028 0.004 0.003
Pre-1900 0.000 0.007 0.007
0.021 0.005 0.005
Bedik* 0.000 0.016 0.015
0.018 0.015 0.014
Bougainville
All groupsf 0.000 0.335 0.279
0.250 0.024 0.023
Subset 0.000 0.164 0.099
0.250 0.022 0.022
Bundi** 0.000 0.032 0.013
0.122 0.013 0.010
Gainj** 0.000 0.053 0.053
0.119 0.040 0.040
Gidraff 0.000 0.076 0.068
0.050 0.043 0.042
'Kung
All groups** 0.000 0.011 0.012
0.010 0.011 0.011
Six groups** 0.000 0.009 0.010
0.010 0.009 0.010
Makiritare* 0.000 0.073 0.081
0.278 0.014 0.014
Oxfordshireff 0.000 0.044 0.039
0.353 0.008 0.008
Papago** 0.000 0.012 0.010
0.080 0.008 0.008

Adults
A u S A
0.004 0.005 0.003 0.003
0.004 0.003 0.003 0.003
0.007 0.006 0.006 0.006
0.005 0.004 0.004 0.004
0.015 0.012 0.010 0.010
0.014 0.011 0.009 0.010
— 0.328 0.272
0.026 0.014 0.014 0017
0.102 0.156 0.091 0.094
0.025 0.013 0.013 0.016
0.013 0.028 0.009 0.009
0.011 0.009 0.006 0.007
0.053 0.038 0.037 0.038
0.042 0.024 0.024 0.027
0.070 0.067 0.059 0.061
0.044 0.033 0.032 0.034
0.012 0.007 0.008 0.008
0.011 0.007 0.007 0.007
0.010 0.006 0.006 0.006
0.010 0.006 0.006 0.006
0.083 0.068 0.076 0.078
0.016 0.008 0.008 0.010
0.039 0.040 0.035 0.036
0.009 0.004 0.004 0.006
0.010 0.009 0.007 0.007
0.008 0.006 0.005 0.005

* Hypothesis that underlying pattern of migration is symmetric and consistent wiih census sizes of local groups can be rejected at the 0,05

significance level.
**The hypothesis above can be rejected at the 0.005 level,
t Algorithm did not converge, and was stopped after 700 iterations.

tT Local group sizes were approximated by the harmonic mean of row and column sums of the raw migration matrix (M) since independent data

were unavailable. No significance test is possible.

genetic variances of adults and newborns,
the age structure of the sample from which
genetic data are obtained is an important
confounding influence.

Effect ofthe Approximations Used.—Ta-
ble 2 presents predictions of p and p' for
several human populations. For each pop-
ulation, there are two rows, one for the val-
ues expected in the absence of systematic
pressure (s = 0), and one for the values ex-
pected if s is equal to the frequency of ex-
ternal immigrants. The “unrestricted” and
“symmetric” columns were computed it-
eratively using equations (17) and (18), and
the “approximate” columns were computed

using (4) and (5). The “unrestricted” col-
umns are based on the restricted estimate
of the migration matrix, and the “symmet-
ric” and “approximate” columns are based
on the symmetric estimate of M.

The approximate predictions involve the
additional assumption that s is much small-
er than p. This assumption fails, however,
for all groups except the !Kung, as indicated
by column “s” of Table 2. Nonetheless, the
symmetric and approximate predictions are,
with one exception, in close agreement, in-
dicating that our approximate formula is
remarkably robust to failures of this as-
sumption.
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The second eigenvalue (X2) of the symmetric estimate of M, half-life (HL) of convergence in the

[absence of external migration, p as predicted by migration data for newborns (N), adults (A), and by previous
[studies (P), and published estimates of p from genetic data.

1 Population ~ HL
IKung (subset) 0.829 2
Bedik 0.878 3
Gainj 0.899 3
IKung (all) 0.890 3
Papago 0.911 4
Bundi 0.916 4
Aland (all) 0.944 6
Gidra 0.981 18
Aland (pre-1900) 0.982 19
Makiritare 0.986 24
Bougainville (subset) 0.992 43
Bougainville (all) 1.000 00

al. W. Wood. pers. comm.

The only substantial difference between
the symmetric and approximate predictions
occurs with the full Bougainville data set,
which violates our assumption that the mi-
gration matrix is irreducible. The numerical
results for this data set should be regarded
with profound suspicion, and we provide
them only as an example of how our for-
mulas behave when applied to inappro-
priate data.

Effects of Different Estimators of M .—
The only appreciable discrepancies in Table
2 are between the unrestricted and sym-
metric columns, and are especially pro-
nounced when systematic pressure is ig-
nored (i.e., when s = 0). They may be due
either to asymmetric migration or to dis-
crepancies between the census sizes of local
groups and the group sizes implied by the
unrestricted estimate of M. Since both es-
timators are maximum likelihood esti-
mators, a likelihood ratio test (Rao, 1973)
with g(g — 1)/2 degrees of freedom can be
used to test the hypothesis that the under-
lying pattern of migration is symmetric and
compatible with census sizes oflocal groups.
It was possible to reject this hypothesis (P <
0.05) in most of the matrices studied (see
Table 2). Thus, discrepancies between the
symmetric and unrestricted columns are not
surprising.

The difference between symmetric and
unrestricted predictions is often small, even
when migration does not conform to our
assumptions. Thus, our results are reason-

Migration data

N A P Genetic data
0.010 0.006 0.004 0.0067
0.014 0.010 0.022 0.012
0.042 0.027 0.0201 0.03323
0.011 0.007 — —
0.008 0.005 0.0077 0.0208
0.011 0.007 0.002 0.008
0.004 0.003 0.013 0.0097
0.005 0.004 — —
0.016 0.010 — —
0.025 0.016 - -
0.026 0.017 0.0337 0.0477

ably robust to minor asymmetries in the
pattern of migration. In some populations,
however, the difference between symmetric
and unrestricted predictions is large. For the
Bundi, the unrestricted model yields a pre-
diction that is three times as large as that
ofthe symmetric model. For the irreducible
subset of the Bougainville villages the pre-
diction of the unrestricted model is larger
by about 65%. Curiously, this is one of the
cases in which it was not possible to reject
the hypothesis that migration conforms to
our model (P = 0.40). Thus, although the
unrestricted and symmetric estimates of M
lead to substantially different predictions of
p, there is little reason to prefer one to the
other. The symmetric estimate is in much
better agreement with that obtained from
genetic data for the full set of villages (p =
0.0477, Friedlaender, 1975).

Even when the symmetric model can be
rejected, it is not clear that the unrestricted
model is more realistic. Although it makes
no assumption about the pattern of migra-
tion, it does assume that group sizes are
prevented from changing by population reg-
ulation. The changes in group size produced
by migration each generation must be re-
versed by differential mortality and fertility
of local groups. When migration is highly
asymmetric, this requires high fecundity, a
questionable assumption in species that re-
produce slowly, such as our own. Thus, the
unrestricted model may not be more real-
istic. The symmetric estimate of M is prob-
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ably more reliable since, involving fewer pa-
rameters, its sampling variance must be
smaller. We suspect that the symmetric es-
timate is less sensitive to “noise” in the data
and will often be closer to reality even when
the underlying pattern of migration is mod-
erately asymmetric.

Convergence of Reduced Variances. —
Unless the environment is extremely stable,
natural populations are unlikely to be close
to equilibria that take dozens ofgenerations
to reach. As shown in the appendix, p con-
verges half way to its equilibrium value in
log('/2)/2 log [(1 —s)X generations. The half-
life of convergence for several human pop-
ulations is tabulated in Table 3, assuming s
to be zero and using the eigenvalues of the
symmetric estimate of M. Even without
systematic pressure, most of these popula-
tions approach equilibrium rapidly. The
half-life of convergence is often less than
five generations, and convergence is even
faster for realistic values ofs. Thus, there is
reason to be optimistic about the relevance
of this theory to human populations. Sim-
ilar results have been reported by Wood
(1986).

Comparison with Genetic Data.—In Ta-
ble 3, predictions of p and p' obtained from
(7) and (9) are tabulated along with the pre-
dictions of previous studies and some es-
timates of p from genetic data. Except for
the genetic value for the Bedik, which was
computed from data in Jacquard (1974), the
genetic values are also from previous stud-
ies. The figure for Bougainville in the “pre-
vious studies” column was calculated, using
(3), from Friedlaender’s (1975) published R
matrix.

Except for Aland and Bougainville, our
results fit the genetic data better than do the
predictions of previous studies, especially
in those populations where convergence is
fastest. In the populations with fastest con-
vergence, the estimate of p obtained from
genetic data falls between the values pre-
dicted for newborns and adults. Where con-
vergence is slower, the fit between obser-
vations and predictions is less impressive.
This is to be expected for several reasons.
Obviously, populations that converge slow-
ly are less likely to be at equilibrium. Even
at equilibrium, moreover, our model is
probably a poor description of such popu-
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lations. As discussed above, our treatment
ofexternal migration is most appropriate in
populations that are relatively isolated from
the outside world. When the effect of ex-
ternal migration is large compared with that
of local migration, local genetic structure is
strongly influenced by factors that are ig-
nored by our model. Notice that, for most
populations in Table 2, there is little differ-
ence between the predictions of p and p'
obtained by setting s = 0, and those ob-
tained with realistic values of s. In these
populations, local genetic structure is dom-
inated by the effects of local mobility and
is little affected by assumptions concerning
s For the Papago, Aland (all periods), the
Gidra, the Makiritare, and Bougainville
(subset), the values of p predicted without
systematic pressure exceed those with sys-
tematic pressure by 33%, 23%, 79%, 678%,
and 507%, respectively. The populations in
which the effect of systematic pressure is
largest are also those that fit our theory most
poorly.

Inferring mE£and n..from Genetic Data. —
We know of only one population for which
published data allow estimates ofn.. and me
to be made from (10) and (11). Workman
et al. (1973) published two estimates of p
for the Papago, one computed by assigning
individuals to village of origin, and the oth-
er by assigning them to village of residence.
These are probably fair approximations to
p' and p. Their figures are p' = 0.0208 and
p = 0.0162, and there are 10 groups in their
sample. The estimate obtained from (10) is
h.. = 962. The census size of this population
is 5,102 and Workman et al. (1973) used
one-third the census size as a rough estimate
of effective size. Equation (10) suggests that
their estimate may have been too large. The
estimate ofeffective migration rate obtained
from (11)isme= 0.142, in only rough agree-
ment with that obtained, using (8), from the
migration matrix (see Table 1). This anal-
ysis should not be taken too seriously, since
the statistical properties of (10) and (11) are
as yet unknown.

This method is most likely to be useful
with alleles of intermediate frequency since
rare alleles provide little information about
p. Slatkin (1981, 1985) has developed a
method for estimating mobility from ge-
netic data that should work better with rare
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alleles and distantly related populations. An
alternative method has been developed by
Morton (1982).

Discussion and Conclusions

In humans and many other species, mor-
tality is concentrated early in the life cycle
and is low during the ages of dispersal and
reproduction. Yet precisely the opposite is
assumed by classical population-genetics
models of migration and genetic drift. We
have developed a theory incorporating a life
cycle that is more appropriate for humans
and species with similar life cycles.

These differences in the life cycle turn out
to have a substantial effect on genetic sta-
tistics referring to newborns (i.e., individ-
uals before migration). The expected value
ofro(our synonym for Wright’s fvr) of new-
borns can be twice as great as that ofadults.
On the other hand, these differences in the
life cycle have little effect on genetic statis-
tics of adults.

These results imply that, in species like
our own, geographic variation will appear
larger if newborns are sampled for genetic
data than if only adults are sampled. Thus,
the age structure of the sample is a potent
confounding influence in studies of popu-
lation structure. This remark also applies to
guantitative characters with additive ge-
netic bases, since among-group variance in
such characters is proportional to p (Wright,
1951; Rogers and Harpending, 1983).

We define a new measure of mobil-
ity, the effective migration rate, and show
that Wright’s (1931, 1943) formula, p =
(4neme + 1) 1 applies more generally than
has been appreciated. An estimate of mecan
be obtained either from M or from genetic
data, and this statistic should be useful for
comparisons between populations. Unlike
most statistics used in studies of population
structure, it does not confound the effects
of mobility and group size.

Some authors predict genetic variation
using symmetrized estimates of the migra-
tion matrix and others use unconstrained
estimates. These differences arise from dif-
ferences in the evolutionary models being
used, and can lead to substantially different
answers, even when the data provide no ba-
sis for preferring one to the other. Hence,
some of the differences between empirical
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studies may arise from the statistical meth-
ods that are used. To resolve this problem,
we introduce a maximum likelihood esti-
mator of the migration matrix that is com-
patible with the assumptions of our model.

In most of the populations studied, the
predictions of our model are closer to es-
timates ofp obtained from genetic data than
are those of previous versions ofthe migra-
tion matrix model. The genetic estimates
frequently fall between the values predicted
for adults and newborns. The fit is not as
good in populations where local migration
is weak compared to external migration, but
this is as it should be since our model is
most appropriate for populations that are
relatively isolated from the outside world.

Although the age structure of the sample
has been a confounding influence, it is po-
tentially rich in information. If genetic sta-
tistics are computed separately for individ-
uals before and after migration, the
difference between p and p' can be used to
estimate both effective population size and
effective migration rate directly from ge-
netic data. ,
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Appendix

In this appendix we modify the recurrence equations
ofMalecot (1950), Bodmer and Cavalli-Sforza (1968),
and Smith (1969) to deal with: a) the stochastic cffccts
of migration implied by model B of the life cycle (see
above), b) variance about p rather than about tt, and
c) both newborn and adult allele frequencies. We derive
expressions for the equilibrium matrix of genetic co-
variances and for the Wahlund variances of newborns
and adults.

Definitions

The expectation of a random variable will be de-
noted by a superposed tilde, i.e., x = E:v-. The set of
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individuals that disperses from the ;'th to the ,/th local
group will be referred to as the “yth migrant set.” Let

ny = the size of the z/th migrant set,

n4 = 2 n«the size °f grouPj after migration,

nim= 2 np size of group i before migration,
i

ne = 2 nu>the total population size,

N = [ny], a matrix of migrant set sizes, and

m,, = n”?/n.j, the fraction ofthej'th local group com-

prising immigrants from group i.

As is customary, we assume that the mJand nu are
constant from generation to generation, and that the
stochastic matrix M = [m-] is ergotic and aperiodic
(so that it has exactly one eigenvalue equal to unity).
We also define

the frequency of allele A in the i/th migrant
set,

the frequency of A in local group i prior to
migration,

9 =

g. =

qj = 2 the frequency of A in the jth local
group among adults after migration among
local groups,

the proportion of each local group cxchangcd
each generation with a “continent” with un-
changing allele frequency ir,

the frequency of allele A among external mi-
grants to group /, and

the allele frequency in groupj after both local
and continental migration.

Where it is necessary to distinguish quantities referring
to particular generations, we write pf\ g<}\ etc.
These definitions and assumptions imply that

pu+)= (i - s)2 + suf' " (14)

The moments of pj depend on those of the qr. Ifselec-
tion is absent and migratory propensities are indepen-
dent of genotype, then the conditional expectation of
g,[*~n, given the genetic structure of the previous gen-
eration, isp,<Q the frequency ofA among adults in group
i in the previous generation. Consequently, equation
(14) can be rewritten in matrix notation as

pl S= @ - 5)M>W

+ Sirl + €4 (15)
where 1
p = a column vector of group allele frequencies
after local and continental migration,
e«+n = pU+) — E{p(~l)|pw}, a column vector of de-
viations produced by genetic drift, and
1 = a column vector with each element equal to

unity.

This recursion is fundamental to the migration matrix
model as developed by Bodmer and Cavalli-Sforza
(1968) and Smith (1969). These authors and others
after them have used this equation to study dispersion
of group allele frequencies about w, the continental
allele frequency. Since ir is ordinarily unknown and
unknowable, however, empirical studies of population
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structure necessarily deal with dispersion about p, the
current population mean allele frequency.
Let

tv, = n.Jn.., relative population size,

w — [wi>a column vector of relative population
sizes,

wTp, the weighted mean of group allele fre-
quencies,

the conditional expectation of «T, given p',
that is, the matrix of variances and covari-
ances of the effects of one generation ofgenetic
drift, and

the expectation of «Tp(1l - p), a matrix of
normalized variances and covariances.

p =

Note that (I - 1wT)p is a vector of deviations from
p, where the superscript “T” denotes matrix transpose,
and | is the identity matrix. We define a vector of
normalized deviations,

~ (- 1whp
Z 01 - pp'

Applying this transformation to both sides of (15) pro-
duces

=#>= (1 - LT
+ (12 BVIESHI - p)]-h,

where L = M(l - wlIT). Our assumption that M is
ergotic and aperiodic implies that it has exactly one
eigenvalue equal to unity and that its associated right
and left eigenvectors are w and 1T, respectively. Con-
sequently, L = M - wV. Note that (I - >T)2= (I —
wlT), implying that L' = M'(l - wIT). It is convenient
to define the zero’th power ofLas L° = M°(l - >VIT) =
I - wV.

The normalized dispersion matrix is R = [rtf] = zZT,
and follows, in expectation,

R-t>= (1 - s)TLTR«L

+ (L°)TCL®. (16)
Equation (16) can be applied iteratively to obtain, for
large t,

rutd= 2 (1 - s)2(LOTCL". an

This equation differs from the analogous formulas of
Malecot (1973), Carmelli and Cavalli-Sforza (1976),
and Smith (1969) only in the definitions of L and C.
If the form ofC is known, successive terms in (17) can
be added in a computer program until the result no
longer changes. The result is a prediction of the nor-
malized genetic dispersion matrix at equilibrium be-
tween migration and genetic drift.

The Effect of One Generation of
Genetic Drift

Under life cycle B, genetic drift occurs during mi-
gration as well as during population regulation, and the
variance introduced depends on N, the matrix of sizes
of migrant sets. We assume that mating within local
groups is random so that the effective size of local
groups (Wright, 1969) is the same as their actual size,
and also that individuals migrating from i toj are a
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random subset of group i. Each gene can therefore be
treated as an independent, random draw from the gene
pool of group i in the previous generation, and the
number of copies of allele A among migrants from i to
j in generation / + 1 is binomially distributed with
parameters 2nOand pf'\ Thus, E{oV'+)} = pf-'\ and
Vari®y('+,)} = p/°(l - p,()/2nw

We are interested in the dispersion of p, which de-
pends on the first and second moments of

1= (i - s) 2 miAgj pn
+ s(uf’+') - .

The expectation of tj is zero, as are the offdiagonal
entries of C*. The diagonal entries are

Cl = (1 - sf 2 mi'VaT{qu\pi}
+ s2Var{w,},

(-9
2n..

w1l — 77)
2n., ’

since = n,/n.j. The substitution sp(1 —p) —stt(1 -
) should have little effect on the answer because when
s is small the contribution of this term is negligible and
when it is large p —ir. We also substitutep(1- p) (1 -
0= Pi @ “ Pi)’ where r, is the ;th diagonal entry of
R. With these substitutions,

C * - p(l' P)
2n..

p(1 - p)hj

where hj is the term in brackets above. Thus, the matrix
of variances and covariances of the increments due to
genetic driftis C* = p(1- where H = Diag{/?}
and W = Diagfvi',}.

C is obtained from C* as follows: C = E{«Tp
1 - p)} = E{E[«T|p}/>(1 - P)) = E{C*//5(1 - P))
=C*/p(\ —p) = W~'H, since C*//>(1 ~ P) is a con-
stant. Note that although C is conditioned on p, it is
not a function of p. This implies that p, which is also
conditioned on p, is also independent of p. Our “un-
restricted” and “symmetric” predictions of p for adults
were obtained using this formula and (17), as discussed
above.

Dispersion of Newborn Allele Frequencies

Let p'mdenote the vector ofallele frequencies among
newborns in generation t. Our assumptions about the
life cycle imply that the population regulation com-
ponent of genetic drift occurs at reproduction. Hence,
newborn allele frequencies are related to those of their
parents by p' =p + e, where e is a vector of deviations
due to that component of drift. Under random mat-
ing, the expectation of e, is zero and its variance is p,
(I _ Pi)/2nr. The conditional expectation of e**0
(es+D)T, given p™ is IM'(I —p(,)W_1D, where D =
Diag{(l - r,,)/2n..}. The newborn dispersion matrix is

R'= R + (L°TW-'DL® (18)
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Approximate Results

These results can be greatly simplified if N is as-
sumed symmetric, that is, if the number of migrants
traveling from group i toj in a generation is the same
as the number traveling fromj to  This should often
hold approximately where migration is conservative.
Let A = NiIn... The yth element of A is the proportion
of the entire population that moves from group i to
groupj in a generation, and our assumption implies
that A is symmetric. Itis related to M by M = AW 1

Consider the matrix X = W AW . Since A is
symmetric, so is X, and the spectral theorem (Strang,
1976) ensures that it can be written as X = SA*ST,
where S is an orthogonal matrix of eigenvectors, and
A* is a diagonal matrix of eigenvalues. This im-
plies that the diagonal form of M is M = [WYS]A*
[STW-'] = UA*VT.

We denote the eigenvalues of L and M by X and X*,
respectively, and assume that those of M are indexed
in descending order. 1 and wT are eigenvectors of MT
with eigenvalue X;* = 1, and the definition of L limplies
that they are also eigenvectors of that matrix, but with
eigenvalue X = 0. For i > 1, X* = X, and the corre-
sponding eigenvectors of L and M are identical. Thus,
L = UAVT, where A = Diag{XJ.

In addition to the symmetry assumption, we use the
approximation

2 ~ 2 win=p

Consequently, ht=h = [2n.]~[(I - DAl - p) + j],
and C = AW-1 Note that (L")TW-|L' = VAZ VT. Using
(17) and the formula for the sum of a geometric series,
we have, as t -> 0o

R = VBVT, (19)

where B is diagonal with diagonal entries f3 = 0, and
=(@-p-s2+5
2n. [l - @ - s)2x2
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1-p

2n.l - @ - 822

ifi ¥ 1ands -c p. Equation (19) is not necessarily the
diagonal form of R because, unless group sizes are
equal, the matrix V = W 'S is not orthogonal. On the
other hand, we have found the diagonal form of the
weighted R-matrix, R* = WRW = SAST.

Using the same approximations we obtain, for new-
borns,

R' = VB'VT, (20)

where the diagonal entries of B are 8,' = 0, and
aA-p\2—(—)2%X
P\ 2n./ 1—(1 —s)2X2

These matrices are related to pand p' by p=_
= Trace{R*}, and p’= 2 wfn = Trace{R'*}.

The Rate of Convergence

The convergence of R is governed by the conver-
gence of the  which is measured by

<> _ 0
Nz o = 1- {1 - [(1- NX]ZB
t-1
”%0 id - j)\p '
= [O - A)MZ | |

Since X2is the largest eigenvalue of L, the convergence
of R is asymptotically determined by [(1 - V)XJ2. The
process converges halfway to equilibrium in log(0.5)/
{2 log[(I - 1)X2} generations. If(l - NX2= 0.9, this
half-life is about three generations, and it is only 34
generations when (1 —s)\2 = 0.99. The second eigen-
value is often a good deal less than 1.0 in human data,
S0 convergence is rapid.



