
Personalizing the Web Using Site Descriptions

Vinod Anupam Yuri Breitbart Juliana Freire Bharat Kumar
{anupam,yuri,juliana,bharat}@research.bell-labs.com

Bell Laboratories, Lucent Technologies
Murray Hill, NJ 07974 "

A bstrac t

The information overload on the Web has created a
great need fo r efficient filtering mechanisms. Many sites
(e.g., CNN and Quicken) address this problem by allow
ing a user to create personalized pages that contain only
information that is o f interest to the user. We propose a
new approach fo r personalization that improves on exist
ing services in three significant ways: the user can create
personalized pages with information from any site (with
out being restricted to sites that offer personalization);
personalized pages may contain information from multiple
Web sites (e.g., a user can create a personalized page that
contains not only news categories from her favorite news
sources, but also information about the prices o f all stocks
whose names appear in the headlines o f selected news, and
weather information fo r a particular city); and users have
more privacy since they are not required to sign up fo r the
service. In order to build a personalization service that
is general and easy to maintain, we make use o f site de
scriptions that facilitate access to the data stored in and
generated by Web sites. Site descriptions encode informa
tion about the contents, structure, and sennces offered by a
Web site, and they can be created semi-automatically.

1. In trodu ction

The information overload that we face today on the
Web has created a great need for efficient filtering mecha
nisms that give better and faster access to data. Some sites
(e.g., CNN and Quicken) address this problem by allow
ing a user to create personalized pages that contain only
information that is of interest to the user. Other sites send
notifications when the underlying data changes and some
condition is met. However, there are problems with these
approaches to personalization: 1) personalization is limited
to the information accessible from a single site; 2) person
alization features are not offered by all the Web sites that
might be of interest to a user; 3) since sites that provide
personalization require users to sign up, there are privacy
issues involved — the user needs to divulge personal infor

mation when signing up, and the sites can track the interests
of the user.

In this paper we propose a new approach to person
alization that allows a user to create personalized pages
that contain information from any Web site. The user has
full control over which information is retrieved, and thus
she need not sign-up for any special service. In addition,
personalized pages may include information from multiple
sites (e.g., one’s favorite news categories from her preferred
news source, weather information for her city, and the traf
fic report for her afternoon commute). This service can
also be extended to customize change notifications based
on conditions that may span multiple sites.

Our personalization system, MyOwnWeb, views a per
sonalized page as a set of logical queries against Web sites,
and the user can specify the conditions under which each
query needs to be re-executed and the page refreshed. Each
logical query is translated into a query to a specific Web site
by translating logical attributes of the personalized system
into the actual attributes of a specific Web site. Such an
approach enables user to get information from several Web
sites without requiring the user to know specific address
able attributes that the site may have.

Since Web languages such as W3QL [11], We-
bOQL [14], and WebL [9] provide mechanisms for query
ing the Web, a limited version of this service could be built
using these languages — either allowing users to write a
set of queries, or by providing a set of pre-defined queries
for a user to choose from. Neither alternative is satisfac
tory: whereas the latter is too restrictive (and since Web
sites change constantly, significant effort may be required
to maintain such queries), the former is likely not to be
widely acceptable as these languages can be too complex
for an average Web user.

MyOwnWeb uses site descriptions as a simple and suc
cinct way to represent the structure and contents of a Web
site. These site descriptions are an extension of the naviga
tion maps described in [5], and thus they can be generated
semi-automatically. In addition users (or map builders)
are not required to know specifics of the language that is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276285184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

used for site description specification. Given a set o f such
descriptions, a naive Web user can create queries by sim
ply selecting from site descriptions the contents of interest
without having to specify how they should be retrieved. A
point and click user-interface is provided that lets users se
lect attributes of interest from source pages, and prompts
the user for required input values. In the absence of the
description for a site, our service provides SmartBook-
marks [2], a mechanism that transparently records a se
quence of browsing actions that can be saved and replayed
later.

The rest o f the paper is organized as follows. In Sec
tion 2 we describe how site descriptions are used to model
Web sites, and how they can be used to build personalized
pages. An overview of the MyOwnWeb personalization
system is given in Section 3. Related work and conclud
ing remarks are presented in Sections 4 and 5.

2. M o d e lin g W eb Sources

Several data models to represent the Web have been
proposed in the literature (e.g., [4, 10, 5]). Site descrip
tions based on these data models provide a uniform repre
sentation of sites that is similar to a schema in traditional
databases, and thus simplify querying of described sources.
They are also focused, and need only reflect a set of pages
that contain relevant information and services. Since these
models contain not only information about the contents of
pages, but also information required to navigate through a
set of pages, they can be used for handling data retrieval
and extraction in our personalization service.

The site descriptions used in our personalization ser
vice are an extension of the navigation maps described in
[5]. A navigation map is a collection of Web objects that
represent the portion of a Web site that is of interest to
the map builder. It can be represented by a directed graph
whose nodes correspond to Web pages, and an edge be
tween nodes corresponds to the action that took the user
from one page to another (see Figure 3). There are many
advantages of using this model in a personalization service:
(1) the user can be presented with a visual representation of
the site and its contents, and once the desired information
is selected, the actual navigation process to retrieve the se
lected pages can be generated automatically; (2) since these
maps can be created semi-automatically (by example), one
can potentially create descriptions for many Web sites, and
when the underlying site changes, the descriptions can be
easily updated.

As depicted in Figure 1 (modified from [5]), site de
scriptions are composed of common Web objects. For ex
ample, the web_page object has a url, contents, and a set of
actions; the action object corresponds either to a form or
to a link. In general, there is no restriction on what can con
stitute an action. A set of actions can be further extended
with legitimate actions that each source page may offer. An

Heb_page[
address^-url:
contents=^string;
actions=££*{action}
extracted-attr=& {output-attr}]',

action[
object=^{link,form}
source=Hirl;
t ar get s —»web_page;
doitd attrValPair^-web page]

submit_form : action
follow_link : action
link[

name=>-string;
address=>url |

form[
cgi=Hirl;
method=>meth;
mandat or y=££* input _attr;
opt i onal=S£- input _attr;
state=£>attrValPair |

attrValPair[
attrName—̂ string;
type—)-widget;
default—)• Object;
value—> Ob j ect]

Declaration of Class WebPage
URL of page
HTML contents of page
List of actions found in the page
Attributes extractable from page
Declaration of Class Action
Object that action applies to
Page where the action belongs
Where this could lead us
Method to execute action
Form fillout is an action
Following a link is an action
Declaration of Class Link
Name of link
URL of link
Declaration of Class Form
URL for submission of this form
Submit Method of this form
Mandatory attributes of this form
Optional attributes of this form
State of form (name-value pairs)
Declaration of Class AttrValPair
Name of the attribute part
Checkbox, select, radio, text etc.
Default value of the attribute
The value part

Figure 1. Data Model for Navigation Maps

action has a source (the Web page where it appears), a set
of possible targets (the Web pages it can lead to), and a
method to execute the action (for example, follow link or
fill form). Figure 4 shows an instance of a navigation map
for www. qu icken . com.

Even though navigation maps provide a good frame
work for retrieving Web pages, issues related to data ex
traction are not discussed in [5]. In what follows, we detail
our extensions to handle data extraction.

Data Extraction In order to provide filtering in our per
sonalization service, retrieved Web pages are further pro
cessed and attributes of interest extracted. For exam
ple, if one is interested in the prices of a set of stocks,
he/she should be able to select from the page returned by
q u ic k e n . com just the table with the prices (and omit
all ads and other information that is returned together with
the table). Sometimes though, fine-grained data extraction
may be required. For example, the user may want to see
only the B id and Ask prices for a stock, and omit all the
other information. Such an extraction can be done by se
lecting attributes of interest from the source pages using a
point-and-click interface.

As is the case for data retrieval, data extraction should
be easy to specify (so that it is feasible to cover a significant
number of pages) and it should be robust, that is, it should
not break (easily) when changes occur to Web pages. There
is a vast literature and a number of systems have been pro
posed for performing data extraction on structured and un
structured text (see e.g., [1, 3, 17]). Here, we restrict our
discussion to data extraction from Web pages that contain
some structure. We also assume that Web pages are either
compliant with the HTML 4.0 specification, or are well-

2

formed XML.*
Various formalisms have been proposed to specify data

extraction functions. Some (e.g., [17]) are based on exten
sions to the the Document Object Model (DOM) [6], which
is an API for accessing elements in a page. The use of
DOM API (or its extensions) has severe drawbacks. Since
elements are accessed by their absolute position in the page
structure, the specification is not robust, and minor changes
to the page structure can cause such specification to break,
or reference elements different from the intended ones.

Instead of inventing a new formalism for data extrac
tion, we use the XPointer language [12]. Our motivation
for choosing this language is the following. XPointer is a
path expression language designed for referencing objects
within Web pages. Since it has been designed for HTML
and XML pages, it allows more sophisticated queries to be
asked than permitted, for example, by WebL [9]. More
over, it is also possible to create XPointers that can be
tested for whether they identify the same object when fol
lowed, as they did when they were created. Thus it is easy
to check when an XPointer breaks, as a result of changes
in the page structure. Finally, XPointer is currently be
ing reviewed as possible standard for referencing objects
in Web pages. Acceptance of this language implies that
we can ride the technology curve (with regards to parsers,
tools, etc.) for free. XPointer expressions can be semi-
automatically generated via a point-and-click interface in a
spirit similar to that in W4F [17].

Extensions to Navigation Maps We extend the naviga
tion maps of [5] with two new objects: input attributes
(input_attr) and output attributes (output_attr) — see
Figures 1 and 2. In our site descriptions, each form object
has a set of input attributes, their corresponding types and
information about whether the attribute is multi-valued.

Each Web page object has a set of output attributes that
can be extracted from that paget. Associated with each at
tribute, is an XPointer specification of how the attribute is
extracted from the page. Note that it is important to con
sider complex attributes. For example, consider a Web site
that offers a form interface to retrieve a list of advertised
used cars. Each item in this resulting list contains the price,
year, and dealer information for a car. In order to extract
this information, it is necessary to know the exact structure
of the list of tuples returned.

Before presenting the model for attributes, we first dis
cuss the different forms of attributes that we consider. We
assume that input attributes can only be scalar (atomic),
whereas output attributes can have complex types. More
over, the type of attributes is always known (e.g., whether
an input attribute is s t r in g , char, in t e g e r , f l o a t

*It is worth pointing out that even though many existing pages are ill-
formed, tools are available (e.g., Tidy [16]) to fix such pages.

^Note that some Web pages have no extractable attributes.

etc.). Input attributes can either be single-valued or multi
valued. For example, an auto classifieds Web site may al
low multiple car models to be specified in a query. Multiple
values specified for an attribute are assumed to return the
union of the results obtained by specifying each of those
values separately.

The complete attribute specification is presented in
Figure 2. The input attributes are defined by their type
(we only allow atomic input attributes), and a boolean
flag specifying whether they are single or multi-valued.
The specification also maintains a binding between their
ra n ge .va lu e (the value visible to the user while brows
ing), and their b in d .v a lu e (the internal value actually
submitted to the Web site). The form name used by
the attribute is also stored (s im p le _a ttr). In certain
cases (e.g., www.newsday.com), some attributes have
a different form name for each distinct attribute value
(v a lu e _ a ttr).

Output attributes are described by their type, and an
XPointer expression. Each expression has a locator source
which denotes the starting point of the tree traversal. For
complex attributes (list or structures), the starting position
of the entire attribute itself is identified (e.g., the starting
position of a record) and used as the implied locator source
for the sub-attributes. For list attributes, the span con
struct [12] allows specification of the starting point of each
item in the list.

Optimizing Site Descriptions Web sites have been de
signed for human use, and a lot of emphasis is placed on
visual presentation and ease of use rather than rapid access
to the underlying information. As a result, a user might
need to traverse multiple links and fill out various forms in
order to get to the information he/she needs, even though

3

http://www.newsday.com

there might be a single cgi-script managing most of the in
teraction. For example, we examined ten Web sites that
provide information about cars. All the sites require multi
ple interactions (to specify the filtering criteria such as the
make and model of the car, price range etc.) to get to the de
sired information. However, in nine out of those ten sites,
there is a single cgi-script that could be called by specify
ing all the filtering criteria as parameters to the script, re
sulting in the same information being retrieved. Since the
actual information (e.g., classified ads) is usually stored in
a database, it is quite natural to have a single cgi-script that
accesses the database using various filtering criteria.

Recall that site descriptions are created interactively,
thus the navigation processes derived from them mimic
user behavior. Even if there is a single underlying cgi-
script, the derived process requires multiple links to be fol
lowed and multiple forms to be filled out. In most cases (as
illustrated above), the maps can be flattened so that a sin
gle request-response interaction is required. Not only does
this result in better performance, it also increases robust
ness since changes to the intermediate links/forms do not
affect the data extraction process.

Another reason for flattening the navigation maps is
that following multiple links/forms is sometimes difficult
in the presence of client-side maps or dynamic content
(Javascript, ActiveX controls, plugins, etc.), as that re
quires the personalization client to have a very tight inte
gration with the Web browser. Moreover, generating the
navigation map becomes more complex since additional
action types (rather than simply following links or filling
forms) are required. In the extreme case, it might be nec
essary to capture the exact mouse clicks made by the user.
Since a flattened map makes use of only the standard HTTP
protocol to interact with a Web site, it enables the creation
of lightweight Web clients. Note that in some cases, mul
tiple interactions might still be required. For example, the
first access might generate a userid that is used in the re
mainder of the interaction. However, this does not prevent
the rest of the navigation map to be flattened out.

Flattening navigation maps is made difficult by the fact
that the Web server could be maintaining (and updating)
some server state during the entire interaction. However,
for sites where server state is not maintained, or it is not
essential for the interaction, the corresponding navigation
map can be flattened if all final GET/POST requests re
fer to the same cgi-script. A reasonable heuristic to flatten
navigation maps is as follows.

• For each set of input attributes, choose values for these
attributes that fall into their range (if a set of possible values
for an attribute is known, then one of those values should be
picked). The navigation map is then traversed using those
values.

• If the final GET/POST method contains the attribute as

signment (fn am e = bname), where fn a m e is the at
tribute form name, and bname is the binding value for the
chosen range value, then the navigation map can be col
lapsed.

3. C rea tin g Persona lized Pages
In what follows we describe in detail MyOwnWeb, a

site independent personalization service that allows users
to combine information from multiple Web sites, as well as
customize change notifications.
The basic idea The basic idea of MyOwnWeb is very
simple: a personalized page is viewed as a set of Web
queries. Queries can be as simple as a URL, which returns
the Web page corresponding to the URL, or they can be
complex as “ find the prices of all stocks from the Quicken
Web site that are also listed on CNN headlines” , which re
quires information from multiple sites to be extracted and
combined.
The system A straightforward implementation of a gen
eral personalization system can use existing Web query lan
guages — an interface can be provided for users to input a
set of queries. However, reported experiments [13] suggest
that navigation languages are hard to master. Another al
ternative would be to let users choose from a set of fixed
queries (written by an expert), but this is too restrictive
and besides, since Web sites change constantly, maintain
ing such queries can be an arduous task.

pi quicken.com

f l sytt b o l - ?

p2 quicken.com/investment7quotes

Figure 3. Simplified Graph of Navigation Map
for www. q u ic k e n . com

MyOwnWeb uses site descriptions to guide the user
in choosing the contents to be included in a personalized
page. As described in Section 2, site descriptions encode,
in a succinct way, information about the contents, structure,
and services offered by a site. Figure 3 shows a (simplified)
graph of the navigation map of www. qu icken . com, and
Figure 4 its corresponding site description. Using the de
scription in Figure 4, one is allowed to enter one or more
stock symbols to retrieve a table with the stock prices.

In order to build a personalized page, a user is pre
sented with descriptions of Web sites (see Section 2 for
details), and may select the nodes (corresponding to Web
pages) that contain information relevant to him/her, provide
bindings for the queryable attributes, and select specific
output attributes to be displayed.* Alternatively, a graphi-

■t-More complex queries that combine information from multiple
sources are also possible (e.g., joins between two sources).

4

http://www.quicken.com

quicken : webpage[
address—̂“quicken, com”
t it le —> “QuickenMainPage”
contents—̂“quickenl. contents”
actions—»-{al}

]
al : action[

form—)-f 1[
cgi—J-get.quotes
method—)• “GET”
mandatory—» {a ttr l}

]source—̂ quicken
target—̂p2

]
p2 : webpage[

addr es s—> “qui cken. com / inve stment /quote s”
t it le —»■ “Quickenquotes”
contents—> “quicken2. contents”
extracted_attribute s —» t icker .table

] a ttrl : simple_attr[
type—J-string
mult i.valued—)-true
attr_form_name—> “symbol”

]
ticker.table : list_attr[

location—Hroot() .string(l, “Bid”) .ancestor(l, TABLE)
span(child(2,TR), child(-l,TR))

item—J-ticker .item
]
ticker.item : record.attr[

location—̂
fields—̂ symbol, last, change, volume, bid, ask

]
symbol : atomic.attr[

location—)-child(l, A).child(l, #text)
type—J-string

]
last : atomic_attr[

location—̂ child(l, STRONG).child(l, #text)
type—̂ string

]
change : atomic.attr[

location—)-child(l, STRONG).child(l, #text)
type—̂ string

]
volume : atomic.attr[

location—̂ child(l, FONT).child(l, #text)
type—J-string

]
bid : atomic_attr[

location—>child(l, FONT) .child(l, #text)
type—̂ string

]
ask : atomic_attr[

location—̂ child(l, FONT).child(l, #text)
type—̂ string

Figure 4. Web Objects for Quicken Site

Figure 6. Personalized Page

5

cal user interface can be generated from the site description
— see Figure 5 for an example.

One important characteristic of Web information is
that it may change frequently. News sites such as CNN
may be updated every hour, financial sites usually update
stock prices every 20 minutes, weather updates come ev
ery 3 hours, online classified ads change daily, and so on.
In order to accommodate this feature, our system lets users
specify for each query the refresh interval, and in case that
is not provided, the default is set to whatever smaller re
fresh frequency appears in the set of pages that contribute
to the query.

An advantage of MyOwnWeb is that unlike existing
personalization services, it does not require a user to sign
up or provide any personal information. As a result, it
is harder for Web sites to track the user’s usage patterns.
Note that there are anonymization services available on the
Web [8] that protect users’ privacy, however, users are still
required to go through the sign-up process for the various
Web sites.

One might argue that the use of site descriptions can be
restrictive, since the user is limited to the descriptions pro
vided by the service. Indeed, we do not expect an average
Web user to create such descriptions, since even though it
is a simple process, it does require some expertise. And al
though site descriptions can be created semi-automatically
by example, it is not feasible to cover the whole Web. In
the case a description is not available for a site or service,
a user can still include information from that site in a per
sonalized page by simply bookmarking the desired page,
using a mechanism we call smart bookmarking [2]. Cur
rently, bookmarking dynamically generated pages is not
always feasible. For example, if the page has been gener
ated by a POST request, referencing the page again (after
the page has expired from the cache) will result in a logi
cal or server error. Moreover, certain sites maintain infor
mation about the current session via dynamically assigned
session-ids. In that case, all the pages accessed (even via
the GET request) will have different URLs if they are ac
cessed at different times. In most cases, such session-ids
are not essential, in the sense that removing them from the
URL still gives the correct page. However in other circum
stances, not specifying them, or using an older session-id,
results in an error. Smart bookmarking circumvents these
problems by providing a record/replay facility that trans
parently tracks the user’s actions, and saves the sequence
of actions to be replayed later.

Implementation issues We now provide an illustrative
example of a possible architecture for MyOwnWeb in the
context of a user browsing on the web with a Java-capable
browser^.

§ Variations o f this architecture are possible, for example, for thin Web
clients such as PalmPilot, Internet ready phones etc.

We assume that there is a Web site that acts as a repos
itory of site descriptions. When a user visits that site, a
signed applet is loaded into his browser, that lists the site
descriptions available in the repository organized hierarchi
cally according to some ontology chosen by the repository
designer. The user can choose one or more descriptions
from that list, enter a URL for a static page, or create a
smart bookmark. When a user chooses a description and
the desired output attributes, she is presented with a set of
input attributes that need to be specified in order to execute
the query against the underlying site. For simplicity, we
assume that personalization queries are against individual
sites. Queries spanning multiple sites can be built using
a variation of query-by-example, which we term web-by-
example.

On specifying the parameters for each query, along
with a refresh frequency, the applet creates a connection
with the browser, through which it is able to modify the
contents of the page displayed in the browser. The applet
then generates a frameset, with each frame in the frame
set corresponding to a personalization query specified by
the user. The URL specified for each frame contains the
complete description of the corresponding query.

When the frameset is initially created, the URL spec
ified by each frame generates a request to the applet. The
applet reformulates the request into one or more requests
to the corresponding target site, based on its site descrip
tion. Once a requested page is retrieved by the applet,
post-processing of the page is performed to extract the de
sired information. Before sending a response back to each
frame, the applet adds an HTTP META tag to the docu
ment with the appropriate frequency at which the the page
should be refreshed. An example of a personalized page is
given in Figure 6.

Note that variations of this architecture are possible.
Even though a small lightweight applet that does not al
low any query reformulation is sufficient in many situa
tions, in general, query reformulation and optimization ca
pabilities are necessary. Adding this functionality to the
applet can considerably increase its size, making it imprac
tical be loaded every time a user wants to change his per
sonalization settings. An alternative architecture can make
use of a Java-based proxy, which the end-user would have
installed locally, to perform query formulation and data ex
traction. The applet described above would simply gener
ate the frameset, with the URLs in each frame referenc
ing a special server address. The proxy, upon receiving an
HTTP request containing that server address, performs the
query reformulation along with the data access and extrac
tion, and returns the contents to the browser.

It is worth pointing out that MyOwnWeb can be easily
extended to provide change notifications to the underlying
information. This can be achieved by simply comparing

6

the results of a query against the results previously saved
for that query. Also note that the ability to perform data
extraction allows us to specify complex notification condi
tions. For example, the user could specify that the frame
containing his portfolio should only be refreshed if a spe
cific stock price increased by 10% (or that an email should
be sent to that effect).

4. R e la ted W o rk
Languages such as WebL [9], W3QL [11] and We-

bOQL [14] have been proposed for retrieving data from
Web sources. Users can write programs in these languages
to access Web sites and extract their contents. In con
trast, our site descriptions are created semi-automatically
and users are not required to know specifics o f a language.
As a byproduct, our wrappers are easier to create and main
tain.

W4F [17] provides a human-assisted interface for cre
ating wrappers. Since it uses extensions to the Document
Object Model (DOM) [6] to access elements in a page, the
generated wrappers are not robust to changes to the struc
ture of the underlying page. In contrast, our system uses
XPointer [12] descriptions, which less likely to break when
pages are modified. Other systems such as [1,3] try to infer
the structure of a document by combining automatic anal
ysis with user input. These systems assume they are given
a Web page and ignore the fact that a complex navigation
process might be required to retrieve such page. However,
their extraction techniques could be used in our system.

A number of languages have been proposed to cap
ture service descriptions and personalization preferences.
WIDL [15] is a proposal pending with the W3C which
attempts to describe services offered by Web sites. Un
like site descriptions, WIDL does not have the concept
of mandatory/optional attributes, and it has no support
for specifying data extraction. Channel definition format
(CDF) [7] is another proposal for personalizing informa
tion received by a user, by allowing the user to specify
channels (essentially, news feeds) that are periodically re
freshed. However, it requires changes at the server side to
support channels, browser support to display channel infor
mation (only Internet Explorer allows this), and the infor
mation the user gets is restricted to what the channel has
to offer. In contrast, site descriptions require no server sup
port, they are browser independent, and the user can choose
whatever information available on the Web.

5. Conclusions and Futu re D irections
In this paper, we use site descriptions as the basis of

a novel approach for creating personalized web pages that
improves on existing services in three significant ways: the
user can create personalized pages with information from
any site; personalized pages may contain information from
multiple Web sites; and users are entitled to more privacy
as they are not required to sign up or provide any personal

information. We also describe a simple extension of the
service to support change notifications based on conditions
that may span multiple sites.

We are currently investigating possible interfaces for
for creating complex Web queries (i.e., allows information
from multiple sources to be combined). The main chal
lenge here is to design an interface that is powerful and ex
pressive, yet easy-to-use for the average Web user. We are
also looking into high-level declarative language for speci
fying the layout of personalized pages.

Acknowledgments: We would like to thank Bob Arlein,
Narain Gehani, Daniel Lieuwen and Kenneth Rodemann
for useful discussions and suggestions on how to improve
our system.

References

[1] B. Adelberg. NoDoSe - a tool for semi-automatically ex
tracting structured and semi-structured data from text doc
uments. In Proc. o f S IG M O D , pages 283-294, 1998.

[2] V. Anupam, J. Freire, B. Kumar, and D. Lieuwen. Smart
bookmarks: Saving time by recording web traversals. Tech
nical report, Bell Laboratories, 1999.

[3] N. Ashish and C. Knoblock. Wrapper generation for semi
structured internet sources. S IG M O D Record, 26(4):8-15,
1997.

[4] P. Atzeni, G. Mecca, and P. Merialdo. To weave the web.
In Proc. o fVLD B , pages 206-215, 1997.

[5] H. Davulcu, J. Freire, M. Kifer, and I. Ramakrishnan. A
layered architecture for querying dynamic web content. In
Proc. o f S IG M O D , pages 491-502, 1999.

[6] Document object model (dom). http://www.w3.org/DOM.
[7] C. Ellerman. Channel definition format (CDF), Mar. 1997.

http://www.w3.org/TR/NOTE-CDFsubmit.html.
[8] E. Gabber, P. Gibbons, Y. Matias, and A. Mayer. How to

make personalized web browsing simple, secure and anony
mous. In Proc. Financial Cryptography, 1997.

[9] T. Kistler and H. Marais. WebL - a programming language
for the web. In Computer Networks and ISD N Systems,
volume 30, pages 259-270, Apr. 1998.

[10] C. Knoblock, S. Minton, J. Ambite, N. Ashish, P. Modi,
I. Muslea, A. Philpot, and S. Tejada. Modeling web sources
for information integration. In Proc. of AAAI, 1998.

[11] D. Konopnicki and O. Shmueli. Information gathering in
the World-Wide Web: The W3QL query language and the
W3QS. A C M TODS, 23(4):369-410, 1998. °

[12] E. Maler and S. DeRose. XM L pointer language, Mar.
1998. http://www.w3.org/TR/WD-xptr.

[13] G. Mecca, P. Atzeni, A. Masci, P. Merialdo, and G. Sin-
doni. From databases to web-bases: The araneus experi
ence. Technical Report n. 34-1998, May 1998.

[14] A. Mendelzon, G. Mihaila, and T. Milo. Querying the
World Wide Web. International Journal on Digital L i
braries, 1(1):54—67, 1997.

[15] P. Merrick and C. Allen. Web interface definition language
(W IDL), 1997. http://www.w3.org/TR/NOTE-widl. "

[16] D. Raggett. HTML Tidy. http://www.w3.org/People/-
Raggett/tidy/.

[17] A. Sahuguet and F. Azavant. W4F: a wysiwyg web wrapper
factory. Technical report, Univ. of Pennsylvania, 1998.

7

http://www.w3.org/DOM
http://www.w3.org/TR/NOTE-CDFsubmit.html
http://www.w3.org/TR/WD-xptr
http://www.w3.org/TR/NOTE-widl
http://www.w3.org/People/-

