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ABSTRACT 

This paper is concerned with the development of a kinetic model for 
mineral liberation by grinding. Existing population balance size 
reduction models are extended to include two minerals with an arbitrary 
number of locked particle fractions. The validity of this approach to 
liberation modelling is demonstrated for the ball mill grinding of a 
copper ore in batch laboratory and continuous pilot plant mills. 
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INTRODUCTION 

Liberation of valuable minerals by comminution prior to concentration may be 
the most important series of process steps occurring in a mineral process 
plant. Although significant advances have been made in terms of modelling and 
characterization of both size reduction and concentration processes during the 
past few decades, the study of liberation, by contrast, has received 
relatively little attention. The principle reasons for this inattention appear 
to be the tedious experimentation required and the lack of a methodology for 
the quantitative interpretation of the resulting data. Since particle 
mineralogical composition as well as size is important in concentration 
processes, a liberation model is essential if the simulation of integrated ore 
dressing plants is to ever be developed. 

The first documented attempt to develop a liberation model was reported by 
Gaudin [1]. He proposed a model to explain "liberation by size reduction" in a 
binary mineral system consisting of a regular array of elements. Later Wiegel 
[2,3] randomised the arrangement of the mineral grains in the Gaudin model, 
thus yielding a more realistic description of the liberation process. This 
liberation model has also been combined with a simple batch grinding model 
through the use of "directional coefficients", which give the quantity of 
liberated mineral grains produced by the reduction of large locked particles 
(4). Instead of an actual physical model for mineral liberation, other 
investigators have outlined methods which use computerized image processing 
systems for characterizing the extent of liberation in multiphase minerals. 
King (5) developed a model based on the linear intercept length through the 
mineral grains of an unbroken ore sample. These data are then adjusted 
mathematically and transformed into a liberation model. This model has been 
recently discussed and evaluated by Finch and Petruck [6]. 

In another approach special attention has also been given to the determination 
and use of specific surface area of mineral intergrowth for assessing the 
degree of liberation [7]. Recently, using the Monte Carlo simulation and 
assuming random fracture, Klimpel and Austin [8] developed a liberation model 
for a coal-ash system and for a synthetic ore of polystyrene, pyrite and 
quartz system. 

Andrews and Mika (9) combined liberation with size reduction kinetics in a 
comprehensive model for liberation in a batch mill. This work has been 
discussed recently by several investigators [10,11]. In more recent work, 
using a similar approach, Ruebush, Herbst and Rajamani [12) developed a 
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simplified three component size reduction-mineral liberation model. The later 
model combines both liberation and size reduction into one set of kinetic 
equations which is simple enough to admit a closed form analytical solution. A 
simulator, called SIMPLANT, which uses this size reduction-mineral liberation 
model, was also developed to predict the performance of an integrated grinding 
and flotation circuit. Most recently, a parameter estimation program called 
ESTILIB was developed by Peterson [131 to reduce the number of experiments 
that are needed to find the large number of model parameters from liberation 
data. Further, a new experimental technique which involves an image analysis 
system that can be used to measure the particle liberation quantitatively was 
developed at University of Utah [14-161. 

In this paper, extensions of the three component size reduction-mineral 
liberation model are considered. Volumetric grade distributions estimated from 
linear grade measurements are used to estimate the model parameters. Further, 
a copper ore is used to evaluate this type of model from batch grinding and 
pilot plant open circuit tests. 

MODEL DEVELOPMENT 

This section describes the work done to extend standard population balance 
models for size reduction to account for liberation kinetics involving 
mixtures of minerals. For single component size reduction a size discretized 
equation involving selection functions and breakage functions for each size 
class is used. The linear size-discretized model for the breakage kinetics of 
a single component in a batch mill is obtained by dividing the assembly being 
ground into N narrow size intervals, (Xi, Xi+1), i 1, 2, --N. A mass balance 
for the material in the i-th size interval at time t yields for i = 1, 2, --N: 

d Hmi(t) 

dt 
(1 ) 

Here, milt) is the mass fraction of material in the i-th size interval and H 
is the total mass of material (hold-up) being ground. The size discretized 
selection function, Si denotes the fractional rate at which material is broken 
out of the i-th size interval. The size discretized breakage function, bij, 
represents the fraction of the primary breakage product generated from the J
th size interval that appears in the i-th size interval. 

This concept can be extended to the grinding of a multicomponent mixture. For 
a binary mineral system, M classes of particles can be represented based on 
mineralogical composition: a free A type particle (a valuable mineral), a free 
B type particle (gangue), and M-2 sets of locked AB particles. When free 
particles break, only small free particles of the same mineral species are 
produced. On the other hand, when locked particles break, they can produce 
free A, free B, and all M-2 types of locked particles. Figure 1 schematically 
illustrates the concept of grinding with respect to both size and 
mineralogical composition. 

Using Eq.(1) and the above description, a set of similar equations for 
liberation/size reduction can be written for each of the M classes of 
particles, i = 1, 2,--,N: 

For free A-type particles: 

dt 

A A i-1 A-A 
-So Hm. (t) + E b ij ~ ~ j =1 

M-2 
+ E 

k=1 

SA, A 
J Hmj (t) 

(2.1) 
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CONCEPTUAL REPRESENTATION OF LIBERATION PROCESS 
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Fig.' Particle identity change due to size reduction 

For free B-type particles: 

d Hm~(t) 

dt 

For locked 

d Hm. 
l. 

(AB)k 

dt 

-5~ 
~ 

M-2 
+ E 

k=1 

(AB)k 

(t) 

+ 

Hm~(t) + 
~ 

type, k 

(AB)k 
-5 i 

M-2 i-1 
E E 

1 =1 j =1 

i-1 B-B 
E bij j =1 

1 , 2, •••• M-2 

(AB)k 
Hmi (t) 

(AB)k-(AB), (AB), (AB), 
b ij Sj Hmj (t) 

(2.2) 

( 2.kl 

where H is constant in a batch ball mill. The superscript in Eq.(2) indicates 
the type of particle to which the parameter applies, and in the case of the 
bij, the type of breakage that is occurring. For instance: 

applies to locked AB particles in the k class (composition) of size j breaking 
to liberated A of size i. The mass fractions are defined so that at any time 
t: 
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M-2 (AB)k 
+ 1: mi (t) 

k=1 
(3) 

constraints are imposed upon the breakage functions in order to satisfy the 
mass conservation equations for the mass of material and the mass of each 
component. These constraints take the form: 

N A-A 
1: b ij for each j, 1 :i j :i N-1 

i=j +1 
(4.1 ) 

N B-B 
1: b ij for each j, 1 :i j :i N-1 

i=j +1 
(4.2 ) 

and for locked (AB)k type k = 1 , 2, ..... , M-2 

N (AB)k-A (AB)k-B M-2 (AB)k-(AB)1 
1: b .. + b ij + 1: b ij i=j+1 ~J 1 =1 

For each j, 1 :i j :i N-1 (4.k) 

When the selection and breakage function are independent of both size consist 
in ball mill and time, the model is said to be linear with constant 
coefficients. This will be the case considered here. Under such conditions, a 
set of MxN simultaneous linear differential equations derived from Eqs. (2.1), 
(2.2) and (2.k), can be represented as a single matrix equation of the form: 

d!!!,(t) 

dt 

= - [~ - ~l ~ ~(t) A ~ (t) ( 5) 

Figure 2 shows all the matrices of dimensions MN x MN. Finally, Figure 3 
illustrates how these matrices are combined to form the overall matrix "~". 

JiASj·AB • •• Q 
. . . s-= B == 

_ BAB-rABM-2 • •• ~BM'2-ABM'2 0 
- = = == 

aAB1-A SA-A 0 
-= :::=:: == o 

MNxMN MNxMN 

Fig.2 Definition and structure of the matrices used in Equation 4 
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_!l_BAB1·AB1IsAB, • • • • .• BABM'2·AB1SABu·2 
= = = = = 

A =-( 1-8 IS= 
==: == == == 

t~'ABM'2 ~A~ • 

aA~'A SABl 
= == 

_~_~A'AI~A ~ 

_[I_B8-BISB 
= = = 

Fig.3 Combination of the matrices of Figure 2 

SOLUTION OF MODEL EQUATIONS 

For a batch mill with initial size distribution ~ATCH(O), a formal analytical 
solution to Eq.(5) can be obtained using standard matrix techniques, i.e., 

~ATCH(t) = exp {~ t} ~ATCH(O) (6 ) 

The matrix exponential appearing in Eq.(6) is not in general easily evaluated 
computationally. Two cases, involving one locked class and then more than one 
locked class, are treated below. 

Case I: Three Component System 

For a three component system, there is only one locked class. In this case 
progeny locked particles will be considered to have the same mineralogical 
composition as the parent locked particles. Then, the matrix A of Eq. (5) is 
lower triangular in form as shown in Figure 4. A more convenient solution 
arises for this case making a similarity transformation on matrix A of Eq.(5) 
such that: -

(7) 

Here ~ is the matrix of eigenvectors of A and A is a diagonal matrix of 
eigenvalues of A. In order to use this transformation, it is necessary that a 
set of 3N linearly independent eigenvectors be identified for the A matrix. 
Based on the study by Ruebush [121, three linearly independent eigenvectors do 
exist for the zero-valued eigenvalue of multiplicity three. Therefore, the 
analytical solution of Eq.(6), for three component system, can be rewritten 
as: 

(8 ) 

The matrix ~ (t) is a diagonal matrix which is equal to exp {~t}. 

_[ 1_ BAB'ABI SAB 
= = = o = 

_[J,-t'AJ§A ~ 

o _[I_BB'BISB 
== = = = 

Fig.4 A matrix of Equation 5 for three component case 
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Case II: Four Component System 

If the number of locked fractions is greater than one, the matrix a of Eq.(S) 
is no longer lower triangular. The solution of equation (6) can-either be 
obtained numerically or with special manipulation of A. The special 
manipulation of 4 for a four component system is given as follows: 

The matrix 4 can be written as: 

AB -AB ABl 
B 1 2 ~ 

AB -A 
~ 1 

o o 
= = 

o 
= 

With the use of an elementary transformation, column 2 of the ~ matrix can be 
multiplied by: 

and added to column 1. 

This operation can be expressed as follows: 

f!* i:1 x ~ 

all 0 0 0 I r 12 0 0 

0 0 0 I 0 0 

same as A 0 0 0 I 0 ~ 
0 0 0 I 

where 

AB2AB2 AB2 -AB2 ]-1 
&12 = li [ .. -~ 
Therefore ~ = ~-1 ~* 

where ~-1 = -I 
I 0 0 r l2 
0 I 0 0 

0 0 I 0 

0 0 0 I 
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Here &-1 and a* are upper and lower triangular matrices, respectively. In this 
case the solution of Eq.(6) can be expressed as: 

~(t) 

It is possible to simplify the matrix exponentials by a similarity 
transformation to give: 

~-1 = ~ ~ R ~-1 

~(t) = ~ ~(t) ~-1 I!!.(O) + ~ ~(t) ~-1 I!!.(O) 

where ~, 1:. 
~, ~ 

= matrices of eigenvector of a-1 and a* respectively, 
= diagonal matrix of eigenvalues of ~-1 and ~* respectively 
and ~(t)i ~(t) are equal to exp{~} and exp{~}. 

The recursion formula (as for the elements of the Eigenvector Matrix ~) are 
given in Appendix 1. 

For the case of M greater than four components, a similar procedure can be 
followed. 

MODEL VERIFICATION FOR THREE COMPONENT CASE 

The general approach followed for model verification involved conducting a 
series of bench scale wet batch grinding experiments using a copper porphyry 
are from which model parameters could be estimated based on volumetric grade 
distribution. These parameters were then used to calculate model predictions 
of pilot scale open circuit grinding and compare them to actual open circuit 
grinding of copper porphyry ore. 

Model for the Estimation of Volumetric Grade Distribution 

Model parameter estimation should be based on the volumetric grade 
distribution of the particle population. The measured linear grade 
distributions must be converted into three-dimensional information in order to 
predict true mineralogical composition distribution. A model [17] has been 
developed and tested to convert the one- or two-dimensional results into three 
dimensional information. For a monosize sample, the relationship between 
linear grade distribution f(91) and volumetric grade distribution peg) 
requires information about the transformation function, H(91\g,Nn), a 
conditional probability function. The transformation can be expressed as: 

f(91) 
1 
J H(91\g,Nn)p(g)dg 
o 

(9 ) 

The transformation function has been established from computer simulation. On 
this basis, the transformation equation, Eq.9, has been solved and tested 
against experimental depth profile measurements for different ore particles at 
the University of Utah [16, 171. 

In practice, particles of specified size were mounted in a resin matrix and 
the linear grade distribution from a polished section was determined as f(91) 
of Eq.9. Then, volumetric grade distribution, peg), is estimated by solving 
the transformation equation. True mineralogical composition distribution of 
specified size can be calculated from the estimated volumetric grade 
distribution. 

Wet Grinding Batch Test 

To determine the selection and breakage function parameters for the copper 
are, a series of wet grind batch tests were conducted. Four batch grinding 
tests were performed: the material was ground for 2 minutes, 4 minutes, 8 
minutes and 16 minutes respectively. A ball mill of 10 inch diameter and 11.5 
inch length was filled to 50% of its volume with balls having an equilibrium 
size distribution. The mill is equipped with a Graham variable speed 
transmission coupled with a BLH torque sensor. The sensor is connected to a 
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chart recorder to measure the torque in the drive shaft between the mill and 
the transmission. For all tests the mill was rotated at 60% of its critical 
speed or 54 rpm. The mill was operated at 70 weight % solids for all of the 
tests. It was charged with 3422 g of copper ore. Added to this dry material 
was 1467 ml of water. 

For each batch test, a representative sample was obtained by using a riffle 
splitter. Representative samples were taken from four size intervals (48x65, 
100x150, 150x200 and 200x270 mesh) for mineralogical composition measurement. 
Mineralogical compositions were determined using microprobe analysis. A 
sufficiently large number of sectioned particles, suspended in an appropriate 
molding resin, can be examined for the quantitative identification of the 
various constituents. During linear scanning of the section of the specimen, 
the analyst may record the length of the resulting chord through each 
intercepted section as well as the length of the same chord across the 
valuable phase appearing in that specific particle section. Therefore, a 
linear grade may be defined as the ratio between the length of these two 
chords for each particle. The end result is a probabilistic distribution of 
this linear grade as f(gl) of Eq.9. The volumetric grade distributions were 
then estimated from these linear grade distributions [17]. Both linear grade 
and volumetric grades were used to estimate the parameters for three-component 
models. Breakage rates were estimated by non-linear regression using an 
unpublished program termed "ESTILIB", developed by J .A. Herbst and coworkers 
at the University of Utah. The resulting specific selection and breakage 
functions estimates are shown in Figure 5. A different specific selection 
function of the locked particles estimated from the linear grade distribution 
is observed as shown in Figure 5. 
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For batch tests, all grind times were converted to their equivalent specific 
energy inputs. Plots of cumulative mass fractions for each component CAB, A, 
and B) at different energy inputs versus particle size are shown in Figures 6, 
7 and 8. Depending upon the amount of liberation occurring the total mass of 
AB particles should remain about the same or decrease, while the total mass of 
A and B particles should remain the same or increase with grinding time. This 
is true for all cases as shown in Figures 6 to 8. Using ESTILIB, the best fit 
parameter where determined. Plots of the best model values are also shown in 
Figures 6, 7 and 8. The RMS residuals value for this fitting was 1.98 x 10-2 • 
Generally, the curves fit the data well, although there appears to be more 
error in the predictions of A and AB values due to the small amount of 
material in these two composition classes. 
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Fig.6 Comparison of experimental and model predicted results of components 
obtained from 10-inch ball mill test- 2 minutes grinding 

Open Circuit Pilot Plant Test 

The open circuit pilot plant test work was conducted in the University of 
Utah's Ore Dressing Laboratory. To conduct an open circuit grinding test, all 
of the mass flow measurement devices were calibrated. Feed rate to the circuit 
was controlled using an HP1000 computer. Once steady state conditions were 
attained, the test was begun. The set-point for the feed streams were 300 
lbs/hr for solid and 128.6 lbs/hr for water. Copper ore samples from the open 
circuit mill were analyzed for size distribution and mineralogical composition 
as previously mentioned. 

ESTILIB was used to simulate open circuit grinding of the copper porphyry ore. 
The values for selection and breakage functions determined using the batch 
grinding data were used in ESTILIB along with the size and mineralogical 
composition of the feed. 

The specific selection function values from the batch tests were scaled up for 
prediction of the pilot scale continuous tests using the relationship [18]: 

for all mineralogical components. 
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Figures 9 and 10 show the pilot plant data in the steady state form of the 
cumulative mass fraction for each component and the overall cumulative mass 
fraction as a function of particle size, respectively. Also, shown in these 
figures are comparisons between the experimental data and model predictions. 
It is noted that a very good fit is observed between the model predictions and 
actual mill discharge product. 
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Fig.9 Open circuit pilot plant grind data and prediction based on 
original model parameters from laboratory scale 
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CONCLUSIONS 

The extended models for size reduction-mineral liberation that were developed 
in this paper are suitable to provide more information for grinding process 
analysis and prediction. For three component case, ESTILIB, a program for 
grinding-liberation model simulation/parameter estimation, made it possible to 
determine the model parameters from a minimum of experimental data. 

The experimental verification of the grinding-liberation model copper ore 
grinding was found to be successful. The discharge product from an open 
circuit mill was accurately predicted from data gathered in a laboratory scale 
batch mill test. This result suggests that further scale-up to commercial 
operations may also be possible. Additional work is necessary to make the 
grinding-liberation model more general. This future work includes the 
development of mathematical solution and parameter estimation schemes for the 
case of more than one class of locked particles. 
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APPENDIX 1 

Recursion formulae for the elements of the Eigenvector Matrix I for Four 
Component System 

(i) Partition 
(1) o o o 

(V) (II) o o 

(VI) (VIII) (III) 0 

(VII) (IX) o (IV) 

(ii) [i=N+l, ••••• 2N 
( II) 

j=N+l •••••• 2N. 

For (II).(III),(IV) 

[

i. =2N+ 1, ••••• 3N 
( III) 

J=2N+l, ••••• 3N, 

o i<j 

Tij i=j 

i-I bik Sk 
1: ---T. Dj 

k=j Si-Sj kJ 

[ 

i=3N+l ••••• 4N 
( IV) 

j=3N+l ••••• 4N 
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(V) [~=N+1"""'2N 
J-1,2, ••••• N 

For 

o i-N(j 

o i-N=j 

Tij 

[

i.=2N+1 •••• 3N 
(VI) 

J=1, ..... N 

Tij 

o i-2N(j 

o 
i-2N-l 

E 
k=j 
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i-N)j and 
j)i-N-2 

i-2N)j and j)i-2N-2 

i~2N-l bik ~ T + i-2N-l bi ,k+2N 5k+ 2N T . i-2N)j & 

k =J. 5]..-5J. kj 5 i -5
J
. k+2N,J j"i-2N-2 k=j+1 

[

i=3N+l, ••••• ,4N 
(VII) 

j=1,2, ..... ,N 

o i-3N(j 

o i-3N=j 
Tij 

i-3N-l b ik Sk 
E --- T. i-3N)j and j)i-3N-2 

k=j 5i -Sj kJ 

i~3N-l bik 5k T . + i~3N-l bi ,k+3N 5k+3N T 

k=j 5 i -5 j kJ k=j+l 5 i -5 j k+3N,j 

[ 

i=2N+l, 2N+2, ..... 3N 
(VIII) 

j=N+l, N+2, ••••• 2N 

Tij 

o i-N(j 

o 
i-N-l 

E 
k=j 

i-3N)j and 
j .. i-3N-2 

i-N>j and j)i-N-2 

i-N)j and 

j "i-N-2 



Multicomponent-multisize liberation model 

[

i=3N+l,3N+2 •••••• ,4N 
( IX) 

j=N+l,N+2, ••••••• ,2N 

° i-2N<j 

° i-2N-l 
1: 

k=j 
i-2N-l 

1: 
k=j 

(iii) For Partition Section (I) 

i-2N>j and 
j (i-2N-2 

I_BAB2-AB2 

{

I 0 
i=j is low triangular matrix 

-1 
Let [I_BAB2-AB2] 

b~2-AB2 Dj 

a 
then b

ij 

i-I AB2-AB2 } AB2-AB2 
- 1: bik bjk bii i>j 

k=j 

i<j 
i=j 

{

o 
- 1 

i-I 
- 1: 
k=j 

bAB2-AB2ba 
ik, kj 

Dj 

B = J 
Since AB2-ABI [0 i(' 

b~;2-ABl i>j 

BAB2-ABl 

And BAB1 - AB2 

[

0 i"j 
b~1-AB2 Dj 

[I_BAB2-AB2] -lBAB1-AB2 = [0 i(j 

i-l[ AB2 AB l k-l k-l AB2-AB2 a ABI-AB2] 
1:, bik L, (- 1: bk1 bl~b m' 

k=J m=J l=m J 

For section (1) 

[ 
i=I,---N 
j=l,---N 

or 

i<j 
i=j 

i>j 

i<j 

i=j 

i>j 

i-I 
- 1: 

k=j 

k-l k-l AB2-ABI AB2-AB2 ABI-AB2 

1: 1: b b b a b 
m=j l=m ik kl 1m mj i>j 
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