
VisTrails: Enabling Interactive Multiple-View Visualizations
Louis Bavoil1 Steven P. Callahan 1 Patricia J. Crossno 3 Juliana Freire 2

Carlos E. S cheidegger1 Claudio T. S ilva1,2 Huy T. V o1

1 Scientific Computing and Imaging Institute, University of Utah
2 School of Computing, University of Utah

3 Sandia National Laboratories

Figure 1: VisTrails Visualization Spreadsheet. This ensemble shows the surface salinity variation at the mouth of the Columbia River over the period of a day. The
green regions represent the fresh-water discharge of the river into the ocean. A single vistrail specification is used to construct this ensemble. Each cell corresponds
to an instance of this specification executed using a different timestamp value.

Abstract

VisTrails is a new system that enables interactive multiple-view vi
sualizations by simplifying the creation and maintenance of visu
alization pipelines, and by optimizing their execution. It provides
a general infrastructure that can be combined with existing visu
alization systems and libraries. A key component of VisTrails is
the visualization trail (vistrail), a formal specification of a pipeline.
Unlike existing dataflow-based systems, in VisTrails there is a clear
separation between the specification of a pipeline and its execution
instances. This separation enables powerful scripting capabilities
and provides a scalable mechanism for generating a large number of
visualizations. VisTrails also leverages the vistrail specification to
identify and avoid redundant operations. This optimization is espe
cially useful while exploring multiple visualizations. When varia
tions of the same pipeline need to be executed, substantial speedups
can be obtained by caching the results of overlapping subsequences
of the pipelines. In this paper, we describe the design and imple
mentation of VisTrails, and show its effectiveness in different ap
plication scenarios.

CR Categories: H.5.2 [User Interfaces]: Graphical user inter
faces (GUI); I.3.4 [Graphics Utilities]; I.3.8 [Applications]; H.2.8
[Database Applications]: Scientific databases

Keywords: interrogative visualization, dataflow, caching, coordi
nated views

IEEE Visualization 2005
October 23-28, Minneapolis, MN, USA
0-7803-9462-3/05/$20.00 ©2005 IEEE.

1 Introduction

In recent years, with the explosion in the volume of scientific data,
we have observed a paradigm shift in how scientists use visualiza
tion. Projects such as CORIE, an environmental observation and
forecasting system for the Columbia River, generate and publish
on the Web thousands of new images daily which depict river cir
culation forecasts and hindcasts, as well as real-time sensor data.1
The growing demand for visualization has led to the development
of new and freely available systems [14, 20, 24], which due to
increased computational power, wide availability of inexpensive
Graphics Processing Units (GPUs), and more efficient visualization
algorithms, allow users to generate and interactively explore com
plex visualizations. Although these new systems represent a signif
icant improvement in raw efficiency compared to first-generation
tools [11, 27], they have important limitations. In particular, they
lack the infrastructure to properly manage the pipelines, and they
do not exploit optimization opportunities during pipeline execution.
As a result, the creation, maintenance, and exploration of visualiza
tion data products are major bottlenecks in the scientific process,
limiting the scientists’ ability to fully exploit their data.

Exploring data through visualization requires scientists to as
semble dataflows that apply sequences of operations over a set of
data products. Often, insight comes from comparing the results of a
variety of visualizations [23]. For example, Figure 1 shows a set of
CORIE images used to study the salinity variation at the mouth of
the Columbia river. Unfortunately, today the process to create these
complex ensembles is cumbersome and time-consuming. Although
individual dataflows can be constructed using point-and-click inter
faces in systems such as IBM Data Explorer (DX) [11], Advanced
Visual Systems AVS [27], SCIRun [20] and ParaView [14], execut
ing variations of a given pipeline with different parameters requires
users to manually modify the parameters through the user interface.

1 http://www.ccalmr.ogi.edu/CORIE

135

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276285132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ccalmr.ogi.edu/CORIE

This mechanism is clearly not scalable for generating more than
a few visualizations. Besides, as the parameters are modified, the
previous values are forgotten. This places the burden on the scien
tist to first construct the visualizations and then to remember what
values led to a particular image.

Another source of complexity in this process comes from the
visualization operations themselves. These operations are often
computationally and memory-intensive. As a result, visualization
pipelines may comprise long sequences of expensive steps with
large temporary results, limiting a user's ability to interactively
explore their data. This problem is compounded in a multi-view
scenario. Although current systems use dataflows to represent
pipelines, they do not fully exploit key features of the dataflow
model. Notably, they may recompute the same results over and
over again if so defined in the dataflow.

VisTrails enables interactive multiple-view visualizations by
simplifying the creation and maintenance of visualization pipelines,
and by optimizing their execution. Our design goals included:

• creating an infrastructure that maintains the provenance of a large
number of visualization data products;
• providing a general framework for efficiently executing a large
number of potentially complex visualization pipelines;
• providing a user interface that simplifies multiple-view compara
tive visualization.

Instead of creating yet another visualization system, our goal
was to build an extensible and flexible infrastructure that can lever
age (and be combined with) existing systems (e.g., [11,14,20,27]).
Here, we describe our initial prototype that was built on top of Kit-
ware's Visualization Toolkit (VTK) [24].

In our system, the visualization trail (or vistrail) is a formal
specification of a pipeline. It provides not only a record of the
provenance for the generated image (or images), but it can also be
automatically executed. Unlike existing dataflow-based systems,
in VisTrails there is a clear separation between the specification
of a pipeline and its execution instances. This separation enables
powerful scripting capabilities and provides a scalable mechanism
for generating a large number of visualizations - the specification
serves as a template and users can execute it using different pa
rameters. For example, Figure 1 illustrates a multi-view visualiza
tion built using a single vistrail specification executed over distinct
timestamp values. VisTrails also leverages the vistrail specifica
tion to identify and avoid redundant operations. This optimiza
tion is especially useful for multiple-view visualizations, where
vistrails may contain overlapping subsequences (e.g., when vari
ations of the same trail are executed). By reusing results computed
for overlapping subsequences of different pipelines, VisTrails pro
vides improved interactivity. We represent the vistrails specifica
tions using XML. As we discuss in Section 3.1, this has many ben
efits. In particular, it allows users to query the specifications and
their instances; and it greatly simplifies the sharing of visualization
pipelines.

In Section 2 we review the related work. In Section 3, we de
scribe the design and implementation of VisTrails. In Section 4,
we illustrate the benefits and improved performance achieved by
VisTrails in three different application scenarios. We close in Sec
tion 5, where we outline directions for future work.

2 Related Work

Several systems are available for creating and executing visualiza
tion pipelines [11, 14, 20, 24, 27]. Most of these systems use a
dataflow model, where a visualization is produced by assembling
visualization pipelines out of basic modules. They typically pro
vide easy-to-use interfaces to create the pipelines. However, as
discussed above, these systems lack the infrastructure to properly

Figure 2: VisTrails Architecture. Users create and edit visualization pipelines
using the Vistrail Builder user interface. The vistrail specifications are saved
in the Vistrail Repository. Users may also interact with saved vistrails by im
porting them into the Visualization Spreadsheet. Each cell in the spreadsheet
represents a view that corresponds to a vistrail instance; users can modify
the parameters of a vistrail as well as synchronize parameters across different
cells. Vistrail executions are controlled by the Vistrail Cache Manager, which
keeps track of operations that are invoked and their respective parameters.
Only new combinations of operations and parameters are requested from the
Vistrail Player, which executes the operations.
manage a large number of pipelines; and often apply naive execu
tion models that do not exploit optimization opportunities.

A formal model for capturing the visualization exploration pro
cess was proposed by Jankun-Kelly et al. [13]. The vistrail model
shares many of the features and benefits of this model, including:
the ability to record visualization sessions at a higher-level than
simple logs; the use of an XML dialect to represent a pipeline,
which enables easy sharing of results and process information; and
the maintenance of visualization provenance. However, there are
important differences between our approaches. Whereas the focus
of Jankun-Kelly et al. was to design a model for the visualiza
tion process, the model is just one component of VisTrails (albeit
a very important one). We instead focus on how to effectively use
the model to both optimize pipeline execution and to simplify the
creation of large visualization ensembles. Currently, in VisTrails,
session history can be reconstructed from information stored in a
set of vistrail instances.

In the recent literature, several works have addressed different
aspects of the management of visualization processes, from main
taining detailed provenance of data exploration processes [15] to
grid-enabling visualization systems [3]. These works are comple
mentary and the ideas can be integrated into VisTrails. Kreuseler
et al. [15] proposed a history mechanism for exploratory data min
ing, but their ideas are also applicable to exploratory visualization.
They use a tree structure to represent the change history, and de
scribe how undo and redo operations can be calculated in this tree
structure. This mechanism provides a detailed provenance of the
exploratory process. We intend to add a more expressive history
mechanism to VisTrails in future work. Since we store vistrail spec
ifications in an XML format, an XML-specific versioning scheme
such as the time-stamp-based approach proposed by Buneman et
al [4] is an attractive alternative.

Brodlie et al. [3] describe sgViz, a system that extends IRIS Ex
plorer.2 Their system allows the distributed execution of a visual
ization pipeline over a set of Grid resources. An important contri
bution is a layered architecture that allows different “bindings” for
a given pipeline specification in each layer. With this architecture,
different visualization systems can be easily integrated (in the log
ical layer) and different execution strategies can be implemented
which bind individual operations to places in the grid (in the phys
ical layer). Similar to sgViz, VisTrails can be used as a middle
ware over different visualization systems and it also uses an XML
dialect to represent visualization pipelines. SgViz’s dialect differs
from ours in one significant aspect: the vistrail model clearly sep
arates the visualization modules from the flow of operations (the
topology of the dataflow network). By separating the connections
from the modules we can more easily support different execution
models, as well as new control constructs. In the current system,

2http://www.nag.co.uk/Welcome_IEC.html

136

http://www.nag.co.uk/Welcome_IEC.html

type V istra il =
v is tra il [@id[String], name [String],

Module*, Connect*, annotation [String]?]
type Module =
module [@id[String], name [String],

function [@name, @returnType, param*]+,
cacheable [boolean]?]

type Connect =
connect [@id[String], (FilterInput|ObjectInput)*]

type FilterInput =
filterInput [@id[String], name [String],

function [String],
iport [Integer], oport [Integer]]

type ObjectInput =
objectInput [@id[String], name [String]]

Figure 3: Excerpt of the XML schema for vistrails. This schema captures all
information required to re-executea vistrail. The connect elements represent
data dependencies among modules, which are key to automatic caching. The
use of XML allows the reuse of standard XML technology, including validating
parsers and query languages. It also simplifies the sharing of visualization
pipelines.

our goal was to optimize the sequential execution of a pipeline (or
set of pipelines) by avoiding unnecessary recomputations. Parallel
execution and distribution of vistrail operations on the Grid are is
sues we intend to pursue in future work. It is worthy of note that
our representation of the trails as a tabled logic program (see Sec
tion 3.2) lends itself naturally to automatic parallelization [9].

VisTrails provides an infrastructure that enables the effective use
of several visualization techniques which aid users to explore and
understand the underlying information. In particular, it supports the
three primary techniques described by Roberts [22]: Multiform vi
sualization, the ability to display the same information in different
ways, can be achieved by appropriately setting parameters or modi
fying a trail (e.g. , the top row of Figure 8 shows the Visible-Human
dataset rendered using isosurfaces whereas the bottom row uses vol
ume rendering); abstract views, which apply the same visualization
algorithm using different simplification criteria, can be constructed
by refining and modifying a trail specification; and direct manipu
lation, which allows objects to be directly interrogated, scaled and
positioned, can be achieved both through the Vistrail Builder and
through the Vistrail Spreadsheet, and in the latter, different views
can be coordinated (see Section 3.4).

The use of spreadsheets for displaying multiple images was pro
posed in previous works. Levoy’s Spreadsheet for Images (SI) [16]
is an alternative to the flow-chart-style layout employed by many
earlier systems using the dataflow model. SI devotes its screen
real estate to viewing data by using a tabular layout and hiding
the specification of operations in interactively programmable cell
formulas. The 2D nature of the spreadsheet encourages the appli
cation of multiple operations to multiple data sets through row or
column-based operations. Chi [5] applies the spreadsheet paradigm
to information visualization in his Spreadsheet for Information Vi
sualization (SIV). Linking between cells is done at multiple levels,
ranging from object interactions at the geometric level to arithmetic
operations at the pixel level. The difficulty with both SI and SIV is
that they fail to capture the history of the exploration process, since
the spreadsheet only represents the latest state in the system.

The Vistrail Spreadsheet supports concurrent exploration of mul
tiple visualizations. The interface is similar to the one proposed by
Jankun-Kelly and Ma [12] and it provides a natural way to explore
a multi-dimensional parameter space. The separation between pa
rameters and the actual network makes the vistrail model especially
suitable to be used in such an interface. Users can change any of
the parameters present in a vistrail and create new vistrail instances;
and they can also synchronize different views over a set of vistrail
parameters - changes to this parameter set are reflected in related
vistrails shown in different cells of the spreadsheet. In addition,
other corresponding visualization mechanisms are possible using
the spreadsheet, such as reflection or nested views.

Figure 4: A sample vistrail. This snapshot of the Vistrail Builder consists of a
sequence of VTK steps that read a file, compute an isosurface and render the
resulting image. Users create vistrails using the point-and-click interface of the
Vistrail Builder — they can add modules, and connect the different modules and
ports.

The management of scientific data and processes has attracted a
lot of attention in the recent literature (see e.g., [17,25]). Although
our effort was motivated by visualization, the VisTrails framework
is extensible and can also be used for general scientific workflows.

3 System Architecture and Implementation

The high-level architecture of VisTrails is shown in Figure 2. The
different components of the system are described in detail below.

3.1 Vistrail Data Model

A vistrail specification consists of a sequence of operations used
to generate a visualization. It records the visualization provenance
and it can also be used to automatically re-generate the images.
A vistrail is stored as an XML document. Figure 3 shows an ex
cerpt of the XML schema [26] for a vistrail.3 A v is tra il element
contains of a set of modules, connections between these modules,
and an optional annotation element. Each module may contain one
or more functions. A function has a returnType and a set of pa
rameters consisting of attribute-value pairs. The optional boolean
attribute cacheable indicates whether the module is eligible for
caching (see Section 3.2). An actual vistrail instance is depicted
in Figure 4. Each node in the graph corresponds to a module ele
ment in the schema; and an edge between two nodes corresponds to
a connect element. The connections capture the data dependencies
among the different modules. The data generated by a module is
output through its oport and can be connected to the iport of a dif
ferent module. As we discuss below, these dependencies are used
by the Cache Manager to avoid redundant computations, as well as
to ensure that, when changes are made to a vistrail, only the steps
affected by the change are re-executed.

The XML representation for vistrails allows the reuse of standard
XML tools and technologies. In particular, we use Xerces [29] to

3For simplicity, here we use the type syntax of the XML Query Algebra
which is less verbose and more readable than XML Schema.

137

EXEC-VISTRAIL (vistrail)
1 ms ^ SINKS (vistrail)
2 fo r m e ms:
3 do EXEC-SUBNETW0RK-UP-T0(m)

EXEC-SUBNETW0RK-UP-T0(m)
1 sn ^ SUBNETW0RK-UP-T0(m)
2 id ̂ UNIQUE-lD(sn)
3 entry ^ L00KUP-CACHE (id)
4 if entry = NULL
5 th en entries ̂
6 ms ^ CACHEABLE-M0DULES-LEADING-T0(m)
7 fo r m e ms
8 do ne ^ EXEC-SUBNETW0RK-Up-T0(m)
9 ADD-T0-LlST(entries, ne)

10 nn ^ TRANSF0RM-NETW0RK (sn, ms, entries)
11 entry ^ PLAYER(nn)
12 ADD-T0-CACHE(id, result)
13 re tu rn entry

Figure 5: Pseudocode for the vistrail execution algorithm with cache manage
ment. When a module is to be executed, the VCM first checks its cache. If an
entry is found for the module (with requested parameters), the cached result is
returned. Otherwise, VCM invokes the Vistrail Player (line 11) which executes
the appropriate API call and returns the results to the VCM.

parse and validate the vistrail specification; and XML query lan
guages (e.g., XPath [30] and XQuery [2]) to query vistrail specifi
cations and instances. Using an XML query language, a user can
query a set of saved vistrails to locate a suitable one for the current
task; query saved vistrail instances to locate anomalies documented
in annotations of previously generated visualizations; locate data
products and visualizations based on the operations applied in a
pipeline; cluster vistrails based on different criteria; etc. For exam
ple, the XQuery query below lists all vistrails (together with their
names, annotations and functions) that use an isosurface computa
tion and that have been found to contain anomalies:

for $vt in document(“vt-repository.xml”)/vistrail,
$module in $vt/module/[contains(./name,”vtkContourFilter”)]

where $vt[contains(./annotation,“anomal”)]
return <anomaly>

{$vt/name}
{$vt/annotation}
{ $module/function }

</anomaly>

Another important benefit of using an open, self-describing,
specification is the ability to share (and publish) vistrails. For exam
ple, an image can be published together with its associated vistrail,
allowing others to easily reproduce the results.

The module element in the vistrail schema is general and captures
a wide range of applications, from simple scripts to VTK modules
and Web services [28]. Note that for applications that do not fit this
structure, it is easy to add new kinds of module elements - as long
as they fit the dataflow model and appropriate functions are pro
vided to execute these modules (see Section 3.3). This makes our
VisTrails extensible, and in particular, also suitable for executing
general scientific workflows [17].

3.2 The Vistrail Cache Manager

The Vistrail Cache Manager (VCM) schedules the execution of
modules in vistrails. As vistrail steps are executed, the VCM stores
their results, i.e., a signature for the module (which includes its
name and parameter values) together with a handle to the output re
sults. When the VCM identifies previously computed subnetworks
in a vistrail, it locally transforms a possibly expensive computation
into a constant-time cache lookup. To maximize the utility of the
cache, the cached results are shared among vistrails. This allows

UNIQUE-ID (subnetwork)
1 if IS-AT0MIC (subnetwork)
2 then re tu rn UNIQUE-ID-FR0M-AT0M(subnetwork)
3 else module-ids ̂ {}
4 fo r module e M0DULES (subnetwork)
5 do id ^ UNIQUE-ID-FR0M-AT0M(module)
6 ADD-T0-LlST(module-ids, id)
7 S0RT (module-ids)
8 conn-ids ̂ {}
9 fo r conn e C0NNECTI0NS(subnetwork)

10 do omodule ^ 0UTPUT-P0RT-ID(conn)
11 ufrom ^ lNDEX-0F-lD(module-ids,omodule)
12 imodule ^ INPUT-P0RT-ID(conn)
13 uto ^ lNDEX-0F-lD(module-ids,omodule)
14 id ^ UNIQUE-lD-FR0M-C0NN(ufrom, uto)
15 ADD-T0-LlST(conn-ids, id)
16 S0RT(conn-ids)
17 r e tu rn (module-ids, conn-ids)

Figure 6: Generation of unique keys for subnetworks. The two sorts (lines
7 and 16) make sure that reordering in the module and connection specifica
tions do not affect the unique ID. The procedures Unique-Id-Fr0m-At0m and
UNIQUE-IF-FR0M-C0NN only use information that is necessary to distinguish
between dataflows to create the IDs. Lines 10-14 make sure that the connec
tions IDs are computed from the unique module IDs, and not from the specific
IDs given in the vistrail. This guarantees that all networks with the same mod
ules and connectivity get the same ID.

the transparent elimination of redundant computation in overlap
ping sequences of different vistrails. Figure 7 illustrates the actions
of the cache manager for two vistrails.

The VCM takes as input a vistrail instance (an XML file). To en
sure that only new sub-sequences are executed, the cache manager
analyzes the vistrail specification to identify data dependencies be
tween cacheable modules - the dependency information is captured
by the connect element in the specification (see Figure 3). Note that
we distinguish between cacheable and non-cacheable modules. For
some applications, it may not make sense to cache results from all
of the modules. When new modules are added to VisTrails, an addi
tional flag may be passed to indicate caching eligibility. For exam
ple, for VTK classes such as vtkProperty, which have no output,
the entire object is passed to another class.

The dependency computation is done concurrently with the vis-
trail execution. The pseudocode for the execution procedure is
given in Figure 5. When a vistrail is invoked (e.g., it is loaded in a
cell of the Visualization Spreadsheet), a depth-first search (DFS) is
started from the sinks of the vistrail graph, traversing the graph up
stream (in the opposite direction of the connections). Each step of
the DFS collects a subnetwork that is bounded by cacheable mod
ules. The algorithm then calls itself on these modules to ensure
their results are in the cache. If values are already present in the
cache, their results are immediately returned. When the recursive
calls return, the entries list will contain a set of objects from the
cache. The function TRANSF0RM-NETW0RK replaces the entire
subnetwork that ends at a cacheable module with a special module
that looks up the result in the cache. This result will always be in
the cache, since TRANSF0RM-NETW0RK is always called after the
appropriate E xec-Subnetw 0RK-Up-T0 calls are issued. This al
gorithm finds all the needed dependencies and only computes the
needed modules. (This can be proven by structural induction on the
topological sort of the network.).

An important issue is how to identify entries in the cache. We
associate each entry with a key that encodes all the information
necessary to compute the associated cached result. If we store too
much information (like node identifiers particular to a certain vis-
trail), we will unnecessarily restrict data sharing and substantially
reduce the utility of the cache. 0n the other hand, if we fail to
store information that influences the computation result, the cache

138

Figure 7: In order to execute Vistrail 1, the cache manager first determines the data dependencies among its modules. It then computes a series of subnetworks
that generate the intermediate results for this pipeline (steps 1-5). Each intermediate result is associated with a unique identifier in the cache. Gray nodes represent
non-cacheable modules; yellow nodes indicate cacheable modules; and red nodes indicate vistrail modules that are replaced with cache lookups. Ghosted modules
are not present in the subnetworks, but they contribute to the construction of subnetwork cache keys. When Vistrail 2 is scheduled for execution (step 6), the results
for the Reader-Isosurface subnetwork previously computed for Vistrail 1 (in step 4) are reused. Thus, Vistrail 2 requires no expensive computations.

lookup may return incorrect results. We use a hashing scheme that
strips unnecessary information from objects and generates unique
keys for subnetworks. The pseudocode for the key generation algo
rithm is shown in Figure 6. Note that this scheme also ensures that
when changes are applied to a vistrail, only steps that are affected
by the changes are re-executed.

The unique ID is structural in a very specific sense: all sub
networks sharing the same modules, parameters and connectivity
will have the same ID. It encodes all the structural information re
quired to identify redundant operations. Note that there may be
structurally different subnetworks that produce the same result. We
do not attempt to identify these for two reasons. First, this requires
knowledge of the internals of the modules. Second, and most im
portantly, if we assume that the modules are sufficiently general,
the problem becomes undecidable [7]. In fact, treating modules
as black boxes is essential to the extensibility of VisTrails. The
only requirement is that each module must be stateless: its be
havior must be fully captured by its name, input parameters, and
description of the upstream modules. (This is precisely what the
Unique-Id algorithm captures). We believe such an assumption is
reasonable: mutable state inside modules destroys any guarantees
of reproducibility, which are essential for scientific tasks.

The dataflow-oriented execution model of a vistrail can be nat
urally represented as a Datalog program [19]. In our prototype,
vistrails are translated into equivalent Datalog programs which are
evaluated by the XSB Prolog/deductive database system [21]. The
algorithms described in Figures 5 and 6 were implemented in Pro
log; and we use XSB’s foreign language interface to invoke the
Vistrail Player.

3.3 Vistrail Player

The Vistrail Player (VP) receives as input an XML file for a vis-
trail instance and executes it using the underlying visualization API.
Currently, the VP supports VTK classes. It is a very simple inter
preter. First, it directly translates the vistrail modules into VTK
classes and sets their connections. Then, it sets the correct parame
ters for the modules according to the parameter values in the vistrail
instance. Finally, the resulting network is executed by calling up
date methods on the sink nodes. The semantics of each particular
execution are defined by the underlying API.

The VP is unaware of caching. To accommodate caching in the
player, we added anew vtkDataobjectPipe class to VTK that pipes
data from the cache to the rest of the network. The VCM is re
sponsible for replacing a complex subnetwork that has been pre
viously executed with an appropriate vtkDataobjectPipe (the red
Cache Lookup modules in Figure 7). After a vistrail instance is ex
ecuted, its outputs are stored in new cache entries.

The VP needs the ability to create and execute arbitrary VTK

modules from a vistrail. This requires mapping VTK descriptions,
such as class and method names, to the appropriate module ele
ments in the vistrail schema. Instead of manually constructing
a complex mapping table, we use the VTK automatic wrapping
mechanism. An automated program generates all required bind
ings directly from the VTK headers. This allows our system to
expose the functionality of any VTK-compliant class without any
additional coding, including user-contributed classes. The special
vtkDataObjectPipe class itself was introduced in this fashion.

3.4 Creating and Interacting with Vistrails

The Vistrail Builder (VB) provides a graphical user interface for
creating and editing vistrails. It writes (and also reads) vistrails in
the same XML format as the rest of the system. It shares the famil
iar modules-and-connections paradigm with dataflow systems. In
order to generate the visual representation of the modules, it reads
the same data structure generated by the VP VTK wrapping process
(Section 3.3). Like the VP, the VB requires no change to support
additional modules.

The VB is implemented in lefty, as an extension to dotty, a
graph editor that is part of the graphviz software package [8]. We
made several modifications to both lefty and dotty, such as adding
the ability to read and write XML. Figure 4 shows a vistrail built
using the VB.

To allow users to compare the results of multiple vistrails, we
built a Visualization Spreadsheet (VS). The VS provides the user
a set of separate visualization windows arranged in a tabular view.
This layout makes efficient use of screen space, and the row/column
groupings can conceptually help the user explore the visualization
parameter space. The cells may execute different vistrails and they
may also use different parameters for the same vistrail specification
(see Figure 8). To ensure efficient execution, all views share the
same cache. Users can also synchronize different views through
the vistrails’ parameters. For example, a set of cells in the VS can
be set to share the same camera, while varying the other vistrail
parameters. The user interface actions have been kept as simple
as possible. For instance, to change a parameter, the user selects
the desired views and clicks on “Set Parameters”. Then, they can
double-click on a function in the tree view, and set the parameters
of the function in the dialog window.

The contents of a spreadsheet can be saved as an XML file that
has sections for describing the GUI layout as well as the vistrail in
stances in each cell - the instances saved in a spreadsheet conform
with the vistrail schema (Section 3.1). The spreadsheet was imple
mented using vtkQt.4 Because it uses Qt, the VS runs on multiple
architectures. We have tested it on Mac, Linux and Windows.

4http://www.matthias-koenig.net/vtkqt

139

http://www.matthias-koenig.net/vtkqt

Figure 8: Vistrail Spreadsheet. Parameters for a vistrail loaded in a spreadsheet cell can be interactively modified by clicking on the cell. Cameras as well as other
vistrail parameters for different cells can be synchronized. This spreadsheet shows different visualizations of the Visible-Human dataset using different algorithms.
The top row shows the rendering of two iso values, whereas in the second row, images are created using volume rendering. The cameras for the cells in the rightmost
column in the spreadsheet above are synchronized.
4 Case Studies

VisTrails is useful for a variety of visualization applications. It can
be used as the means to explore the parameters in a visualization,
repeat visualizations across different data, and to compare different
visualization techniques. We have selected a few case studies which
show different applications of VisTrails and the advantages to using
the system over traditional approaches.

same parameters on another salinity data set. This allows the user to
easily compare the results of a forecast at multiple time steps with
the actual measured data for the same timesteps. Previously, this
task would have been accomplished by manually adjusting param
eters and saving images for each data set, which would then have
been montaged using Microsoft Powerpoint.

4.2 Scalar Visualization

4.1 Time-Varying Visualization

The CORIE project described in Section 1 generates enormous
amounts of measurement and simulation data each day. Visualiz
ing this data is critical to understand the environmental issues that
the project targets. Due to the complexity and size of the data to
be visualized, approaches for 3D visualization have not been auto
mated like the 2D plots and images available from their Web site.
And even for the 2D plots, the automation is done by handcoding
scripts - new scripts need to be created any time a new visualization
is required. Current workflows for 3D visualizations of salinity in
volve loading a data file from the filesystem that includes the time,
temperature, and salinity for a number of time steps. This data is
used on top of the existing geometry (i.e., the river bathymetry) to
find an isosurface of interest, then animated using a subset of the
time steps. Today, this task is completely manual and is repeated
any time a new data set is visualized. VisTrails provides the neces
sary infrastructure to automate this process to a great extent.

We created a reader for the CORIE data and incorporated it as
a vistrail module. The Vistrail Builder is used to create a vistrail
that reads the CORIE data and applies transparent isosurfaces to the
data. This vistrail is then loaded into the Visualization Spreadsheet
where the isosurface parameters are easily manipulated until the de
sired image is achieved. As the user finds useful visualizations, the
results are copied into the next window and the user continues to
adjust parameters on one or more windows. In the example shown
in Figure 1, multiple time steps are explored in the spreadsheet win
dows. Once suitable parameters are found, the user has the option
of creating another row of windows in the spreadsheet and using the

Visualizing scalar data that is generated from CT and MR devices
has been the subject of much research in the volume visualization
community. Two techniques that are common for visualizing this
type of data are isosurfacing and direct volume rendering. Many
existing tools provide interfaces to easily adjust the contour value
needed to create an isosurface or to adjust the transfer function for
volume rendering. However, to visualize multiple views of a dataset
simultaneously, a user is required to save the images to separate
files and view them together using an image processing tool. This
prevents the user from directly manipulating the images, since they
are static and need to be re-generated if parameters change.

With VisTrails, a user can easily visualize multiple views of the
same dataset. By taking advantage of the caching capabilities in
VisTrails, in many scenarios the exploration of multiple visualiza
tions requires little more computation than visualizing a single im
age. Furthermore, the user has the ability to directly compare the
results of different parameters or visualization methods. For exam
ple, Figure 8 shows multiple views of a head scan using isosurfac-
ing and volume rendering. A user could also reuse the results of
previous computations simply by querying the VisTrail Repository.
An example of this would be a user who is given a new scalar data
set to visualize. Instead of using traditional tools to visualize the
data from scratch, the scientist has the option to query previous vi
sualizations to find vistrails that perform a similar task. After find
ing the desired vistrail in the Vistrail Repository, the user can easily
visualize the new data using the same pipeline by simply modify
ing the data reader in the vistrail. Besides alleviating the amount
of repetitious tasks the user has to perform, VisTrails also promotes
knowledge sharing.

140

Figure 9: VisTrails Spreadsheet showing the results of multiple visualizations of diffusion tensor data. The horizontal rows explore different colormapping schemes,
while the vertical columns use different isosurfaces.
4.3 Diffusion Tensor Visualization

A final example of an application for the VisTrails system is in visu
alizing diffusion tensor data. A common task in visualization is to
present the user with multiple, sometimes repetitive, visual queues
that attempt to quantitatively describe an aspect of the data. 0ne
derived quantity of diffusion tensor data is anisotropy, which may
help a scientist isolate areas of interest. In our example, we are vi
sualizing the right half of a brain and use the anisotropy to encode
information about the structure of the brain. Finding useful visual
izations that show the data together with the derived quantity can
be a difficult task.

Figure 9 shows the results of several visualizations of the brain
using isosurfaces that are colormapped with anisotropy. To better
visualize this data, we used several univariate colormaps to find one
that best describes the data. Thus for a given isosurface, vistrails
were modified to include univariate colormaps that vary in hue, sat
uration, and value. 0nce a variety of visualizations were created,
we replicated these results using another isosurface and compared
the results with the original. These operations take advantage of
the caching capabilities of VisTrails because the isosurface is com
puted only once (for the first vistrail that is executed) and it is reused
by all other cells - only the colormaps change across cells. This
is done completely automatically even when using multiple differ
ent pipelines. Without VisTrails, this task would require opening
several windows in a visualization tool and either recomputing the
same isosurfaces for each of them or manually creating one pipeline
that shares certain components. VisTrails provides the user with a
fast and automated technique for comparatively building visualiza
tions and saving workflows for future reuse.

4.4 Performance Issues

An important consideration in any interactive visualization system
is performance, in particular responsiveness to changes triggered
by direct manipulation of images. Since visualization pipelines can
be long and complex, achieving interactive speeds is a challenging
problem, and becomes even more challenging in a multiple-view
system. There are two broad classes of operations in a visualiza
tion pipeline: operations that perform data filtering (or prepara
tion) and operations that perform real-time rendering. The VCM
optimizes the data filtering operations. The performance gains ob
tained by caching are heavily dependent on the set of vistrails used
in a given session. For instance, for both the brain and visible hu

man case studies, where there is substantial overlap, caching leads
to speedups that vary between 2 and 2.5 times. For the C0RIE case
study, on the other hand, there is no overlap among the vistrails. In
this case, the caching mechanism actually incurs overheads. How
ever, the overheads are very small - under 1 percent.

By representing vistrails in XML, we incur a slight overhead for
parsing. However, even a large vistrail is insignificant in compari
son to the size of the data visualized. Therefore, the performance
cost of parsing the XML is negligible in the overall visualization.

Changes to class design and algorithms have the potential to im
prove the efficiency of the VCM. In particular, some techniques re
quire substantial preprocessing steps to enable faster update times,
e.g., the out-of-core isosurface technique of Chiang et al. [6]. In
order to leverage these techniques with the conventional VTK
pipeline, it is necessary to explicitly enforce the availability of the
required index structures for subsequent operations - and this re
quires programming. In contrast, the VCM achieves the same be
havior in a transparent (and automatic) fashion.

Increasing the number of synchronized views has direct effect on
the rendering frame rate. The reason is obvious: all views share a
single GPU and the overall frame rates depend highly on the com
bined complexity of the models being shown. In practice, if the
frame rate is too slow to interact with a given group of views, we
can disable synchronization and interact with a single view until
the desired viewpoint and/or values are determined. At that time,
we turn synchronization back on. A comprehensive solution to this
problem requires the availability of time-critical dynamic level-of-
detail rendering algorithms for each of the types of data supported
by the system. The development of these renderers is an active area
of research [18].

5 Discussion and Future Work

VisTrails streamlines the creation and execution of complicated vi
sualization pipelines. It provides infrastructure that gives users a
dramatically improved and simplified process to analyze and visu
alize large ensembles of complex visualizations. Using a vistrail,
users are able to resume their explorations where they left off; to
easily apply identical operations to a new data set without having
to redo a long sequence of operations; to share their findings with
colleagues; to test new codes by comparing visualizations of the re
sults generated by different versions of a simulation. The amount
of data a user can explore depends on the time it takes until the

141

analysis results can be viewed. By caching intermediate results and
sharing computations, VisTrails greatly reduces the response time,
allowing users to efficiently explore large volumes of data.

The separation of the pipeline specification from its instances has
several benefits. The correspondence between parameter values and
the resulting visualizations is naturally maintained in the system;
and by combining this with a mechanism that controls the versions
of the pipeline specifications (e.g., [4]), a complete history of the
pipelines can be maintained - a detailed (and persistent) record of
the provenance of visualizations. This separation also enables pow
erful scripting capabilities. By viewing a pipeline specification as
a template and allowing users to specify sets of inputs for a given
pipeline, VisTrails provides a scalable mechanism for generating a
large number of visualizations.

Pipeline specifications can be analyzed and optimized. VisTrails
identifies and avoids redundant computation in or across pipelines
(Section 3.2). This feature is especially useful for exploring multi
ple visualizations in a multi-view environment, where sharing com
putations and reusing results are key for achieving interactivity.
As we discuss in Section 4, this optimization leads to substantial
performance improvements, enabling interactive exploration of a
large number of visualizations. As any caching system, VisTrails
needs to apply some cache replacement policy. Since entries in
the cache have different memory footprints and modules may have
widely different execution times, simple techniques such as LRU
are clearly suboptimal. We are currently investigating specialized
policies that are more suitable for our problem.

Another direction we plan to follow in future work is to Grid-
enable vistrails, allowing them to be executed in a distributed fash
ion, over different processing nodes in the Grid. This will require
more sophisticated evaluation algorithms (akin to adaptive query
processing techniques, such as [1]) that are able to adapt to vari
ability in network delays and resource unavailability.

A vistrail instance stores information about provenance of de
rived images. This information includes the name and location of
input (raw) data files. To ensure reproducibility of trail executions,
our system can keep copies of the raw data. Although we use a
database to store the meta-data (i.e., the trail specification and in
stances), the raw data is stored in the file system. One potential
problem with this simple approach is that the raw data files can be
moved, deleted, or modified. More sophisticated mechanisms can
be used to maintain the raw data [10,25]. For example, theRHESSI
Experimental Data Center [25] uses a mapping scheme to locate
and retrieve data items, and it ensures data consistency by only al
lowing raw data to be accessed through the meta-data available in
the database.

The beta version of VisTrails (including the GUIs) runs on multi
ple platforms. It has been tested on Linux, Mac and Windows. Over
the next year, we intend to start a beta testing program in prepara
tion for a future public release.

Acknowledgments. VisTrails was originally motivated by the
CORIE project. Antonio Baptista has provided us valuable input
for the system design as well as several CORIE data sets for our
experiments. We thank Gordon Kindlmann for the brain data set
and the Visible Human Project for the head. This work was sup
ported by the Department of Energy under the VIEWS program
and the Mathematics, Information, and Computer Science Office,
the National Science Foundation under grants IIS-0513692, CCF-
0401498, EIA-0323604, CNS-0541560, and 0ISE-0405402, and
a University of Utah Seed Grant. Sandia National Laboratories
is a multi-program laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of
Energy’s National Nuclear Security Administration under Contract
DE-AC04-94AL85000.

[1] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query
processing. In AC M SIGMOD, pages 261-272, 2000.

[2] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie,
J. Simeon, and M. Stefanescu. XQuery 1.0: An XML query language.
W3C Working Draft, June 2001.

[3] K. Brodlie, D. Duce, J. Gallop, M. Sagar, J. Walton, and J. Wood.
Visualization in grid computing environments. In IEEE Visualization,
pages 155-162, 2004.

[4] P. Buneman, S. Khanna, K. Tajima, and W. C. Tan. Archiving scien
tific data. AC M Transactions on Database Systems, 29(1):2-42, 2004.

[5] E. H. Chi, P. Barry, J. Riedl, , and J. Konstan. Principles for informa
tion visualization spreadsheets. IEEE Computer Graphics and A ppli
cations, 18(4):30-38, 1998.

[6] Y.-J. Chiang, C. T. Silva, and W. J. Schroeder. Interactive out-of-core
isosurface extraction. In IEEE Visualization, pages 167-174, 1998.

[7] M. D. Davis, R. Sigal, and E. Weyuker. Computability, Complexity,
and Languages. Academic Press, 1994.

[8] J. Ellson, E. R. Gansner, L. Koutsofios, S. North, and G. Woodhull.
Graphviz - open source graph drawing tools. In Graph Drawing, pages
483-485, 2001.

[9] J. Freire, R. Hu, T. Swift, and D. S. Warren. Exploiting parallelism in
tabled evaluations. In PLILP, pages 115-132, 1995.

[10] J. Frew and R. Bose. Earth system science workbench: A data man
agement infrastructure for earth science products. In SSDBM, pages
180-189, 2001.

[11] IBM. Opendx. http://www.research.ibm.com/dx.
[12] T. Jankun-Kelly and K. Ma. Visualization exploration and encapsula

tion via a spreadsheet-like interface. IEEE Transactions on Visualiza
tion and Computer Graphics, 7(3):275-287, 2001.

[13] T. Jankun-Kelly, K. Ma, and M. Gertz. A model for the visualization
exploration process. In IEEE Visualization, 2002.

[14] Kitware. Paraview. http://www.paraview.org.
[15] M. Kreuseler, T. Nocke, and H. Schumann. A history mechanism for

visual data mining. In IEEE Information Visualization Symposium,
pages 49-56, 2004.

[16] M. Levoy. Spreadsheet for images. In SIGGRAPH, pages 139-146,
1994.

[17] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank,
M. Jones, E. Lee, J. Tao, and Y. Zhao. Scientific workflow manage
ment and the kepler system. Concurrency and Computation: Practice
& Experience, Special Issue on Scientific Workflows, 2005.

[18] D. Luebke et al. Level o f Detail fo r 3D Graphics. Morgan-Kaufmann
Publishers, 2002.

[19] D. Maier and D. S. Warren. Computing With Logic: Logic Program
ming With Prolog. Addison-Wesley, 1988.

[20] S. G. Parker and C. R. Johnson. SCIRun: a scientific programming
environment for computational steering. In Supercomputing, 1995.

[21] P. Rao, K. Sagonas, T. Swift, D. Warren, and J. Freire. Xsb - a system
for efficiently computing well founded semantics. In LPNMR, 1997.

[22] J. C. Roberts. Waltz - exploratory visualization tool for volume data,
using multiform abstract displays. In SPIE, volume 3298, pages 112
122, 1998.

[23] J. C. Roberts. Multiple-View and Multiform Visualization. In SPIE,
pages 176-185, 2000.

[24] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit
A n Object-Oriented Approach To 3D Graphics. Kitware, 2003.

[25] E. Stolte, C. von Praun, G. Alonso, and T. R. Gross. Scientific data
repositories: Designing for a moving target. In ACM SIGMOD, pages
349-360, 2003.

[26] H. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML
Schema Part 1: Structures. W3C Working Draft, Feb. 2000.

[27] C. Upson et al. The application visualization system: A computational
environment for scientific visualization. IEEE Computer Graphics
and Applications, 9(4):30-42, 1989.

[28] W3C. Web services activity. http://www.w3.org/2002/ws.
[29] Xerces Java parser 1.4.3. http://xml.apache.org/xerces-j.
[30] XML path language (XPath) 2.0. http://www.w3.org/TR/xpath20.

R e f e r e n c e s

142

http://www.research.ibm.com/dx
http://www.paraview.org
http://www.w3.org/2002/ws
http://xml.apache.org/xerces-j
http://www.w3.org/TR/xpath20

