
P a r a l l e l L u m i g r a p h R e c o n s t r u c t i o n

Peter-Pike Sloan
Microsoft Research

One Microsoft Way 31/1056
Redmond WA 98052

ppsloan@microsoft.com

Charles Hansen
Dept of Computer Science

University of Utah
Salt Lake City, UT 84112

hansen@cs.utah.edu

A b s t r a c t

This paper presents three techniques for reconstructing Lumi-
graphs/Lightfields on commercial ccNUMA parallel distributed
shared memory computers. The first method is a parallel extension
of the software-based method proposed in the Lightfield paper. This
expands the ray/two-plane intersection test along the film plane,
which effectively becomes scan conversion. The second method
extends this idea by using a shear/warp factorization that acceler­
ates rendering. The third technique runs on an SGI Reality Monster
using up to eight graphics pipes and texture mapping hardware to
reconstruct images. We characterize the memory access patterns
exhibited using the hardware-based method and use this informa­
tion to reconstruct images from a tiled plane. We describe a
method to use quad-cubic reconstruction kernels. We analyze the
memory access patterns that occur when viewing Lumigraphs. This
allows us to ascertain the cost/benefit ratio of various tilings of the
texture plane.

1 I n t r o d u c t i o n

Lumigraphs [3] and Lightfields [8] are ways of representing the
plenoptic function [9] using four degree-of-freedom (DOF) under
the following two conditions: that the viewer is outside the convex
hull of the object being viewed1 and that both the geometry and il­
lumination of the scene are static. The fundamental concept behind
these representations is that given a point in space and knowledge
about what light leaves that point from any incident viewing an­
gle, it is possible to reconstruct an image of that point from any
viewpoint. By extending this to all points on the convex hull of a
surface, a box for example, it is possible to reconstruct an image of
that surface from any viewpoint.

There are many ways to parameterize this 4D function. The two-
plane parameterization, and , is currently the most common
parameterization and is used by both the Lumigraph and the Light-
field. Unfortunately, the Lumigraph and Lightfield papers used sim­
ilar symbols in different contexts, we will use the convention in the
Lumigraph paper and consider the first plane to be and the sec­
ond plane to be . We will also just refer to this 4D function
as a Lumigraph. In all of the examples discussed in this paper, we
choose planes that are parallel to each other which is a reasonable
assumption in terms of sampling distribution [8].

It is difficult to interactively reconstruct reasonable sized2 im­
ages using Lumigraphs and Lightfields due to the enormous size of
the 4D function. An obvious method for handling the large amounts
of data is through compression [8]. Another method for addressing
this is to sparsely sample the 4D function thereby trading off image
fidelity for interactivity [15]. To render at full fidelity, one needs
parallel techniques for two fundamental reasons: reconstruction of

1 or inside if the viewer is inside looking out
2We consider reasonable size images to be 512x512 or 1024x1024.

the 4D plenoptic function is computationally intensive and the stor­
age requirements for a densely sampled, uncompressed Lumigraph
are enormous.

This paper will present parallel methods to accelerate purely
software-based reconstruction and demonstrate a parallel imple­
mentation using a parallel ray tracer [12]. We also describe an ar­
chitecture for distributing hardware-based reconstruction using tex­
ture mapping by leveraging multiple graphics accelerators in this
case on an SGI Reality Monster with eight InfiniteReality pipes.
We extend the reconstruction to use a tiled plane and show
how to reconstruct with higher order basis functions.

In the next section, we review Lumigraphs and the sampling
issues for reconstruction. Related work is then briefly discussed.
Following that, we present the software-based and hardware-based
reconstruction methods. Results are presented of the parallel imple­
mentations on a 32 CPU/8 IR SGI Origin 2000. We then conclude
with possible future directions for this research.

2 L u m ig r a p h

Lumigraphs/Lightfields are parameterizations of light leaving a
convex bounding volume. A ”slab” of light consists of two planes,
a front and back plane and represents all rays that intersect both of
these planes. An object can be represented by surrounding it with
slabs that cover all rays in line space that intersect the object, where
the planes are all outside the convex hull of the object.

The plane is sampled into some number of nodes. Each of
these nodes can be thought of as an image, with a sheared frustum,
of the plane. This is shown in figure 1. The image of a point
on the plane captures the surface radiance [1] at that point only
if the point being examined happens to lie on the surface of the ob­
ject. If the plane is not on the surface of the object, the rays
from the discretization diverge which can lead to ghosting artifacts.
This case is shown in figure 2. Notice that the samples from point B
capture the surface of the object but the samples which intersect the
UV plane at A have diverged and actually sample different points
on the object’s surface. A finer sampling of the ST plane can coun­
teract this effect but leads to much larger Lumigraphs. The original
Lumigraph paper presented the notion of geometric correction [3]
which addresses this issue, but that will not be dealt with further in
this paper.

There are two ways to reconstruct images from a Lumigraph:
image order (typically ray tracing or scan conversion) and object
order. When reconstructing an image from an arbitrary viewpoint
using ray tracing, determining pixel color depends on intersecting
the ray from the eye point through a pixel with both the and
UV planes. However, this intersection point rarely falls directly on
the discretized samples of the or planes. The pixel color
is computed by interpolating the neighboring samples as described
below.

Figure 3 shows this in exaggerated detail. Each circle on the UV
plane represents a sample point and each square on the plane

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276285103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ppsloan@microsoft.com
mailto:hansen@cs.utah.edu

Figure 1: Each node on the ST plane can be thought of as an image,
with a sheared frustum, of the UV plane.

Figure 2: If the UV plane does not lie on the surface of an object,
rays from the discretization of the plane diverge.

Figure 3: For image order reconstruction of a pixel, multiple sam­
ples from the plane are required. Each of these contain multiple
samples of the plane. The resultant pixel color is determined
through interpolation of all these values.

Figure 4: To reconstruct an image using an object order method,
portions of the plane are projected onto the reconstruction
plane. The portions of the plane are determined by neighboring

nodes.

represents a node. For nodes on the plane which neighbor the
ray/ intersection the corresponding samples on the which
are nearest the ray/ intersection are determined. In 2D, this re­
sults in two samples per neighboring nodes. In 3D, this would
result in four nodes each of which have four samples span­
ning the ray intersection. These values are interpolated, typically
quadralinearly, to determine the pixel color in the reconstructed im­
age.

Object order reconstruction projects the relevant portion of each
ST node onto the reconstruction plane. This is shown in figure 4.
Using neighboring nodes to provide the bounds, a portion of
the plane for the central node, shown in grey, is projected
onto the reconstruction plane. Using piecewise linear reconstruc­
tion, the contribution of the segment would falloff from one to zero
as indicated. This is done for all neighboring nodes resulting in
the reconstructed image.

3 R e la t e d W o rk

There have been several relevant papers dealing with lumigraphs.
In [10] a parameterization is used where a parametric surface has a
parameterization for orientation directly (2 degrees of freedom for
surface parameterization, 2 for orientation.) This paper also has an
interesting analysis of temporal and angular coherence for Light-
fields/Lumigraphs parameterized in this fashion. It also uses block
transform coding for decompression. In [4], geometry is decoupled
from illumination. The 4D function stores the outgoing reflection
direction for the incoming ray. This can be used to lookup color
with an environment map or another Lightfield. They also show a
method to directly render vector quantized Lumigraphs/Lightfields
using graphics hardware. In [5] a very intuitive description of what
amounts to geometric correction from the Lumigraph paper is de­
scribed. They present a way to represent multiple focal surfaces and
change them and the apertures dynamically along with a interesting
way to find focal surfaces from a give dataset.

There has been much work on parallel techniques for ray tracing.
Rather than review the body of knowledge here, we refer the reader
to the Jansen and Chalmers overview [6] or the Reinhard, Chalmers
and Jansen overview [14]. Additional background to the parallel
ray tracing infrastructure used in this paper can be found in [11,
12, 13]. There has been much less work on exploiting multiple
graphics pipes in parallel. A recent paper described a system which
approximated global illumination by exploiting multiple graphics

U V

uv s t

Figure 5: Ray tracing, i?, through the film plane, X, into the Lumi-
graph ST UV

is a point on the lower left of the film plane
is the center of projection of the camera

X is the “x” axis of the film plane
is the “y” axis of the film plane
is the surface normal

becomes since the X and Y coordinates are
aligned appropriately with and .

By starting at , a point on the lower left of the film plane, the
ray equation becomes:

R = F + xX + y Y - E

The ray-plane intersection can be written as:

(E + RX) ■ N = - d

Which for becomes:

X = { - d - {N ■ E)) / { N ■ R)

Since on the plane, for it becomes:

X = (—(N ■ E)) / (N ■ R)

Due to the canonical slab space, it suffices to map the STUV
points into indices. For example, to map for :

S = E.x + R. x* X

Si = S * scale + of f set

adaptors for indirect lighting [16]. They used a similar compositing
method to ours.

4 O v e r v ie w o f P a r a l le l R e c o n s t r u c t i o n
M e th o d s

Parallel techniques are necessary for reconstruction of the full Lu-
migraph due to the enormous size of the uncompressed 4D repre­
sentation and the reconstruction costs involving ray tracing or hard­
ware based reconstruction leveraging texture mapping hardware.
We have chosen to present both software and hardware implemen­
tations since multipipe graphics systems are not common whereas
multiple CPU systems are much more prevalent.

4.1 Software Reconstruction
The software reconstruction method is similar to the reconstruction
used for the Lightfield [8]. In the Lightfield technique, the STUV
planes are scan converted into the reconstruction image plane and
then texture filtering and lookups are performed. As pointed out in
[8], one can extend ray tracing to reconstruct from the two-plane
parameterization of the Lumigraph.

Let us consider the generalized ray tracing solution (see figure 5).
To reconstruct the image corresponding to the new viewpoint, ,
it suffices to intersect the ray, , passing through the film plane
with the ST and UV planes. The intersection point in the ST
plane defines 4 views3. The UV intersection point is bilinearly
interpolated for each of these using the same weights. Finally, these
four samples, one for each node on the plane are bilinearly
interpolated with weights based on the coordinates.

However, this can be optimized by employing a canonical slab
space coordinate system. This system places the origin in the
plane while aligning the axis with and and the axis with
and . The axis is normal to and . In this configuration,
it suffices to employ only the individual coordinates. For example,

3One can think of each node in the S T plane as a separate view.

Where scale and offset map from space to indices. This
combines to:

Si = E.x * scale + of f set + R.x * A * scale

This can be further optimized by noting that is constant
during a frame and is the same for both the and
intersection. Mapping to the canonical slab space allows compu­
tation with a single coordinate for the different variables, for ray
intersection, for and , and y for and . This effectively is
scan conversion.

To efficiently compute the reconstructed image, we partition the
film plane into blocks that effectively utilize data cache. Since each
partition is independent, we can parallelize rendering them. For
this, we employ the parallel ray tracing framework described in [11]
which provides dynamic load balancing of frames by assigning im­
age subblocks to a work queue for each frame to be rendered. Other
processes obtain groups of these blocks from the queue in a mono-
tonically decreasing amount. This heuristic provides quite reason­
able dynamic load balancing without the overhead of determining
work loads needed for task stealing.

The parallel algorithm is based on a master/slave configuration.
The master process is responsible for populating the work queue,
managing the display and performing updates, such as view trans­
formation, from the user. While the implementation is straight for­
ward, careful attention to performance details has allowed this par­
allel ray tracer to achieve interactive rates. This is particularly inter­
esting for Lumigraph reconstruction where one has multiple CPUs
but limited graphics hardware. As will be seen in the results sec­
tion, we obtain both interactive frame rates for the reconstruction as
well as excellent scaling.

This method can be further improved with the observation that if
the reconstructed image is scan converted directly on the plane,
there is no need to perform any ray plane intersection tests. This can
be accomplished through the use of a sheared frustum as shown in
figure 6a. We again utilize the canonical slab space which ensures
that and line up with and . If we reconstruct onto the
portion of the plane which is covered by the projection of the
film plane, we can warp this resultant image back to the view plane
using standard 2D texture mapping hardware with a single texture
mapped polygon. This is similar to the idea used in shear/warp

Figure 6: Reconstructing on the plane.

(a) (b)

Figure 7: Images of the (a) sheared image and the (b) final image.
Also see the colorplate.

volume rendering [7]. We can incrementalize the scan conversion
on both the and the planes indicated by the dashed lines
in figure 6a. Note, in 3D the camera may be rotated and we can
scan convert the bounding box of the projected viewing frustum.
This can be further accelerated if the projection of the plane
onto the plane is not fully contained in the frustum as shown in
figure 6b. In this case, we need only reconstruct the portion of the
projected frustum which contains samples for both the and
planes. We can project the end-points of the UV plane onto the ST
plane, project the bounding box of the view frustum onto the
plane, and we know the extents of the plane itself. We can limit
the scan conversion to the region defined by the greatest minimum
and least maximum of all these points.

Figure 7a shows an image of the sheared frustum reconstructed
on the plane. Notice how the bowl is warped. Figure 7b shows
the final image which warps the sheared image onto the film plane.

By parallelizing the scan conversion process, we can speed up
the rendering. We use the same parallel infrastructure as before
except the film plane is not partitioned, the portion of the plane
covered by the view frustum is partitioned. The same dynamic load
balancing technique can be employed.

4.2 Hardware Based Reconstruction
As mentioned earlier, the hardware-based techniques are object or­
der traversals. The basic idea is to directly render the contribu­
tion of each node using graphics hardware [3, 15]. First, ba­
sis functions must be defined over the plane. A triangulation
of the nodes on the plane is commonly used because this is
the most straightforward way to leverage hardware. Then for each
node on the plane all of the triangles connected to it are drawn,
using an alpha value of 1 at that particular node and 0 at all of the

Figure 8: Two 1D basis functions and the tensor product (bi-linear)

other nodes. The texture coordinates are determined by intersecting
rays from the eye through the corresponding node with the
plane. The basis functions for each image are summed, so that each
triangle is rendered three times and the results added, summing up
to one everywhere in the triangle. For more general basis functions
this property must be preserved - the sum of the basis functions at
any point on the plane is one. Otherwise leveraging the hard­
ware to perform the blending would be difficult.

We have implemented bi-cubic reconstruction on the plane
using multi-pass rendering. The current implementation uses a 1D
texture map and three passes: two passes for defining the support of
the tensor product basis function, one for drawing the final image.
If the application became fill rate limited a 2D image of the basis
function could be used instead. The 1D texture map is initialized
with the values for the basis function (Cubic Bspline in this case.)
The pseudo code is as follows:

/ / only draw into alpha planes
glColorMask(GL_FALSE,GL_FALSE,GL_FALSE,GL_TRUE);
glEnable(GL_TEXTURE_1D); / / turn on texturing
/ / load 1D texture
DrawQuad(0,0,1,1); / / horizontal
glEnable(GL_BLEND);
glBlendFunc(GL_ZERO,GL_SRC_ALPHA);
DrawQuad(0,1,1,0); / / vertical
glDisable(GL_TEXTURE_1D);
glColorMask(GL_TRUE,GL_TRUE,GL_TRUE,GL_TRUE);
glBlendFunc(GL_DEST_ALPHA,GL_ONE);
// draw normal textured basis function
/ / except use 2D texture coordinates

Figure 8 shows the steps in drawing the support of the basis func­
tion.

This allows reconstruction using any basis functions that are
strictly positive and form a partition of unity. That is, at any point
on the plane the sum of the values of all of the basis functions
that it overlaps equals one.

Figure 9a shows an image from one graphics pipe reconstructed
with a constant basis function. Figure 9b shows the image from one
graphics pipe reconstructed with a piecewise linear basis function.
Figure 9c shows the image from one graphics pipe reconstructed
with a bi-cubic basis function.

The main bottleneck with these methods is the limited amount of
texture memory, and the bandwidth between the host and the accel­
erator. The images associated with each node are distributed by
interleaving the pipes along the one-dimensional index of a Hilbert
curve through the nodes. This distribution is statically created
when the program starts and no attempt is made at load balancing.
Each pipe simply renders the basis functions for each node that
it contains, reads back the results and hands it off to the composit­
ing threads. The compositing is done entirely in software, there are
two reasons for this, one is that the hardware is the critical resource
so it should be used as effectively as it can, the other being that the
cost of the compositing can be completely hidden by overlapping
the compositing with the rendering of the next frame. This causes
a one frame latency, but makes a significant difference in perfor­
mance.

A

■r' * «
fit ^

(c)

Figure 9: Images of a different basis functions: (a) constant, (b)
piecewise linear, and (c) bi-cubic. Also see the colorplate.

4.2.1 Tiled Hardware Reconstruction

Loading full texture maps for each basis function being drawn is
more work than is necessary. If every basis function on the
plane was not clipped by the plane, the number of texels that
required for a frame would be times the number of texels on
the plane. Where is 1 for constant basis functions, 3 for
piecewise linear, 4 for bilinear and 16 for quad cubic. Loading
whole textures effectively touches the number of texels on the
plane times the number of nodes on the plane. Intuitively, this
can be thought of as projecting the triangulation of the plane
onto the plane.

Our solution to this problem is to tile the plane. Instead
of representing it as one texture, the plane is uniformly tiled
into several smaller textures. Recall that figure 4 showed a single
basis function viewed from a camera. In figure 10 we show the
same basis function, but this time we have tiled the plane, only
the tiles that overlap the selected nodes need to be used during
reconstruction. In this case, only tiles 4-8 need to be loaded into
texture memory rather than the entire plane. Another way to
think of this is that you have a lumigraph for each tile on the
plane, if the tile size was a pixel you would only need to render
at most the number of samples on the plane times the number
of images that contribute to each sample (determined by the
choice of basis functions.)

When implementing the tiled architecture we found that our cur­
rent available implementation of OpenGL would crash and/or be­
have very erratically when the number of texture objects bound was
greater then 4096. A workaround could utilize tiles represented as
sub regions inside a larger texture, but would complicate the im­
plementation. The solution was to manage the ’’texture cache” our­
selves. With small tile sizes (less then 64x64) it is impossible to
have enough texture objects to fully utilize the amount of texture
memory in the system (64MB). Currently there are the number of
texture objects to fill two times texture memory, for a given tile size,

Figure 10: Tiling the plane reduces the amount of data needed
loaded into texture memory.

but never more then 4096. This technique is more effective at uti­
lizing OpenGL’s texture caching scheme and lessens the amount of
time spent rebinding texture-IDs to tiles.

Each tile in each basis function has a simple structure, which
contains a ’valid” word, that represents the last frame that the tile
was used in and an index into the list of texture-IDs which also
indicates if the tile isn’t currently bound to a texture.

There is also a word associated with each texture-ID, which ref­
erences the tile to which it is currently pointing. Thus, when a
texture-ID is reused, the tile which is using it can be updated to
reflect the fact that it is not currently bound to a texture.

The pseudo code for the system is as follows:

ComputeBasisFunctions(); / / detail below
QueryTextureResidence();
DrawBoundTilesThatAreResident();
DrawBoundTilesThatAreNotResident();
DrawTilesSwapOld();
DrawTheRestOfTheTiles();

ComputeBasisFunctions creates the texture coordinates for all of
the basis functions, it also computes the tile indices that overlap the
bounding box of the basis functions. QueryTextureResidence just
executes an OpenGL command that given a list of texture-IDs tells
which ones are in texture memory. Strictly speaking this should not
be necessary if the number of texture-IDs generated can all fit in
texture memory. DrawBoundTilesThatAreResident loops through
all of the tiles that are in texture memory and need to be drawn
this frame. DrawBoundTilesThatAreNotResident is only applied to
tiles that are bound and not in texture memory. After these tiles
have been drawn it is necessary to begin reassigning texture-IDs to
the tiles since the only remaining tiles that need to be drawn have
no associated texture object. Two lists are built, one for texture-IDs
assigned to tiles that were not drawn this frame and one for all of
the rest of the IDs. The first list (IDs for tiles that aren’t being used
this frame) is exhausted followed by the second list. If there still
are more tiles to draw, texture-IDs can be processed in order.

It is useful to understand the behavior of this tiling scheme. To
achieve this, it is possible to optionally gather the following statis­
tics for every frame: the total number of tiles needed for this frame,
the number of tiles that were in texture memory, the number of tiles
that are in this frame but were not in the last frame, and the number
of tiles that were in last frame but not in this frame. This informa­
tion will be presented in the results section and can be used in the
future when trying to ascertain how much CPU time can be spent
decompressing Lumigraphs.

Number of CPUs
512“ 1 2 4 8 16 30
RT 1.24 2.46 4.78 9.56 19.11 36.65
SW 2.18 4.31 8.35 16.56 32.77 58.88

o to 1 2 4 8 16 30
RT 0.32 0.63 1.25 2.51 4.97 9.58
SW 0.56 1.12 2.20 4.77 9.28 15.97

Table 1: Software-based parallel Lumigraph reconstruction for
512x512 and 1024x1024 images. Units are in frames-per-second.
RT are the times for the ray traced algorithm while SW are the times
for the shear-warp technique.

4.2.2 Software Architecture

For each graphics pipe there are two threads, one that processes
input from the GUI and one that renders using OpenGL. There is
also a extra window on the main graphics pipe that is used to asyn­
chronously display the results of the software compositing.

Structuring the code this way made the implementation cleaner -
both threads share the same ”drawable” (in X11 parlance) and do
not have to worry about mutual exclusion because they are using
unique Display pointers. The GUI thread creates the window, the
OpenGL thread creates the context, using a unique Display pointer
but the same drawable.

The rendering process for the display-only window simply waits
at a barrier for the compositing threads and then displays an image.
The other rendering threads are driven by the non-display rendering
thread on the main pipe.

The compositing threads divide the frame buffer into strips, each
thread only being responsible for compositing into their strip. Since
the basis functions form a partition of unity, the blending can be
done by adding 64bit unsigned integers (2 pixels at a time.)

5 R e s u l t s

Our initial results are encouraging. The machine used was an SGI
Origin 2000 with 32 250mhz R10000 CPUs, 8 IR pipes (1RM7
64MB Texture) and 8 gigabytes of memory. Both the hardware and
software methods demonstrate good scaling.

5.1 Software-based Reconstruction
We ran the parallel versions of reconstruction using both the ray
tracing-based intersection and the shear/warp-based reconstruction.
Table 1 shows the results for reconstructing into a 512x512 image
and a 1024x1024 image. The tests were run on a single slab with Figure 11: Images of the large dataset used in the hardware test
32x32 ST nodes and 256x256 pixels per UV image. The view cases. Also see the colorplate.
chosen had every pixel in the frame buffer intersect the Lumigraph
(the film plane is the UV plane, with a 36 degree field of view.)
At each resolution the test was run 50 times and the results were
averaged. The shear/warp-based algorithm was around 1.8 times as
fast as the incremental ray tracing mode.

5.2 Hardware-based Reconstruction
The hardware-based tests were run on two data sets, a 512 MB one
(2 32x32x256x256 slabs) and a 3 GB data set (3 32x32x512x512
slabs) both were reconstructed on a 512x512 window. 8 composit­
ing threads were used. The small dataset was the bowl of fruit in
figure 7. The large dataset was a Lumigraph constructed from a set
of isosurface images from the visible woman dataset as seen in the
figure 11.

Number of Tiles
1 tile 2 tiles 4 tiles

1 pipe 0.928 2.327 16.024
2 pipe 2.727 16.252 25.616
4 pipe 18.474 38.164 35.433
8 pipe 47.219 41.89 39.228

Number of Tiles
1 tile 2 tiles 4 tiles 8 tiles

used 385.065 186.012 64.582 21.846
bound 125.619 119.279 61.274 19.641
new 6.637 6.235 4.148 2.477
old 6.606 6.254 4.149 2.478

Table 2: Average FPS for the 512MB Lumigraph dataset.

Number of Tiles
1 tile 2 tiles 4 tiles 8 tiles

1 pipe 2.006
2 pipe 0.921 8.256
4 pipe 0.823 4.246 14.019
8 pipe 0.752 2.153 22.559 18.505

Table 3: Average FPS for the 3GB Lumigraph dataset.

We captured a interactive sequence, 352 camera views, and re­
played this sequence with various pipe/tiling/database selections.
The first frame of the sequence always took the longest to render
since there were no data from previous frames already in texture
memory.

In tables 2 and 3 we present the average frames per second (FPS)
over the last 351 frames of this sequence for the 512MB and the
3GB dataset. Slowing down when moving to smaller tile sizes was
expected. At some point the inefficiency of transferring very small
textures and the overhead from rendering the basis functions multi­
ple times, most likely the former, will start to cause the performance
to degrade. Some tiling is always faster if the entire scene doesn’t
fit into texture memory, often significantly so. When the frame rate
dropped significantly below 1 FPS, we left the table entries blank.

The information gathered about the memory access patterns are
shown in tables 4 and 5. The numbers reported are in MegaTexels
(220th texture elements). The four data series are the number used
per frame, the number that were already bound when the frame
started, the number that were new (i.e., had not been rendered in the
previous frame) and the number that were old (i.e., were rendered in
the previous frame but not in the current frame). These numbers are
all averages over the sequence. The number of pipes only changed
the average number of bound textures.

6 C o n c l u s i o n s a n d F u tu r e W o rk

We have shown three parallel methods for rendering Lumigraphs.
Two of them are strictly based on software (with minimal hard­
ware support - a single texture mapped quad - for one of them) and
one is based on using multiple graphics pipes. For the software
method we showed how optimizing ray two-plane intersection tests

Number of Tiles
1 tile 2 tiles 4 tiles

used 52.203 23.120 7.452
bound 15.747 15.558 7.115
new 0.878 0.697 0.399
old 0.872 0.703 0.402

Table 4: Average MegaTexels for the 512MB Lumigraph dataset (1
Pipe).

Table 5: Average MegaTexels for the 3GB Lumigraph dataset (8
Pipe).

across a scan line effectively boils down to scan conversion. We
also showed a method of extending the principles of shear/warp
rendering to reconstruct Lumigraphs that is significantly faster then
the standard software technique. For the hardware reconstruction
technique we showed how to reconstruct Lumigraphs with quad-
cubic basis functions, and an initial multi-pipe implementation. We
also showed how to reconstruct from a tiled plane which sig­
nificantly speeds things up over using full textures.

The most compelling future work is to leverage the data we have
collected on the memory access patterns of Lumigraphs for inves­
tigating compression algorithms. In particular the CODEC has to
be able to decompress at a sufficient rate to feed the rendering en­
gine. For a desired frame rate (for a hardware implementation) the
number of tiles needed for a given frame must be decompressed for
rendering. We believe that the access patterns are coherent enough
to try more aggressive compression then have already been suc­
cessfully used (standard VQ - which has a very fast decompression
time.) Hardware implementations that support compressed textures
(like the S3TC technique - based on color cell compression [2])
should be leveraged to explore much more aggressive compression
ratios. Also a more general tiling, not strictly based on ”whole”

planes, where locality with respect to and planes was
considered would be beneficial since the tiles are clearly correlated
in more then the plane.

Addressing the load imbalance in the current hardware method
should be examined. Perhaps by using a modified work queue
where there is a pool of nodes that aren’t in any of the pipes
texture memories. These would be parceled out via a work queue.
Batching texture tiles together into metatiles could help with the
performance impact incurred when using smaller tile sizes. The
tiles to be uploaded could be batched and sent in a single glTex-
SubImage command.

The software version currently also runs on parallel Intel ma­
chines running Windows NT. We would like to investigate using
the SIMD Floating Point instructions and potentially the streaming
memory extension that exists in the Pentium III to accelerate the
shear/warp and incremental rendering algorithms. The hardware-
based methods for multiple pipes could be used for systems that
support multi-monitor configurations.

The shear warp method has only be implemented for single slab
datasets, dealing with sampling issues (based on the warp) intelli­
gently would make a lot of sense. This method would be attrac­
tive for rendering from compressed representations because it is so
memory coherent.

7 A c k n o w l e d g m e n t s

This work was supported in part by the DOE Advanced Visual­
ization Technology Center (AVTC). Thanks to Chris Johnson for
providing the open collaborative research environment that allowed
this work to happen. Thanks to Yarden Livnat and the SCI group for
allowing the first author to spend his weekends there working on the
big machine. We wish to acknowledge the reviewers for their ex-

cellent comments. Discussions of this work with Harry Shum and
Michael Cohen of Microsoft Research and Steven Gortler of Har­
vard University were helpful. Thanks to Steven Parker for having
such a great infrastructure for plugging in the software side.

R e f e r e n c e s

[1] Jam esA rvo, K ennethTorrance, and B rianSm its. A fram ew orkfor the analysis of
error in global illumination algorithms. In Andrew Glassner, editor, Proceedings
o f S IG G R A PH '94 (Orlando, Florida, Ju ly 24-29, 1994), Computer Graphics
Proceedings, A nnual Conference Series, pages 75-84. ACM SIGGRAPH, ACM
Press, July 1994.

[2] G raham Cambell, Tom A. DeFanti, Jeff Frederiksen, Stephen A. Joyce,
Lawrence A. Leske, John A. Lindberg, and D aniel J. Sandin. Two bit/pixel full
color encoding. In David C. Evans and Russell J. Athay, editors, Computer
Graphics (S IG G R A PH '86 Proceedings), volume 20, pages 215-223, August
1986.

[3] Steven Gortler, Radek Grzeszczuk, Richard Szeliski, and M ichael Cohen. The
lumigraph. In Holly Rushmeier, editor, Computer Graphics (S IG G R A PH '96
Proceedings), pages 43-55 , A ugust 1996.

[4] Wolfgans Heidrich, H endrik Lensch, M ichael F. Cohen, and Hans-Peter Seidel.
Light field techniques for reflections and refractions. In Eurographics Rendering
Workshop 1999. Eurographics, June 1999.

[5] Aaron Isaksen, Leonard M cM illand, and Steven J Gortler. Dynamically
reparam etrized light fields. Technical Report M IT-LCS-TR-778, Computer Sci­
ence D epartm ent, M assachusets Institute o f Technology, M ay 1999.

[6] Frederik W. Jansen and A lan Chalmers. Realism in real tim e? In Proceedings of
the Fourth Eurographics Workshop on Rendering, pages 27-46 , 1993.

[7] Philippe Lacroute and M arc Levoy. Fast volume rendering using shear-warp fac­
torization of the viewing transformation. In Andrew Glassner, editor, Computer
Graphics (S IG G R A PH '94 Proceedings), pages 451-458, July 1994.

[8] M arc Levoy and Pat Hanrahan. Light field rendering. In Holly Rushmeier, editor,
Computer Graphics (S IG G R A PH ’96 Proceedings), pages 31-42 , A ugust 1996.

[9] Leonard M cM illan and Gary Bishop. Plenoptic m odeling: A n im age-based ren­
dering system. In Robert Cook, editor, Computer Graphics (S IG G R A PH ’95
Proceedings), pages 39-46, A ugust 1995.

[10] Gavin M iller, Steven Rubin, and D ulce Ponceleon. Lazy decompression o f sur­
face light fields for precom puted global illumination. In Eurographics Rendering
Workshop 1998. Eurographics, June 1998.

[11] Steven Parker, W illiam M artin, Peter-Pike Sloan, Peter Shirley, Brian Smits, and
Charles Hansen. Interactive ray tracing. In Symposium on Interactive 3D Graph­
ics, A pril 1999.

[12] Steven Parker, M ichael Parker, Yarden Livnat, Peter-Pike Sloan, Charles Hansen,
and Peter Shirley. Interactive Ray Tracing for Volume Visualization. IE E E Trans­
actions on Visualization and Computer Graphics, To A ppear 1999.

[13] Steven Parker, Peter Shirley, Yarden Livnat, Charles H ansen, and Peter-Pike
Sloan. Interactive ray tracing for isosurface rendering. In Proceedings o f Vi­
sualization ’98, October 1998.

[14] E. Reinhard, A.G. Chalmers, and F.W. Jansen. Overview o f parallel photo­
realistic graphics. In Eurographics ’9 8 ,1998.

[15] Peter-Pike Sloan, Steven Gortler, and M ichael Cohen. Time critical lumigraph
rendering. In M ichael Cohen and David Zeltzer, editors, 1997 Symposium on
Interactive 3D Graphics, pages 17-24, A pril 1997.

[16] Tushar Udeshi and Charles Hansen. Towards interactive photorealistic rendering
o f indoor scenes: A hybrid approach. In Eurographics Rendering Workshop
1999. Eurographics, June 1999.

