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A b s t r a c t

This paper presents three techniques for reconstructing Lumi- 
graphs/Lightfields on commercial ccNUMA parallel distributed 
shared memory computers. The first method is a parallel extension 
of the software-based method proposed in the Lightfield paper. This 
expands the ray/two-plane intersection test along the film plane, 
which effectively becomes scan conversion. The second method 
extends this idea by using a shear/warp factorization that acceler­
ates rendering. The third technique runs on an SGI Reality Monster 
using up to eight graphics pipes and texture mapping hardware to 
reconstruct images. We characterize the memory access patterns 
exhibited using the hardware-based method and use this informa­
tion to reconstruct images from a tiled plane. We describe a 
method to use quad-cubic reconstruction kernels. We analyze the 
memory access patterns that occur when viewing Lumigraphs. This 
allows us to ascertain the cost/benefit ratio of various tilings of the 
texture plane.

1 I n t r o d u c t i o n

Lumigraphs [3] and Lightfields [8] are ways of representing the 
plenoptic function [9] using four degree-of-freedom (DOF) under 
the following two conditions: that the viewer is outside the convex 
hull of the object being viewed1 and that both the geometry and il­
lumination of the scene are static. The fundamental concept behind 
these representations is that given a point in space and knowledge 
about what light leaves that point from any incident viewing an­
gle, it is possible to reconstruct an image of that point from any 
viewpoint. By extending this to all points on the convex hull of a 
surface, a box for example, it is possible to reconstruct an image of 
that surface from any viewpoint.

There are many ways to parameterize this 4D function. The two- 
plane parameterization, and , is currently the most common 
parameterization and is used by both the Lumigraph and the Light- 
field. Unfortunately, the Lumigraph and Lightfield papers used sim­
ilar symbols in different contexts, we will use the convention in the 
Lumigraph paper and consider the first plane to be and the sec­
ond plane to be . We will also just refer to this 4D function 
as a Lumigraph. In all of the examples discussed in this paper, we 
choose planes that are parallel to each other which is a reasonable 
assumption in terms of sampling distribution [8].

It is difficult to interactively reconstruct reasonable sized2 im­
ages using Lumigraphs and Lightfields due to the enormous size of 
the 4D function. An obvious method for handling the large amounts 
of data is through compression [8]. Another method for addressing 
this is to sparsely sample the 4D function thereby trading off image 
fidelity for interactivity [15]. To render at full fidelity, one needs 
parallel techniques for two fundamental reasons: reconstruction of

1 or inside if the viewer is inside looking out
2We consider reasonable size images to be 512x512 or 1024x1024.

the 4D plenoptic function is computationally intensive and the stor­
age requirements for a densely sampled, uncompressed Lumigraph 
are enormous.

This paper will present parallel methods to accelerate purely 
software-based reconstruction and demonstrate a parallel imple­
mentation using a parallel ray tracer [12]. We also describe an ar­
chitecture for distributing hardware-based reconstruction using tex­
ture mapping by leveraging multiple graphics accelerators in this 
case on an SGI Reality Monster with eight InfiniteReality pipes. 
We extend the reconstruction to use a tiled plane and show 
how to reconstruct with higher order basis functions.

In the next section, we review Lumigraphs and the sampling 
issues for reconstruction. Related work is then briefly discussed. 
Following that, we present the software-based and hardware-based 
reconstruction methods. Results are presented of the parallel imple­
mentations on a 32 CPU/8 IR SGI Origin 2000. We then conclude 
with possible future directions for this research.

2  L u m ig r a p h

Lumigraphs/Lightfields are parameterizations of light leaving a 
convex bounding volume. A ”slab” of light consists of two planes, 
a front and back plane and represents all rays that intersect both of 
these planes. An object can be represented by surrounding it with 
slabs that cover all rays in line space that intersect the object, where 
the planes are all outside the convex hull of the object.

The plane is sampled into some number of nodes. Each of 
these nodes can be thought of as an image, with a sheared frustum, 
of the plane. This is shown in figure 1. The image of a point 
on the plane captures the surface radiance [1] at that point only 
if the point being examined happens to lie on the surface of the ob­
ject. If the plane is not on the surface of the object, the rays 
from the discretization diverge which can lead to ghosting artifacts. 
This case is shown in figure 2. Notice that the samples from point B 
capture the surface of the object but the samples which intersect the 
UV plane at A have diverged and actually sample different points 
on the object’s surface. A finer sampling of the ST plane can coun­
teract this effect but leads to much larger Lumigraphs. The original 
Lumigraph paper presented the notion of geometric correction [3] 
which addresses this issue, but that will not be dealt with further in 
this paper.

There are two ways to reconstruct images from a Lumigraph: 
image order (typically ray tracing or scan conversion) and object 
order. When reconstructing an image from an arbitrary viewpoint 
using ray tracing, determining pixel color depends on intersecting 
the ray from the eye point through a pixel with both the and 
UV planes. However, this intersection point rarely falls directly on 
the discretized samples of the or planes. The pixel color 
is computed by interpolating the neighboring samples as described 
below.

Figure 3 shows this in exaggerated detail. Each circle on the UV 
plane represents a sample point and each square on the plane
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Figure 1: Each node on the ST plane can be thought of as an image, 
with a sheared frustum, of the UV plane.

Figure 2: If the UV plane does not lie on the surface of an object, 
rays from the discretization of the plane diverge.

Figure 3: For image order reconstruction of a pixel, multiple sam­
ples from the plane are required. Each of these contain multiple 
samples of the plane. The resultant pixel color is determined 
through interpolation of all these values.

Figure 4: To reconstruct an image using an object order method, 
portions of the plane are projected onto the reconstruction 
plane. The portions of the plane are determined by neighboring 

nodes.

represents a node. For nodes on the plane which neighbor the 
ray/ intersection the corresponding samples on the which 
are nearest the ray/ intersection are determined. In 2D, this re­
sults in two samples per neighboring nodes. In 3D, this would 
result in four nodes each of which have four samples span­
ning the ray intersection. These values are interpolated, typically 
quadralinearly, to determine the pixel color in the reconstructed im­
age.

Object order reconstruction projects the relevant portion of each 
ST  node onto the reconstruction plane. This is shown in figure 4. 
Using neighboring nodes to provide the bounds, a portion of 
the plane for the central node, shown in grey, is projected 
onto the reconstruction plane. Using piecewise linear reconstruc­
tion, the contribution of the segment would falloff from one to zero 
as indicated. This is done for all neighboring nodes resulting in 
the reconstructed image.

3  R e la t e d  W o rk

There have been several relevant papers dealing with lumigraphs. 
In [10] a parameterization is used where a parametric surface has a 
parameterization for orientation directly (2 degrees of freedom for 
surface parameterization, 2 for orientation.) This paper also has an 
interesting analysis of temporal and angular coherence for Light- 
fields/Lumigraphs parameterized in this fashion. It also uses block 
transform coding for decompression. In [4], geometry is decoupled 
from illumination. The 4D function stores the outgoing reflection 
direction for the incoming ray. This can be used to lookup color 
with an environment map or another Lightfield. They also show a 
method to directly render vector quantized Lumigraphs/Lightfields 
using graphics hardware. In [5] a very intuitive description of what 
amounts to geometric correction from the Lumigraph paper is de­
scribed. They present a way to represent multiple focal surfaces and 
change them and the apertures dynamically along with a interesting 
way to find focal surfaces from a give dataset.

There has been much work on parallel techniques for ray tracing. 
Rather than review the body of knowledge here, we refer the reader 
to the Jansen and Chalmers overview [6] or the Reinhard, Chalmers 
and Jansen overview [14]. Additional background to the parallel 
ray tracing infrastructure used in this paper can be found in [11,
12, 13]. There has been much less work on exploiting multiple 
graphics pipes in parallel. A recent paper described a system which 
approximated global illumination by exploiting multiple graphics
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Figure 5: Ray tracing, i?, through the film plane, X, into the Lumi- 
graph ST UV

is a point on the lower left of the film plane 
is the center of projection of the camera 

X  is the “x” axis of the film plane 
is the “y” axis of the film plane 
is the surface normal

becomes since the X and Y coordinates are
aligned appropriately with and .

By starting at , a point on the lower left of the film plane, the 
ray equation becomes:

R =  F +  xX  +  y Y - E

The ray-plane intersection can be written as:

(E +  RX) ■ N  =  - d

Which for becomes:

X =  { - d -  {N ■ E) ) / { N ■ R)

Since on the plane, for it becomes:

X =  (—(N ■ E) ) / ( N ■ R)

Due to the canonical slab space, it suffices to map the STUV  
points into indices. For example, to map for :

S =  E.x +  R. x* X

Si =  S * scale +  of f set

adaptors for indirect lighting [16]. They used a similar compositing 
method to ours.

4  O v e r v ie w  o f  P a r a l le l  R e c o n s t r u c t i o n  
M e th o d s

Parallel techniques are necessary for reconstruction of the full Lu- 
migraph due to the enormous size of the uncompressed 4D repre­
sentation and the reconstruction costs involving ray tracing or hard­
ware based reconstruction leveraging texture mapping hardware. 
We have chosen to present both software and hardware implemen­
tations since multipipe graphics systems are not common whereas 
multiple CPU systems are much more prevalent.

4.1 Software Reconstruction
The software reconstruction method is similar to the reconstruction 
used for the Lightfield [8]. In the Lightfield technique, the STUV  
planes are scan converted into the reconstruction image plane and 
then texture filtering and lookups are performed. As pointed out in 
[8], one can extend ray tracing to reconstruct from the two-plane 
parameterization of the Lumigraph.

Let us consider the generalized ray tracing solution (see figure 5). 
To reconstruct the image corresponding to the new viewpoint, , 
it suffices to intersect the ray, , passing through the film plane 
with the ST  and UV planes. The intersection point in the ST  
plane defines 4 views3. The UV intersection point is bilinearly 
interpolated for each of these using the same weights. Finally, these 
four samples, one for each node on the plane are bilinearly 
interpolated with weights based on the coordinates.

However, this can be optimized by employing a canonical slab 
space coordinate system. This system places the origin in the 
plane while aligning the axis with and and the axis with 
and . The axis is normal to and . In this configuration, 
it suffices to employ only the individual coordinates. For example,

3One can think of each node in the S T  plane as a separate view.

Where scale and offset map from space to indices. This 
combines to:

Si =  E.x * scale +  of f set  +  R.x * A * scale

This can be further optimized by noting that is constant
during a frame and is the same for both the and
intersection. Mapping to the canonical slab space allows compu­
tation with a single coordinate for the different variables, for ray 
intersection, for and , and y for and . This effectively is 
scan conversion.

To efficiently compute the reconstructed image, we partition the 
film plane into blocks that effectively utilize data cache. Since each 
partition is independent, we can parallelize rendering them. For 
this, we employ the parallel ray tracing framework described in [11] 
which provides dynamic load balancing of frames by assigning im­
age subblocks to a work queue for each frame to be rendered. Other 
processes obtain groups of these blocks from the queue in a mono- 
tonically decreasing amount. This heuristic provides quite reason­
able dynamic load balancing without the overhead of determining 
work loads needed for task stealing.

The parallel algorithm is based on a master/slave configuration. 
The master process is responsible for populating the work queue, 
managing the display and performing updates, such as view trans­
formation, from the user. While the implementation is straight for­
ward, careful attention to performance details has allowed this par­
allel ray tracer to achieve interactive rates. This is particularly inter­
esting for Lumigraph reconstruction where one has multiple CPUs 
but limited graphics hardware. As will be seen in the results sec­
tion, we obtain both interactive frame rates for the reconstruction as 
well as excellent scaling.

This method can be further improved with the observation that if 
the reconstructed image is scan converted directly on the plane, 
there is no need to perform any ray plane intersection tests. This can 
be accomplished through the use of a sheared frustum as shown in 
figure 6a. We again utilize the canonical slab space which ensures 
that and line up with and . If we reconstruct onto the 
portion of the plane which is covered by the projection of the 
film plane, we can warp this resultant image back to the view plane 
using standard 2D texture mapping hardware with a single texture 
mapped polygon. This is similar to the idea used in shear/warp



Figure 6: Reconstructing on the plane.

(a) (b)

Figure 7: Images of the (a) sheared image and the (b) final image. 
Also see the colorplate.

volume rendering [7]. We can incrementalize the scan conversion 
on both the and the planes indicated by the dashed lines 
in figure 6a. Note, in 3D the camera may be rotated and we can 
scan convert the bounding box of the projected viewing frustum. 
This can be further accelerated if the projection of the plane 
onto the plane is not fully contained in the frustum as shown in 
figure 6b. In this case, we need only reconstruct the portion of the 
projected frustum which contains samples for both the and 
planes. We can project the end-points of the UV plane onto the ST  
plane, project the bounding box of the view frustum onto the 
plane, and we know the extents of the plane itself. We can limit 
the scan conversion to the region defined by the greatest minimum 
and least maximum of all these points.

Figure 7a shows an image of the sheared frustum reconstructed 
on the plane. Notice how the bowl is warped. Figure 7b shows 
the final image which warps the sheared image onto the film plane.

By parallelizing the scan conversion process, we can speed up 
the rendering. We use the same parallel infrastructure as before 
except the film plane is not partitioned, the portion of the plane 
covered by the view frustum is partitioned. The same dynamic load 
balancing technique can be employed.

4.2 Hardware Based Reconstruction
As mentioned earlier, the hardware-based techniques are object or­
der traversals. The basic idea is to directly render the contribu­
tion of each node using graphics hardware [3, 15]. First, ba­
sis functions must be defined over the plane. A triangulation 
of the nodes on the plane is commonly used because this is 
the most straightforward way to leverage hardware. Then for each 
node on the plane all of the triangles connected to it are drawn, 
using an alpha value of 1 at that particular node and 0 at all of the

Figure 8: Two 1D basis functions and the tensor product (bi-linear)

other nodes. The texture coordinates are determined by intersecting 
rays from the eye through the corresponding node with the 
plane. The basis functions for each image are summed, so that each 
triangle is rendered three times and the results added, summing up 
to one everywhere in the triangle. For more general basis functions 
this property must be preserved - the sum of the basis functions at 
any point on the plane is one. Otherwise leveraging the hard­
ware to perform the blending would be difficult.

We have implemented bi-cubic reconstruction on the plane 
using multi-pass rendering. The current implementation uses a 1D 
texture map and three passes: two passes for defining the support of 
the tensor product basis function, one for drawing the final image. 
If the application became fill rate limited a 2D image of the basis 
function could be used instead. The 1D texture map is initialized 
with the values for the basis function (Cubic Bspline in this case.) 
The pseudo code is as follows:

/ /  only draw into alpha planes
glColorMask(GL_FALSE,GL_FALSE,GL_FALSE,GL_TRUE); 
glEnable(GL_TEXTURE_1D); / /  turn on texturing 
/ /  load 1D texture 
DrawQuad(0,0,1,1); / /  horizontal 
glEnable(GL_BLEND);
glBlendFunc(GL_ZERO,GL_SRC_ALPHA);
DrawQuad(0,1,1,0); / /  vertical 
glDisable(GL_TEXTURE_1D);
glColorMask(GL_TRUE,GL_TRUE,GL_TRUE,GL_TRUE);
glBlendFunc(GL_DEST_ALPHA,GL_ONE);
//  draw normal textured basis function 
/ /  except use 2D texture coordinates

Figure 8 shows the steps in drawing the support of the basis func­
tion.

This allows reconstruction using any basis functions that are 
strictly positive and form a partition of unity. That is, at any point 
on the plane the sum of the values of all of the basis functions 
that it overlaps equals one.

Figure 9a shows an image from one graphics pipe reconstructed 
with a constant basis function. Figure 9b shows the image from one 
graphics pipe reconstructed with a piecewise linear basis function. 
Figure 9c shows the image from one graphics pipe reconstructed 
with a bi-cubic basis function.

The main bottleneck with these methods is the limited amount of 
texture memory, and the bandwidth between the host and the accel­
erator. The images associated with each node are distributed by 
interleaving the pipes along the one-dimensional index of a Hilbert 
curve through the nodes. This distribution is statically created 
when the program starts and no attempt is made at load balancing. 
Each pipe simply renders the basis functions for each node that 
it contains, reads back the results and hands it off to the composit­
ing threads. The compositing is done entirely in software, there are 
two reasons for this, one is that the hardware is the critical resource 
so it should be used as effectively as it can, the other being that the 
cost of the compositing can be completely hidden by overlapping 
the compositing with the rendering of the next frame. This causes 
a one frame latency, but makes a significant difference in perfor­
mance.
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Figure 9: Images of a different basis functions: (a) constant, (b) 
piecewise linear, and (c) bi-cubic. Also see the colorplate.

4.2.1 Tiled Hardware Reconstruction

Loading full texture maps for each basis function being drawn is 
more work than is necessary. If every basis function on the 
plane was not clipped by the plane, the number of texels that 
required for a frame would be times the number of texels on 
the plane. Where is 1 for constant basis functions, 3 for 
piecewise linear, 4 for bilinear and 16 for quad cubic. Loading 
whole textures effectively touches the number of texels on the 
plane times the number of nodes on the plane. Intuitively, this 
can be thought of as projecting the triangulation of the plane 
onto the plane.

Our solution to this problem is to tile the plane. Instead 
of representing it as one texture, the plane is uniformly tiled 
into several smaller textures. Recall that figure 4 showed a single 
basis function viewed from a camera. In figure 10 we show the 
same basis function, but this time we have tiled the plane, only 
the tiles that overlap the selected nodes need to be used during 
reconstruction. In this case, only tiles 4-8 need to be loaded into 
texture memory rather than the entire plane. Another way to 
think of this is that you have a lumigraph for each tile on the 
plane, if the tile size was a pixel you would only need to render 
at most the number of samples on the plane times the number 
of images that contribute to each sample (determined by the 
choice of basis functions.)

When implementing the tiled architecture we found that our cur­
rent available implementation of OpenGL would crash and/or be­
have very erratically when the number of texture objects bound was 
greater then 4096. A workaround could utilize tiles represented as 
sub regions inside a larger texture, but would complicate the im­
plementation. The solution was to manage the ’’texture cache” our­
selves. With small tile sizes (less then 64x64) it is impossible to 
have enough texture objects to fully utilize the amount of texture 
memory in the system (64MB). Currently there are the number of 
texture objects to fill two times texture memory, for a given tile size,

Figure 10: Tiling the plane reduces the amount of data needed 
loaded into texture memory.

but never more then 4096. This technique is more effective at uti­
lizing OpenGL’s texture caching scheme and lessens the amount of 
time spent rebinding texture-IDs to tiles.

Each tile in each basis function has a simple structure, which 
contains a ’valid” word, that represents the last frame that the tile 
was used in and an index into the list of texture-IDs which also 
indicates if the tile isn’t currently bound to a texture.

There is also a word associated with each texture-ID, which ref­
erences the tile to which it is currently pointing. Thus, when a 
texture-ID is reused, the tile which is using it can be updated to 
reflect the fact that it is not currently bound to a texture.

The pseudo code for the system is as follows:

ComputeBasisFunctions(); / /  detail below
QueryTextureResidence();
DrawBoundTilesThatAreResident();
DrawBoundTilesThatAreNotResident();
DrawTilesSwapOld();
DrawTheRestOfTheTiles();

ComputeBasisFunctions creates the texture coordinates for all of 
the basis functions, it also computes the tile indices that overlap the 
bounding box of the basis functions. QueryTextureResidence just 
executes an OpenGL command that given a list of texture-IDs tells 
which ones are in texture memory. Strictly speaking this should not 
be necessary if the number of texture-IDs generated can all fit in 
texture memory. DrawBoundTilesThatAreResident loops through 
all of the tiles that are in texture memory and need to be drawn 
this frame. DrawBoundTilesThatAreNotResident is only applied to 
tiles that are bound and not in texture memory. After these tiles 
have been drawn it is necessary to begin reassigning texture-IDs to 
the tiles since the only remaining tiles that need to be drawn have 
no associated texture object. Two lists are built, one for texture-IDs 
assigned to tiles that were not drawn this frame and one for all of 
the rest of the IDs. The first list (IDs for tiles that aren’t being used 
this frame) is exhausted followed by the second list. If there still 
are more tiles to draw, texture-IDs can be processed in order.

It is useful to understand the behavior of this tiling scheme. To 
achieve this, it is possible to optionally gather the following statis­
tics for every frame: the total number of tiles needed for this frame, 
the number of tiles that were in texture memory, the number of tiles 
that are in this frame but were not in the last frame, and the number 
of tiles that were in last frame but not in this frame. This informa­
tion will be presented in the results section and can be used in the 
future when trying to ascertain how much CPU time can be spent 
decompressing Lumigraphs.



Number of CPUs
512“ 1 2 4 8 16 30
RT 1.24 2.46 4.78 9.56 19.11 36.65
SW 2.18 4.31 8.35 16.56 32.77 58.88

o to 1 2 4 8 16 30
RT 0.32 0.63 1.25 2.51 4.97 9.58
SW 0.56 1.12 2.20 4.77 9.28 15.97

Table 1: Software-based parallel Lumigraph reconstruction for 
512x512 and 1024x1024 images. Units are in frames-per-second. 
RT are the times for the ray traced algorithm while SW are the times 
for the shear-warp technique.

4.2.2 Software Architecture

For each graphics pipe there are two threads, one that processes 
input from the GUI and one that renders using OpenGL. There is 
also a extra window on the main graphics pipe that is used to asyn­
chronously display the results of the software compositing.

Structuring the code this way made the implementation cleaner - 
both threads share the same ”drawable” (in X11 parlance) and do 
not have to worry about mutual exclusion because they are using 
unique Display pointers. The GUI thread creates the window, the 
OpenGL thread creates the context, using a unique Display pointer 
but the same drawable.

The rendering process for the display-only window simply waits 
at a barrier for the compositing threads and then displays an image.
The other rendering threads are driven by the non-display rendering 
thread on the main pipe.

The compositing threads divide the frame buffer into strips, each 
thread only being responsible for compositing into their strip. Since 
the basis functions form a partition of unity, the blending can be 
done by adding 64bit unsigned integers (2 pixels at a time.)

5  R e s u l t s

Our initial results are encouraging. The machine used was an SGI 
Origin 2000 with 32 250mhz R10000 CPUs, 8 IR pipes (1RM7 
64MB Texture) and 8 gigabytes of memory. Both the hardware and 
software methods demonstrate good scaling.

5.1 Software-based Reconstruction
We ran the parallel versions of reconstruction using both the ray 
tracing-based intersection and the shear/warp-based reconstruction.
Table 1 shows the results for reconstructing into a 512x512 image 
and a 1024x1024 image. The tests were run on a single slab with Figure 11: Images of the large dataset used in the hardware test 
32x32 ST  nodes and 256x256 pixels per UV image. The view cases. Also see the colorplate. 
chosen had every pixel in the frame buffer intersect the Lumigraph 
(the film plane is the UV plane, with a 36 degree field of view.)
At each resolution the test was run 50 times and the results were 
averaged. The shear/warp-based algorithm was around 1.8 times as 
fast as the incremental ray tracing mode.

5.2 Hardware-based Reconstruction
The hardware-based tests were run on two data sets, a 512 MB one 
(2 32x32x256x256 slabs) and a 3 GB data set (3 32x32x512x512 
slabs) both were reconstructed on a 512x512 window. 8 composit­
ing threads were used. The small dataset was the bowl of fruit in 
figure 7. The large dataset was a Lumigraph constructed from a set 
of isosurface images from the visible woman dataset as seen in the 
figure 11.



Number of Tiles
1 tile 2 tiles 4 tiles

1 pipe 0.928 2.327 16.024
2 pipe 2.727 16.252 25.616
4 pipe 18.474 38.164 35.433
8 pipe 47.219 41.89 39.228

Number of Tiles
1 tile 2 tiles 4 tiles 8 tiles

used 385.065 186.012 64.582 21.846
bound 125.619 119.279 61.274 19.641
new 6.637 6.235 4.148 2.477
old 6.606 6.254 4.149 2.478

Table 2: Average FPS for the 512MB Lumigraph dataset.

Number of Tiles
1 tile 2 tiles 4 tiles 8 tiles

1 pipe 2.006
2 pipe 0.921 8.256
4 pipe 0.823 4.246 14.019
8 pipe 0.752 2.153 22.559 18.505

Table 3: Average FPS for the 3GB Lumigraph dataset.

We captured a interactive sequence, 352 camera views, and re­
played this sequence with various pipe/tiling/database selections. 
The first frame of the sequence always took the longest to render 
since there were no data from previous frames already in texture 
memory.

In tables 2 and 3 we present the average frames per second (FPS) 
over the last 351 frames of this sequence for the 512MB and the 
3GB dataset. Slowing down when moving to smaller tile sizes was 
expected. At some point the inefficiency of transferring very small 
textures and the overhead from rendering the basis functions multi­
ple times, most likely the former, will start to cause the performance 
to degrade. Some tiling is always faster if the entire scene doesn’t 
fit into texture memory, often significantly so. When the frame rate 
dropped significantly below 1 FPS, we left the table entries blank.

The information gathered about the memory access patterns are 
shown in tables 4 and 5. The numbers reported are in MegaTexels 
(220th texture elements). The four data series are the number used 
per frame, the number that were already bound when the frame 
started, the number that were new (i.e., had not been rendered in the 
previous frame) and the number that were old (i.e., were rendered in 
the previous frame but not in the current frame). These numbers are 
all averages over the sequence. The number of pipes only changed 
the average number of bound textures.

6 C o n c l u s i o n s  a n d  F u tu r e  W o rk

We have shown three parallel methods for rendering Lumigraphs. 
Two of them are strictly based on software (with minimal hard­
ware support - a single texture mapped quad - for one of them) and 
one is based on using multiple graphics pipes. For the software 
method we showed how optimizing ray two-plane intersection tests

Number of Tiles
1 tile 2 tiles 4 tiles

used 52.203 23.120 7.452
bound 15.747 15.558 7.115
new 0.878 0.697 0.399
old 0.872 0.703 0.402

Table 4: Average MegaTexels for the 512MB Lumigraph dataset (1 
Pipe).

Table 5: Average MegaTexels for the 3GB Lumigraph dataset (8 
Pipe).

across a scan line effectively boils down to scan conversion. We 
also showed a method of extending the principles of shear/warp 
rendering to reconstruct Lumigraphs that is significantly faster then 
the standard software technique. For the hardware reconstruction 
technique we showed how to reconstruct Lumigraphs with quad- 
cubic basis functions, and an initial multi-pipe implementation. We 
also showed how to reconstruct from a tiled plane which sig­
nificantly speeds things up over using full textures.

The most compelling future work is to leverage the data we have 
collected on the memory access patterns of Lumigraphs for inves­
tigating compression algorithms. In particular the CODEC has to 
be able to decompress at a sufficient rate to feed the rendering en­
gine. For a desired frame rate (for a hardware implementation) the 
number of tiles needed for a given frame must be decompressed for 
rendering. We believe that the access patterns are coherent enough 
to try more aggressive compression then have already been suc­
cessfully used (standard VQ - which has a very fast decompression 
time.) Hardware implementations that support compressed textures 
(like the S3TC technique - based on color cell compression [2]) 
should be leveraged to explore much more aggressive compression 
ratios. Also a more general tiling, not strictly based on ”whole” 

planes, where locality with respect to and planes was 
considered would be beneficial since the tiles are clearly correlated 
in more then the plane.

Addressing the load imbalance in the current hardware method 
should be examined. Perhaps by using a modified work queue 
where there is a pool of nodes that aren’t in any of the pipes 
texture memories. These would be parceled out via a work queue. 
Batching texture tiles together into metatiles could help with the 
performance impact incurred when using smaller tile sizes. The 
tiles to be uploaded could be batched and sent in a single glTex- 
SubImage command.

The software version currently also runs on parallel Intel ma­
chines running Windows NT. We would like to investigate using 
the SIMD Floating Point instructions and potentially the streaming 
memory extension that exists in the Pentium III to accelerate the 
shear/warp and incremental rendering algorithms. The hardware- 
based methods for multiple pipes could be used for systems that 
support multi-monitor configurations.

The shear warp method has only be implemented for single slab 
datasets, dealing with sampling issues (based on the warp) intelli­
gently would make a lot of sense. This method would be attrac­
tive for rendering from compressed representations because it is so 
memory coherent.
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