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Object. Treatment for hydrocephalus has not advanced appreciably since the advent of cerebrospinal fluid (CSF) 
shunts more than 50 years ago. Many questions remain that clinical and basic research could address, which in turn 
could improve therapeutic options. To clarify the main issues facing hydrocephalus research and to identify critical ad­
vances necessary to improve outcomes for patients with hydrocephalus, the National Institutes of Health (NIH) spon­
sored a workshop titled “Hydrocephalus: Myths, New Facts, and Clear Directions.” The purpose of this paper is to re­
port on the recommendations that resulted from that workshop.

Methods. The workshop convened from September 29 to October 1, 2005, in Bethesda, Maryland. Among the 150 
attendees was an international group of participants, including experts in pediatric and adult hydrocephalus as well as 
scientists working in related fields, neurosurgeons, laboratory-based neuroscientists, neurologists, patient advocates, in­
dividuals with hydrocephalus, parents, and NIH program and intramural staff. Plenary and breakout sessions covered 
injury and recovery mechanisms, modeling, biomechanics, diagnosis, current treatment and outcomes, complications, 
quality of life, future treatments, medical devices, development of research networks and information sharing, and edu­
cation and career development.

Results. The conclusions were as follows: 1) current methods of diagnosis, treatment, and outcomes monitoring need 
improvement; 2) frequent complications, poor rate of shunt survival, and poor quality of life for patients lead to unsat­
isfactory outcomes; 3) investigators and caregivers need additional methods to monitor neurocognitive function and 
control of CSF variables such as pressure, flow, or pulsatility; 4) research warrants novel interdisciplinary approaches; 
5) understanding of the pathophysiological and recovery mechanisms of neuronal function in hydrocephalus is poor, 
warranting further investigation; and 6) both basic and clinical aspects warrant expanded and innovative training pro­
grams.

Conclusions. The research priorities of this workshop provide critical guidance for future research in hydrocephalus, 
which should result in advances in knowledge, and ultimately in the treatment for this important disorder and improved 
outcomes in patients of all ages. (DOI: 10.317I/PED-07/11/345)
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Abbreviations used in this paper: CBF = cerebral blood flow; 
CSF = cerebrospinal fluid; CT = computed tomography; ETV = en­
doscopic third ventriculostomy; ICP = intracranial pressure; MR = 
magnetic resonance; NIH = National Institutes of Health; NINDS = 
National Institute of Neurological Disorders and Stroke; NPH = nor- 
mal-pressure hydrocephalus; R = CSF outflow resistance.

H y d r o c eph a lu s  is the abnormal primary enlargement 
of the cerebral ventricles that results from impaired 
CSF secretion, circulation, or resorption. It is dis­

tinct from “hydrocephalus ex vacuo,” the abnormal secon­
dary enlargement of the cerebral ventricles resulting from 
loss of cerebral tissue (for example, due to cerebral atrophy).
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Most commonly recognized as a disorder of infants and 
children,7-1104 hydrocephalus also affects adolescents, young 
and middle-aged adults,51-71'159 and the elderly.82-"8'121'126'152

The first effective treatment for hydrocephalus, the shunt, 
was developed 50 years ago by John Holter, in collabora­
tion with the neurosurgeon Eugene Spitz.5 The shunt revo­
lutionized the care of patients with hydrocephalus; shunt 
surgery is now the most common procedure pediatric neu­
rosurgeons perform. With this dramatic success, the search 
for other approaches to treatment slowed.

Despite improvements in neuroimaging, shunt valve 
technology, and ETV, little has changed in the diagnostic 
and treatment approaches toward hydrocephalus in the last 
50 years. Surprisingly little clinical or basic research has fo­
cused on hydrocephalus, aside from studies to test the effec­
tiveness of new shunts (often to achieve US Food and Drug 
Administration approval). Frequent complications and asso­
ciated morbidity often make treatment outcomes unsatisfac­
tory.80 The infrastructure for clinical care in the US is large­
ly limited to pediatric neurosurgeons, and fewer than 10 
centers have expertise for diagnosing and treating adult hy­
drocephalus. No standard mechanism exists for the smooth 
transition of care for individuals with hydrocephalus from 
pediatric to adult specialists.

Hydrocephalus is far from cured, and there is a pressing 
need for basic and clinical research to improve our under­
standing of this complex disorder. Hydrocephalus is some­
times misconstrued as a simple disorder of CSF circula­
tion—a “plumbing problem”—when it is more properly 
viewed as a brain disorder. Because hydrocephalus signs 
and symptoms can resolve in days or weeks after existing 
for months or years, a novel form of reversible neuronal and 
glial injury may be involved. At present, the basic injury 
and recovery mechanisms are not adequately understood.

In recognition of the gaps in our knowledge, and the ben­
efits that could emerge from focused research, the NIH 
convened a workshop titled “Hydrocephalus: Myths, New 
Facts, and Clear Directions” in Bethesda, Maryland, from 
September 29 to October I, 2005. More than 150 neuro­
surgeons, neurologists, laboratory-based scientists, patient 
advocates, patients, parents, and program staff from five 
institutes and one office within the NIH assembled for a 
day and a half of plenary discussions that summarized the 
current knowledge, challenged existing dogma and mythol­
ogy, and identified critical gaps in research and clinical 
treatment. Participants divided into three breakout groups 
to answer key questions (Appendices I and 2) with the goal 
of developing research priorities and collaborative oppor­
tunities.

The priorities for research (Table I) resulting from the 
2005 NIH Hydrocephalus Workshop should set in motion 
a broad, interdependent array of research in hydrocephalus 
that we hope will yield important discoveries fundamental 
to our understanding of brain function and CSF physiology 
and ultimately lead to therapeutic intervention strategies 
and improved outcomes for patients of all ages.

Clinical, Research, and Education Infrastructure
The research priorities begin with recommendations for 

research infrastructure (Table I) that all three breakout 
groups identified independently as a need for all types of 
research (clinical, basic, translational, and interdisciplinary).

Research priorities for hydrocephalus

Hydrocephalus Research Infrastructure 
Creation of research networks

Basic, clinical, translational. & interdisciplinary research 
Facilitation of information shirring

Specimen banks: brain, CSF. genetic material, shunts, images, phys­
iological measurements 

Registries: clinical trials, epidemiological data, longitudinal studies 
Education & career development for researchers 

Scientist & clinician/scientist education 
Basic Research

Injury & recovery mechanisms in human volunteers or animal models 
Molecular, cellular, genetic, & systems physiology 

Role of stem cells & neural progenitor cells 
Role of inflammation, tissue matrix, blood brain harrier, bio­

markers
Anatomy & physiology of CSF secretion, circulation, resorption, 

function
Development of appropriate animal models for age, acuity of onset, 

& mode of induction factors, including congenital & acquired hy­
drocephalus

Ex vivo models (brain slices, tissue culture)
Transgenic models 

Development & validation of theoretical & biomechanical modeling 
CBF/CSF pulsatility, compartment models, ICP gradients, & moni­

toring
Physiological effects of CSF diversion, including slit-ventricle syn­

drome 
Clinical Research 

Diagnosis
Establishment & validation of diagnostic criteria at all stages of life 
Improvement & validation of imaging & noninvasive testing tech­

niques
Current treatment, outcomes, complications 

Epidemiology & population impact 
Surgical treatment 

Establishment & validation of treatment criteria at all stages of 
life

Prevention of infection & device or treatment failure 
Effects of device design, biomaterials, & technique on outcomes 

Clinical evaluation of brain/neuronal dysfunction & recovery 
Development & validation of clinical conventions or templates 

for assessing neurological & behavioral outcomes (for exam­
ple, cognitive, gait, motor, continence, activities of daily living) 

Correlation of clinical outcomes w/ imaging & noninvasive tech­
niques

Effects of infection & device or treatment failure on outcomes 
Health services research

Education of patients, public, physician communities 
Determination of extent of need for centers of excellence 
Determination of extent of need for longitudinal care for children 

& adults w/ chronic hydrocephalus 
Development of age-appropriate quality of life instruments 

Future Treatments
Development of adjunctive (pharmacological) therapies 
Development of novel medical devices & biomaterials

TABLE 1

which should facilitate the creation of research networks, 
data sharing, and education for future researchers.

Virtually no organized clinical, research, or educational 
infrastructure for hydrocephalus currently exists. Neverthe­
less, there is a need, given the fact that die cost of treating 
hydrocephalus is estimated at I billion dollars annually,144 
and there is evidence that treating adults with hydrocepha­
lus who are older than 65 years of age can lower national 
5-year Medicare expenditures by as much as $ 184.3 mil­
lion.184
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Creation o f  a Clinical Research N etw ork fo r  
H ydrocephalus

Between 1996 and 2006, there were only eight publica­
tions about multicenter hydrocephalus trials (according to a 
search of Medline [accessed September 2006]). There is a 
need to establish clinical research networks such as the 
Children’s Oncology Group, which is funded by the Nation­
al Cancer Institute. Such multicenter involvement encour­
ages pooling of data, tissue specimens, and knowledge as 
well as potential treatment innovation and research of clini­
cal outcomes. Most data on the longevity of CSF shunts, for 
example, reside with shunt manufacturing companies. The 
ability to compare different shunt models across a large 
population would be beneficial. A multiinstitutional clinical 
research network could help answer basic questions, such as 
the outcome of treated compared with untreated hydroceph­
alus, or facilitate comparisons of surgical strategies and out­
comes, such as shunts with or without antisiphoning devices 
or shunts compared with ETV. Investigators could use the 
research network database for the generation of hypotheses 
to be used in more focused research.

Creation o f  a Clinical Care and Research Training 
Infrastructure

There is currently no formal postgraduate clinical or re­
search training program in the care of hydrocephalus. Much 
of the training resides within pediatric neurosurgery fellow­
ships, not all of which have a clinical or research focus on 
hydrocephalus. This ad hoc system generally does not en­
compass adult hydrocephalus, nor does it include other spe­
cialists, such as neurologists and clinically oriented neu­
roscientists. Thus, the goal of reaching a “critical mass” of 
interdisciplinary clinical and research scientists studying 
hydrocephalus is a major challenge. It is plausible that the 
lack of critical mass or individual research mentors is a dis­
incentive for young investigators to enter a career in hydro­
cephalus research.

Creation o f  Infrastructure to Train Basic Science 
Researchers

It is arguable that in the field of hydrocephalus research 
there may be even fewer basic scientists than there are clin­
icians or clinical scientists. Considering that the pathophys­
iological processes in this disease are diverse and poorly 
understood, this field is an unparalleled opportunity for 
clinical or basic researchers. There should be incentives for 
such clinicians and scientists to concentrate their career 
paths toward hydrocephalus research. The establishment of 
funded postdoctoral fellowships could provide an incentive 
to obtain training, as could targeted faculty positions or en­
dowed chairs that would provide stable and productive en­
vironments for junior researchers.

Hydrocephalus P atient Advocacy

Some diseases and disorders have garnered focused fed­
eral funding for research due to the efforts of advocacy 
groups composed of philanthropic leaders, patients, and 
their families. The Hydrocephalus Association and other 
volunteer organizations with an interest in hydrocephalus 
that played an important role in the NIH workshop have 
filled that role in many ways. For example, the Hydroceph­

alus Association has made a deliberate choice to promote 
federal funding for hydrocephalus research rather than fund 
research on its own as similar organizations have done (for 
example, the Multiple Sclerosis Society and the Amyotro­
phic Lateral Sclerosis Society). Patient advocacy groups 
also provide information to patients and their families with 
regard to diagnostic and treatment options and ongoing clin­
ical research trials. Collaboration with patient advocacy 
groups should be encouraged, and the emerging hydroceph­
alus research community should view such cooperation as a 
highly valuable component of any complete clinical and re­
search program.

Priorities for Basic Research
Priorities for basic research (Table 1) focus on the injury 

and recovery mechanisms of hydrocephalus, ranging from 
the genetic and molecular levels to animal models and sys­
tems physiology approaches. Theoretical modeling of the 
effects of CSF, CBF, and ICP on normal and abnormal 
physiology is also needed.

Injury and Recovery M echanism s

The signs and symptoms of hydrocephalus, particularly 
in adults (but also in children), may be present for months 
or years, and yet resolve in days or weeks. Consequently, 
they represent a unique and clinically important type of 
neuronal injury and recovery. There is inadequate under­
standing of the mechanisms that lead to the initiation, pro­
gression, and persistence of neuronal, glial, and vascular 
dysfunction in hydrocephalus, as well as the mechanisms 
by which treatment reverses this injury. The application of 
contemporary methods and techniques in basic neurobiolo­
gy will provide critical insights into both the injury and 
recovery mechanisms of hydrocephalus, and we hope that 
this will lead to improved diagnostic, prognostic, and treat­
ment approaches.

Hydrocephalus has many known causes, including con­
genital malformations, hemorrhage, infection (primarily 
meningitis), and trauma, among others. However, most of 
the available knowledge pertains to secondary injuries and 
responses/ ;s ' including neuronal and glial cell death, ax­
onal and dendritic degeneration, astroglial and microglial 
activation and proliferation, neurochemical alterations, de­
creases in CBF, and impaired cellular metabolism 41-*M6-48-92 
Animal models of hydrocephalus include natural (congeni­
tal) forms in rodents or forms induced in many species by 
injection of materials such as blood, kaolin, silicone, or 
acrylic polymers that obstruct CSF flow either through an 
intense subarachnoid inflammatory response or a mechani­
cal barrier.32-88-140

Regardless of the cause, dilation of the lateral ventricles 
results in several types of brain injury. The ependymal lin­
ing is stretched and eventually lost. Cells in the subependy­
mal zone proliferate, giving rise to reactive astrocytes. Oli­
godendrocyte production of myelin is retarded, and these 
cells eventually die. Reactive astroglial and microglial 
changes occur in the periventricular white matter but also in 
the cortical and subcortical gray matter. The extracellular 
fluid compartment is enlarged in the white matter but com­
pressed in the cortical laminae. Periventricular axons are 
stretched and can be destroyed.40-68-109-110 The prominent 
white matter damage suggests that hydrocephalus could be
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considered a type of subcortical disconnection syndrome.50 
Disconnected neurons undergo atrophy of dendritic pro­
cesses and synapses and may die.19'85'86-109-110-124 Decreases in 
neurotransmitters and neuromodulators are common,30-91- 
us, in anc| reductions in energy metabolites occur within days 
of the onset of vcntriculomcgaly.sT "" 0 Hydrocephalus ad­
versely affects the cerebral vasculature, CBF, and metabo­
lism,1s>23.43.61,143, i S3.17<>. i89 anc| jjjej-g may indirect effects on
CBF via cardiac suppression.53-58

A number of factors modify the pathogenesis of brain in­
jury in hydrocephalus, including the age of the individual 
and the state of brain maturation at onset, the rate of ven­
tricular dilation, duration of stable ventriculomegaly, cause 
of hydrocephalus, and coexistence of other diseases. In the 
developing brain, enlargement of the ventricles and stretch­
ing of the ependymal lining raises complex questions about 
reduction of germinal cell proliferation, alteration of synap­
tic connections, and brain development.106-133-134-142-175 There 
has been no systematic study of the effect of repeated epi­
sodes of ventricular dilation and contraction associated with 
shunt obstruction and revision. It is plausible that repeated 
injury to neurons and glia is cumulative, and the capacity to 
reverse such injury may be lost.123 The calcium-mediated 
proteolytic changes in axons are similar to those in stroke 
and trauma.40 In vitro neuron studies might be used to deter­
mine how changes in CSF and extracellular fluid composi­
tion are toxic to axons and neurons in hydrocephalus. Un­
derstanding the secondaiy role of microglial inflammation 
in white matter is also critical.116-174

Gross restoration of the brain, blood, interstitial fluid, 
and CSF volumes and their volume relationships can occur 
quickly after CSF shunting;43 however, reduction in ventri­
cle size is not always necessary for clinical improvement, 
particularly in adults. Thus, some component of the quick­
ly reversible brain dysfunction may result from intracel­
lular neuronal or glial changes (for example, biochemical 
changes or gene induction). Within a span of hours to days, 
CSF shunting likely corrects white matter CBF and also 
may divert clearance of waste products to alternate absorp­
tion sites. Relief of metabolic and physical stresses on ax­
ons may prevent injury progression. In young hydroceph­
alic animals, early shunt placement is associated with a 
“catch-up” in myelin production47 and the restoration of ax- 
oplasmic transport in cortical connections within days.68

A subset of fetal or childhood-onset hydrocephalus is re­
lated to developmental anomalies that are sometimes attrib­
uted to genetic abnormalities. However, the role of genetic 
factors in the development of hydrocephalus overall is not 
well understood. The only hydrocephalus gene identified in 
humans, the X-linked L l-N C A M  mutation, is associated 
with many brain anomalies." ' 155 "T ” Considering that a sig­
nificant proportion of cases of hydrocephalus in humans oc­
curs as part of a more widespread developmental anomaly, 
many defective genes may act singly or (more likely) in 
combination.159 Studies of gene expression in models of ei­
ther induced or genetic hydrocephalus may identify molec­
ular mechanisms of injury and recovery.4-131-136 A database 
that listed rodents with hydrocephalus, their genetic charac­
terization, other phenotypic data, and associated publica­
tions would be an important part of the research infrastruc­
ture.

Many more hereditary forms of hydrocephalus occur in 
animals than in humans, including those found in the H-Tx

rat, the LEWS/Jms rat, and the hy-3 mouse.8-24-25-9-«8-100-101-122- 
I5i,i54,i78,i88 Transforming growth factor-^, may be involved 
in posthemorrhagic or postmeningitic hydrocephalus,168-169-183 
and upregulation of transforming growth factor-^, causes 
abnormal extracellular matrix in the CSF flow pathways.72 
Inducing hydrocephalus in mutant animals that do not oth­
erwise develop this disorder can be instructive. For exam­
ple, mice lacking aquaporin 4 develop hydrocephalus more 
rapidly after kaolin injection,18 and rats with kaolin-induced 
hydrocephalus upregulate aquaporin 4.117 The relationship 
of inherited abnormalities of ciliary function to hydroceph­
alus is not understood.3-155-177

There are no models with which to study the effects of 
chronic hydrocephalus or hydrocephalus arising across the 
age spectrum from brain development to senescence. Such 
models might provide a basis for treating the disorder in 
utero, or might lead to strategies to inhibit cerebral injury 
until treatment could be offered after birth.57-74-130 Similarly, 
understanding the effects of chronic ventriculomegaly on 
the brain may guide decisions to treat or not treat adults 
with “stable” hydrocephalus.185 Models using senescent ani­
mals might improve understanding of the interaction of hy­
drocephalus with hypertensive microvascular disease and 
Alzheimer disease, which are common in elderly patients 
with idiopathic NPH.93-94-166-185

In summary, despite progress in their identification over 
the past 30 years, the most important injury and recovery 
mechanisms in hydrocephalus remain elusive. This undoub­
tedly impedes the translational research necessary to ad­
vance the clinical management of hydrocephalus at all stages 
and ages of life. Research conducted using existing animal 
models should be expanded, and there is a need for new, re­
fined, and more physiologically appropriate animal models.

Mathematical Modeling and Biomechanics

The study of the movement of CSF and interstitial fluid 
within the craniospinal compartment is fundamental to the 
understanding of hydrocephalus, and mathematical model­
ing has played a major role in its investigation.171 Two tenets 
have guided the modeling of CSF dynamics: the Monro- 
Kellie doctrine and CSF bulk flow.

The Monro-Kellie doctrine102-135 depicts the cranium as a 
rigid chamber with a fixed volume that contains three liquid 
(and therefore incompressible) components: brain, blood, 
and CSF. If the volume of one of the components increases, 
then there must be compensation by a decrease in the vol­
ume of the other components. These principles form the 
basis for a variety of intracranial parameters, such as com­
pliance, elastance, and the pressure-volume index.82-83

The concept of bulk flow of CSF has dominated the 
modeling of CSF circulation and the management of CSF- 
related disorders1-33̂37-62-64̂67-76-107-108-127̂ 129-137-143-157-158-173-176 since 
1919, when Dandy38 demonstrated the production of CSF 
by the choroid plexus. The rate of CSF production is 
thought to be constant, and CSF flows through the ventri­
cles, exits into the subarachnoid space, and is absorbed 
through the arachnoid granulations at the superior sagittal 
sinus or the spinal rootlets. Absorption of CSF is thought to 
be linearly related to the pressure gradient between the sub­
arachnoid space and the intraluminal space of the dural 
venous sinuses. Consequently, hydrocephalus is often mod­
eled as a disturbance of CSF absorption that results in a
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“back-up” of fluid that increases CSF pressure and enlarges 
the ventricles.

Although there is little disagreement that bulk CSF flow 
circulation exists, its characteristics and importance are in 
question. For example, the net bulk flow of CSF over the 
cerebral convexities cannot be demonstrated by high-reso- 
lution cine MR imaging.78-79 Cerebrospinal fluid may freely 
cross parenchymal capillaries and prevenules.89-156 The con­
centration of radioisotope along the superior sagittal sinus 
and the sacral subarachnoid space may reflect a dilution 
effect, rather than the movement of CSF canying the radio­
isotope.79 If increased R >m at the arachnoid granulations 
causes communicating hydrocephalus, there should be an 
increased pressure gradient between the subarachnoid space 
and the sagittal sinus lumen, but currently there is no evi­
dence of this.61-165 In obstructive hydrocephalus in adults, 
there is no difference in Rom measured in the ventricles and 
the subarachnoid space.173

Pulsatility Biomechanics. The bulk flow model does not 
account for the dynamic, pulsatile movement of CSF, al­
though Hakim81 acknowledged its contribution. The con­
ventional view of hydrocephalus as an imbalance of CSF 
production and absorption may be an oversimplification.™9 
Newer modeling approaches consider the intracranial com­
partment to be highly dynamic and complex, relating the 
movement of CSF to CBF hemodynamics.

The cerebral arteries and choroid plexus generate intra­
cranial pulsatility.14"46-28-29-51-52 In fact, ventriculomegaly can 
be induced simply by inserting a balloon in the lateral ven­
tricle that pulsates synchronously with arterial pulsations 
and increases CSF pulse pressure without changing CSF 
mean pressure.51-52 Whereas obstruction of CSF flow can 
cause acute hydrocephalus, chronic hydrocephalus may re­
sult from increased capillary pulse pressure that causes ven­
tricular enlargement.

The hemodynamic theory of ICP physiology posits that 
the dynamic movement of CSF across the foramen mag­
num into the distensible spinal subarachnoid space is essen­
tial for pulsatile blood flow in the intracranial compart­
ment,1 w3 and this has been demonstrated experimentally in 
the venous system.90 It has been proposed that disruption of 
pulsatile CSF flow should perturb CBF dynamics, leading 
to CBF autoregulatory and other compensatory mecha­
nisms that result in disorders of CSF circulation.59̂ 1-115-179-180

More recently, results of modeling support the suggestion 
that the intracranial contents oscillate at an exact “tuned” fre­
quency, rather than passively responding to the pulsatile 
“hammer” of the incoming systolic blood pressure and flow. 
The oscillation of the intracranial contents may facilitate the 
“smooth” flow of blood through the intracranial compart­
ment. There is preliminary evidence for one prediction based 
on the model, which is that a tuned oscillator should act as a 
filter, damping some flow and pressure waveform frequen­
cies but not others.115

Finite Element Analysis Modeling. Finite element analysis 
has been used to identify brain regions that are particularly 
susceptible to strain and compression during progressive 
ventriculomegaly,145 and results of that analysis support the 
suggestion that a relative reduction in intraparenchymal 
fluid pressure coupled with low tissue elasticity causes both 
ventricular enlargement and mechanical stress in the corti­
cal mantle.146

Further research of mathematical modeling and biome­

chanical approaches may yield important new insights into 
the pathophysiological mechanisms of hydrocephalus.

Priorities for Clinical Research
Clinical research priorities (Table 1) include the improve­

ment of diagnostic tests and criteria and of treatment crite­
ria for patients at all stages of life; improvement of surgical 
therapy to prevent infections and treatment failure, and un­
derstanding of the impact of these adverse events on brain 
function and clinical outcomes; and development of clinical 
rating methods and correlation with other noninvasive tech­
niques for diagnosis and outcomes research.

Diagnostic Tests

Diagnostic Criteria for Children and Adults. The goal of 
diagnostic and prognostic testing is to determine the need 
for treatment, the nature of the treatment, outcomes, and the 
need for treatment modification. Current diagnostic tools 
include the patient history and physical examination, ultra­
sonography in infants, CT scanning and MR imaging of the 
brain, and tests of CSF circulatory physiology (infusion 
testing for R^, ICP monitoring, or symptomatic response to 
CSF removal).

The diagnosis of hydrocephalus is obvious when the ven­
tricles expand on serial images and these findings are ac­
companied by symptoms of increased ICP. Nevertheless, 
the diagnosis, classification, and decision to treat are not al­
ways straightforward; for example, differentiating between 
progressive hydrocephalus and “compensated” hydroceph­
alus in apparently asymptomatic children, or distinguishing 
hydrocephalus from the ventriculomegaly of cerebral atro­
phy (ex vacuo) in the elderly.

In spite of earlier suggestions that cortical mantle thick­
ness predicted outcome,186 ventricular size alone cannot 
guide the diagnosis or the decision to treat hydrocephalus.84 
Young children with enlarged ventricles may develop nor­
mal or even superior function. In the elderly, the fact that 
either cerebral atrophy or normal aging can result in ven­
tricular enlargement makes it difficult to establish reliable 
standards for ventriculomegaly. Even the use of CSF pres­
sure measurement as a diagnostic criterion is limited be­
cause adult or pediatric chronic hydrocephalus may not be 
accompanied by an elevation in pressure.

If hydrocephalus results from a disturbance of CSF ab­
sorption, then measurement of R^ by using infusion meth­
ods should be a sound basis for diagnosis, as has been pro­
posed for idiopathic NPH.118-121-127 However, the usefulness 
of Rom measurement, especially in view of its technical dif­
ficulty and variability in techniques, is controversial as well.

The conundrum of diagnosis without a full understanding 
of pathophysiological mechanisms is demonstrated by dec­
ades of clinical research in which the “gold standard” for 
diagnosis is the response to surgical treatment itself. Guide­
lines for diagnosis and treatment of idiopathic NPH in the 
elderly have been established,120 but there are still no guide­
lines for newborns, children, adolescents, and young or mid­
dle-aged adults.

Because disturbed CSF circulation contributes to hydro­
cephalus, detection of CSF flow abnormalities should be 
useful in diagnosis and treatment evaluation. Cine CSF flow 
MR imaging has been used to differentiate communicating
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hydrocephalus (hyperdynamic aqueductal flow) from aque­
ductal stenosis (absent aqueductal flow).7-179 Flow studies 
can show the patency of the third ventricle fenestration after 
ETV. Cine CSF flow MR imaging is limited by its ability to 
quantify flow only in specific directions, fields, and veloci­
ties.

Hydrocephalus is a chronic disorder. Thus, the assess­
ment of treatment failure is as important as the initial diag­
nosis. The diagnosis of shunt or ETV failure and recurrence 
of hydrocephalus can be straightforward, with demonstra­
tion of expanding ventricles and symptoms of increasing 
ICP. The challenge is to develop diagnostic procedures that 
are sensitive enough to predict treatment failure before it 
happens or that allow intervention to be offered before per­
manent injury occurs. Severe morbidity and death are still 
seen as the result of sudden treatment failure.

Because the symptoms of shunt failure may resemble 
common disorders such as a viral syndrome, emergency de­
partment visits, CT or MR imaging studies, or shunt taps are 
often ordered to avoid harm due to “failure to diagnose.” 
Finally, shunts may be “functioning” but still cause chronic 
unphysiological overdrainage of CSF. Many of these pa­
tients have headaches, nausea, and other ongoing symp­
toms, and yet are considered successfully treated because 
the ventricles are not enlarged. Improved and more sensitive 
diagnostic methods are needed to detect suboptimal treat­
ment and treatment failure.

Imaging and Noninvasive Testing. Beginning with pneu­
moencephalography,38 neuroimaging has been important 
for the diagnosis and management of hydrocephalus. Ven- 
triculomegaly remains the sine qua non of hydrocephalus, 
and CT and MR imaging offer superb anatomical detail. 
Transependymal flow on CT scanning or MR imaging sug­
gests the presence of increased ICP. Large ventricles with­
out transependymal flow in the presence of normal exami­
nation results support the suggestion that the ICP is normal. 
Volumetric analysis to establish ventricular volume norms 
(especially with aging), and regional analysis comparing 
intra- with extraventricular CSF compartments can help 
distinguish idiopathic NPH from atrophy. The definition of 
ventriculomegaly has not been standardized, and anatomi­
cal imaging is usually insufficient as a sole diagnostic test 
for hydrocephalus.

Injection of contrast material or radioactive tracer into 
CSF (cisternography) can allow detection of CSF flow dis­
tribution and clearance. Computed tomography scanning 
performed after injection of contrast into the CSF can iden­
tify sites of obstruction. Although radionuclide cisternogra­
phy would appear to be an excellent method for detecting 
abnormal CSF circulation and clearance, its utility in the 
diagnosis of idiopathic NPH has been disappointing.17-20-125

Magnetic resonance spectroscopy, functional MR imag­
ing, positron emission tomography, and single-photon emis­
sion CT studies have been used for differential diagnosis 
and to assess the metabolic consequences of hydrocephalus. 
Although many reports implicate decreased CBF and even 
transient anaerobic metabolism,143 these cannot be general­
ized to clinical practice.22-163-170-181 Based on recent research, 
some investigators suggest that MR imaging methods can 
determine ICP or measure CBF responses to treatment.75 
Clearly, advances in anatomical and functional imaging 
have the potential to allow more efficient initial diagnosis, 
treatment optimization, and recognition of failure.

Invasive Testing Methods. Contemporary invasive diag­
nostic procedures include CSF pressure monitoring (using 
lumbar puncture, spinal or ventricular catheter, and intra­
cranial sensor), CSF infusion for measurement of R„ul, lum­
bar CSF drainage, and shunt tapping for diagnosis of shunt 
failure. Because invasive techniques carry risk, they are 
often reserved for complex diagnostic problems, as in the 
identification of idiopathic NPH, chronic shunt failure, and 
shunt overdrainage, where the benefit of the invasive test­
ing offsets the associated risks and burdens.

Monitoring of CSF pressure was first advocated as a di­
agnostic test for idiopathic NPH more than 30 years ago.138-141 
Idiopathic NPH has the same abnormal CSF pressure wave­
forms originally described in brain tumor or acute inju- 
j-y_2i.27.i38 jhg Lundberg A-, B-, and C-waves are slow os­
cillations that reveal changes in the beat-to-beat amplitude 
and pulsatility of CSF pressure that are thought to reflect 
changes in cerebral blood volume associated with normal or 
abnormal cerebrovascular regulation. Eide et al.62-63-16* re­
cently suggested that the amplitude of individual CSF pres­
sure pulse waves may predict the response to CSF shunting 
in idiopathic NPH and in some children with hydrocepha­
lus. Transfer function determination114-148 and analysis of 
phase shifts12 have led to the proposal of a link between the 
CSF pressure pulsation and the overall system response, 
linking clinical monitoring with biomechanical modeling. 
Ultimately, invasive measures of CSF dynamics such as 
pressure waves, pulsatility, CSF space compliance, and ab­
sorption resistance may be critical to the identification and 
optimal treatment of hydrocephalus.

Biomarkers. Researchers using animal models have used 
CSF markers extensively,42-43-126 and so have investigators un­
dertaking studies in humans.10-162 Although trends may be ap­
parent in relative levels of catecholamines, energy metabo­
lites, myelin basic protein, and glial fibrillary acidic protein, 
to name a few, the overall results of these studies are incon­
clusive because of variations in models and the complex 
clinical origins of the disorder. Tau protein and amyloid-(3 
are being evaluated as biomarkers in idiopathic NPH.42-163 
Although blood and CSF biomarkers based on CNS injury 
or metabolic or blood-brain barrier changes are unlikely to 
be specific to the diagnosis of hydrocephalus, they may still 
play an important role in determining the need to treat, the 
response to treatment, and also the prognosis.

Because of the difficulty in timely and sensitive identifi­
cation of shunt infection, CSF markers of infection such as 
C-reactive protein,160 if further developed, could play a large 
role in improving the treatment of shunt infection.

Neuropsychological Testing. Neuropsychological testing 
has long implicated problems in personality, cognition, and 
memory in children with hydrocephalus, and a subcortical 
dementia with short-term memory loss in adults with idio­
pathic NPH.26-56-149-172 Although neuropsychological evalua­
tion is not specific for hydrocephalus, it can be used to as­
sess response to treatment and determine prognosis. Treating 
idiopathic NPH results in substantially better neuropsycho­
logical improvement than previously thought, surpassing the 
modest improvement seen with pharmacological treatment 
of Alzheimer disease.172 Whether such cognitive improve­
ment follows treatment of hydrocephalus in younger adults 
awaits demonstration.

Education, Because the majority of patients with hydro­
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cephalus are children, most of the expertise in the diagnosis 
and treatment of this disorder has been among pediatric spe­
cialists. Nevertheless, there has been rapid growth in the 
number of adults with hydrocephalus for several reasons: 
children with the disorder survive to become adults; adults 
may experience secondary hydrocephalus from many caus­
es; and idiopathic NPH is being recognized more frequent­
ly. Thus, if hydrocephalus continues to be perceived as “on­
ly” a pediatric disorder, it can be overlooked as a diagnostic 
consideration for adults.31-185 Therefore, education about 
hydrocephalus should be targeted to internists, geriatricians, 
family physicians, and neurologists and neurosurgeons who 
treat adults. Patient and family-oriented education and pub­
lic awareness campaigns may help bring patients to the at­
tention of physicians.

Current Treatment, Outcomes, and Complications

The causes, presentation, course of illness, and treatment 
paradigms for hydrocephalus are different for children and 
adults. Current treatment in both groups is based on a lim­
ited number of randomized controlled trials, case-control 
studies, prospective observational studies, and retrospective 
case series. Guidelines for the most common adult form of 
hydrocephalus (idiopathic NPH) have been developed,119 
but paradoxically there are no guidelines for pediatric hy­
drocephalus, which is much more prevalent. Therefore, re­
search needs related to treatment and outcomes of children 
may be broader. For example, treatment indications are not 
clearly defined, and there is significant variation between 
centers and surgeons in the decision to treat or observe. 
Thus, there is a need for objective methods to diagnose hy­
drocephalus and to select patients who will benefit from 
treatment.

There are no established criteria for selecting the most 
appropriate treatment (for example, shunt compared with 
ETV, type of valve, and technique of shunt insertion) for 
children of any age, although a randomized trial comparing 
shunt placement and ETV in infants (defined as children <  
1 year old) is under way in Europe. Shunt obstruction and 
malfunction occur in approximately one third of children in 
the 1st year after shunt surgery.54 Two randomized trials 
failed to show a difference in shunt failure rates among 
valve types.54-55-103

There are few standardized outcome measures for either 
pediatric or adult hydrocephalus. Although shunt survival 
time and infection rates are commonly used, other impor­
tant outcomes should be evaluated, such as neuropsycho­
logical and cognitive outcomes, which most likely are age- 
dependent. A Hydrocephalus Outcome Questionnaire has 
been developed and validated for children between 5 and 
18 years of age.111-112

Infection complicates 8 to 10% of shunt operations in 
children54-104-105-182 and may necessitate removal or extemal­
ization of the device, inpatient antibiotic therapy, and inser­
tion of a new shunt. However, there are no standards for the 
diagnosis and treatment of shunt infection, and there is sub­
stantial variation in the duration of antibiotic therapy, deci­
sions to remove or replace infected shunts, and length of 
hospital stay. The use of prophylactic antibiotics is general­
ly accepted. Other strategies may reduce the risk of infec­
tion but require further study, such as antibiotic-impregnat­
ed shunt catheters,161 double gloving,112-147 and injection of

antibiotics into the shunt lumen during surgery.150 Reinfec­
tion is alarmingly common (25%) and does not appear to 
be related to the duration of antibiotic therapy.105 Shunts im­
pregnated with rifampicin and clindamycin reduce rein­
fection from Staphylococcus epidermidis? Further studies 
of the effectiveness of antibiotic-impregnated external ven­
tricular catheters and shunt catheters in the prevention and 
management of infection are warranted.

As discussed earlier, establishment of a hydrocephalus 
research infrastructure, including clinical data repositories, 
would facilitate longitudinal studies. The database should 
be broadly available to researchers and the physician com­
munity and should protect the privacy of patients, consis­
tent with federal, local, and state regulations and laws.

P r io r i t ie s  f o r  F u tu re  T re a tm e n ts

The most forward-looking research priorities are for fu­
ture treatments (Table 1). These include not only the devel­
opment of novel medical devices, biomaterials, or surgical 
techniques, which represent a continuation of the first 50 
years of hydrocephalus treatment research, but also the de­
velopment of novel adjunctive (that is, pharmacological) 
therapies that should emerge from improved understanding 
of the basic biology of hydrocephalus and its impact on the 
brain.

Novel Medical Devices and Biomaterials

Shunts have been the fundamental treatment for hydro­
cephalus for nearly 50 years. Ironically, this may have 
caused many to believe that hydrocephalus was a “solved 
problem” that no longer required focused investigation.114 
Yet, as described earlier, shunts are often associated with 
side effects and complications. Despite advances in their de­
sign, shunt failure nonetheless remains a significant prob­
lem. With the exception of ETV, which is used in a minori­
ty of patients, there are no alternative treatments and no 
proven medical or pharmacological treatments.

Medical devices and new treatments for hydrocephalus 
should be designed in accordance with contemporary under­
standing of the pathophysiological features of hydro­
cephalus. The goal is to bring new technologies and re­
search discoveries together to improve the diagnosis and 
treatment of hydrocephalus for patients of all ages. This 
should include diagnostic aids that allow treatment to be 
individualized and optimized. For example, the decision to 
change the setting of an adjustable shunt is usually guided 
by clinical findings, subjective impressions, or neuroimag­
ing, resulting in variations of practice. An objective optimi­
zation parameter is needed to guide such decisions. Possi­
bilities include the analysis of CSF pulsation amplitude or 
MR imaging and transcranial Doppler methods.62-63-164

There is no method to quantitate the pressure or flow 
function of shunts in real time in the outpatient setting. The 
development of devices that record these variables over 
time has the potential to improve short- and long-term treat­
ment outcomes. Device size and inability to record ambu­
latory data have limited past efforts at telemetric ICP and 
shunt flow monitoring.39-70-187 Microelectromechanical ver­
sions of such devices, including the development of a smart 
monitor to allow query of shunt performance data, could 
overcome these limitations.
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Devices that respond to changes in the internal milieu (for 
example, biochemical or physiological changes) may play 
an important role in future therapies. For example, it is like­
ly that the functional characteristics of a shunt that are opti­
mal for one set of conditions (posture, activity, heart rate, 
blood pressure, and so on) are suboptimal in another. An­
tisiphoning devices, which have been used to address pos­
tural effects for many years, are rudimentary, and improved 
physiological understanding is the key to developing im­
proved devices. Last, although antibiotic-impregnated shunt 
components already exist, further research on biomaterials 
is needed to create shunt catheters with less risk of cellular 
occlusion or more resistance to bacterial adhesion, for ex­
ample.

Adjunctive Therapies

Pharmacological agents (for example, acetazolamide) 
have been used as temporizing strategies to treat hydroceph­
alus in certain situations, especially in newborns, but drugs 
have never been considered a mainstay of treatment, nor 
have they been demonstrated to be effective in adults. Im­
proved understanding of the basic science of injury and re­
covery mechanisms and homeostatic mechanisms such as 
control of cell volume, response of endothelial cells to pul­
satile shear, CSF absorption or secretion processes, and gen­
etic regulation has great potential to lead to the development 
of pharmacological or biological agents to prevent or treat 
hydrocephalus and enhance clinical recovery. There is a 
need to determine the potential role of stem cell therapy, for 
example, to supply trophic agents or promote myelin for­
mation. One model worth considering is the Stroke Therapy 
Academic Industry Roundtable, which presents recommen­
dations for preclinical neuroprotective and restorative drug 
development.2

Human Research: Ethical Considerations

Considering that translational research in hydrocephalus 
represents exciting and unexplored territory, it will be vital 
that collaboration between basic and clinical scientists oc­
curs to assure that promising laboratory methods transfer to 
humans. In addition, recognizing that hydrocephalus most 
often affects persons considered vulnerable human research 
candidates (infants, children, and adults with dementia and 
impaired decision-making capacity), and that neither the 
immediate nor long-term effects of novel pharmacological 
or biological agents can be predicted, it will be important to 
consider the ethical boundaries and safeguards of such re­
search prospectively.
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Breakout sessions and key questions
Breakout Session I: Injury Mechanisms, Neuroprotection, and 

Cellular Recovery in Hydrocephalus
Breakout Session II: New Insights into the Pathophysiology of CSF 

Circulation— Implications of Shunt Design or Other Treatments for 
Hydrocephalus

Breakout Session III: Clinical Tools, Clinical Trials, and Clinical 
Outcomes

Key questions for all breakout sessions:
1. What is the critical information that has been missing or needs 

to be reconsidered to advance our understanding of the pathophysi­
ological features of hydrocephalus, its clinical manifestations, its 
treatment, and its outcomes?

2. What is the best way to obtain this information?
3. How can research in related disorders be used to improve our 

understanding of hydrocephalus, and vice versa?
4. How can clinicians, clinical researchers, and basic scientists 

collaborate more effectively?
5. What are the critical differences between pediatric and adult 

hydrocephalus?
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