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In this paper we study generic M(atrix) theory compactifications that are specified by a set of quotient 
conditions. A procedure is proposed which both associates an algebra to each compactification and leads 
deductively to general solutions for the matrix variables. The notion of noncommutative geometry on the dual 
space is central to this construction. As examples we apply this procedure to various orbifolds and orientifolds, 
including ALE spaces and quotients of tori. While the old solutions are derived in a uniform way, new 
solutions are obtained in several cases. Our study also leads to a new formulation of gauge theory on quantum 
spaces. [S0556-2821 (98)06314-0]
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I. INTRODUCTION

According to the M(atrix) model proposal [1], M theory 
in 11-dimensional uncompactified spacetime is microscopi
cally described by the large N limit of the maximally super- 
symmetric U(N ) Yang-Mills quantum mechanics. For finite 
N  the model is conjectured to describe the discrete light cone 
quantization of M theory [2], in which one light-cone direc
tion is compactified on a circle. An attractive feature of M(a- 
trix) theory is that for the nine transverse directions, the no
tion of physical space is a derived one in the theory. Since 
the coordinate variables are valued in the Lie algebra of 
U(N ), the description of space is novel from the beginning.1

A well-known generalization of classical (or commuta
tive) geometry for studying novel spaces is the noncommu- 
tative geometry pioneered by Connes [4]. By now it is 
known to be relevant to M(atrix) theory at two different lev
els. First, a given configuration of the matrix variables for 
finite N  can be identified with a regularized membrane [5], 
whose world volume is a quantum (or noncommutative) 
space. For instance, a regularized spherical membrane [5-7] 
coincides with the quantum sphere defined in various formu
lations of noncommutative geometry [8]. Interpreted in a dif
ferent way, the M(atrix) model action can also be thought of 
as describing the dynamics of N  D0-branes in the infinite 
momentum frame [1 ]. Previously two of us [9] have shown 
that this action can be understood as a gauge theory on a 
discrete noncommutative space consisting of N  points.

Accordingly, at the second level, compactification in M(a-
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1Because of supersymmetry, at large distances the space can be 
approximately classical [3].

trix) theory is a priori of a noncommutative nature, since 
compactification implies a certain specification of allowed 
background configurations. The M(atrix) model compactified 
on a torus and various orbifolds and orientifolds has already 
been discussed in the literature. For toroidal compactifica- 
tions [1,10,11], the original gauge symmetry turns out to 
give rise to the usual gauge field theory on a dual torus, 
while the winding modes for one-cycles in the original com- 
pactified space become the momentum modes in the dual 
space. Recently in two interesting papers [12,13] it was 
shown that M(atrix) theory compactification on a torus can 
lead to a deformed Yang-Mills theory on the dual space 
which is a quantum torus, and can be interpreted as an M 
theory configuration with a nonvanishing three-form back
ground on the compactified light-cone and toroidal direc
tions. This provides a strong physical motivation for study
ing generic M(atrix) compactifications from the 
noncommutative point of view.

In this paper we report our recent progress towards a non- 
commutative geometric approach to a wide class of matrix 
compactifications, i.e., those on M / r ,  assuming the matrix 
model on a simply connected space M  is known, with T a 
discrete group acting on M . The compactification is deter
mined by a set of quotient conditions, one for each generator 
of T. We will describe a procedure for solving general solu
tions to the quotient conditions. Before doing this, our pro
cedure naturally associates with each compactification a non- 
commutative algebra in which the matrix variables take 
values. It starts from here that the notion of noncommutative 
geometry using algebras to describe the geometry of quan
tum spaces comes into play. Furthermore, our procedure 
leads, in a deductive manner, to solutions which turn out to 
be gauge theories on dual quantum space. We will use sev
eral examples to show how our procedure works in practice. 
Not only are old solutions, obtained before as classical gauge 
theories, reproduced by our systematic procedure in a uni
form way, new compactification on quantum spaces is also
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derived for several cases, including the Klein bottle, Mobius 
strip, and asymptotically locally Euclidean (ALE) orbifolds. 
Two different descriptions [14,15] for dual space in the case 
of the Klein bottle were thought to be in conflict with each 
other in the literature; we show that they are both correct, 
and a continuous interpolation is found between them using 
quantum spaces.

What we obtain corresponds to the ‘‘untwisted’’ sector, 
which may be an anomalous gauge theory in some cases. We 
leave for the future the question about how to derive directly 
from the M(atrix) model the ‘‘twisted’’ sector that is needed 
for orbifold and orientifold compactifications to achieve 
anomaly cancellation.

We first reexamine toroidal compactifications in Sec. II, 
rederiving the results for the quantum torus with our own 
procedure. The procedure for generic M(atrix) compactifica- 
tion is described in Sec. III. Then in Secs. IV and V, we will 
demonstrate how our procedure works for the Klein bottle 
[14,15] and the ALE space C2/Z n [16,17]. After that some 
comments on various aspects of M(atrix) compactifications 
are made in subsequent sections. In the Appendixes we also 
consider as examples T 2/ Z 3, the finite cylinder [18-20], and 
the Mobius strip [14,15].

II. TOROIDAL COMPACTIFICATION REVISITED

A d -dimensional torus can be defined as the quotient 
space Rd/Z d, where Zd is generated by {c 1 , . . . , cd} freely 
acting on Rd as

c i :{xj }^ { x j + e ij}, (1)

where e ij define a d -dimensional lattice in Rd. The toroidal 
compactification is defined by the quotient conditions
[1,10,11]

Uj XjUi = Xj + eij, i , j =  1,...,d. (2)

Standing as a fundamental theory, M(atrix) theory itself 
should contain the answer for all compactifications described 
by relations of this type. Although a complete answer includ
ing ‘‘twisted’’ sectors is not yet generally known to us, as a 
first step in this paper we will try to solve these equations for 
the ‘‘untwisted’’ sector, completely inside the framework of 
the theory.

One may choose an infinite dimensional matrix represen
tation for the Ui’s in Eq. (2), motivated by physical consid
erations. In our treatment, we prefer to think of them as 
algebraic elements tensored with an N  X N  unit matrix.2

To find the underlying algebra for the Ui’s, we note that 
Eq. (2) implies that

UjUiUjUJXkUiUjUJUj = X k. (3)

For toroidal compactifications, we should not have any addi
tional constraints other than those in Eq. (2). Therefore, if we

2The e j s  on the right-hand side are understood as proportional to 
the unity in the algebra tensored with the N X N  unit matrix.

assume that the only central elements in the algebra of the 
Ui’s are constant times the unity 1, we are allowed to impose 
the following constraints:

UiUjUj Uj = q ij 1 (4)

or, equivalently,

UiUj = qijUjUi,  (5)

with q ij certain phase factors. Different choices of these 
phases may lead to different solutions, implying that com- 
pactification is not completely fixed by the quotient condi
tions.

The algebra (5) is the same as the algebra of a quantum 
torus [21]. For d = 2 the algebra (5) has an SL(2,Z) symme
try

U ^ (  U i )a( U2)b, U2 >(U i )c( U2)d, (6)

where a , b , c , d  are the entries of an SL  (2,Z) matrix. It was 
first pointed out in [12,13] that the phase factors q ij can be 
related to M theory compactification with a nonzero back
ground three-form field in the compactified null and toroidal 
directions.

From the point of view of the covering space, U / s  are 
translation operators, and so it is natural to write, for N = 1, 
Xj  = e ij<ri and Ut = exp (-D ;), where D i=d/dd<ri + i A i is the 
covariant derivative for a U(1) gauge field. By a Fourier 
transform, the solution in the dual space is [1,10,11]

Ui = e i<Ti, X j = - i e i j D i , (7)

Di = —  + iAi (a) .  (8)

In this dual representation, the solution can easily be gener
alized to N X  N  matrices. This is the type of solution we are 
looking for in the context of M(atrix) compactifications. New 
physical degrees of freedom reside in X , while the U ’s are 
fixed algebraic elements.

A. Classical torus

First we review the commutative case q ij=  1 [1,10,11]. In 
this case, the algebra of the Ut ’s is commutative, and now 
they are viewed as coordinate functions on the dual (ordi
nary) torus parametrized by <ri , and the X  ’s as covariant 
derivatives. Mathematically Eq. (7) is the general solution of 
Eq. (2), with the X ’s and U ’s being elements in the product 
of the algebra of differential calculus on a torus and the 
algebra of N X  N  matrices. Physically, the M(atrix) theory 
compactified on T d for d  ̂  3 is the (d + 1)-dimensional su- 
persymmetric Yang-Mills (SYM) theory on the dual torus
[1].

Comparing with the uncompactified M(atrix) theory, we 
are adjoining the new elements d / d a i and exp(i^i) to the 
algebra of N  X N  matrices for the compactification on a torus. 
The reason why we are allowed to adjoin these new algebraic 
elements is that the compactification on a torus introduces
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new dynamical degrees of freedom corresponding to the 
winding string modes that are not present in the uncompac- 
tified theory. In general, for compactification on different 
spaces we need to adjoin different new elements to the alge
bra of N  X N  matrices.

B. Quantum torus

For q ^ #  1, we need to find out the new elements to be 
adjoined to the algebra of compactification. To define the 
algebra and to solve for X  in this noncommutative case, we 
first define an auxiliary Hilbert space H, on which the Ut ’s 
are represented as operators: It by definition consists of the 
‘‘vacuum,’’ denoted by ), as well as states obtained by acting 
polynomials of Ui 's  on the vacuum. For d = 2 the symmetry 
(6) induces an SL(2,Z) symmetry on the Hilbert space. This 
is the S duality of type IIB  theory.

The Hilbert space H  is spanned by the states 
{ Um 1- • • U / ) }  with m i e  Z. This Hilbert space is different 
from those introduced in [12].3 For later convenience, we 
define a set of operators di by

Let the action of Xj  on the vacuum be given by

X j ) = Aj{ U)), (13)

where Aj  is a function of the Ut’s. Using Eqs. (2) and (13), 
we can calculate the action of Xj  on any state:

X j U mK - u 7 ) = u m ^ - U7 ( e i j m i  + Aj) )

= (ei jdi+A j ) ^ 1-  U’md); (14)

i.e., in general Xj = e ijdj + A j , where Aj  are functions of 
U i = (N-j^iq. f iU . , obtained by replacing U.’s in Aj(  U) with
U f s  and reversing the ordering of a product.

The solutions of the X i's  are functions of operators com
muting with all U’s, i.e., U.Uj = UjUi for all i ,j . The com
mutation relations among the UU's  are given by

s U 1--- U ^ m ^ 1--- Umdd). (9)

It follows that

diUj = Uj(di+Sij) .  (10)

Thus d{ is the (quantum) derivative with respect to the expo
nent of Ui .

The inner product on H  should be invariant under the 
group Gg(A) of gauge transformations of the U.’s which pre
serve the quotient conditions (2). Since X.  is generic, the 
only possible such transformation is

U i ^ g j U tg i= e i*iUi , (11)

where g i = e x p (- i^ iSi). This implies that the inner product is 
defined by ( f  \ g ) = ( f jg ), where f ,  g are functions of U and

( U’mi••• U'md)=$ m 1 - --$md (12)

up to normalization. Note that the vacuum expectation value 
( - ) happens to be equal to the trace over the Hilbert 
space, which can be determined directly by requiring that 
it have the property of cyclicity: ( f g )  = ( g f )  for any two 
functions of U . By a Fourier transform on the basis, |o-) 
= 2 nexp(inia i)U '11 ••• Uf) ,  where a =  ( a 1 , . . . , a d) and n 
= (n 1 , . . . ,nd), the trace on H  turns into the integration on a 
d -torus parametrized by a.  The integration on a quantum 
torus can be independently defined with respect to the 
GG(A)-invariant measure n U d U i by using Stoke’s theorem.

3In the notation of [12] our H superficially corresponds to the case 
with p = 1, q = 0 ,but p /q appears in some of the relations given by 
them.

UiUj = qij l U jU i . (15)

This is just the algebra for a quantum torus related to that of 
U by a transformation q ^ q l j 1 [12]. The Hilbert space is 
also spanned by {Um1 • • • Umd)}, and the operators dj act on
Ui in the same way as they act on Ut . It is thus natural to 
think that X  j are the covariant derivatives on the dual quan
tum torus given by U i .

The same result was obtained in [12] in a different way. 
They noticed that a generic solution of Eq. (2) is composed 
of a special solution and a homogeneous solution, and that 
homogeneous solutions are the elements in the algebra com
muting with all the U-s.  Also, they used a Hilbert space 
different from ours. While the set of U -commuting elements 
may be found by brute force when the algebra is given, we 
see that they automatically arise in our procedure. For a dif
ferent compactification associated with another set of quo
tient conditions, the trick of using U-commuting operators 
may no longer work, but we will demonstrate below that the 
same procedure we used above always works.

Let us now make a remark about the gauge field A i . As in 
usual gauge theories, the gauge field A i does not have to be 
a well-defined function on the dual quantum torus. Without 
going into details about the notion of the principal bundle 
and connection on quantum spaces [4], we simply say that 
the requirement on A i is that all quantities invariant under

Xj  ̂  Xj  + eij (16)

are well defined. For instance ( -  i log Uj) is only defined up 
to 2n t .  Yet Aj  = - i m i log(Ui)eij with integers m i is accept
able, because the ambiguity in its value matches precisely 
the gauge transformation (16). In fact these are the configu
rations of D-branes wrapping on the torus.
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III. GENERIC COMPACTIFICATION

Consider the compactification of M(atrix) theory on the 
quotient space M /T ,4 where M  is a simply connected space 
[ tt1( M )  = 1] on which the M(atrix) theory is known, and T 
is a discrete group acting on M . If T acts freely, it is the 
fundamental group of the compactified space.

Denote the action of c e  T on M  by $  (c). Then the 
compactified M(atrix) theory is obtained by imposing the 
following constraints: For each element c e  T,

P( U) fX P (U ) = X  for all X’s, (20)

U (c )^XaU (c ) = $  a( c )( X ), (17)

where X a represent all M(atrix) theory variables A 0, X i , 
and ^  . I f  T is generated by a set of elements {c,}, one may 
only need to write down such relations for each generator c t . 
We will call these relations ‘‘quotient conditions.’’

For orientifolds, the group T is endowed with a Z2 grad
ing: We associate a number n (c ) = 0,1 with each element c 
eT , and if c 1 c2 = c3, then n (c 1) + n (c2) = n (c3) (mod 2 ). 
The quotient condition (17) is generalized to

U ( c ) ^ U  ( c ) =
$  a( c )(X) if n (c) = 0 

[$a(c)(X)] * if n (c) = 1.
(18)

Here the complex conjugation * corresponds to the transpose 
for Hermitian matrices X , which implies orientation reversal 
of open strings stretched between D0-branes.

The quotient conditions have to be consistent with the 
action. Since the action of M(atrix) theory is invariant under 
gauge transformations, X ^  UfXU,  the quotient conditions 
are consistent with the action only if the action is also invari
ant under the transformations,

X a ̂  $  a( c )( X  ) (19)

for all c e  T. A function of the X ’s and their time derivatives 
is a gauge-invariant physical observable if it is invariant un
der (19).

We will give below a procedure for solving relations of 
the type (17) or (18). By this we mean that we shall define 
the algebra A  in which the relations are understood, and then 
find the most general solution of Xa as algebraic elements in 
the algebra A. The physical degrees of freedom of the X a's  
reside in the moduli of the solutions to the quotient condi
tions.

To define the algebra A, first we note that all the U's  are 
considered as fixed elements in A. They form a subalgebra 
of A  which is constrained by the quotient conditions by re
quiring that the quotient conditions exhaust all desired con
straints on X . If there is a relation c 1c 2 ••• cn = 1 in the group 
T, from the quotient conditions for these c 's, we will get 
equations of the form

where P ( U) = U(c 1) U( c2) ••• U(cn) is the corresponding 
product of the U's. This relation would impose a new con
straint on X  unless

P  ( U ) = q 1, (21)

where q is a phase factor. For orientifolds, let C  denote the 
complex conjugation operator,

C aC = a*, (22)

for all a e  A .  We have C f = C and C2 = 1. Equation (18) is 
then equivalent to

R  (c ) f XaR (c ) = $  a( c)(X), (23)

where R (c ) = U( c) Cn(c). So Eq. (21) is replaced by P ( R ) 
= q 1. We define the algebra of U, called the U-algebra, by 
imposing all such relations. We can view nonorientifolds as 
the special case with n (c) = 0 for all c e  T.

It can be shown [22] that these relations can be character
ized by a faithful projective representation of T. Following 
[12,13], it is natural to suggest that the cohomologically in
variant phases in a nontrivial two-cocycle on T associated 
with the projective representation correspond to a nontrivial 
background field on the compactified space. Accordingly, 
compactification defined by the quotient conditions is com
pletely characterized by projective representations of the 
group T, and the moduli space of the U -algebra (more pre
cisely, the space of cohomologically invariant q parameters 
in a two-cocycle) may correspond to part of the moduli of M 
theory compactifications. We take this as a strong motivation 
for studying M(atrix) theory compactification with nontrivial 
two-cocycles.

Knowing the U-algebra, we can construct a Hilbert space 
H  to represent it, which consists of a ‘‘vacuum’’ denoted by 
) and all polynomials of the R (c ) ’s acting on the vacuum. 
The algebra A  is then defined as the tensor product of the 
algebra of operators on H  with the algebra of N  X N  matri
ces. In the action of M(atrix) theory, the total trace is now 
composed of the trace over H  and the trace over N X N  ma
trices.

Physically the states in H  correspond to string modes 
winding around noncontractible one-cycles in the compacti- 
fied space associated with elements in the group T. By ad
joining this Hilbert space to the space of N -vectors on which 
the algebra of N X N  matrices is represented, we take care of 
the new string winding modes arising from the compactifi- 
cation.

For a given algebra A  we define the unitary group U( A) 
to be the group of all unitary elements in A. Let G( A) be the 
subgroup of U( A) which preserves the quotient conditions, 
i.e.,

4In fact we should consider the quotient of a superspace in order 
to include the fermionic part from the beginning.

R  ( c ) f g  f X agR (c) =  $ a ( c ) ( g TX g), (24)
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for all g e  G(A). G(A) can be viewed as the group of gauge 
transformations on X ,5

X a ^ g jXag, (25)

which survives the compactification. As was shown in the 
previous section, the definition of the dual space may be 
inferred from the gauge field or, equivalently, from the gauge 
group G(A) .  In general the compactified M(atrix) theory 
may not be identified with a traditional gauge theory on a 
classical manifold. We will consider this as a natural gener
alization of the notion of gauge theories.

On the other hand, G( A) induces a group of transforma
tions on R (c ), denoted by G(A),

R ( c ) ^ g R ( c ) g j , g e  G(A), (26)

which preserve the quotient conditions (18). Because we 
shall allow the most general solution of X , the only possible 
transformation on R (c ) is to multiply them by certain phase 
factors, and thus the group G(A) is an Abelian group. Since 
different choices of the R (c ) ’s related by G(A) are equiva
lent by a gauge transformation, the compactification should 
be invariant under G(A). Roughly speaking, G(A) is the 
translation group of the dual space.

The prescription for deriving the general solution for X  in 
the algebra A  was first invented by Zumino [23] to study 
problems in quantum differential calculi. (Mathematically 
these two problems are similar in nature.) The prescription is 
the following.

(1) As mentioned above, we define a Hilbert space H 
consisting of all polynomials of the R (c ) 's  acting on the 
vacuum. The inner product on H  has to be fixed to respect 
the symmetry group G(A). The algebra A  is defined to be 
the tensor product of the algebra of operators on H  with the 
algebra of N X  N  matrices.

(2) We require the Xa 's  be operators acting on H  and 
write the action of X a on the vacuum as

Xa) = A a( R  )>, (27)

where A a(R ) is a function of the R (c ) ’s. All physical de
grees of freedom of X a reside in A a , which gives the gener
alized gauge field. The action of X a on an arbitrary basis 
state can be obtained by using the quotient conditions to 
commute X a through the R (c ) 's  until it reaches the vacuum 
and then using Eq. (27).

(3) To find an explicit expression for X a ,6 one needs to 
find a set of convenient operators on H. The type of opera

5In fact G( A) contains more than what we usually call a gauge 
group on the dual space for it also contains the translation group 
G(A) to be introduced below.

6It is not necessary to have an explicit expression of Xa in terms
of other operators as long as X a is already well defined as an op
erator on H as in step (2). But it can be helpful in studying the 
model.

tors (9) used for toroidal compactification are often very use
ful. As we did in Sec. II B, to write X a as a function of dt and 
U) , one needs to find the action of X a on a state 
U™1 • • • U 7 )  as a function F(m 1 , . . . ,m d ;U) acting on the
state. Then we can replace F  by another function F  of d and 
U .

To gain some insight into the compactified theory, we 
note that in general we may view the resulting theory as a 
(deformed) gauge field theory on a dual quantum space. In 
the spirit of noncommutative geometry, the U-algebra can be 
viewed as the algebra of functions on the dual quantum 
space. In addition one may follow the standard procedure 
used in the study of quantum differential calculus on quan
tum spaces with quantum group symmetry7 [24] to define a 
deformed differential calculus on the U-algebra. Once the 
derivatives (such as the dt in the previous section) on the 
dual quantum space are defined, we can use them to express 
Xa and see that the bosonic Xi 's  can be thought of as cova
riant derivatives. In other words, the present approach can be 
directly used to define gauge theory on a quantum space and 
is different from most other existing approaches to defining 
them in the following sense: Given the algebra of functions 
on a quantum space, usually one will define the gauge field 
to be a function on the quantum space, but in general our 
procedure gives a gauge field as an operator, for instance a 
pseudodifferential operator, on the quantum space.

We will demonstrate below how our above procedure 
works, for example, for the compactification on the orienti- 
fold of Klein bottle and the ALE space of C2/ Z n . In the 
Appendixes, we will also apply the prescription to the fol
lowing orbifolds and orientifolds: T2/Z 3, cylinder (S 1
X S 1/Z2), and Mobius strip.

IV. KLEIN BOTTLE

The Klein bottle can be defined as R2/ r ,  where T acts on
R2 by

c 1 :(x  1,x2) (̂x  1 + 2 k R  1,x 2), (28)

c2 : (x  1,x 2) K — x 1,x2+ k R 2). (29)

The group T is generated by c 1, c 2 with the commutation 
relation

c 1 c 2c 1c —1 = 1. (30)

As an orientifold, its Z2 grading is defined by n (c 1) = 0 and
n (c 2) = 1 .

Thus the quotient conditions are [14,15]

UjXjUi = Xj + I v S i j R j , i , j =  1,2, (31)

U j X U  3= —X*, (32)

7In our problem the symmetry group is G(A), which is just a 
classical group. But they play similar roles in this formulation.
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U ̂ X 2 U 3 = X * + k R  2, (33)

where U 1 = U(c 1), U2= U ( c 2) and U3= U(c2). Note that 
since X ’s are Hermitian, we have X T= X *. The conditions 
for U2 are direct results of Eqs. (32), (33).

Since R (c) = U(c ) Cn(c), it is easy to verify that the fol
lowing relations are compatible with the quotient conditions 
(31)-(33):

U 1U 2 = q 12U 2U1, 

U1U 3 = q 13U 3UT, 

U 2U 3 = q 23 U 3U *,

U 3U * q 3 U 2 .

(34)

(35)

(36)

(37)

We shall rescale U2 to set q 3= 1. Using Eq. (37) we find 
q 23= 1 from Eq. (36). Consistency also requires that q 12 
= q 13 . We will denote q 13 by q . (So the projective represen
tations of the group T are labeled only by a phase factor q .)

We will see below that the case studied in [14] corre
sponds to the case q = 1 where the dual space is a cylinder, 
and the case studied in [15] corresponds to the case q = — 1 
where the dual space is a Klein bottle. We have obtained a 
one-parameter moduli for this compactification.

The Hilbert space H  is defined to be

H =  {Um( U3C)n) |m ,n e Z},

or, equivalently, {UmU2), UmUn2U3C ) |m,n e Z}. We define 
some operators for later convenience:

*1U m( U 3 C)n) = mUm(U3C)n), (38)

*2U mU n( U 3 C )s) = nUmU2(U3C)s), (39) 

KUm(U3C )n) = U m ( U 3C)n + 1), (40)

e u  m( u  3C )n) = ( —1) nU m( u  3C )n) ,
(41)

where m , n e Z and s = 0,1. It follows that *1 ,*2 act on 
U1, U2 as derivatives. The commutation relations between 
the derivatives and functions can easily be derived.

Following the prescription described in the last section, 
we see that the solution is of the form of a gauge field,

1
X1 = 2 k R 1*1 + - A  1( q —NU 1, K )(1 + e)

2A  *( qNU —1, K )(1 — e),

X 2 = ^R  2 N  + - A  2( q —NU1, K )(1 + e)

+  - A  *( qNU  —1, K )(1  — e),

(42)

(43)

where N  = 2 *2 + (1 — e)/2 acts on H  by

NUm(U3C)B) = nUm(U3C)B). (44)

While the Klein bottle is a quotient of the torus, we will 
see below that the compactification on the former is a gauge 
theory on a quotient of the dual torus for the latter. We have

X 1 = 2 wr  1*1+ A l , X2 21 *2+ 4 ) + A 2 .

(45)

The gauge fields are given by

1 1
Ai = 2  (Ai 0 + A i 1K )(1 + e) + ( — 1)! 2 (Bi 0 + B i 1K )(1 — e),2

(46)

where A j  and B j  ( i=  1,2 and j  = 0,1) are functions of 
U 1,U 2 with U1 = q —2*2U 1 and U2 = q2*1U2 satisfying the 
algebra of the dual torus:

U1U 2 = q — 2U 2U1. (47)

It is

Aij(& 1 — h, —a 2) = B * ( ^ 1, ^ 2), i =  1,2, j  = 0,1,
(48)

where q = exp(ih), f/ 1 = exp(i^1), and f/ 2 = exp(io-2). It can 
be checked that

U3A iU 3 = ( — 1 ) !A* , i = 1,2 , (49)

and all quotient conditions are automatically satisfied.
The condition (48) relates Ai( ^ f  + h , — ^ J )  to 

A i( ^  1, ̂ 2) *, which is a function of ( ^ *, a * ). So if the value 
of a ,  at ( a 1 + h , a 2) is known, then its value at ( a 1, — a 2) is 
fixed. If q = exp[i2w/(2k)] for an integer k , the fundamental 
region on which the values of A i can be freely assigned is a 
Klein bottle of area (2w)2/(2k). If q = exp[i2w/(2k+1)], the 
fundamental region is a cylinder of area (2w)2/2(2k + 1). In 
particular, for q = 1 it is a cylinder, and for q = — 1 it is a 
Klein bottle. It was argued in [15,20] that only the latter case 
gives the area-preserving diffeomorphism group as the gauge 
group of the model in the large N  limit. The gauge group in 
the bulk of the fundamental region is U(2N) and the gauge 
group on fixed points of the map ( a 1 , a 2) ^ ( a 1 — h , — a 2) is
O (2N).

K  and e can be represented by 2X 2 matrices. Let

,'0  1 \ /1  0

K = e 2  ̂ 1 0 r  e = T3= (0  — 1 / ’

A i =
ai Pi\  I Ai0 ( — 1) iB a e ia2'2
7i Si) \ A n e i<72/2 ( — 1 ) iBi

(50)

(51)

The results above can then be rewritten as

0
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Si

Pi

Ji
ai : ( -  1)'

(a  + h,&2)

P*
S*

(a1 ,
(52)

The 2 X2 unit matrix and K  (for ‘‘fixed’’ a 2) generate 
the algebra of functions on Z2, and e is a derivative on Z2 in 
the sense of noncommutative geometry [4]. Thus X i can be 
viewed as covariant derivatives on the dual space which is 
the product of a classical space parametrized by a 1, a 2 and a 
quantum space of two points (Z2). The Hilbert space can 
also be written as a column of two functions of U1 and U2. 
Thus it is natural to say that the dual space has coordinates 
U1 , U2, and K , where U. satisfy the same algebra as Ut 
( i = 1,2) with q ̂  q -1 .

The trace over H  is equivalent to the composition of the 
integration over ( a 1 , a 2) and the trace over the 2 X 2 repre
sentation of K  and e. The integration has the cyclicity prop
erty so that the M(atrix) theory action is gauge invariant.

As was noted in [12], the algebra of the dual quantum 
torus (47) can be realized on functions on a classical torus as 
the star product:

( f  * g ) (a )  = q d2d1-d 1d2f  (a )g  ( a '  )\c (53)

Therefore the action of M(atrix) theory appears to be the 
action for a field theory defined on T2 with higher derivative 
terms. It is yet to be studied how to make sense of such 
theories.

As a side remark we note that the calculation above can 
be done with a little more ease if we impose the reality 
conditions U* = U - 1, U* = U2, and U* = U3 , which are 
consistent with the U-algebra. The result is independent of 
such conditions.

So far we have ignored the transverse bosonic and fermi- 
onic fields in the M(atrix) theory. The quotient conditions on 
them are [14,15]

U jA 0Ui= A 0, U j A 0U 3 = A *Ao

U jX aUi = X a , U3X aU3 = X *,

Uj y  u =  y , U 3 y  u 3= r 01y  *,

(54)

(55)

(56)

where i = 1,2, a = 3,...,9, and y  is in the Majorana represen
tation. It is straightforward to solve these relations in the 
same way. These quotient conditions can be determined by 
required surviving supersymmetry (SUSY) or by their con
sistency with the M(atrix) theory Lagrangian [1]

/1  2 1 2 1 *L = Trl ^ (D qXi)2 + 4 [Xi ,Xj]2 -  - y jD Qy

1 y  r  i[ X i , y ] ), (57)

where D 0 = d/dt  + iA0.
The dynamical SUSY transformation of M(atrix) theory is

[1]

S X ^=  i e r ^ y , ijl = 0,...,9, (58)

s y  = (D 0X i ) r 0ie+ 2 [Xt , X j ] r ije, i , j =  1,2,...,9, (59)

and the kinetic SUSY transformation is

S X =  0, s y  = e.j  7 (60)

One-half of the dynamical SUSY is preserved by the com- 
pactification on a Klein bottle.

V. c 2/z n
2The quotient condition for c 2/Z n is

UjZaU = q Z a , a =1,2, (61)

where Z  1= X 1 + iX2, Z2 = X3 + iX4, and q = exp(2ti/n). It 
follows that U -nZ aUn = Z a . Following our procedure, the 
U-algebra is given by Un= p  1, where p  is a phase. Rescaling 
U by p 1/n, we find

Un= 1. (62)

The Hilbert space is H =  {Um)\m = 0 ,1, . . . ,n-  1}. Let 
Za) = Aa ( U)), where Aa( U) = 2 m̂-=1QaamUm. The action of Z 
on H  is

ZaUm) = qmUmAa)  (63)

=Aa( U ) qM Um) , (64)

where M  is defined by M U m) = m U m). The solution of Z a is 
thus Z a= A a( U)qM. Instead of M , one can also use V  de
fined by U V = q V U  and V ) = ) . Thus Z  can also be ex
pressed as

Za = A a( U) V-1 . (65)

U and V  can be realized as n X  n matrices:

Ui j = Si,(j-1) , V ij = q i s i j , (66)

where U\j is nonvanishing only if i = j  - 1 (mod n ). We find

(Z a) ij '̂ 2 a amq - Si,(j-m) , i ,j  0,1,...,n 1. (67)
m

This is exactly what one would expect through the same line 
of reasoning Taylor used [10] for toroidal compactifications. 
The coefficient a m represents the string stretched between 
D0-branes separated by m copies of the fundamental region.

In the representation (66), U is viewed as an operator that 
shifts one point in Zn to the next point. In a dual represen
tation where Uij = q -  iSij , U can be viewed as the generator 
of the algebra of functions on the dual quantum space Zn , 
and V  becomes the shift operator. Thus we see that the dual 
of Zn is also Zn .

2
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The group G( A) is generated by U and V . A unitary func
tion g ( U) induces a gauge transformation A ( U) 
^ g  j ( U)A ( U)g (qU). In the dual representation where U is 
diagonal, it is easy to see that the gauge group of this theory 
is U(N )n. The fields A a are now diagonal blocks of N  X N  
matrices with each block transforming in the fundamental 
and antifundamental representations under two adjacent 
U( N ) factors [17].

The gauge transformation by Vk is A  ( U) ̂ A  (qkU), 
which is in fact a translation (cyclic permutation) on the dual 
space Zn . This also corresponds to the only nontrivial ele
ments in G(A): U ^ q kU. Requiring its invariance under 
G(A), the inner product on H  is fixed to be ( Uk) = S  for 
k = 0,1,..., n —1 .

Note that in M(atrix) theory it is only the field strength 
defined by [X i ,X j ] (for flat space) and other gauge-invariant 
quantities that need to be well defined on the dual space. For 
instance, U1/n is only defined up to an integral power of q . 
But it is acceptable to have A ( U) = Um/nF ( U) with m 
= 0,1,. .. ,n— 1, where F ( U) is a polynomial of U . The rea
son is that this ambiguity is precisely of the form of a gauge 
transformation on X , and so all gauge-invariant quantities 
are still well defined.

Denote X 0= A 0. The rest of the quotient conditions are

U jX ^ U = X ^ , 

Uj ^  U = A ^ ,

/x = 0,5,...,9, (68)

(69)

where A = exp[ — t t(T12 + T34)/n].  Because A n = —1, Eq. 
(62) should be replaced by Un = ( — 1)F, where F  is the fer- 
mion number operator. It is easy to see that A 0, X ^ , and ^  
are in the adjoint representation of U(N )n.

It is easy to see that the quotient conditions for C2/Z n 
preserve one-half of the dynamical SUSY and one-half of the 
kinetic SUSY.

VI. NONCOMMUTATIVE GEOMETRY AND T DUALITY

Let us recall how the notion of noncommutative geometry 
naturally arises as a generalization of classical geometry. We 
know that if a classical space is given, one can immediately 
define the algebra of functions on that space. According to 
the Gelfand-Naimark theorem, the converse is also true: any 
commutative C * algebra is isomorphic to the algebra of 
functions (vanishing at infinity) on a locally compact Haus- 
dorff space, which can be constructed as the space of maxi
mal ideals of the algebra. The notions of the algebra of func
tions and that of the underlying space are dual to each other 
via the Gelfand map. This motivates the generalization of 
classical spaces to quantum spaces. A quantum space is sim
ply defined as the underlying space of a noncommutative 
algebra.

The dual space for a M(atrix) compactification can thus 
be roughly viewed as the underlying space on which the 
M(atrix) theory is defined as a field theory. When the 
U-algebra is noncommutative, the dual space is a quantum 
space. Thus in a sense T duality naturally introduces the 
ideas of a noncommutative geometry into M(atrix) theory.

For the compactifications on M / T  with M  simply con
nected, we have seen in the above examples that for a factor 
of Z in T there is a factor of S1 in the dual space. (Note that 
this statement is more general than the statement that the 
dual space of a circle is a circle, because there can be differ
ent compactifications with the same group T. They lead to 
different field theories on the same dual space.) In the above 
we also see that for a factor of Zn in T there is a factor of the 
dual Zn in the dual space. It would be useful to know more 
about the correspondence between the group T and the dual 
space.

VII. COMMENTS AND DISCUSSION

Finally we make a few remarks.
To be treated as a fundamental theory by itself, M(atrix) 

theory needs to know everything without consulting string 
theory or supergravity. Since the notion of spacetime is from 
the very beginning noncommutative in M(atrix) theory, a 
priori one is allowed to consider compactifications on spaces 
which are exotic from a classical point of view. The criterion 
for an admissible compactification is only whether the cor
responding generalized gauge theory on the dual space can 
make sense.

For compactifications on a classical d -torus, the funda
mental group is commutative and is d  dimensional; thus it 
results in a d -dimensional dual space. For compactifications 
on Riemann surfaces of higher genus, the fundamental group 
is noncommutative and therefore the dual space must be a 
quantum space.

A Riemann surface of genus g >  1 can be obtained as a 
quotient of the Lobachevskian disk which is simply con
nected. The quotient conditions are of the form

u Jz u  i=
a iZ + b i1 
c i Z + d i 1 ,

i=  1,...,2g, (70)

ai biwhere (c\ di)  are SU(1,1) matrices and |Z \ <  1. It is a chal
lenge to find the solution for Z .

For two classical compactifications, it is possible that 
there is a family of compactifications on nonclassical spaces 
with sensible dual theories interpolating them. Such interpo
lation may help our understanding of the various dualities 
[25].

Obviously there are a lot of important issues we need to 
clarify before we can proceed further. If the solution of the 
quotient conditions gives us an anomalous gauge theory, 
what we have obtained in this paper is only the so-called 
untwisted sectors in M(atrix) theory. To view M(atrix) 
theory as a fundamental theory, we also need to learn how to 
determine the twisted sectors for anomaly cancellation with
out consulting with string theory. On the other hand, for the 
consideration of quantum spaces to be physically relevant, it 
is urgent to look for more correspondence between M(atrix) 
compactification on quantum space and the moduli space of 
M theory compactification.
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APPENDIX A: T2/Z3 

The quotient conditions for T  2/Z 3 are

U1 ZU 1= Z + 1 ,  (A1)

U 2ZU2 = Z+T, (A2)

U \ z U 3 = qZ,  (A3)

where t =  q = exp(2ui/3) and Z  = (X 1 + iX2)/R 1.
The U-algebra is given by

U 1U 2 = q 12 U 2U1, (A4)

U 1U 3 = q 13 U 3U1U 2, (A5)

U 3U 1 = q 31U 2U 3, (A6)

U 3U 2 = q 32 U \ U  2U 3 , (A7)

U 3 = q 31, (A8)

where q 12, q 13, q 31 are phases and consistency requires q 32 
= q 13q —11. By rescaling the U ’s we can set all the q factors 
to 1 except that q 12 is still arbitrary.

The Hilbert space H  is {umu2Us3) |m ,n e Z ,s = 0,1,2}. 
Define the operators , A s , K  by

*1 U m u  U )  = m u m u 2u 3), (A9)

*2u m u n2u s3) = n u m u 2u 3), (A10)

A u  mu nu3') = s ss, u m u 2u 3'), (A11)

K u m u n u s3) = u m u 2u s3+1), (A12)

where Sss = 1 if s — s ' = 0 (mod 3), and vanishes otherwise.
Let Z ) = A ( U)) and A( U) = 2 mnsa mnsu m u 2 u s3 . Then

ZUmu2U3) = Umunu3(m+Tn + qsA))

= (* 1 + T*2^A)umU^U3), (A13)

where

A a mnsKm,n e Z;s = 0,1,2

x (  2  ( Us3 U2U—s' )n( U'3U 1U —s' ) mqs 'A s ' ),
\ s '=0,1,2 /

(A14)

where U 1 = q 122U 1 and U2 = q!^U2. It is not hard to calcu
late U3 U1U— 1 =  U2, U2U1U—2= U3 U2 U— 1= U — 1U2—1 and 
U3U2U3= U1. The solution of Z  is thus

Z  =*1 + t *2 + A . (A15)

To put the result in a more amiable form, let U1 
= exp(ia1) and U2 = exp(ia2). Also let U3 = P O U, where U 
is given by Eq. (66) for n = 3 and P is an algebraic operation 
defined by

P ^1 P —1 =  ^ 2, P 2ff1 P — 2= — a  1 — ^ 2 , (A16) 

P 02 P —1 =  — a 1 — a 2 , P 2a 2P —2 = a 1. (A17) 

Then it is easy to see that Eq. (A15) can be rewritten as

Z  = ( — • — iT^O") 1 + A (a 1, a 2), (A18)

where 1 is the 3 X 3 unit matrix and A  is a 3 X 3 matrix of 
functions of ( a 1, a 2) satisfying

A i - 1j - 1( a 1 ,a 2 ) = qA ij(a 2, — a 1 — a 2+ u /3 ) , (A19)

where the indices are defined modulo 3 . The dual space is 
again T 2/Z 3.

The rest of the quotient conditions are fixed by the La- 
grangian (57) to be

UfX ^ U = X ^ , fi  = 0,3,...,9, (A20)

U U  = A 3^ , (A21)

where A 3 = exp(—u-r12/3). Because A3= — 1, strictly speak
ing Eq. (A8) should be replaced by U3 = ( — 1)F, where F  is 
the fermion number operator. All the SUSY is broken in this 
case.

APPENDIX B: FINITE CYLINDER

Matrix compactification on the orientifold s  1x  s  1/ z 2 is 
related to the heterotic string theory [18,19]. The quotient 
conditions are8 [18,19]

U X j U i  = Xj  + I v S i j R j , i , j =  1,2, (B1)

8In general there can be an additional term of 2 kuR  1 for any 
integer k in Eq. (32), but it can be absorbed in a shift of X 1 by 
X 1̂  X 1 + kuR  1.
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UjX 1U3 = X* , (B2)

U jx  2 U 3 = X *. (B3) 

The U -algebra is

U 1U 2 = q 12 U 2 U1, (B4)

U1U3 = q 13U 3 U T, (B5)

U 2U 3 = q 23 U 3U 2° ,  (B6)

U 3U * = q 31. (B7)

Consistency of the U-algebra imposes constraints on the pa
rameters q ij's. Taking the complex conjugation of Eq. (B7), 
we find q 3= ± 1 .  Equation (B7) and the transpose of Eq. 
(B5) imply that q 13= ± 1 .  Rescaling U2 can give q 23= 1. 
The U-algebra is therefore parametrized by a phase q 
= q 12, q 13= ± 1 and q 3 = ± 1 .  For q = q 13= q3= 1 we get 
the same algebra as in [18,19].

The Hilbert space is H  = {umu2(U3C)s) \m ,n e Z,s 
= 0,1}. Define s . , K and e by

s u m 1 u  m2( U3 c  )s) = mium1 um2( U3C )s) , (B8)

Ku ddun2( u 3c y ) = u d d u n2( u 3c y + 1), (B9) 

e u  m u  n( u  3c  )s) = ( - 1) su  m u  n( u  3 c )s) .
(B10)

To follow Zumino’s prescription, we consider

x u  m  u  m2) = u  m1 u  m2[ 2 t m iR i+ a  ̂  u  1, u  2, u  3)])

= [  i t R is i+ A i ( u  1, u  2 , k  )] u  m1 u  m2) .

(B11)

If

/ii = 2  m„sa imns^m^ '2 (U 3c )s,

then

a = 2  mnsa mnsu  n u  mKs,

where

U 1 = q - s 2U1, U 2 = q s1 U 2.

Similarly,

XjU  m1U m2U 3c ) = U m1U m2U 3 c  [ 2 t m iR i+ ( -  1) Ai( U1, U 2 , U 3)]) 

= [ 2 t R is i+ ( -  1) A * (q 13U j- 1 ,U  2 , K)] Um1Um2U3). (B12)

r

Therefore we get

Xi = 2 tR  isi + 2  A i( U1, U 2 , K)(1 + e)

1
+ ( -  1) i 2 Bi(U 1, U 2 , K)(1 - e ) ,  (B13)

[4,26]. A similar construction was used for rewriting the 
standard model as a gauge theory on a noncommutative 
space [26].

The algebra on the Z2 factor of dual space can be repre
sented by Pauli matrices. For instance, K  = t 1 and e= t 3 for 
q 3= 1. From Eq. (B13), X i = - i 2 t R i s / s a i + A i( a 1, a 2), 
where

where B i( a 1, a 2,K) = A * ( a 1 - h 13, -  a 2,K) with U 1 = e ia1, 
U2 = e ia2, and q 13= e ih13 (h 13= 0 , t ) .  The fundamental re
gion on which the gauge field can be freely assigned is a dual 
cylinder: a 1 e [0 ,2 t) , a 2 e [0 , t ]  for q 13= 1. For q 13= -  1 
it is a dual Klein bottle.

Let A i= A i0(U  1,U2) + Ai1( U 1,U2)K and similarly for 
B i . The Hermiticity of A i implies that

Ai  =
Ai  0 ( -  1) iB u 

Ai 1 ( -  1 ) iBi0
(B15)

is a Hermitian matrix. Each entry of the 2 X 2 matrices is an 
N  X N  matrix.

The quotient conditions for other coordinates for the com- 
pactification on a cylinder are [18,19]

A  j0 = A i 0 B j0 = B i 0 A *1 = ( -  1) iq 3B u. (B14)

Clearly, s 1 ,s 2 are derivatives on the dual space. In fact K  
can also be viewed as a function on Z2 and e as the deriva
tive on Z2 in the sense of a noncommutative geometry [4]. 
Hence the dual quantum space is the product of the dual 
cylinder with Z2. Furthermore, the form of X  resembles the 
covariant derivative on the dual quantum space as defined in

U* A 0 U i=A  0 , UjA 0 U 3 = A *A* ■

u j y  u =  y , u 3y  u 3= r 01y  *,

(B16)

UjXaUi = Xa , UjXa U3 = X* , (B17)

(B18)
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where i = 1,2, and a = 3,...,9. The M(atrix) theory on a cyl
inder is related to the heterotic string theory [18,19]. It is a 
gauge theory with the gauge group U(2N ) in the bulk of the 
dual cylinder but with the gauge group O (2N) (q 13= 1) or 
USp(2N)  (q 13= — 1) on the boundary [18]. One-half of the 
dynamical SUSY is preserved.

APPENDIX C: MOBIUS STRIP

The quotient conditions for a Mobius strip [14,15] are Eq. 
(B1) and

U jX 1U 3 = X *, (C1)

U jX 2 U 3 = X *. (C2)

The U-algebra is

U 1U 2 = q 12U2U1, (C3)

U 1U 3 = q 13 U 3U 2*, (C4)

U 2U 3 = q 23 U 3U *, (C5)

U 3U 3* = q 31. (C6)

Considerations similar to those in the previous sections lead 
to q 3 = ± 1  and q 13= q 23= 1. The phases q 12= q and q 3 
= ± 1 label two one-parameter families of compactifications.

The Hilbert space and the operators di , K , e can be defined 
similarly as in the previous section. We get the solution for
X 1 ,X 2 as

1
Xi = 2 k R  idi + -  A i( U1, U 2 , K )(1 + e)

1
+ ^  B t(U  1,< 2 , K )(1 — e), (C7)

where the A ’s and B ’s are functions of ( U1, U2)
= (q — S2U1,q d1U2) = (e ia\ e ia2). It is

Ai( — ^ 2 , — ^1 ) = B * ( ̂ 1 , ̂ 2 X (C8)

where ( i ,j ) = (1,2) or (2,1). From Eqs. (C1), (C2), (C4), and 
(C5), the fundamental region is the dual Mobius strip and the 
compactified M(atrix) theory is a field theory on the dual 
Mobius strip.

The quotient conditions for A 0 and X a (a = 3,...,9) are 
the same as those for a cylinder. Those for ^  can also be 
obtained:

U j^  U =  ̂ , (C9)

u  3 ̂  u 3= r ± ̂  *, (C10)

where = ( 1/V2) r 0( r  1 — T2) . One-half of the dynamical 
SUSY is preserved.
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