
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VO L 14, NO. 5, SEPTEMBER/OCTOBER 2008 1067

F l o w C h a r t s : V i s u a l i z a t i o n o f V e c t o r F i e l d s

o n A r b i t r a r y S u r f a c e s

Guo-Shi Li, Xavier Tricoche, Member, IEEE, Daniel Weiskopf, Member, IEEE Computer Society, and
Charles Hansen, Senior Member, IEEE

A bstract—We introduce a novel flow visualization method called Flow Charts, which uses a texture atlas approach for the
visualization of flows defined over curved surfaces. In this scheme, the surface and its associated flow are segmented into overlapping
patches, which are then parameterized and packed in the texture domain. This scheme allows accurate particle advection across
multiple charts in the texture domain, providing a flexible framework that supports various flow visualization techniques. The use of
surface parameterization enables flow visualization techniques requiring the global view of the surface over long time spans, such as
Unsteady Flow LIC (UFLIC), particle-based Unsteady Flow Advection Convolution (UFAC), or dye advection. It also prevents visual
artifacts normally associated with view-dependent methods. Represented as textures, Flow Charts can be naturally integrated into
hardware accelerated flow visualization techniques for interactive performance.

Index Terms—Flow visualization, textures, graphics hardware.

---------------------------------- ♦ ----------------------------------

1 In tr o d u c tio n

A visual assessment of 3D transient flow phenomena is
essential in a broad range of scientific, engineering,

and medical applications. In many cases, the analysis of a
3D vector field can be reduced to the investigation of the
2D structures produced by its interaction with the boundary
of the object under consideration. Typical examples of such
analysis for fluid flows include airfoils in aeronautics,
engine wall and exhaust pipes in the automotive industry,
and rotor blades in turbo machinery. Other applications in
biomedicine focus on the interplay between bioelectric
fields and the surface of an organ. In each case, numerical
simulations of increasing size and sophistication are
becoming instrumental in helping scientists and engineers
reach a deeper understanding of the flow properties that are
relevant to their task. The scientific visualization commu­
nity has concentrated a significant research effort on the
design of visualization methods that convey local and
global structures occurring at various spatial and temporal
scales in flow simulations. In particular, emphasis has been
put on the interactivity of the corresponding visual analysis,
identified as a critical aspect for the effectiveness of the
proposed algorithms.

• G.-S. L i and C. Hansen are with the School o f Computing and the Scientific
Computing and Imaging Institute, University o f Utah, 72 South Central
Campus Drive, 3750 W EB, Salt Lake City, U TS4102.
E-mail: lig@sci.utah.edu, hansen@cs.utah.edu.

• X. Tricoche is w ith the Department o f Computer Science, Purdue
U niversity, 305 N. U niversity Street, W est Lafayette, IN 47907.
E-mail: xmt@ purdue.edu.

• D. W eiskopf is ~with the Visualization Research Center and Visualization
and Interactive Systems Institute, Universitat Stuttgart, Nobelstrasse 15,
70569 Stuttgart, Germany. E-mail: weiskopf@ vis.uni-stuttgart.de.

M anuscript received 11 Oct. 2007: revised 2S feb. 200S: accepted 17 Mar.
200S: published online 31 Mar. 200S.
Recommended for acceptance by A . Pang.
For information on obtaining reprints o f this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2007-10-0160.
Digital Object Identifier no. 10.1109/TVCG.200S.5S.

A recent trend within flow visualization research focuses
on image space methods [17], [34], This framework offers
compelling means to tackle the computational complexity of
visualization techniques supporting flows defined over
curved surfaces. The key feature of this approach lies in its
ability to efficiently produce a dense texture representation of
the flow without explicitly computing a surface parameter­
ization. This is achieved by projecting the flow on the visible
part of the surface onto the image plane, where subsequent
texture generation is performed in the image space through
backward integration and iterative blending. Although the
use of partial surface parameterization obtained by projec­
tion results in an impressive performance gain, a limitation of
this setting is that texture patterns stretching beyond the
visible part of the self-occluded surface become incoherent
due to the lack of global representation of the surface flow.
Popping artifacts are present when the surface is rotated as
partial parameterizations are in general not fully consistent
across consecutive frames. This limitation also restricts the
use of dye advection to investigate nonlocal features in the
vector field. Fig. 1 illustrates the visualization of a synthetic
spiral helix flow defined on the surface of a cylinder using
dense texture combined with dye advection. Only with the
global view of the flow can the dye material correctly
circumnavigate the surface to convey the nonlocal structure.
Hence, to extend existing planar texture-based methods to
flows defined on curved surfaces in a general way, a
global representation of the surface flow in the 2D texture
domain is needed.

One way to attain such a representation is surface
parameterization, which provides the mapping between the
texture domain and the physical space. This technique has
been successfully utilized in many problems involving
curved surfaces, such as texture mapping, texture synthesis,
or mesh processing. Although many surface parameteriza­
tion methods exist, their use in dense texture flow visualiza­
tion has been limited so far. The specific requirements

1077-2626/08/S25.00 c 2008 IEEE Published by the IEEE Computer Society
Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:29:49 UTC from IEEE Xplore. Restrictions apply.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276285044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:lig@sci.utah.edu
mailto:hansen@cs.utah.edu
mailto:xmt@purdue.edu
mailto:weiskopf@vis.uni-stuttgart.de
mailto:tvcg@computer.org

1068 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2008

Fig. 1. Visualizing the spiral helix flow on a cylinder using dye advection
combined with dense texture.

• adaptation of planar dense texture flow visualization
algorithms to curved surfaces.

The contents of this paper are organized as follows:
Related work in dense texture flow visualization is
discussed in Section 2. Section 3 elaborates on the concept
of Flow Charts and details their computation. Section 4
demonstrates the versatility of our algorithm by showing
examples of GPUFLIC, UFAC, and level-set dye advection
on curved surfaces using Flow Charts. Implementation
details are covered in Section 5. Section 6 provides
discussion and results. Finally, we conclude this paper by
summarizing our contributions and pointing out promising
avenues for future research in Section 7.

imposed by flow visualization methods partially explains
this disconnect. Many dense texture flow visualization
methods are based on the Lagrangian principle of particle
advection, which mimics the physical process of massless
particles carried away by the flow into which they are
released. To accommodate a wide range of surfaces, cuts are
typically necessary in surface parameterization to convert the
associated flows to the texture domain while reducing
distortion. This inevitably introduces discontinuity in the
global flow representation, causing many numerical schemes
used for particle advection to fail. Moreover, the ability to
redirect particles across discontinuities in the texture space is
necessary to ensure artifact-free visualizations. Finally,
interactivity is an essential dimension of any effective visual
data exploration. Therefore, the aforementioned problems
require algorithmic solutions that fully leverage the parallel
computational structure of modern Graphics Processing Unit
(GPU) architectures.

To address these problems, we propose a novel frame­
work designed to support a wide range of dense texture
visualizations for flows over arbitrary curved surfaces using
existing surface parameterization schemes. Our scheme,
called Flow Charts, segments the surface into patches that
are eventually converted to charts to provide a global view
of surface flow in the texture domain. In order to efficiently
enable particle advection across discontinuities on chart
boundaries in the texture space, the patches are extended to
overlap their neighbors in the physical space. The extended
region provides each local chart with a smooth representa­
tion of its direct vicinity in the flow as well as with the
interchart adjacency information, both required for accurate
and nondisrupted particle advection. The vector field and
the patch adjacency relation are naturally represented as
textures, enabling efficient GPU implementation of state-of-
the-art dense texture flow visualization algorithms requir­
ing the global view of the flow field, such as GPUFLIC [21],
Unsteady Flow Advection Convolution (UFAC) [39], and
level-set dye advection [35].

In summary, the specific contributions of this paper are

• introduction of a generic framework providing the
global view of flows on curved surfaces using state-
of-the-art surface parameterization algorithms;

• a set of schemes and data structures enabling particle
advection with flow fields containing discontinuities
in texture space suitable for GPU implementation;

2 R e la t e d W o r k

Flow visualization using dense textures is an active
research field. Since the seminal works by van Wijk [32]
and Cabral and Leedom [4], many methods have been
proposed (such as [13], [14], [33], and [39]). Laramee et al.
[16] provided a comprehensive survey on this rich subject.
Weiskopf et al. [37] proposed a mathematical framework to
analyze various techniques in terms of spatial and temporal
coherence and later investigated visual quality issues from
a signal processing perspective [36].

Despite the tremendous efforts devoted to 2D flows,
existing methods addressing flows defined over surfaces
are relatively few. Forssell and Cohen [9] generated the
texture representation for such a flow using Line Integral
Convolution (LIC) in the parameter space and then applied
it to the surface for visualization. This method was later
improved by Mao et al. [24], who used a noise texture of
multiple frequencies to compensate visual quality issues
caused by distortion of the mapping. For an arbitrary
curved geometry, Mao et al. [25] computed LIC using a
procedurally defined solid noise texture encompassing the
entire surface. LIC computation in 3D was only carried out
on texels intersecting with the visible part of the surface,
which are determined using ray casting. Another method
by Battke et al. [3] computed LIC textures individually on
every triangle of the surface. The triangle adjacency was
explicitly maintained for establishing patterns across
triangle boundaries. Due to the complexity and the
technologies available at the time, these methods are
designed as offline processes.

The rapid evolution of graphics hardware in recent years
had inspired a new generation of algorithms leveraging the
resulting computational power. Lately, two similar GPU-
based methods, Image Space Advection (ISA) [17] and Image-
Based Flow Visualization for Curved Surfaces (IBFVS) [34],
were proposed to generate dense textures for unsteady flow
defined on curved surfaces. Called image space methods, the
flow on the visible part of the surface is projected onto the
image plane that is then used for texture generation. A
comparison and analysis of these two methods can be found
in [18]. Image space methods can achieve interactive frame
rates since the entire pipeline can be carried out on the GPU.
Due to its view-dependent nature, however, frame-to-frame
coherency in texture patterns is not guaranteed. Weiskopf
and Ertl [38] addressed this problem with a dual-domain
approach. Using a noise texture defined in 3D, the particle
advection is conducted back and forth between the image and

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:29:49 UTC from IEEE Xplore. Restrictions apply.

LI ET A L: FLOW CHARTS: VISUALIZATION OF VECTOR FIELDS ON ARBITRARY SURFACES 1069

the physical space to ensure the consistency of texture
patterns and to avoid the “edge-crossing" problem [17],
which otherwise needs to be specially dealt with in image
space methods. The frequency of the noise texture is
dynamically adapted to mitigate aliasing in the resulting
texture patterns.

3 F lo w C h a r ts V is u a l iz a t io n F r a m e w o r k

The primary goal of this research is to devise a general
framework supporting a wide range of texture-based flow
visualization algorithm on polygonal surfaces. Surface
parameterization provides a global view of the flow in the
texture space. For comprehensive surveys on surface
parameterization research, see [7] and [8]. Given an appro­
priate surface parameterization, any flow visualization
methods designed for 2D flows can be used to generate
dense flow textures, which are then texture-mapped onto the
surface in the physical space for visualization. In this
framework, the visualization techniques are orthogonal to
the choice of surface parameterization method, which is
determined by various criteria such as error threshold and
computation cost. However, there are two main challenges to
this approach. In the following, we first explain these key
issues before introducing our Flow Charts visualization
framework.

Flow on surface. The first issue in our framework involves
accurately expressing physical flows tangential to the surface
in the texture space. The tangential flow is obtained by
projecting the 3D vectors attached on the surface to local
tangent planes. The surface description in our work is a
polygonal mesh corresponding to the computation grids of
Computational Fluid Dynamics (CFD) simulations, as
typical in practice. A surface parameterization is needed to
express tangential vectors in a globally consistent coordinate
frame since the polygonal mesh is only C° continuous.
Unlike Catmull-Clark subdivision surfaces used in [31], the
parameterization of polygonal surfaces needs to be com­
puted explicitly. To cope with a wide range of surfaces
without excessive distortion, we opt for the texture atlas
scheme by Maillot et al. [23] rather than single-chart method
such as Geometry Image [11]. In our approach, the surface is
segmented into patches that are then parameterized and
packed into the 2D texture space. Following the standard
naming scheme, the footprint of a patch in the texture space
is referred to as a chart, providing a mapping to the
corresponding surface region in the physical space. The flow
defined on the surface can then be transformed to the texture
space using the surface parameterization. We will come back
to this issue with further details in Section 3.3.

Particle advection in texture space. With a texture atlas
approach in mind, we now consider particle advection
across multiple charts, which is the fundamental building
block in many texture-based flow visualization methods.
Consider a time-varying vector field v (t ,x) that assigns a
vector to each position x in space D at time t. From the
Lagrangian perspective, the trajectory of a massless particle
Xpath induced by v can be formulated as an ordinary
differential equation:

(a) (b) (c) (d)

Fig. 2. Two-dimensional illustration of constructing overlapping patches,
(a) The surface is initially segmented into disjoint regions, each
constitutes the center zone of a final patch, (b) Attaching buffer zones
(in dashed lines) to disjoint regions in (a), (c) Patches now overlap with
their neighbors, (d) Overlapping regions are highlighted with green
silhouettes.

dxpaU,(^xo , y = Xpath^. x0, *0)), (1)

with the initial condition Xpan,^) = xo. In order to
guarantee the existence and uniqueness of the solution,
the vector field v needs to satisfy the Lipschitz
condition:

| v (x i) — v (x 2) | < K | x i — x 2 |, (2)

with a positive constant K for all x i , x 2 in D. This constraint
is challenging for the aforementioned texture atlas approach
since the flow in the vicinity of chart boundaries in the
texture space is discontinuous due to the cuts. A common
strategy to deal with a similar situation is to replicate
boundary pixels, such as in [5] and [19], In these methods,
only a small number of pixels (usually one or two) adjacent
to the boundary are involved in the computation. This
solution is, however, not suitable in our setting. Indeed, in
particle advection, the positions between updates are not
necessarily in adjacent pixel locations. Furthermore, once a
particle exits a chart during advection, it needs to be
transported to the corresponding adjacent chart to maintain
a smooth trajectory in the physical space. Battke et al. [3]
addressed this issue by explicitly maintaining and checking
triangle adjacency of the entire mesh using an AVL search
tree, which is challenging for parallel GPU hardware
implementation.

To address these issues, we propose a mesh segmenta­
tion scheme suitable for flow visualization in which each
patch is initially disjoint and then overlapped with adjacent
ones by a small extent. We refer to the formerly disjoint
patch region as the “center zone," while the extended
region is called the “buffer zone." The buffer zone serves
two purposes. First, after parameterization in the texture
space, it provides a continuous representation of the flow
close to the chart's center zone boundary by including the
neighboring flow information. Second, it encodes the
adjacency relationship between abutting patches so that
particle advection can be correctly performed across multi­
ple charts in the texture space. Due to the symmetry by
construction, part of the center zone of a given patch is also
overlapped with the buffer zone of its neighboring patches.
This part of the center zone together with the buffer zone of
the patch is collectively called the “overlapping region" (see
Fig. 2). It is used to capture the texture patterns generated
across the boundary between the center zone and the buffer
zone of a chart to guarantee artifact-free visualizations in
the physical space. The overlapping patches, along with
associated flow and adjacency relation, are parameterized

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:29:49 UTC from IEEE Xplore. Restrictions apply.

1070 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2008

Fig. 3. Texture-based visualization framework using Flow Charts. The
numbers refer to the sections that describe each step.

and packed to the texture space. These data are converted to
a set of textures called Flow Charts to facilitate efficient GPU
implementation. With Flow Charts and additional schemes
to perform particle advection across multiple charts and to
ensure the smoothness of texture patterns across chart
boundaries, a wide range of dense texture flow visualiza­
tion algorithms can be readily extended to visualize flows
on arbitrary curved surfaces. Fig. 3 provides an overview of
our framework.

3.1 Mesh Segm entation and Param eterization
The first stage in our framework requires segmenting and
parameterizing the surface into overlapping patches. This is
achieved by first creating disjoint patches from a set of seed
triangles, which are then extended by a small region
surrounding their boundaries. Since the main purpose of
these patches is to transform the flow to the texture space,
care must be taken that the mesh is properly segmented and
the distortion induced by parameterization is minimized.
Additionally, due to the limited amount of texture memory
on the graphics card, the patch configuration resulted from
segmentation must achieve high packing efficiency. With
these concerns in mind, we propose an automatic mesh
segmentation and parameterization algorithm based on the
principle of region growing inspired by [5]. It consists of the
following steps:

1. Find candidate seed triangles.
2. Grow disjoint patches iteratively with shape and

distortion control.
3. Attach buffer zone and compute patch parameter­

ization.
In the first step of our method, a set of triangles from the

mesh is selected as the candidate seed triangles for region
growing by using an adaptive surface sampling scheme by
Meyer et al. [26]. In this method, a set of samples is
distributed on the surface, each representing a locally flat
region. In a series of region growing processes, a set of
disjoint regions is formed one by one from some of these
candidate seed triangles. This is different from [5], in which
seed triangles are found by analyzing mesh features (as
further discussed in Section 3.1.1) and each seed corresponds
to one final patch. During the region growing process, the
quality of parameterization is tested on the fly to ensure low
distortion. Other criteria, such as shape and size of the
region, are also taken into consideration for better packing

efficiency. Once the mesh is fully covered, these disjoint
regions constitute the center zones of the final patches. A
small region of adjacent triangles is then attached to each
patch to form the buffer zone. Last, the parameterization of
these overlapping patches is computed. In the rest of this
section, we discuss each of these aspects in more detail.

3.1.1 Finding Candidate S e e d s
The selection of seed triangles is an essential issue for
automatic mesh segmentation schemes. Some methods,
such as D-charts [15] and Rectangular Multi-Charts Geo­
metry Images [5], take the iterative Lloyd-Max approach [22]
where the number and the location of seeds are repeatedly
computed in a converging process. Although this approach
is conceptually simple and can deal with a wide range of
surfaces, it is computationally expensive for large CFD
meshes. Another way to tackle this problem is to "reverse
engineer" the location of seeds based on the criteria of
desirable resulting patches. Flat and compact patches are
favorable as they yield better results in parameterization
and packing. Therefore, it is preferable that patch bound­
aries are aligned with sharp features while the patch centers
should be away from them. Based on this principle, one can
explicitly estimate feature curves on the mesh, from which
flat locations ideal for seeds can be determined such as in
[20]. This requires properly estimating mesh features. In our
experiments, however, we found that CFD meshes used in
practical applications do not lend themselves to simple local
feature detection techniques found in the graphics and mesh
processing literature. The mesh tessellation in this type of
data can be highly nonuniform, as it is adaptively refined
according to the local importance of physical phenomenon
in the numerical simulation. This is atypical to many
graphics schemes, in which isotropic tessellation is usually
assumed. Remeshing or smoothing is not an option because
it inevitably alters the original vector data. To overcome
these difficulties, we propose a scheme to determine a series
of candidate seed triangles without direct mesh processing
using the adaptive sampling scheme for implicit surfaces by
Meyer et al. [26]. First, the polygonal mesh is converted to an
implicit form by scan conversion. It is then sampled to a
user-specified number of points. The sample points are
confined on the implicit surface with sampling rates
proportional to local curvatures. These samples are then
projected back to the original mesh to pinpoint the closest
intersecting triangles as the candidate seeds. The sampling
density can be seen as a rough estimate of local flatness of
the mesh. Based on this measure, each candidate seed
triangle is given a priority for region growing.

3.1 .2 Iterative Patch Construction
Each candidate seed triangle obtained in Section 3.1.1 is
associated with the average distance P from the corre­
sponding sample sT to its N closest neighbors -s„ on the
implicit surface C. That is,

P M £ , v |C W) - C (a „) |
N m

This value describes the size of the locally flat neighbor­
hood it represents and is used as the priority value of sT in
the priority queue for region growing. A spatial subdivision

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:29:49 UTC from IEEE Xplore. Restrictions apply.

LI ET A L: FLOW CHARTS: VISUALIZATION OF VECTOR FIELDS ON ARBITRARY SURFACES 1071

Fig. 4. Iterative patch construction with candidate seed triangles,
(a) Candidate seed triangles are found by adaptive sampling of the
implicit representation of the polygonal mesh, (b) Region growing with
shape control. The current patch (light gray) is initially grown from a seed
triangle (pink). Seed triangles invalidated during the region growing
process, active seed triangles, and triangles bordering the current patch
are shown in dark gray, yellow, and green, respectively. Among the
bordering triangles, the one with the minimal Lv distance (red) is
computed with the estimated local frame in the texture space (cyan).

data structure is used to track the neighborhood informa­
tion of sample points -s,;. For details, see [26].

Starting from the seed triangle with the largest locally flat
neighborhood, the patch is iteratively constructed by
including faces adjacent to its boundary edges. We maintain
a list of patch ownership flags for every triangle of the mesh.
At this point, each triangle can only belong to exactly one
patch. During the construction process, unused candidate
seed triangles can be included into the patch and become
unavailable. We ensure the growing region is a topological
disk by checking if it contains holes. The process continues
until certain criteria halt the region expansion. When this
happens, the next available candidate seed triangle in the
priority queue becomes the new active seed for region
growing. If there are multiple candidate seed triangles with
the same priority, the one farthest away from the centroid of
the latest constructed patch is chosen. The geodesic distance
is approximated by iteratively propagating the one-ring
patch boundary. This ensures that we always start con­
structing patches from a flat region rather than a sharp area.
When all candidate seed triangles are exhausted, any
unallotted faces are assigned to the closest patches to fully
partition the mesh into disjoint regions (see Fig. 4).

3.1 .3 Patch Growing Control
Several criteria are considered to regulate the patch growing
process. First, patches should not span across sharp edges
on the mesh because the tangential flow there is likely to be
discontinuous. Otherwise, this would lead to two flow
regions of conflicting directions that coexist on the same
chart, causing ambiguous patterns in the resulting texture.
To avoid this problem, during the patch growing process,
we check the difference between the normal vector of the
prospective triangle to be included and that of its neighbor
already on the patch. It is rejected from consideration if this
value is larger than a user-specified threshold. Optionally,
the average normal vector of the patch can be maintained to
test against the normal vector of the candidate. The
candidate is rejected if the angle difference is larger than a
user-specified threshold. This is to ensure that the resulting
patch is relatively flat to minimize potential errors in
pa ra m e teri za ti on.

The mesh segmentation has a tremendous impact on
the distortion induced by parameterization. Since in our
framework the mesh is segmented by iterative patch
generation, the parameterization test is integrated with the
region growing process to ensure the mesh is segmented
into a set of low distortion patches. We use Least Squares
Conformal Maps by Levy et al. [20] to compute patch
parameterization and Ij1 stretch error [28] as error measure.
If the induced Ij1 stretch error is larger than a user-specified
threshold, the current patch is halted from further growth
and a new candidate seed is selected to form the next patch.

The last control criterion is concerned with packing
efficiency. To effectively utilize the texture space, it is
desirable that the shape of the patches be approximately
rectangular in the texture space. We adapt the shape control
mechanism described in [5] for this purpose. In this
method, rectangular patches are attained by favoring the
triangle of the closest L x distance in the local tangent space
to be included in the patch during the growing process. The
L x distance between two points ex and j3 is defined as

Ux'(a,p) = inax(|a ,; — /i,;| (4)

where i is the dimension index. Note that equidistant lines
defined with L x are rectangles. In our experiments, we found
that principal component analysis (PCA) is not suitable for
obtaining the local frame to compute the L x distance. This is
because the vertex distribution on CFD meshes can be highly
nonuniform due to local refinements for simulation pur­
poses. To solve thisproblem, following [10], we first compute
the convex hull of the patch vertices projected onto their
linear least square fitting plane and then find the minimal
area bounding box of the convex hull using the rotating
caliper algorithm by Eppstein [6]. The eigenvectors of the
bounding box are thus used as the local frame for computing
the L x distance (see Fig. 4).

3.1.4 Buffer Z o n e A ttachm en t a n d O verlapping R egion
Patches obtained in Section 3.1.2 are mutually exclusive and
constitute the center zone of the final patches. They are
attached to buffer zones by a similar growth procedure but
with a tighter angle difference threshold than the one used
in Section 3.1.3. The "thickness" of the buffer zone, «/#,
needs to be large enough such that the outgoing trajectories
of particles originated from the center zone can always be
captured by the buffer zone of the corresponding patch.
Assuming Runge-Kutta fourth order (RK4) is the chosen
numerical scheme, y t is the particle position, h is the
maximum allowable step size, and v is the vector field, the
particle displacement in one iteration is

y„+i — (k i + 2k2 + 2k3 + k4)

where

ki vf/,,.y

k 2 =

f h h
k 3 = v i, + ^ ,y „ + ^ k 2

k4 = v(X , + h, y „ + hka).

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:29:49 UTC from IEEE Xplore. Restrictions apply.

1072 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2008

(6)

Fig. 5. Chart packing, (a) The currently packed charts with their
bounding boxes and an incoming chart to be inserted (marked as
“next”), which in (b) is rotated by 90 degrees to minimize the increase in
height, (c) A chart falling through the blockade in the existing packing.

Suppose is the maximum vector magnitude through­
out the time sequence, by definition 11 11 < v„mj:, i = 1 ... 4,
thus (5) leads to

When a triangle T is included in the buffer zone of patch P,
it is by construction covered by multiple patches since it
must be in the center zone of another patch Q adjacent to P.
This creates the overlapping region. For each triangle, we
maintain a list of ownership flags to keep track of the
overlapping patch configuration. They are used in creating
the redirection map (Section 3.4) and overlapping region
compositing (Section 3.5).

3.2 Packing
After the mesh is segmented and parameterized, individual
charts are packed to a uniform texture space to facilitate
subsequent texture computation. Since the texture memory is
typically limited, it is important to tightly pack the charts to
minimize unused texture space. Several heuristic algorithms
have been proposed since the packing problem is known to be
NP-hard [27], Igarashi and Cosgrove [12] suggested to sort
the chart bounding boxes by height and then divided the
sorted sequence into zigzag bands, which are used as the
order of inserting charts into the texture space. Levy et al. [20]
proposed a packing scheme similar to the popular video
game "Tetris." In this method, a horizontal curve bounding
all currently inserted charts is maintained. It is tested against
the lower boundary of the next chart to be inserted to
determine the best placing position, which minimizes the
wasted texture space. This method was later improved by
Sander et al. [29] in which each incoming chart is considered
for 16 possible orientations.

Inspired by the aforementioned schemes, we propose a
"Tetris"-like packing scheme balancing the ease of imple­
mentation and packing efficiency (see Fig. 5). Since the
charts are forced to be approximately rectangular by
construction, we use the chart bounding box for packing
and only consider two orientations (horizontal or vertical).
The width of the texture space for packing is determined by
the square root of the total chart area times a scaling
coefficient. Larger charts are inserted before smaller ones as
they are relatively less flexible for filling up fractional space.
The placement and orientation of the incoming chart are
chosen to minimize the peak height of the packing. Unlike

Fig. 6. Transforming physical space vector Vp to the texture space. The
dashed quadrilateral shows the local tangent plane.

conventional Tetris, in our method, the incoming chart can
fall through existing blocking charts if it can be fit into an
available space underneath. In this case, the peak height of
the packing is not changed. This test can be easily done
since bounding boxes instead of actual charts are used for
packing. After all charts are inserted, their parameterization
coordinates are rescaled.

3.3 Flow Charts
The parameterization, flow data, and adjacency relation
associated with every chart are converted into Flow Chart
textures using rasterization. There are three types of
textures: the parameterization map, flow map, and redirection
map. The parameterization map encodes the surface para­
meterization and is used to create the flow map. The flow
map represents the flow in the texture space, the essential
ingredient in flow visualization. The redirection map
encodes the chart adjacency relation, which is essential for
interchart particle advection. It redirects particles across
multiple patches, as we will further discuss in Section 3.4.
All three maps are in the same resolution, which is
determined by scaling the packing result in Section 3.2 by
a constant. For a given surface flow data set, there are exactly
one parameterization map and one redirection map. Each
time step corresponds to a unique flow map. Flow charts of a
given data set are orthogonal to the choice of visualization
technique and are computed in a preprocessing step.

Parameterization map and flow map. The parameter­
ization map P is created by rendering each patch using
the texture space coordinates \i = (s,t) defined at every
vertex as the position attribute, and the associated physical
space coordinates xp = U\ ?/, z) as the color attribute. It is
then used to create the flow map F , which is constructed
in the following steps (see Fig. 6). First, the physical space
vector vp = (v j^v^vz) on each patch is rasterized into the
texture space with u as the vertex position attribute and vp
as the color attribute. Next, vp associated with each texel
of F is projected to the local tangent plane spanned by
basis jii = { t i , t2} and becomes a tangential vector vt:

where N =
plane, and

vt = vp - (vp • N)N, (7)

tlXt2 is the normal vector of the local tangentl|ti ' ' t 2||

9F(u)
ds *2

9P(n)
dt ' (8)

Finally, the tangential vector vt in the physical space is
transformed to the texture space by coordinate frame

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:29:49 UTC from IEEE Xplore. Restrictions apply.

Ll ET A L: FLOW CHARTS: VISUALIZATION OF VECTOR FIELDS ON ARBITRARY SURFACES 1073

Fig. 7. Interchart particle advection. (a) Patch P (blue) and Q (red) with
buffer zones in dashed lines individually shown and in overlapping
configuration, (b) A particle entering buffer zone of chart P redirected to
the corresponding location on Q.

transformation from jit to fiu, where fJu = { 1 1 1 , 112} is the
basis of the texture space and

Redirection map. The patch adjacency relation can be
understood as follows: patch P and Q are adjacent if there
exists a triangle that simultaneously resides in the center
zone of P and the buffer zone of Q, or in the buffer zone of
P and the center zone of Q. Fn the redirection map, we
denote the patch adjacency relation in the texture space
with position correspondence in terms of triangle TD. Beside
the gaps between charts, every pixel in the redirection map
carries a flag to indicate whether it is in patch center zone
and a unique triangle FD in the physical space that it
belongs to. The creation of the redirection map is similar to
that of the parameterization map except that the color
attribute is replaced by the center/buffer zone indicator flag
and a triangle FD.

3.4 Interchart Particle Advection
Particle advection is a basic computational aspect of most
flow visualization techniques. Fn the context of our
method, the ability to perform particle advection across
chart boundaries is essential to generate flow patterns in
the texture space that yield visually coherent results in the
physical space. Flow Charts support this operation in the
following way. Particles are always seeded in the center
zone of individual charts in the texture space. The
additional flow information provided in the buffer zones

Fig. 8. (a) Artifacts in texture patterns caused by inconsistent partial
particle traces in overlapping regions, (b) Fixed with overlapping region
compositing.

enables the use of higher order numerical integration
schemes like fourth-order Runge-Kutta for good accuracy.
Fn each iteration of the advection process, the particle
position is first updated by the numerical scheme, which
is then used to sample the redirection map to determine
the texture position at which the next iteration of
integration will be resumed at. Ff the position reached
after one integration step lies within the center zone of the
same chart, no redirection is necessary and the particle
remains at its current position. Ff, on the other hand, the
particle has left the center zone and entered the buffer
zone of the same chart, it is redirected to the center zone
of another chart by the use of the redirection map. The
redirection process is illustrated in Fig. 7. At particle
position (,so,fo) in the buffer zone of patch P, the
matching physical space coordinates (x , y , z) are obtained
by sampling the parameterization map V at f())- From
the redirection map 7?., the triangle FD T at is first
used to obtain the spatial coordinates of the corresponding
three vertices to compute the barycentric coordinates of
(x ,y , :) in T. This is then used to interpolate another set of
texture space coordinates of vertices of T with respect to
Q to compute the position on Q, where a particle will be
redirected to.

3.5 Com positing Overlapping Regions
Although the particle redirection scheme described in
Section 3.4 promises smooth transition among patches, it
alone is not enough to achieve artifact-free visualization.
Most dense texture methods rely on particle traces, rather
than discrete points of particle locations, to produce
textures for visualization. When a particle enters the buffer
zone of patch P and is then redirected to the adjacent patch
Q, its trace made on P right before the transition is not
visible to Q. Fn general, the traces that connect the
successive positions of each particle must be consistently
replicated to all corresponding positions in the texture
space to ensure pattern coherence in the physical space.
Fig. 8 illustrates the artifacts if this consistency is not
preserved. Since only the overlapping region of a chart is
covered by multiple patches, only particle traces in this area
must be duplicated onto another adjacent chart in the
physical space. Fig. 9 illustrates this situation. Fn Fig. 9a, a
particle moves from w() to «i/> on patch P after one
advection iteration. «o and uip are in the center zone and
the buffer zone of P , respectively, and «*, is the intersection

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:29:49 UTC from IEEE Xplore. Restrictions apply.

1074 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO, 5, SEPTEMBER/OCTOBER 2008

Fig. 9. Compositing overlapping regions. Buffer zones are shown with
dashed silhouettes and overlapping regions are marked with green
boundaries, (a) and (b) A particle enters buffer zone of patch l \ being
redirected to patch Q, and continues on patch Q. (c) Transit particle
traces generated in (a) and (b) on corresponding charts, (d) Transit
paths on chart I ’ and Q symmetrically composited on each other.

point of ui,u-i p and the center/buffer zone boundary. In
Fig. 9b, the particle is transported to u-\q on the adjacent
patch Q and is further advected to u2. Although the particle
position is transported correctly due to the redirection
scheme, the transit trace uuu-lp is not. Specifically, the partial
segment uiiuii should be replicated onto the buffer zone and
«(,«! /-• onto the center zone of Q. Symmetrically, u-1qu2 also
shall be replicated to P to ensure consistency. Note that for
simplicity the particle in Fig. 9 starts in the overlapping
region of P. If this were not the case, only the partial trace in
the overlapping region would need to be composited.

The compositing operation is performed with the triangle
ownership flags described in Section 3.1.4. Using the owner­
ship flags and multiple parameterization coordinates with
respect to all patches that a triangle belongs to, every transit
particle trace on the triangles in an overlapping region is
replicated to all corresponding areas in the texture space.
Consider an overlapping region triangle T with parameter­
ization coordinates (.sf, t!’), i = 1 ... 3 with respect to chart P.
It also carries another set of coordinates (s f * = 1 .. .3
with respect to chart Q. To transport all transit particle traces
on T from P to Q, T is composited upon Q with (.sf, t!’) as
texture coordinates and {s f J (f) as vertex positions. The
composition from Q to Pis achieved by inverting the position
and texture coordinates. It is possible that more than two
patches cover the overlapping region simultaneously. In this
case, the symmetric composition is done in multiple passes.
Implementation details are provided in Section 5.

4 D e n se T ex tu r e F lo w V is u a l iz a t io n w ith
F lo w C h a r ts

With Flow Charts, a wide range of dense texture flow
visualization algorithms can be carried out in the texture
space, allowing efficient GPU-based implementation. Parti­
cularly, visualization techniques requiring the global view of

the flow can be correctly generated without view-dependent
artifacts. In this section, we describe how to adapt GPUFLIC,
particle-based UFAC, and level-set dye advection to
arbitrary curved geometries using our framework.

4.1 GPUFLIC
GPUFLIC [21] is an iterative reformulation of the original
Unsteady Flow LIC (UFLIC) [30] method, which efficiently
generates a series of flow textures to visualize unsteady 2D
flows using graphics hardware. In this method, particles are
iteratively released at every pixel in the domain to sample
the current flow texture, which is initialized as white noise.
Each particle is then advected forward across the space­
time domain and deposits the associated scalar value to
pixels along its path. The values thus accumulated at each
pixel are then averaged and filtered to create the next frame
of the visualization. The particle life span is chosen so as to
enhance the coherence between consecutive frames.

Using Flow Charts, GPUFLIC can be extended to
generate flow textures on curved surfaces with the follow­
ing adjustments. First, the noise texture in the texture space
is obtained by using the parameterization map to sample a
multi frequency noise texture defined in the physical space
[38]. The use of a 3D noise texture ensures consistent noise
across patches. The noise frequency varies locally according
to the current viewing parameter of the surface in the
physical space to address possible aliasing issues, as
discussed in [38]. Second, particles are only released in
central zones in the texture domain and are possibly
redirected after each update of their positions, as described
in Section 3.4. Third, partial traces made by particles
crossing chart boundaries are composited upon correspon­
dent regions on other charts using the method described in
Section 3.5. Finally, high-pass filtering and noise jittering
are performed on the texture generated in the computa­
tional space to enhance the contrast of resulting patterns.

4.2 Unsteady Flow Advection Convolution
UFAC [37] is a texture-based visualization scheme for
unsteady 2D flows. When visualizing unsteady flows, the
goals of temporal and spatial coherence are often conflict­
ing. To address these issues, UFAC first creates the
evolution of the noise texture induced by the flow and
then performs LIC convolution on it to depict flow
structures. The length of the convolution kernel is adjusted
based on the unsteadiness of the flow at a given pixel
location. The space-time continuum is constructed using
backward advection. The performance of the temporal
evolution is improved in the later version of UFAC [39],
where forward particle tracing with radial basis functions is
used to simulate the temporal propagation of a density
field. A fixed number of particles are advected with
randomized life spans initially adjusted by local divergence.
When a particle expires, it is recycled and reseeded into a
random position. In order to compensate the loss or gain of
particle density induced by flow divergence, a probability-
based scheme derived from the continuity equation is used
to adjust particle life spans to ensure an even distribution of
particles in the entire domain over time.

We extend the forward advection version of UFAC to
curved surfaces using Flow Charts. The forward advection
stage can be performed in the texture space using the

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:29:49 UTC from IEEE Xplore. Restrictions apply.

LI ET A L: FLOW CHARTS: VISUALIZATION OF VECTOR FIELDS ON ARBITRARY SURFACES 1075

particle redirection scheme described in Section 3.4, similar
to GPUFLIC. Likewise, the contributions from the radial
basis functions of particles are captured and blended to the
corresponding region in the texture space using the
compositing scheme described in Section 3.5. In order to
achieve a uniform particle distribution across charts, in
addition to the probability-based scheme we also introduce
an explicit removal mechanism to gradually remove
particles from regions of high particle concentration. This
is achieved by periodically checking the density of particles
in the neighborhood of each pixel in the texture domain.
When the particle density of the region a particle steps into
is larger than the average number of particles in the ideal
distribution, its life span is stochastically reduced to
gradually decrease the particle density in the local area.
Since patches overlap with their neighbors in the physical
space, the density threshold for a given pixel location in the
texture space needs to be divided by the number of patches
it belongs to so that uniform distribution can be attained
after compositing overlapping regions. After constructing
the density field in the texture space using Flow Charts, LIC
computation is conducted across multiple charts with the
same scheme for particle redirection. Periodic histogram
equalization is then applied to the resulting texture to boost
image contrast.

4.3 Level-Set Dye Advection
Dye advection is a widely used experimental laboratory
technique to explore and visualize nonlocal structures in the
fluid medium, which is oftentimes transparent to human
eyes. The foreign dye material is continuously injected into a
fixed spot to be swept away by the flow, revealing the
spatial and temporal structures originating from the injec­
tion site. In computer-generated flow visualizations, dye
advection can be easily combined with noise-based dense
representations (such as UFAC and GPUFLIC) to provide
interactive and user-centric experiences to explore and
understand flow structures. The traditional way to simulate
dye advection is backward texture advection [13]. In this
method, the properties of the dye (e.g., color) are repre­
sented as a texture. Since the Lagrangian formulation of
particle advection is symmetric, the transport of dye
material can be realized by integrating back in time at each
pixel and then using the new pixel location to sample the
property texture. Although it is easy to implement and is
very efficient on modern graphics hardware, dye patterns
generated by backward texture advection are usually blurry
and decay rapidly due to numerical diffusion. Weiskopf [35]
tackled this issue by using a level-set approach to confine
dye material from being dispersed. Rather than colors in this
method the texture represents a distance field, depicting the
interface between the dye material and the background as a
level set. The dispersion of the dye-background interface
resulted from numerical diffusion, thus can be corrected by
periodical level-set reinitialization.

The level-set dye advection can be easily extended to
curved surfaces using Flow Charts. The dye injection site is
specified by the user with a mouse click in the physical
space. It is then translated to the texture space using the
redirection map to initialize the level-set distance field.
Note that the injection site in the physical space can

correspond to multiple spots in the texture space if it is in
an overlapping region. The distance field is transported in
the texture space by backward advection. If the new pixel
location resulted from backward advection falls in the
buffer zone, it is redirected in the same manner as described
in Section 3.4. The overlapping region compositing is used
to ensure the level-set representation is continuous across
chart boundaries. The resulting patterns can be overlaid
with other dense texture presentations in the physical space
for visualization.

5 Im p le m e n t a t io n

The proposed framework is implemented in C++, OpenGL,
and Cg/CgFX on a standard Windows PC. We use GNU
Triangulated Surface Library [2] and Computational Geo­
metry Algorithms Library [1] for mesh segmentation and
parameterization. After flow charts are converted to a set of
textures, dense texture methods are run on the GPU. In the
following, we discuss several aspects with regard to
implementation details.

Mesh/patch data structures. Since patches overlap in the
physical space, proper data structures are necessary to
maintain the requisite information in flow charts. Every
triangle of the mesh has a unique ID. Each patch maintains
a list of the triangle IDs it covers. The mesh also keeps track
of a list of pointers for each triangle to indicate which patch
covers it. For each vertex it contains, a patch maintains a
flag to indicate whether it is in the center zone or buffer
zone, which triangle it belongs to, plus the texture space
coordinates. When a triangle is included in the buffer zone
of a patch, all other patches that also cover this triangle are
also notified so that they can register that this triangle is
now covered by other patches, thus allowing for the
composition of overlapping regions.

Two-stage compositing. The overlapping region compo­
sition described in Section 3.5 is a symmetric operation. It is
done in two stages to avoid "double-dosing"; that is,
patterns on triangle .4 copied to triangle B then repeatedly
added back to .4 when B composites its patterns onto .4.
This problem is solved by two-stage compositing with an
additional blank render target. In the first stage of
composition, the original texture is read and the result is
written to the blank render target. Next, the render target is
composited back to the original texture as a whole.

Particle engine. All flow chart textures are stored on the
GPU in the 32-bit floating point RGBA format. The particle
advection is implemented by using two 32-bit floating point
textures, c u r r e n t and n e x t, that holds the successive
particle positions between updates. The texture represent­
ing the n e x t position is set to the render target and is
updated using the c u r r e n t position along with flow charts
as the input of a fragment shader implementing RK4 and
particle redirection. The c u r r e n t and n e x t texture are
swapped after each iteration. Since the video memory is
limited, for unsteady data sets, the physical space vector
data is streamed to GPU during the course of the
visualization to generate corresponding flow maps.

Position texture to graphics primitives. The particle
positions stored in the textures need to be transformed into
renderable primitives (i.e., line segments and point sprites

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:29:49 UTC from IEEE Xplore. Restrictions apply.

1076 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2008

Fig. 10. Airliner data set visualized using GPUFLIC. The close-up image at the bottom right highlights flow features in the vicinity where the airfoil
root and fuselage join.

in GPUFLIC and UFAC, respectively) to generate visualiza­
tions. In OpenGL, one solution is copy-to-vertex buffer via the
combination of vertex/pixel/frame buffer object exten­
sions. The particle positions in the texture can be directly
copied to the storage space of vertex buffer objects on the
graphics card, avoiding time-consuming CPU readback.
Another possibility is to use vertex texture fetch (VTF)
supported by some graphics hardware. In this scheme, a
stream of vertex IDs is sent to GPU, which is used as
texture coordinates to fetch the actual particle position from
the texture with the vertex shader. Last, if the latest DirectX
10 generation graphics hardware is available, the transfor­
mation from computation results to graphics primitives is
trivial using the Geometry Shader functionality.

Geom etry and param eterization coordinates. In our
framework, every vertex on the mesh carries multiple sets
of coordinates, including potentially multiple pairs of
texture space coordinates with respect to one or more
patches it belongs to, plus the vertex position in the physical
space. These coordinates are used for overlapping region

compositing, visualizing resulting textures in the physical
space, and particle redirection. In order to avoid CPU/GPU
traffic and to save precious video memory, they are
represented as vertex/pixel buffers with dynamic bindings
so that only one copy of data is maintained.

6 R e s u lt s a n d D is c u ssio n

We have conducted experiments with the Flow Charts
framework on seven steady and unsteady flow data sets
defined over curved surfaces using the dense texture
techniques described in Section 4. In the case of fluid flow
data sets, the viscous effects exhibited by the flow at the
object boundary lead to what is known as a no-slip
boundary condition. In other words, the flow velocity goes
quickly to zero as one approaches the surface of the object.
In that case, the surface flow considered in the proposed
results is the shear stress vector field, which is derived from
the first-order derivative of the 3D velocity. The associated
patterns correspond to the so-called wall streamlines and
are those observed in wind tunnel visualizations applying

(a) (b) (c) (d)

Fig. 11. Engine cylinder, (a) GPUFLIC result showing intake pipes connecting the combustion chamber, and openings of the piston (notice small
bores on each pipe), (b) Swirling motions on the bottom and side of the combustion chamber depicted in UFAC. (c) A different view in UFAC,
augmented with dye advection. (d) Pistons embedded inside the combustion chamber.

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:29:49 UTC from IEEE Xplore. Restrictions apply.

LI ET A L: FLOW CHARTS: VISUALIZATION OF VECTOR FIELDS ON ARBITRARY SURFACES 1077

(a) (b)

Fig. 12. Side-by-side comparison of (a) UFAC and (b) GPUFLIC applied
to the upper side of the delta wing.

oil films on the object body. The data sets corresponding to
biomedical data sets show the nonzero restriction of the
bioelectric field on the considered surface:

• C y lin d e r (Fig. 11) shows the swirl motion of a
computer-simulated flow on the surface of an engine
cylinder. The nontrivial geometry of this data set is
composed of several components, including the
combustion chamber (the main cylindrical body),
two air intake pipes, and two corresponding pistons
embedded inside the combustion chamber (see
Fig. 11). In order to achieve optimal efficiency, the
design goal is to achieve the ideal mixture of fresh air
and vaporized fuel. In this case, the swirling motion
spirals around an axis more or less aligned with the
cylinder, which is a common design in diesel engines.

• D e lta wing (Fig. 12) corresponds to a steady flow
simulation of a sharp delta wing at low speed and
high angle of attack. The key flow structures
exhibited by this type of design in such critical
flight configurations are systems of vortices that are
located on both sides of the wing. The visualization
of the shear stress vector field reveals several
adjacent separation and attachment lines along the
leading edges that correspond to those vortices.
Their geometry, and in particular their curvature, is
important in the study of the vortex breakdown
phenomenon.

• A i r l i n e r (Fig. 10) shows shear stress flow on the
surface of a commercial airliner. The simulation

Fig. 14. Time-dependent sphere data set visualization in GPUFLIC.

contains a steady-state flow around a standard plane
configuration. Symmetry is leveraged for computa­
tional efficiency. The original 3D grid has 8.4 million
cells.

• ICE t r a i n (Fig. 13) is the result of a simulation of a
high-speed train traveling at a velocity of about
250 km /h with wind blowing from the side at an
incidence angle of 30 degrees. The wind causes
vortices to form on the lee side of the train, creating a
drop in pressure that has adverse effects on the
train's ability to stay on the track. These flow
structures induce separation and attachment flow
patterns on the train surface. They can be clearly
seen close to the salient edges of the geometry.

• S phere (Fig- 14) is a transient simulation of a
turbulent flow past a spherical obstacle. The vortices
created by the interaction of the flow with the surface
produce complex separation and attachment patterns
on the back side of the sphere. The visualization helps
elucidate the temporal evolution of these structures
along the course of the simulation.

• B ra in (Fig. 15) was computed to study electro­
encephalogram (EEG) source localization. In this
case, the forward problem (i.e., the impact of a
known electric source activity on the bioelectric
potential measured on the head surface) was solved
over a high-resolution finite-element mesh. The
nature of the bioelectric field implies that it remains
constrained to the head surface. The patterns

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:29:49 UTC from IEEE Xplore. Restrictions apply.

1078 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO, 5, SEPTEMBER/OCTOBER 2008

TABLE 1
Timings (in Seconds) of Mesh Segmentation/Parameterization

and Packing for Different Data Sets

Dataset # triangle # vertex # patch seg.& param. packing
ICE 93886 46974 42 174.8 A Is 5.41 s

Delta Wing 63920 127836 22 212.3A Is 2.83 s
Sphere 18880 9442 12 194.5 A Is 1.53 s
Brain 38034 19018 15 181.I A Is 1.87 s
Heart 25412 12708 14 175.3A Is 1.78 s

Cylinder 110789 221574 25 162.4A Is 3.11 s
Airliner 113985 227521 22 173.5 A Is 2.62 s

Fig. 15. (a) Top and (b) bottom views of the B rai n data set.

exhibited by this vector field are a sink and a source
whose locations relate to the position and orientation
of the dipolar source, as well as to the conductivity
properties of the underlying brain tissue.

• H e a rt (Fig. 16). The last data set shows the
restriction of the bioelectric field to the epicardium,
as computed using a finite-element simulation
initialized with boundary conditions provided by
experimentally acquired values of the electric po­
tential at sparse locations on the heart surface. The
context of this simulation is the study of ischemia.
The visualization reveals the complex patterns
exhibited by the bioelectric field and is of interest
to investigate its relationship with the underlying
heart anatomy. The image presents two views with
slightly different viewing angles, showing consistent
patterns in the physical space due to the use of
surface parameterization.

Table 1 shows the basic statistics of the data sets used in
our experiments and timing figures of surface segmentation/
parameterization. Since these are computed only once before
visualization in a preprocessing step, they do not affect the
speed of the actual Flow Charts visualization. Table 2
provides the frame rates of runtime visualization using
GPUFLFC and UFAC optionally with dye advection in
different parameter settings. For GPUFLFC, we show the
frame rates for different particle life spans (ttl). For UFAC,
performance of particle advection, particle advection
with LFC, and with additional histogram equalization are
reported. The size of viewport is 800 by 800 in all

Fig. 16. Two views of the H eart data set visualization in UFAC with
slightly different viewing angles.

experiments. As the Flow Charts framework works in the
texture space, the runtime performance is mostly determined
by the complexity of the dense texture algorithm and the size
of the texture, while the viewport size is of little influence.
The experiments were conducted on a standard Windows PC
equipped with 3 Gbytes of RAM, Intel Core 2 Quad 2.66-GHz
processor, and dual nVFDFA 8800 GTX in SLF configuration.

The experimental results discussed above demonstrate
that the proposed Flow Charts framework achieves high
flexibility and yields satisfactory results due to the use of
the surface parameterization. This accomplishment, how­
ever, comes at the price of a nontrivial implementation.
Although we are able to deliver interactive frame rates
using the latest graphics hardware, the image space
methods are advantageous in terms of the ease of
implementation and shear performance. Another strong
point of the image-based methods is scalability. Fn complex
flow data sets, it is not uncommon that the discrepancy of
cell size is up to two or three orders of magnitude. High
zooming factors can therefore be necessary during the
visualization session to investigate intricate flow structures
on small cells. Fn our current design, all Flow Chart textures
are in the same uniform resolution. Fts scalability is thus
limited by the amount of available video memory, and a
significant portion of it is consumed by potentially less
significant cells. The image-based approaches, on the other
hand, are less restrictive since the texture is only generated
for the visible part of the surface. The consequences of
restricting flow visualization to the visible part of the
surface are popping artifacts during rotation of the object
and the inability to visualize flow with dye advection. Flow
Charts overcomes these limitations.

7 C o n c lu s io n a n d F u tu r e W o r k

We have presented a flexible framework supporting various
visualization techniques for flows defined over curved
surfaces using a novel scheme called Flow Charts. The
essence of this method is the introduction of overlapping
patches and a redirection scheme allowing particle tracing
across patches, which requires special treatments not
provided by traditional surface parameterization and
segmentation schemes found in the graphics literature.
We have demonstrated its versatility by showing how
existing schemes can be easily adapted to visualize flows on
surfaces. Although our approach is not quite as fast as
image-space methods, which only generate textures on the
visible parts of surfaces, visualization of flows on curved
surfaces using Flow Charts is free of view-dependent

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:29:49 UTC from IEEE Xplore. Restrictions apply.

LI ET A L: FLOW CHARTS: VISUALIZATION OF VECTOR FIELDS ON ARBITRARY SURFACES 1079

TABLE 2
Runtime Performance of GPUFLIC and UFAC [in Frames per Second]

dataset texture res
GPUFLIC UFAC

particle ttl=l particle til=2 particle ttl=4 advection only advection + LIC + histogram eq.
ICE train 1200x860 22.5 (10.7) 14.9 (7.1) 8.1 (4.5) 61.2 (41.3) 25.0 (17.2) 12.8 (7.1)

1600x1140 19.7 (9.4) 10.2 (6.2) 5.7 (2.5) 46.5 (23.6) 27.5 (16.3) 11.3 (6.6)
Delta wing 1200x960 21.4 (14.7) 12.8 (6.1) 7.2 (3.8) 64.7 (45.0) 27.2 (18.4) 11.3 (6.2)

1600x1280 10.1 (7.2) 5.8 (3.1) 4.4 (2.5) 51.2 (26.3) 27.1 (17.6) 15.5 (8.8)
Sphere 1200x1500 28.8 (15.2) 16.4 (7.2) 9.1 (5.5) 57.3 (25.4) 34.5 (16.2) 23.1 (12.7)

1600x1470 11.2 (6.1) 7.5 (4.8) 3.6 (1.5) 41.1 (20.5) 31.8 (14.2) 16.8 (7.9)
Brain 1200x1100 25.3 (16.7) 17.4 (8.8) 10.6 (5.1) 52.3 (29.1) 21.4 (17.7) 16.1 (8.2)

1600x1470 15.3 (7.0) 9.2 (4.9) 5.2 (3.5) 52.1 (29.5) 24.6 (14.9) 18.5 (19.4)
Heart 1200x1040 28.8 (15.6) 17.7 (10.5) 11.8 (5.9) 61.3 (35.5) 25.4 (12.9) 19.2 (9.0)

1600x1392 18.5 (8.8) 10.2 (6.1) 7.4 (4.0) 54.4 (28.4) 18.5 (8.1) 11.2 (5.2)
Cylinder 1200x1040 29.5 (16.2) 15.4 (8.1) 10.7 (6.6) 57.4 (28.2) 18.3 (9.9) 11.5 (6.8)

1600x1392 18.4 (8.9) 10.2 (5.2) 6.3 (4.4) 46.1 (25.5) 15.2 (7.5) 8.5 (5.1)
Airliner 1200x1040 31.0 (14.4) 18.6 (9.2) 11.4 (5.2) 52.1 (28.0) 14.3 (6.9) 7.4 (4.8)

1600x1392 18.5 (9.4) 10.1 (6.3) 6.3 (3.5) 54.3 (25.0) 17.8 (9.2) 8.9 (5.3)
The numbers in parentheses are with dye advection enabled (one 10 x 10 injection site).

artifacts and is still achieving interactive frame rates. It can
also correctly depict flow structures across occluded parts
of the surface due to the global representation of flow made
possible by surface parameterization, which is particularly
true in the case of dye advection.

In the future, we want to further experiment with other
techniques using this framework and incorporate more
sophisticated mesh segm entation/param eterization
schemes to further improve the performance and visual
quality. Specifically, we would like to investigate the use of
nonuniform chart sampling rates to achieve better scal­
ability. More sophisticated chart packing schemes can also
be used to increase the utilization of texture space, which is
a relatively scarce resource on the graphics hardware. Last,
we believe that the Flow Charts representation of flows on
curved surfaces are not limited to texture-based flow
visualization. Other methods, such as topology analysis
and feature detection on curved surfaces, are applications
that could benefit from using Flow Charts.

A c k n o w le d g m e n t s

The authors would like to thank Miriah Meyer for
providing adaptive surface sampling software. This work
was made possible by the following research Grants: US
National Science Foundation CNS-0551724, CCF-0541113,
rrS-0513212; Department of Energy ASC Alliance C-SAFE,
SciDAC-VACET; and N1H/NCRR Center for Integrative
Biomedical Computing, P41-RR12553-08.

R e fe r e n c e s
[1] Cgal, C om putational G eom etry A lgorithm s Library, h t t p : / /

www.cgal.org, 2008.
[2] Gts, G N U Triangulated Surface Library, h ttp ://g ts.sou rcefo rge .ne t,

2006.
[3] H. Battke, D. Stalling, and H.-C. Hege, "Fast Line Integral

C onvolution for Arbitrary Surfaces in 3D," Visualization and
Math.: Experiments, Simulations and Environments. Springer-Verlag
N ew York, pp. 181-192, 1997.

[4] B. Cabral and L.C. Leedom, "Im aging Vector Fields Using Line
Integral Convolution," Proc. A C M SIG G RAPH '93, pp. 263-270,
1993.

[5] N.A. Carr, J. Hoberock, K. Crane, and J.C. Hart, "Rectangular
M ulti-Chart Geom etry Im ages," Proc. Eurographics Symp. Geometry
Processing (SGP 'Ob), pp. 181-190, 2006.

[6] D. Hppstein, "U pdating W idths and M axim um Spanning Trees
Using the Rotating C aliper G raph," Technical Report ICS-TR-93-18,
Univ. of California, 1993.

[7] M.S. Floater and K. H orm ann, "Param eterization of T riangulations
and U norganized Points," Tutorials on M ultiresolution in Geometric
M odelling , M ath , and V isua liza tion , A. Iske, K. Q uak, and
M.S. Floater, eds., pp. 287-316, Springer, 2002.

[8] M.S. Floater and K. H orm ann, "Surface Param eterization: A
Tutorial and Survey," Advances in M ultiresolution fo r Geometric
M odelling, M ath, and Visualization, N.A. Dodgson, M.S. Floater,
and M.A. Sabin, eds., pp. 157-186, Springer, 2005.

[9] L. Forssell and S. Cohen, "U sing Line Integral C onvolution for
Flow Visualization: C urvilinear G rids, Variable-Speed Animation,
and U nsteady Flows," IEEE Trans. Visualization and Computer
Graphics, vol. 1, no. 2, pp. 133-141, June 1995.

[10] S. Gottschalk, M.C. Lin, and D. M anocha, "Obbtree: A H ierarch­
ical Structure for R apid Interference Detection," Proc. A C M
SIG G RAPH '9b, pp. 171-180, 1996.

[11] X. Gu, S.J. Gortler, and H. Hoppe, "Geom etry Images," A C M
Trans. Graphics (TOG), pp. 355-361, 2002.

[12] T. Igarashi and D. Cosgrove, "A daptive U nw rapping for
In teractive T exture Pain ting ," Proc. Sym p. Interactive 3D
Graphics (SI3D ’01), pp. 209-216, 2001.

[13] B. Jobard, G. Hrlebacher, and M.Y. H ussain i, "H ardw are-
Accelerated Texture Advection for U nsteady Flow Visualization,"
Proc. Conf. Visualization (VIS '00), pp. 155-162, 2000.

[14] B. Jobard, G. Hrlebacher, and M.Y. H ussaini, "Lagrangian-
Kulerian Advection for U nsteady Flow Visualization," Proc. Conf.
Visualization (V IS '01), pp. 53-60, 2001.

[15] D. Julius, V. Kraevoy, and A. Sheffer, "D -Charts: Quasi-
Developable M esh Segm entation," Computer Graphics Forum,
Proc. Eurographics (EG 05), vol. 24, pp. 581-590, 2005.

[16] R. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. Post, and
D. W eiskopf, "The State of the Art in Visualization: Dense
and Texture-Based Techniques," Computer Graphics Forum,
vol. 23, no. 2, pp. 143-161, 2004.

[17] R. Laramee, B. Jobard, and H. Hauser, "Im age Space Based
Visualization of U nsteady Flow on Surfaces," Proc. 14th IEEE
Visualization (V IS '03), pp. 18-25, 2003.

[18] R.S. Laramee, J.J. van Wijk, B. Jobard, and H. Hauser, "ISA and
IBFVS: Image Space-Based Visualization of Flow on Surfaces,"
IEEE Trans. Visualization and Computer Graphics, vol. 10, no. 6,
pp. 637-648, N ov./D ec. 2004.

[19] S. Lefebvre and H. H oppe, "A ppearance-Space Texture Synth­
esis," A C M Trans. Graphics, vol. 25, no. 3, pp. 541-548, 2006.

[20] B. Levy, S. Petitjean, N. Ray, and J. Maillot, "Least Squares
Conform al M aps for Automatic Texture Atlas Generation," A C M
Trans. Graphics (TOG), pp. 362-371, 2002.

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:29:49 UTC from IEEE Xplore. Restrictions apply.

http://www.cgal.org
http://gts.sourceforge.net

1080 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO, 5, SEPTEMBER/OCTOBER 2008

[21] G.-S. Li, X. Tricoche, and C. Hansen, "GPUFLIC: Interactive and
Accurate Dense V isualization of U nsteady Flows," Proc. F.uro-
yaphics/IF.FF-VGTC Sym p. Visualizations (F.uroVis 'Ob), pp. 29-34,
2006.

[22] S.P. Lloyd, "Least Squares Q uantization in PCM," 1F.F.F. Trans.
Information Theory, vol. 28, no. 2, pp. 129-136, 1982.

[23] J. M aillot, H. Yahia, and A. V erroust, "Interactive Texture
M apping," Proc. A C M SIG G RAPH '93, pp. 27-34, 1993.

[24] X. Mao, Y. H atanaka, H. H igashida, and A. Im am iya, "Image-
G uided Stream line Placem ent on C urvilinear Grid Surfaces," Proc.
Conf. Visualization (VIS '98), pp. 135-142, 1998.

[25] X. Mao, M. Kikukawa, N. Fujita, and A. Imamiya, "Line Integral
C onvolution for 3D Surface," Visualization in Scientific Computing,
Proc. F.urographics Workshop, pp. 57-69, 1997.

[26] M.D. M eyer, P. Georgel, and R.T. W hitaker, "Robust Particle
System s for C u rv a tu re D ependen t Sam pling of Im plicit
Surfaces," Proc. In t'l Conf. Shape Modeling and Applications
(SM I '05), pp. 124-133, 2005.

[27] H. M urata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, "Rectangle-
Packing-Based M odule Placem ent," Proc. IFF F/A C M In t'l Conf.
Computer-Aided Design (IC CAD '95), pp. 472-479, 1995.

[28] P.V. Sander, J. Snyder, S.J. Gortler, and H. Hoppe, "Texture
M apping Progressive M eshes," Proc. A C M SIG G R A P H '01,
pp. 409-416, 2001.

[29] P.V. Sander, Z.J. W ood, S.J. Gortler, J. Snyder, and H. Hoppe,
"M ulti-C hart G eom etry Im ages," Proc. F .urographics/ACM
SIG G RAPH Symp. Geometry Processing (SGP '03), pp. 146-155,
2003.

[30] H.-W. Shen and D.L. Kao, "A N ew Line Integral Convolution
Algorithm for Visualizing Time-Varying Flow Fields," IFFF
Trans. Visualization and Computer Graphics, vol. 4, no. 2, pp. 98-108,
Apr.-June 1998.

[31] J. Stam, "Flows on Surfaces of Arbitrary Topology," A C M Trans.
Graphics (TOG), pp. 724-731, 2003.

[32] J.J. van Wijk, "Spot Noise Texture Synthesis for Data V isualiza­
tion," Proc. A C M SIG G RAPH '91, pp. 309-318, 1991.

[33] J.J. van Wijk, "Im age Based Flow Visualization," A C M Trans.
Graphics, pp. 745-754, 2002.

[34] J.J. van Wijk, "Im age Based Flow Visualization for Curved
Surfaces," Proc. 14th IFFF Visualization (VIS '03), pp. 123-130,
2003.

[35] D. W eiskopf, "Dye Advection w ithout the Blur: A Level-Set
A pproach for Texture-Based V isualization of U nsteady Flow,"
Computer Graphics Forum, vol. 23, no. 3, pp. 479-488, 2004.

[36] D. W eiskopf, "Iterative Twofold Line Integral C onvolution for
Texture-Based Vector Field V isualization," M ath. Foundations of
Scientific V isualiza tion , Com puter Graphics, and M assive Data
F.xploration, 2007.

[37] D. W eiskopf, G. Erlebacher, and T. Ertl, "A Texture-Based
Fram ew ork for Spacetime-Coherent V isualization of Tim e-Depen­
den t Vector Fields," Proc. 14th IFFF Visualization Conf. (VIS '03),
pp. 107-114, 2003.

[38] D. W eiskopf and T. Ertl, "A H ybrid Physical/Device-Space
A pproach for Spatio-Temporally C oherent Interactive Texture
Advection on Curved Surfaces," Proc. Conf. Graphics Interface
(GI '04), pp. 263-270, 2004.

[39] D. W eiskopf, F. Schramm, G. Erlebacher, and T. Ertl, "Particle and
Texture-Based Spatiotem poral V isualization of Tim e-Dependent
Vector Fields," Proc. IFFF Visualization Conf. (VIS '05), pp. 639-646,
2005.

Guo-Shi Li received the BS degree in computer
science from the National Taiwan University in
1999 and the MS degree in computer science
from the Ohio State University in 2003. He is
currently a PhD student in the School of Comput­
ing and a memberof the Scientific Computing and
Imaging Institute, University of Utah. He received
the NVIDIA fellowship award in 2004. His
research interests include scientific visualization,
interactive rendering, and GPU techniques.

Xavier Tricoche received the Engineer’s degree
in computer science from Ecole Nationale Super-
ieure d’lnformatique et de Mathematiques Appli-
quees de Grenoble (ENSIMAG), the MS degree
in applied mathematics from the Universite
Joseph Fourier, Grenoble, France, in 1998, and
the PhD degree in computer science from the
University of Kaiserslautern, Kaiserslautern,
Germany, in 2002. He is an assistant professor
of computer science at Purdue University. Prior

to that, he was with the University of Utah as a postdoctoral fellow in the
Scientific Computing and Imaging Institute from 2004 to 2006 and as a
research assistant professor in the School of Computing from 2006 to
2007. His research interests include topological methods, structural
analysis of vector and tensor fields, flow visualization, medical image
analysis, interactive data exploration, and computational steering. He is a
member of the IEEE.

Daniel Weiskopf received the MSc (Diplom)
degree in physics and the PhD degree in physics
from Eberhard-Karls-Universitat Tubingen, Tu­
bingen, Germany, and the Habilitation degree in
computer science from the Universitat Stuttgart,
Stuttgart, Germany. From 2005 to 2007, he was
an assistant professor of computing science at
Simon Fraser University, Burnaby, Canada.
Since 2007, he has been a professor of computer
science in the Visualization Research Center,

Universitat Stuttgart (VISUS) and in the Visualization and Interactive
Systems Institute (VIS), Universitat Stuttgart. His research interests
include scientific visualization, GPU methods, real-time computer
graphics, mixed realities, ubiquitous visualization, perception-oriented
computer graphics, and special and general relativities. He is member of
the ACM SIGGRAPH, the Gesellschaft fur Informatik, and the IEEE
Computer Society.

Charles (Chuck) Hansen is a professor of
computer science in the School of Computing
and an associate director of the Scientific
Computing and Imaging Institute, University of
Utah. He joined the Computer Science faculty in
1997. From 1989 to 1997, he was a technical
staff member in the Advanced Computing
Laboratory (ACL), Los Alamos National Labora­
tory, where he formed and directed the visuali­
zation efforts in the ACL. He was a Bourse de

Chateaubriand postdoctoral fellow at the Institut National de Recherche
en Informatique et en Automatique (INRIA), Rocquencourt, Le Chesnay,
France, in 1987 and 1988. From Fall 2004 to Spring 2005, he was a
visiting professor at ARTIS/GRAVIR IMAG/INRIA. He was awarded with
the IEEE Technical Committee on Visualization and Computer Graphics
Visualization Technical Achievement Award in 2005 in recognition of his
seminal work on tools for understanding large-scale scientific data sets.
He has been working on the visualization and analysis of large-scale
scientific data for the past 17 years. His research has made
contributions to the fields of scientific visualization, computer graphics,
parallel computation, and computer vision. He has published more than
100 peer-reviewed journal and conference papers and has been a
coauthor of three papers recognized with “Best Paper Awards” at the
IEEE Visualization Conference (1998, 2001, 2002). He is a senior
member of the IEEE.

■> For m ore information on th is or any o ther com puting topic,
p lease visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:29:49 UTC from IEEE Xplore. Restrictions apply.

http://www.computer.org/publications/dlib

