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Abstract—This paper concerns task-based image quality assess­
ment for Hie task of discriminating between two classes of images. 
We address the problem of estimating two widely-used detection 
performance measures, SNR and AUC, from a finite number of 
images, assuming that Hie class discrimination is performed with 
a channelized Hotelling observer. In particular, we investigate 
the advantage that can be gained when either 1) the means of 
the signal-absent and signal-present classes are both known, or
2) when the difference of class means is known. For these two 
scenarios, we propose uniformly minimum variance unbiased esti­
mators of S N R 2, derive the corresponding sampling distributions 
and provide variance expressions. In addition, we demonstrate 
how the bias and variance for Hie related AUC estimators may 
be calculated numerically by using the sampling distributions for 
the S N R 2 estimators. We find that for both S N R 2 and AUC, 
the new estimators have significantly lower bias and mean-square 
error than the traditional estimator, which assumes that Hie class 
means, and their difference, are unknown.

Index Terms—AUC, class discrimination, estimation, image 
quality, receiver operating characteristic (ROC), signal-to-noise 
ratio (SNR).

1. Introduction

T ASK-BASED assessment of image quality provides a 
pragmatic paradigm for objective evaluation and compar­

ison of image reconstruction algorithms and imaging systems
[1], One task that is frequently of interest is the detection of a 
specified object in an image. For example, an important task 
in radiology is the discrimination of two classes of images: 
images with a lesion present and with no lesion present.

Lesion detectability may be appraised with both human 
observers and mathematical model observers [1], However, 
human observers come with prominent difficulties. They are 
highly variable, slow, costly, and subject to fatigue, to the extent 
that they become impractical, especially for imaging system 
optimization, as noted by Park et al. [2], By contrast, mathe­
matical model observers [1 ] can be implemented efficaciously
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using computers. Thus, they offer an attractive alternative to 
human observers for task-based assessment of image quality. 
One type of model observer which has been given significant 
attention in medical imaging is the channelized Hotelling 
observer (CHO) [1]. Specifically, C.HO methodology for image 
quality assessment has been applied in nuclear medicine, e.g., 
[3]—[8] and in X-ray computed tomography (C.T) [9]-[12],

To assess the capability of a given model observer to detect 
lesions, summary measures of observer performance need to be 
estimated. Two popular measures of observer performance are 
the observer signal-to-noise ratio (SNR) and the area under the 
receiver operating characteristic curve, denoted as AUC [1] (see 
Section II-C). In most situations, it is not possible to calculate 
SNR and AUC exactly, and they must be estimated from a finite 
collection of images. Therefore, it is important to understand the 
small-sample statistical properties of the estimators which are 
used. We note that two main approaches may be considered for 
the estimation of SNR and AUC: 1) an SNR-based approach, in 
which the SNR is first estimated, and then the AUC is obtained 
from the SNR estimate [1 ]; 2) an AUC-based approach, in which 
the AUC is first estimated, and then the SNR is obtained from 
the AUC estimate [1], Under conditions of normality, both ap­
proaches are valid because SNR and AUC are functions of each 
other [1 ]. Here, we focus on the SNR-based approach. Some re­
searchers have investigated direct estimation of the AUC, e.g., 
[13]—[15]; these works rely on the Mann-Whitney U statistic.

Note that two main estimation strategies may be selected for 
the two approaches described above. In the first strategy, all 
available images are used together to estimate the desired figure 
of merit [1, p. 972]. In the second strategy, the images are di­
vided into two groups, with one group being used to define (aka 
train) the observer whereas the second group is used to esti­
mate the performance of the trained observer (aka testing the 
observer) [1, p. 973], The second strategy has the advantage of 
yielding a negative (conservative) bias in the estimated perfor­
mance [16], [17]. In this paper, we adopt the first strategy, and 
we will see later that negative biases may also be achieved in 
this case, provided that the class means, or their difference, are 
known.

In general, deriving the small-sample properties of estimators 
is difficult. However, analytical results are known for some 
cases. For example, if SNR2 for a CHO is estimated using a 
scalar multiple of the two-sample Hotelling T 2 statistic, then 
the sampling distribution is known for normally distributed 
measurements [18, p. 216]: see Section IV-A. Also, results 
pertaining to direct AUC estimation via the nonparametric
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Mann-Whitney U statistic may be found in [15]. When exact 
analytical results are not readily available, Taylor series ap­
proximations may be beneficial [19], [20], or one may resort 
to analysis based on Monte Carlo simulation and resampling 
techniques [16], [17], [21]-[27],

As mentioned by Barrett and Myers [1, p. 972], there is po­
tential to improve the estimation accuracy of SNR2 for a C.HO 
if prior knowledge of the mean images with and without a lesion 
present is incorporated into the estimation procedure. However, 
to our knowledge, and according to Barrett and Myers [1, p. 
973], the statistical properties of such estimators have not been 
investigated. We have examined this potential and report on our 
findings here.

Specifically, we propose uniformly minimum variance un­
biased (UMVU) estimators of SNR2 for a C.HO in the situa­
tion when the mean images for the lesion present and lesion 
absent cases are known, and also when only the difference of 
the mean images is known. We present analytical results for the 
sampling distributions of these estimators and provide expres­
sions for their variance. Using the sampling distributions of the 
SNR2 estimators, we illustrate how the bias and variance for 
the related AUC. estimators may be numerically evaluated, and 
we compare the results with a traditional estimator which as­
sumes that the class means, and their difference, are unknown. 
For expositional clarity, all mathematical proofs are deferred to 
the appendixes.

II. Background

In this section, we set our notation and review several neces­
sary concepts. First, some probability distributions that will be 
used later in the paper are introduced. Afterwards, the classifi­
cation task and the channelized Hotelling observers which we 
consider in this paper are covered. Next, two common summary 
measures for model observer performance, SNR and AUC, are 
reviewed. The remainder of the section discusses calculation of 
moments for AUC estimators. Throughout the paper, we write 
vectors using boldface and denote the transpose of vectors and 
matrices with the superscript T , e.g., xT is the transpose of the 
vector x.

A. Some Probability Distributions

We assume that the reader is familiar with both the multi­
variate normal distribution and the univariate noncentral \ 2 dis­
tribution, e.g., see [ 18] and [28], A p x 1 random vector X  e Rp 
following a multivariate normal distribution with mean fi and 
covariance matrix £ is denoted X  — N p(/jl, E ). A random 
variable X  e  R following a noncentral x2 distribution with v 
degrees of freedom and noncentrality parameter. A, is denoted 
A' x 2{X ). Recall that when A = 0, the noncentral x 2 distri­
bution becomes the central x2 distribution.

/) Inverted Gamma: The inverted gamma distribution arises 
as the distribution of the reciprocal of a gamma variate, and has 
two positive parameters, a  and (i. A random variable X  is said 
to have an inverted gamma distribution if its probability density 
function (pdf) is of the form [29]

when x > 0, and f x (x )  = 0 otherwise. Just as the central x2 
distribution is a special case of the gamma distribution, the in­
verted central x 2 distribution is a special case of the inverted 
gamma distribution. In particular, the reciprocal of a central 
X2 random variable with v  degrees of freedom is an inverted 
gamma random variable with a  = v/2  and = 1/2. An 
inverted gamma random variable A' will be denoted as X  ^ 
IG (a , ( i) . The mean and variance of an inverted gamma deviate 
are [29]

a — 1 , for a > 1 (2)
and

(a  — l ) 2(ct — 2 )

( 1)

2) Noncentral F :  The noncentral F  distribution [18],
[28]—[30] appears as the distribution of the ratio of a noncentral 
X2 random variable to an independent, central x2 random vari­
able. Specifically, if X  -  x l, (A), Y  -  x l2 (0) and X  and Y  are 
independent, then the random variable F  = ( X /v \ )/ [Y /V2) 
has a noncentral F  distribution with v i and ^2 degrees of 
freedom and noncentrality parameter, A. In this case, we write 
F  ^ F'Vi Vr>(A). An expression for the pdf of the noncentral F  
may be found in [28],

3) W ishart: The Wishart distribution [18], [28], [31] is 
a matrix variate generalization of the x2 distribution and it 
emerges naturally as the distribution of the sample covariance 
matrix for multivariate normal measurements [18, p. 82], [31, p. 
92-93], Let Z i ,  Z 2, . . . .  Z „  each be independently distributed 
according to N p(0 , S ) and consider the p x p random matrix 
W  = Z jZ f . The matrix W  is said to have a Wishart 
distribution, written as W  — W p(n ,Y ,), with n degrees of 
freedom and p x p positive definite scale matrix S. When 
n > p, W  is invertible and expressions for the pdf of W  may be 
found in [18], [28], [31], When n < p, W  is singular, and the 
pdf does not exist in the conventional sense, but the distribution 
is nonetheless defined [18, p. 85].

4) Inverted W ishart: The inverted Wishart distribution orig­
inates as the distribution of the inverse of a Wishart distributed 
random matrix, and it is the matrix variate generalization of the 
inverted gamma distribution [3 1 ,p .lll].A p x p  random matrix 
V  which is distributed as an inverted Wishart with m  degrees of 
freedom and a p x p positive definite parameter matrix, ’5, will 
be written as V  ^  TW p(m , $ ). The inverted Wishart distribu­
tion is defined if m  > 2p and is undefined otherwise. An expres­
sion for the pdf is given in [18], [31], Lemma 4 in Appendix A 
clarifies the relationship between Wishart and Inverted Wishart 
matrices. According to this lemma, whenn > p ,S  — W p(n , E ) 
if and only if S'” 1 -  TW p(n  + p + 1 , E -1).

/>’. Channelized Hotelling Observers

We consider a binary classification task in which the goal is 
to discriminate between two classes of noisy images. The two 
classes will be denoted as class 1 and class 2, respectively. When 
the classification task corresponds to lesion detection, we as­
sume that class 1 consists of images with no lesion present, and 
that class 2 consists of images with a lesion present.
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For each noisy image realization, a model observer gener­
ates a statistic, t, which is compared to a threshold, tc, in order 
to classify the image as belonging to either class 1 or class 2 . 
Specifically, if t > t.c, the observer indicates that the image be­
longs to class 2 , otherwise, the observer indicates that the image 
belongs to class 1 [ 1 ].

Channel filters are often added to model observers in order 
to reduce the dimensionality of the image data and to model 
human performance. Suppose that the noisy image realization is 
represented a sa m x l column vector, g. We denote the number 
of channels by p, where usually, p is much smaller than to. The 
weights that make up each channel are organized into a column 
of a to, x p channel matrix, designated as U . A channelized 
model observer applies the channel matrix to the image to get 
a p x 1 output vector, v, according to v  := U T g. Note that a 
model observer without channels corresponds to the case when 
the channel matrix is the identity, i.e., U  = I  and p = to.

We denote the means of the channel outputs over class 1 and 
class 2 by //,. for i = 1 , 2  respectively, and write the difference 
of these means as A/x := /x2 — Mi • Also, we write the co variance 
matrices for v  over the two classes as £,;, for i  = 1 ,2 , respec­
tively, and designate their average as £ := 0.5(S i + £ 2).

One type of model observer is the channelized Hotelling ob­
server (C.HO) [1], which is the focus of this paper. This observer 
computes the observer statistic as the inner product of v  with a 
p x 1  template, defined as wcho := £ - 1 , , i.e. * := w ?ho V.

C. Observer Perform ance Measures

■erf (SNR/2)]

statistic is typically well-approximated by normal distributions 
for each class [1, p. 824],

D. Calculation o f Moments fo r  A U C  Estim ators

Given a generic estimator of SNR2, denoted as SNR2, we 
may define an estimator for the AUC by substituting the square 
root of this generic estimator into (5). We denote the resulting 
AUC estimator as AUC. ___

When the sampling distribution for SNR2 is known, we may 
use it to calculate the M i raw moment of AUC by numerically 
evaluating the integral

- [l + erf(v/£/2 )] dx (6)

where f x ( v )  is the pdf for X  = SNR2. Therefore, we can 
compute the mean and variance of AUC by evaluating (6) for 
k = 1 ,2 .

ITT. Estimation of SNR2 W ith Known Class Means 
or Known Difference of Class Means

In this section, estimation of SNR2 is considered for two 
scenarios. In the first scenario, the means for classes 1 and 2 
are assumed to be known. In the second scenario, only the dif­
ference of the class means is assumed to be known. We intro­
duce one estimator for scenario 1 and two different estimators 
for scenario 2. We assume that we have n  independent real-

One measure of an observer’s performance is its signal-to- 
noise ratio (SNR), defined as the difference of the class means 
for t divided by the pooled standard deviation [1, p. 819], The 
SNR is a good measure of class separability when t is normally 
distributed for each class, higher values of the observer SNR 
indicating greater class separation [1, p. 819], The square of the 
SNR for a C.HO may be computed as [1, p. 967]

izations of channel outputs from class 1 , ,(!)
and n  independent realizations of channel outputs from class

,(2) ^(2> ,(2) Also, we assume that the channel out-

(4)

The performance of an observer may also be characterized by 
its receiver operating characteristic (ROC) curve, which plots 
the true positive fraction (TPF) versus the false positive frac­
tion (FPF) for different values of the discrimination threshold [ 1, 
p. 814-815], A useful summary measure for the overall perfor­
mance of an observer is the area under the ROC curve, denoted 
as the AUC. The AUC ranges from 0.5 to 1, where higher values 
of the AUC indicate better class discrimination. The AUC may 
be interpreted as the average TPF over all FPF values. Another 
useful interpretation of the AUC is as the probability that the ob­
server makes a correct classification when a randomly selected 
pair of images from class 1 and class 2 are compared [32, p. 
77-78], [1, p. 823], If the observer statistic, t, is normally dis­
tributed for each class, then the AUC may be computed from the 
SNR as [1, p. 819]

puts are normally distributed with equal class covariance ma­
trices, i.e., v f ’ -  and v>2) -  N p(p 2.T ,) for i  = 
1,2,... ?i. In this case, £ = £. The normality is a reasonable as­
sumption in many C.HO applications thanks to the multivariate 
central limit theorem, and the equal covariance assumption is 
easily met for low-contrast signals. After defining each esti­
mator, we provide an analytical expression for the estimator’s 
sampling distribution and discuss its properties.

A. Scenario I :  Known Class Means

First, we consider the situation when the class means ^i and 
f i2 are known, and the class covariance matrix, £, is unknown.

/) Estim ator Definition: In this scenario, unbiased estimates 
for the covariance matrices of class 1 and class 2 are [18, p. 17]

k n (7)

for k = 1,2, respectively. Let S  := 0.5(5'i + S 2). From 
Lemmas 2 and 8(i) in Appendix A, it follows that ((2n — p — 
1 ) / {2i i ) ) S ~1 is an unbiased estimator for £ _ 1  if??, > (p + 1 )/2 . 
Substituting this estimator for £ _ 1  into (4) yields an estimator 
for SNR2, defined as

(5)

where erf (z ) is the conventional error function. When t is com­
puted as a lineai' combination of channel outputs, the observer

' 2n - p -  V
2n

TS- 1' (8)

for n > (p +
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2) Sam pling D istribution: For normally distributed samples, 
the sampling distribution for 61 may be expressed as an inverted 
gamma distribution. We state this result in the following the­
orem, which is proved in Appendix A.

Theorem I :  Suppose that 8\ is computed from independent 
samples ^ N p(f i1 ,'Z ) and v j2) ^ iVp(/i2, £) from classes
1 and 2, respectively, where i = 1 ,2,... n. Then

SNR

for n > (p
3) Estim ator Properties: Since the sampling distribution for 

6i is an inverted gamma distribution, one may easily find ex­
pressions for the mean and variance of 8\ by using Theorem 1 
together with (2) and (3). We write these expressions in the fol­
lowing corollary.

Corollary’ 1: If  01 is computed from independent, normally 
distributed samples as stated in Theorem 1, then 6i is an unbi­
ased estimator of SNR2, i.e., E[0i] = SNR2 for n  > (p +  l)/2, 
and its variance is

' T~ rA 1  ̂ 2  ̂ SNR4, for n > ^ + 1.

Vfc := iEn. ' (9)

j i 1 := (l/ 2 )(v i + v 2 -
and

(v i + v 2 + .

(10)

(1 1 )

Using these estimators for the class means, we define estimators 
for the covariance matrices of classes 1 and 2 as

1
£  ( v ,'fc) -  Aft) ( v f °  -  Aft (12)

for k = 1,2, respectively. Next, we define a pooled estimator 
of £ as S  := 0.5(5i + S 2). From Lemmas 2 and 8(ii) in Ap­
pendix A, it follows that ((2/t — p — 2)/(2n — I ))*?- 1  is an 
unbiased estimator for £ _ 1  if n > (p + 2)/2. This suggests the 
following estimator for SNR2:

(13)

which is defined for n > (p + 2 )/2 .
The second estimator which we consider in this scenario does 

not use knowledge of A ( i for estimation of S. The conventional 
unbiased estimators for the covariance matrices of classes 1 and
2 have the form [28, p. 77]

1 v-fc) - Vfe - V* (14)

for k = 1,2, respectively. Define a pooled estimator of £ as 
S  := 0.5(S'i + 52). From Lemmas 2 and S(iii) in Appendix A, 
it follows that ((2n — p — 3)/(2n — 2 )))S '_ 1  is an unbiased 
estimator for £ - 1  if n > (p + 3)/2. This result motivates an 
estimator for SNR2, defined as

Also, we have the pleasing result that 8\ is the uniformly min­
imum variance unbiased (UMVU) estimator for SNR2 when the 
class means are known. For reference, we state this result as a 
theorem; see Appendix B for a proof.

Theorem 2: Suppose that f i1 and f i2 are known, and that £ 
is unknown. If 9\ is computed from independent, normally dis­
tributed samples as stated in Theorem 1 with n > (p + l)/2, 
then 91 is the unique UMVU estimator of SNR2.

B. Scenario 2: Known Difference o f Class Means

Next, we examine the case for which the difference of the 
class means. A/i. is known but /x,. f i2, and £ are unknown. We 
consider two estimators of SNR2 for this scenario.

/) Estim ator Definitions: The first estimator which we con­
sider for scenario 2 incorporates knowledge of A/j, into the es­
timation of £. The conventional unbiased estimators for the 
means of classes 1 and 2 are [28, p. 77]

'2 n - p - ^  
2n -  2 5" (15)

2) Sam pling D istributions: For normally distributed sam­
ples, the sampling distributions for 02 and 03 may be expressed 
as inverted gamma distributions. We state these results below. 
Proofs are provided in Appendix A.

Theorem 3: Suppose that #2 is computed from independent 
samples v-1̂ ^ £) and v j2) ^ Arp(/x2, £) from classes
1 and 2, respectively, where i  = 1, 2 , . . .  n. Then

0 2 SNK, '

Theorem 4: Suppose that 63 is computed from independent 
samples v-1̂ ^ £) and v j2) ^ Arp(/x2, £) from classes
1 and 2, respectively, where i  = 1, 2 , . . .  n. Then

for k = 1. 2, respectively. Using (9) together with our knowl­
edge of A /i, we define unbiased estimators for the means of 
classes 1 and 2 as

2,‘ — p-  1 / 2„  — p - 3\ snr2 '
03

for n > (p ■
3) Estim ator Properties: Similar to Section III-A3, expres­

sions for the mean and variance of 02 and 03 may be easily found 
by using (2) and (3) together with Theorems 3 and 4, respec­
tively. These results are collected below.

C oro llary 2: If 02 is computed from independent, normally 
distributed samples as stated in Theorem 3, then #2 is an unbi­
ased estimator of SNR2, i.e., E[$2] = SNR2 torn > (p + 2)/2, 
and its variance is

SNR4 for n > P-

Corollary 3: If 03 is computed from independent, normally 
distributed samples as stated in Theorem 4, then 03 is an unbi-
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ased estimator of SNR2, i.e., 
and its variance is

93] = SNR2 for n > (p + 3)/2,

SNR4, for n >
p + 5

2 n — 2

The sampling distribution for 84 is known in the case when 
the samples are normally distributed with equal covariance ma­
trices, i.e.. N p(f ii ,S )  and 
1,2,... n. Specifically, [18, p. 216]

,(2) N p(f i2, £) for * =

As in Section III-A3, we have a satisfying optimality prop­
erty. Namely, if only the difference of class means is known, 
then 0-2 is the UM VU estimator for SNR2. This property is 
stated precisely as the following theorem. A proof may be found 
in Appendix B.

Theorem 5: Suppose that A/t is known, and that //,. /x2 and 
£ are unknown. If 82 is computed from independent, normally 
distributed samples as stated in Theorem 3 with n > (p + 2)/2, 
then §2 is the unique UM VU estimator of SNR2.

From the above results, it is clear that 83 is not the UMVU 
estimator for SNR2 in scenario 2. However, 83 is the UMVU 
estimator within the family of unbiased estimators of SNR2 that 
disregard the knowledge that A/i is equal to /x2 — Mi • This state­
ment is clarified by the following theorem. We omit the proof, 
which is similar to that of Theorem 5 in Appendix B.

Theorem 6: Suppose that v j1} -  and v j2) -
N p(fj,2, £) are independent samples from classes 1 and 2 , re­
spectively, where '< = 1 ,2 , ... n with n > (p + 3) /2 , and where 
Mi, H2' ar|d ^ are unknown. Let 8 be an arbitrary, known p x 1 
column vector, and define the estimator

' 2n — p — 3

for n >
p+ 1

(17)

where F ' is ^  noncentral F  distribution with ul = p 
and vo = 2n — p — 1  degrees of freedom and noncentrality pa­
rameter, A = (??,/2)SNR2. Expressions for the mean and vari­
ance of the noncentral F  distribution [18], [30] may be used to 
derive formulae for the bias and variance of 84. These formulae 
are [33]

for n > (p + 3

- SNR =

and

2 n 2 — np — 3 n
(18)

l ) 2 [f-SN R4 + (2n -  3)('/tSNR2 + p)]

i2(2n — p — 3)2(2 n — p — 5)
(19)

for n > (p + 5)/2.

Then cf> is the unique UM VU estimator of 6 £ 6

IV. Computational E valuations

Now, we further explore the theoretical properties of 
the estimators introduced in the last section. We will com­
pare these estimators to a conventional estimator for SNR2, 
which is reviewed first. As before, we assume that there are

2̂ ,. . . ,  v,^  independent realizations of channel outputs
from class 1 and v ^ ; , v V ^ , . . . ,  v,(2) independent realizations 
of channel outputs from class 2. Also, we will be assuming 
that p = 40 channels are used. There is nothing special about 
p = 40, as opposed to another value, such as p = 4, which 
is typical for isotropic channels. Our choice of p = 40 is 
motivated by our current interest in evaluating the impact of 
anisotropic noise on lesion detectability [ 11 ],

A. An Estim ator fo r SNR2 When the Class Means and Their 
Difference Are Unknown

Suppose that the class means, m 1 and f i2, and their difference. 
Am, are unknown. In this situation, the conventional method 
to construct an estimator for SNR2 is to substitute the sample 
estimates A v := v 2 — v i and S  for Am and £ in (4). This 
approach is used in [1 , p. 972], and yields an estimator defined

O4 := AvJ S xAv, for n > p+  1 (16)

R. Comparison o f the SNR" Estim ators

In the first set of comparisons, the relative error for each of the 
four SNR2 estimators is plotted as a function of the total number 
of images, 2n ; see Fig. 1. The plots assume SNR2 values of 
0.12837, 0.90987, and!2847, corresponding to AUC values of 
0.6, 0.75, and 0.9, respectively. Here the relative error (in % ) 
is calculated as the square root of the mean-square error (MSE) 
divided by the SNR2 value times 100. Using the fact that the 
M SE is equal to the bias squared plus the variance [34], the MSE 
for 6\, #2, 83 and 84 was calculated using the expressions from 
Corollaries 1, 2, and 3 and (18) and (19).

Comparing #1 , 92, and 83 in the plots, we observe that their 
relative errors are veiy similar. This is not surprising, since they 
are all unbiased and their variance expressions are comparable. 
In addition, we note that for fixed n and p, the relative errors 
for 01 , 02 and 83 are invariant over the different SNR2 values. 
Although this invariance is only shown in the plots for partic­
ular values of n and p, it actually holds for any choice of n and 
p. This follows from the fact that the standard deviation of each 
estimator divided by SNR2 only depends on n and p; this quan­
tity is independent of SNR2 and also of the correlation matrix 
and the class means.

On the other hand, the relative error for 84 decreases as the 
true SNR2 value increases. Furthermore, we see that the relative 
error for 84 is significantly larger than that for 61, 62* and 83. For 
example, in the case of SNR2 = 0.90987 with 2n = 250 total 
images, the relative error for is 9.8%, compared to a relative 
error of 112.3% for 84.
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Fig. 1. Relative error of SNR2 estimators as a function of the total number of images, 2n. The plots assume p = 40 channels with SNR2 = 0.12837 (left), 
0.90987 (middle), and 3.2847 (right), corresponding to AUC values of 0.6, 0.75, and 0.9, respectively. The estimators are denoted as follows: (circles), 02 
(diamonds), 03 (triangles), and 04 (squares). The relative error (in %) is calculated as (\/MSE/(SNR2)) x 100, where MSE denotes the mean-square error.

10 10° 10" 10° 10" 10°
2n 2n 2n

Fig. 2. Bias magnitude and relative error of AUC estimators as a function of the total number of images, 2 n. The plots assume p = 40 channels with AUC = 0.6 
(left), 0.75 (middle), and 0.9 (right). Bias magnitude is on the top and relative error is on the bottom. The estimators are AUCi (circles), AUC2 (diamonds), 
AUC3 (triangles), AUC4 (squares). For each i E {1,2, 3,4}, AUC; is calculated by substituting the square root of 0* for SNR in (5). The bias magnitude (in 
%) for an AUC estimator, AUC;, is calculated as (|E[AUC ]̂ — AUC|/AUC) x 100. The relative error (in %) is calculated as (\/MSE/AUC) x 100, where 
MSE denotes the mean-square error.

C. Comparison o f the A U C  Estim ators
For the next set of comparisons, we consider the AUC esti­

mators which are found by substituting the square root of 6i for 
SNR in (5). For each i G {1, 2, 3, 4}, the resulting AUC esti­
mator will be denoted as AUQ .

In Fig. 2, the bias magnitude and relative error for each of the 
AUC estimators are plotted as functions of the total number of 
images, 2n. The plots compare the estimator behavior for AUC 
values of 0.6, 0.75, and 0.9. The bias magnitude (in % ) is cal­
culated by dividing the absolute value of the bias by the AUC 
value and multiplying by 100. The relative error (in % ) is calcu­
lated as the square root of the M SE divided by the AUC value

times 100. The bias and M SE for each AUC estimator were com­
puted from the estimator’s mean and variance, which were cal­
culated numerically using the pdf of the corresponding Oi and 
the method described in Section II-D. In all cases, the numer­
ical error for the mean and variance results was constrained to 
be less than 1 0 -6.

Examining the bias magnitude plots in Fig. 2 (top row), we 
see that the bias magnitudes for AUCi, AUC2, and AUC 3 are 
very similar, and increase at fixed n with increasing AUC values, 
but are generally very small. Specifically, for 2n > 100, the bias 
magnitudes for these three estimators are all less than 0.3%. 
In contrast, the bias magnitude for AUC4 decreases with in­
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creasing AUC values, but it is always much larger than for the 
other three estimators. For instance, in the case of 2n = 100, 
the bias magnitude for AUC4 has values of 47.1%, 23.1%, and 
8.4%, corresponding to AUC values of 0.6, 0.75, and 0.9, re­
spectively. Although not reflected in the plots, the biases for 
AUC i, AUC2, and AUC3 were negative in all cases and the 
bias for AUC4 was positive in all cases.

Directing our attention to the relative error plots in Fig. 2 
(bottom row), the trends of A U C i, AUC2, and AUC3 are again 
seen to be very similar. For 2n > 100, the relative errors for 
these three estimators are less than 2.7%. On the other hand, 
the relative error for AUC4 is significantly larger. For example, 
when 2n = 100, the relative error for AUC4 has values of 
47.4%, 23.4%, and 8.55% corresponding to AUC values of 0.6,
0.75, and 0.9, respectively. Comparing these relative errors to 
the bias magnitude values mentioned above, we see that most 
of the relative error for AUC4 is due to bias.

V. Discussion and Conclusion

In this work, we were interested in the estimation of classical 
performance metrics for discrimination between two classes of 
images. The discrimination was assumed to be performed by 
a channelized Hotelling observer. Also, we assumed that the 
estimation is to be carried out using a small number of image 
realizations, as is typically the case in medical imaging.

Unfortunately, access to a limited number of image realiza­
tions implies that the estimated performance values will have 
some statistical errors, quantified, for example, in terms of es­
timator bias and variance. Barrett and Myers [1, p. 972] sug­
gested that these statistical errors could potentially be reduced 
if the class means are assumed to be known. We have investi­
gated this issue thoroughly. Assuming that the channel outputs 
corresponding to the two classes of images have multivariate 
normal distributions with equal covariance matrices, we have 
completely characterized the sampling distributions for three es­
timators of SNR2 that assume that the class means, or their dif­
ference, are known. Using these distributions, we have demon­
strated that a significant decrease in estimation error can be 
achieved when the class means, or their difference, are known.

A useful property of our three SNR2 estimators is the fact 
that the ratio of each estimator’s standard deviation to its mean 
is a function of only n and p. This property allows for easy pre­
selection of the number of images needed to achieve a desired 
level of accuracy.

Another interesting property of our three SNR2 estimators 
is that they yield AUC estimators that have negative bias, just 
as estimators based on a training/testing paradigm [16], [17]. 
Thus, we demonstrated that the training/testing paradigm is not 
the only estimation strategy that can result in negative biases. 
Moreover, recall from Fig. 2 that the biases achieved by our new 
estimators are fairly small.

Of course, it is natural to ask in which situations the image 
class means, or their difference, may be found. One situation 
where this is possible is for image reconstruction from simu­
lated data with the data mean known. For example, in the case 
of linear reconstruction algorithms (e.g., filtered backprojec- 
tion (FBP) type), which are still the methods of choice in CT,

the image class means may be found by simply reconstructing 
the means of the data for each class. Similarly, for many types 
of (nonlinear) iterative reconstruction methods, the image class 
means may be found to first order by reconstructing the means of 
the data for each class [35]. This approximation has been found 
to be fairly accurate for the cases of expectation maximization 
(EM ) [36], [37] and penalized-likelihood reconstruction [35], 

When significant uncertainty exists for the class mean esti­
mates, our estimators may not be satisfactory. This could be the 
case for iterative reconstruction methods if first-order estimates 
of the means are not accurate enough. This could also be the case 
for image quality assessment from real data, because the class 
means of real data are rarely known exactly. For these situations, 
it would be useful to understand how our estimators are affected 
by errors in the mean estimates. Moreover, as refined estimates 
of the class means may possibly be obtained at low cost, we 
note that knowledge of the distributions for our estimators may 
pave the way for new attractive estimators that incorporate prior 
information pertaining to the class means. These topics define 
interesting areas of further research.

In order to safely apply our results to a particular imaging 
application, we emphasize that it is necessary to verify that 
the channel outputs corresponding to the two classes of images 
are well-approximated by multivariate normal distributions that 
have the same covariance matrix. We are currently assessing the 
validity of this assumption for X-ray CT. This assessment will 
include a comparison of our approach to nonparametric AUC 
estimation using the Mann-Whitney U statistic.

Last, note that our estimators allow for a significant improve­
ment in efficiency for the computation of detectability maps. 
These maps plot SNR or AUC as a function of lesion location 
[1, p. 858] [38]. This is one way to investigate the dependence 
of lesion detectability on background variation [1, p. 858-859]. 
In the future, we will evaluate our estimators for the purpose of 
building detectability maps for commercially-available FBP re­
construction methods in X-ray CT.

A pplndix A
In this Appendix, we prove Theorems 1,3, and 4 which char­

acterize the sampling distributions of 01 , 02, and 03. For this 
task, we first review several useful properties of the Wishart, in­
verted Wishart, and inverted gamma distributions.

Lemma I :  If A i — W p(m.: E ) and A 2 — W p(n , E ) are inde­
pendent, p x p  random matrices, then A 1 + A 2 — W p(m + n , E ).

Proof: See [18, Theorem 3.2.4, p. 91] or [31, Theorem 
3.3.8, p. 94],

Lemma 2: Let n > p + 1. If S  ^ W p(n , E ), then

 ̂  ̂ n — p — 1

Proof: See [18, p. 97] or [28, p. 273],
Lemma 3: Let n > p. If S  — W p(n , E ) and A  is a q x p 

matrix of rank q < p, then

Proof: Proof: See [18, Theorem 3.2.11, p. 95] or [31, The­
orem 3.3.13, p. 97],
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Lemma 4: Let n > p. Then 5 — W p(n , E ) if and only if 
5 " 1 -  IW p(n + p +  I S " 1).

Proof: See [31, Theorem 3.4.1, p. I l l ] ,
Lemma 5: Let n > p. If 5 ~~ W p(n , E ) and A  is a q x p 

matrix of rank q < p, then

AS'“ 1 Ar  -  lW q(n  - p  + 2 q + l, A Y ,~ 1A t ).

Proof: This follows immediately from Lemmas 3 and 4. 
Lemma 6: If X  ^ IW i(m , 't ) and m  > 2, then X  ^

Proof: Suppose that X  — IW i(m , \I/) and m  > 2. First, 
note that since X  is an inverted Wishart matrix with p = 1, X  
and 'P are scalars. For the p = 1 case, the pdf of the inverted 
Wishart distribution [31, p. I l l ]  is

(20)

Comparing with (1), we recognize the above expression as the 
pdf for an inverted gamma random variable with a  = (m  — 2)/2 
and p  = tf/2 .

Lemma 7: Let c > 0 be an arbitrary constant. If 
X  -  lG (a ,P ) ,  then Y  = c X  -  IG (a , c/3).

Proof: Suppose that X  ^  lG (a , f l)  and let Y  = c X . 
The pdf for Y  may be expressed in terms of the pdf for A' by 
applying the rule for a monotonic transformation of a random 
variable [39, p. 51], i.e., f\- (y) = ( l/ c )fx (y / c ). Using this 
rule together with (1), we may express the pdf for Y  as

/i (y) c
1 ( Pae~cj}/y a+1 (c/3)c

*)y
(21 )

Hence, Y  ^ IG (a , c/i).
Next, we collect some results concerning the distributions of 

S , 5, and 5.
Lemma 8: Suppose that v-(i) 7Vp(/x1, E )  and v.(2)

N p(n 2,E ) are independent samples from classes 1 and 2, 
respectively, where i = 1 ,2,... n. If 5, 5, and S  are computed 
from these samples according to (7), (12), and (14), respectively, 
then (i) 2n S  ^ W p(2n, E ), (ii) (2n — 1)5 ^ W p(2n — 1 . E ), 
and (iii) (2n — 2) S  ^ W p(2n — 2, E ).

Proof:
i) First, observe that 5i may be expressed as n S i =

Z;.Zf, where Z; = v,- — f i1. Since Z i, Z 2, ... Z„ 
are independently distributed according to iVp(0 ,E ), 
it follows from the definition of the Wishart dis­
tribution [18, p. 82] that n S i ^ W p(n , E ). By a 
similar argument, 11S 2 ^ W p(n , E ). Because n S  1 
and 11S 2 are independent, Lemma 1 implies that 
2n S  = n S i + nSo ^ W p(2n. E).

ii) From the definition of 5, we have

+ Y .  ( v*-2) _  ^2) ( vf 5 - £2)  • 2̂2)

Substituting (v-1̂ — v i + v i — for (v j1̂ — f^ ) and 
( v | 2) — v 2 +  v 2 — /i2) for ( v - 2) — /t2) in (22) and rear­
ranging, we find

(23)

Inserting the definitions of f i1 and f i2 given by ( 10 ) and
( 1 1 ) into the last equation, and simplifying, yields

(2n - = E H "

( VS2> - V2

+ ( | )  (A v  - A/x)(Av — . (24)

By a theorem concerning the distribution of the sample 
covariance matrix [31, Theorem 3.3.6, p. 92], the first 
and second terms in (24) are distributed as W p(n  — 1, E). 
Also, using standard results for the sample mean and 
multivariate normal distribution [18], it follows that 
y/n/2(Av — A//,) ^ N p(0, E ). Therefore, by the defi­
nition of the Wishart distribution [18, p. 82], we see that 
the third term in (24) has a W p( 1, E ) distribution.
The first and second terms in (24) are clearly indepen­
dent because they are computed from independent sam­
ples. Moreover, for the same reason, we note that the 
sample means, v i and v 2, are independent of the second 
and first terms, respectively. Also, by a standard theorem 
[31, Theorem 3.3.6, p. 92], v i and v 2 are independent of 
the first and second terms, respectively. Hence, the third 
term is independent of the first and second terms. Because 
the three terms in (24) are independent, we may apply 
Lemma 1 to conclude that (2n — 1 )S  W p(2n — 1, E).

iii) By a theorem for the distribution of the sample covariance 
matrix [31 Theorem 3.3.6, p. 92], we have (n — l)5 i — 
W p(n — 1. E ) and (n — 1)52 ^ W p{n  — 1, E ). In addition, 
since S i and S 2 are computed from independent samples, 
they are independent. Thus, Lemma 1 implies that (2n — 
2)5 = (n  -  l)5 i + (n  -  1)52 -  W p(2n -  2, E).

Now, we are ready to prove Theorems 1, 2, and 3. Recall that 
each of these estimators is computed from independent samples 
v|1] -  N p in ^  E ) and v\2) -  N p{f i2, E ) from classes 1 and 2,p\
respectively, where i  = 1 ,2 . . .  .n .

P ro o f o f Theorem 1: Assume n  > (p + l)/2. The defi­
nition of 60 in (8) may be rewritten as (l/ (2n — p — l))# i = 
Afj,T (2 n S )~1 A fi. From Lemma 8(i), 2n S  — Wp(2n,E). 
Hence, we may apply Lemma 5 and (4) to find that 
(1/(2??, — p — \ ))0 i ^ IW i(2n  — p + 3, SNR2). Lemma 6 then

Finally, application of Lemma 7 gives the desired result.
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P ro o f o f Theorem 3: Assume n  > (p + 2)/2. The defini­
tion of 9o in (13) may be rewritten as (l/ (2n — p — 2 ) ) 82 = 
A f iT [(2n — 1)5]_ 1 Am. From Lemma 8(ii), (2n — 1)5 — 
W p(2n — 1, £). Hence, we may apply Lemma 5 and (4) to find 
that (1/(2n — p — 2) ) 82 IW i(2rc — p + 2, SNR2). Lemma 6

Finally, application of Lemma 7 gives the desired result.
P ro o f o f Theorem 4: Assume n  > (p + 3)/2. The defini­

tion of 6?j in (15) may be rewritten as (l/(2n — p — 3))03 = 
A f iT [(2n -  2)S ]~ 1A fi. From Lemma 8(iii), (2n -  2)5 -  
W p(2n — 2 ,E). Hence, we may apply Lemma 5 and (4) to 
find that (l/(2n — p — ^ IW i(2 ti — p + 1, SNR2).

l)/2, (1/2)SNR2). Finally, application of Lemma 7 gives the 
desired result.

A ppendix B
In this Appendix, we prove Theorems 2 and 5, which state 

that 6i and 02 are UM VU estimators. Again, we assume that 
each of these estimators is computed from independent samples

N p in i, £) and ,(2) N p(f i2, E ) from classes 1 and 2,

. ,v » )  = (2 l)-np |S |-ne»J

where

)  s  1 ( v - 1} -  M i )

( v - 2) -  M2)  S  1 ( v | 2) -

Using the additive and cyclic properties of the trace, denoted tr, 
we may rewrite rj as

M 1’ -  M i

+ ( vi2) - M2) ( v f

i.e..

r) = (—n)tr 1 S') . 

Hence, the joint pdf has the form

^ > ,v S 2) ,(2)

exp (-n )tr ( e _1s )

statistic [40, Theorem 6.22, p. 42], Since (i) 5 is a complete 
sufficient statistic, (ii) is an unbiased estimator of SNR2, 
and (iii) 6i = E[$i|5], i.e., 0\ is a function of 5 only, the 
[ .ehmann—Scheffe Theorem [40, Theorem 1.11, p. 88] [41, p. 
164] implies that Q\ is the unique UMVU estimator of SNR2 in 
scenario 1 .

P ro o f o f Theorem 5: Assume n > (p + 2)/2. Also, suppose 
that A//, is known, and that //.,. , and E  arc unknown. The joint 
pdf of , v^1’ , . . . ,  v i 1-* and , v 22 ), . . . ,  v i 2) is given by 
(25) and (26). After lengthy algebra, one may rewrite the joint 
pdf in the form

(1) v (2> t(~)

= (2tt)

x exp

” exp [(—rt)tr (E  V iM ^)]

x exp [n tr (30)

respectively, where * = 1 , 2
P ro o f o f Theorem 2: Assume n  > (p+l)/2. Also, suppose 

that Mi and m2 are known, and that E  is unknown. First, we show 
that 5 is a sufficient statistic for the joint pdf of the sample. The 
joint pdf of v^1’, v 2̂ , . . . ,  and v^2 ), v^2 ), . . . .  v,(2) is

By the Fisher-Neyman factorization theorem [40, Theorem 6.5, 
p. 35] [41, Prop. IV .C .l, p. 159], the statistic

(31)

(25)

(26)

(27)

(28)

(29)

By the Fisher-Neyman factorization theorem [40, Theorem 6.5, 
p. 35 ] [41, Prop. IV .C .l, p. 159], 5 is a sufficient statistic. 
Moreover, because the expression in (29) has the form of a 
full rank exponential family [40, p. 23-24], 5 is a complete

is sufficient. Moreover, because the expression in (30) has the 
form of a full rank exponential family [40, p. 23-24], T  is a 
complete statistic [40, Theorem 6.22, p. 42], Since (i) T  is a 
complete sufficient statistic, (ii) 92 is an unbiased estimator of 
SNR2, and (iii) 82 = E[02 | T ], i.e., §2 is a function of T  only, 
the I .ehmann—Scheffe Theorem [40, Theorem. 1.11, p. 88] [41, 
p. 164] implies that 82 is the unique UMVU estimator of SNR2 
in scenario 2 .
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