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A b s tr a c t

M odem processors dedicate more than ha lf their 
chip area to large L2 and L3 caches and these 
caches contribute significantly to the toted processor 
power. A large cache is typically split into multiple 
banks and these banks are either connected through 
a bus (uniform cache access -  UCA) or an on- 
chip network (non-uniform cache access -  NUCA). 
Irrespective o f  the cache model (NUCA or UCA), the 
complex interconnects that must be navigated within 
large caches are found to be the dominant part o f  
cache access power. While there have been a number 
o f proposcds to minimize energy consumption in the 
inter-bank network, very little attention has been paid  
to the optimization o f intra-bank network power that 
contributes more than 50% o f  the toted, cache dynamic 
power in large cache banks. In this work we study 
various mechanisms that introduce low-swing wires 
inside cache banks as energy saving measures. We pro
pose a novel non-uniform power access design, which 
when coupled with simple architectural mechanisms, 
provides the best power-performance tradeoff. The 
proposed mechanisms reduce cache bank energy by 
42% while incurring a minor 1% drop in performance.

1. I n t ro d u c tio n
To alleviate the growing gap between processors and 

main memory, contemporary processors have begun 
to provide large multi-megabyte last level caches, 
often occupying upwards of half the total die area. 
For example, the Montecito processor from Intel has 
24 MB of L3 cache [1]. Intel’s consumer desktop 
Nehalem processors have 8 MB of L3 cache [2], With 
the memory wall showing no signs of breaking down, 
these trends are likely to continue, with future caches 
only growing larger.

Large caches are likely to use a Non Uniform Cache 
Access (NUCA) architecture, with the cache split into 
multiple banks connected by an on-chip network [3].
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The CACTI 6.0 tool computes the characteristics of 
large NUCA caches and shows that optimal behavior 
is exhibited when the cache is partitioned into large 
banks, where each bank can accommodate a few mega
bytes of data [4], About 50% of the NUCA cache’s 
dynamic power is dissipated within these large banks 
(the rest is mostly within the inter-bank network). 
Processors that do not employ NUCA will implement 
monolithic multi-megabyte private or shared L2s or 
L3s (the Nehalem and Montecito serving as examples).

In addition to consuming silicon area, these caches 
will also contribute significantly to the energy con
sumed by the processor. Large last-level shared caches 
often serve as the cache coherence interface on multi
core processors. Multi-threaded applications will likely 
make frequent expensive look-ups into the L2 to access 
shared data. There already appears to be a trend to sim
plify the design and power efficiency of cores. Intel’s 
shift from the Netburst to Core microarchitecture is a 
sign of things to come. Sun’s Niagara and Rock proces
sors are also designed for low energy-per-instruction 
among other things. In the meantime, if SRAM cache 
arrays remain stagnant in design, their contribution to 
overall chip power will continue to grow. Hence, this 
paper attempts to provide circuit/architecture innova
tions to improve energy dissipation within large cache 
banks.

We show that energy dissipation in a large cache 
is dominated by the H-tree network within each bank. 
To address this bottleneck, we propose various designs 
that leverage low-swing wiring within the cache. Low- 
swing wires are an attractive choice from the power 
perspective but are inherently slow. Pipelining them is 
inefficient and requires additional transceivers at inter
mediate points along the bus. If employed judiciously, 
however, their performance penalty can be mitigated 
while exploiting their low-power characteristics. We 
discuss these trade-offs in detail for a variety of 
designs. We finally show that limited use of low-swing 
wiring provides the best balance between performance 
and power. This leads us to introduce the notion of 
non-uniform power access, with certain regions of the
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cache being accessible at low energy with low-swing 
wires. Architectural mechanisms are required to exploit 
the low-power region of a cache bank and we explore 
novel block placement policies to maximize use of the 
low-power region. Our results show significant cache 
energy savings at a very modest performance penalty, 
the penalty primarily arising from the non-pipelined 
nature of our low-swing transfers.

The paper is organized as follows. Section 2 pro
vides basics on cache bank organization. Section 3 dis
cusses different novel designs that employ low-swing 
wiring within a cache bank. Architectural innovations 
that support non-uniform power access are described in 
Section 4. Section 5 shows results. We discuss related 
work in Section 6 and draw conclusions in Section 7.

2. B a c k g ro u n d

Large caches of the future are expected to experience 
increasing disparity between access delays to different 
parts of the cache depending on their proximity to the 
processor core or cache controller. This mandates a 
Non-Uniform Cache Access (NUCA) architecture [3], 
with large caches being divided into multiple banks 
connected by an on-chip network for data and address 
transfer between banks. A recent study [5] has shown 
that due to high power and latency overheads associ
ated with on-chip network routers, NUCA caches will 
implement a few banks, each of non-trivial size. The 
bank count/size of each bank is determined by the 
relative contributions of the banks and the network 
to the total delay and energy consumption of the 
cache, and associated design constraints. According to 
CACTI 6.0 [4], a NUCA modeling tool that identifies 
an optimal trade-off point between bank and network 
components, a 64 MB NUCA cache will likely be 
partitioned into large 2 MB or 4 MB banks. Up to 
50% of cache dynamic power is dissipated within 
these large banks. Some processors may also adopt 
a tiled architecture where every core is associated 
with a large L2 bank (either a private cache or a 
slice of a large shared cache) [1], Thus, regardless of 
whether future processors adopt private/shared caches, 
or UCA/NUCA architectures, or tiled/contiguous L2 
caches, it is evident that several large cache banks 
will be found on chip. This work focuses on reducing 
the significant component of dynamic power within 
these large cache banks. As per estimates from CACTI
5.3 [6], leakage in a 4 MB cache contributes about 
20% to total power consumption. However, there are 
well studied circuit ([7], [8], [9]) and microarchi- 
tectural ([10], [11], [12], [13]) techniques in current 
literature to tackle leakage in caches. We assume that 
several of these can continue to be applied to the cache

orthogonal to our optimizations, and focus on dynamic 
power for the rest of the paper.

We now describe briefly the factors that influence 
the organization, power, and delay of a cache bank. A 
naive cache takes the form of a single array of mem
ory cells and employs centralized decoder and logic 
circuitry to store and retrieve data from cells. Such a 
monolithic model, however, has serious scalability is
sues. First, wordlines (due to a lack of available silicon 
area) and bitlines (due to differential signaling) cannot 
be repeated at regular intervals, causing their delay to 
increase quadratically with the size of the cache. Sec
ond, the bandwidth of the cache is a function of cycle 
time1 and a single array cache’s bandwidth deteriorates 
quickly as the array size grows. The performance of the 
cache is thus limited by long bitlines and wordlines that 
span the array. To reduce this quadratic delay impact, 
the cache is divided into multiple segments referred to 
as subarrays. These subarrays need to be connected 
through an interconnect fabric to transfer addresses 
and data within the cache. In order to reduce design 
complexity, an interconnect with easily predictable 
timing characteristics is essential. A balanced H-tree 
network (Figure 1) provides uniform pipelined access 
without complex switching circuits and proves to be an 
ideal choice. The number of subarrays that the bank 
is split into, the height/width of the grid of subarrays 
(the aspect ratio of the bank) and the aspect ratio of the 
subarrays themselves are defined by three fundamental 
parameters of cache bank design:

• NDWL - Number of vertical partitions in the array
i.e., the number of segments that a single wordline 
is partitioned into. This determines the number of 
columns of subarrays.

• NDBL - Number of horizontal partitions in the 
array i.e., the number of segments that a single 
bitline is partitioned into. This determines the 
number of rows of subarrays.

• NSPD - Number of sets stored in each row of a 
subarray. For given Ndwl and Ndbl values, this 
decides the aspect ratio of the subarray.

An example organization is illustrated in Figure 1. The 
design space of bank design is defined by variations of 
these parameters and the resultant complex interaction 
of various internal power and delay components.

For example, a small subarray count would enable 
tighter packing of cells leading to increased area 
efficiency (cell area/total area), but would result in 
increased delay due to longer wordlines and bitlines. A 
large subarray count would give better delay character
istics but result in increased silicon area consumption.

1. The cycle time of a cache is the sum of the wordline, bitline, 
and senseamp delays.
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F igure  1. An example cache bank organization

■ H-tree
■ Decoder
■ Wordlines
■ Bitline mux & drivers
■ Senseamp mux & drivers 
□  Bitlines
■ Sense amplifier
■ Subarray output drivers

F igu re  2. Contributors to total cache access energy

The effect of this design space exploration on the 
energy consumption of the cache is described in more 
detail in the upcoming subsection.

A typical cache modeling tool like CACTI iterates 
over a large range of NDBL, NDWL, NSPD etc., 
and determines the optimal configuration of the cache 
for a given set of design constraints, specified by 
weightage given to area/power/delay and the maximum 
permissible deviation of these values from optimum. 
Understanding Bank Energy Consumption: The 
total energy spent on a cache access is the sum of 
energies consumed by the decoder circuitry, bitlines, 
sense-amps, multiplexers, and the H-tree network. For 
various large bank CACTI layouts that optimize delay, 
power, area, and their combinations, we consistently 
observe a large dynamic power contribution from the 
H-tree network. Figure 2 shows a representative dy
namic energy breakdown across various cache compo
nents for banks designed for low latencies, resulting 
in a relatively larger number of small subarrays. The 
work in this paper targets the dominant contributor in 
this breakdown, the H-tree network.

3. Low-swing Wires in Cache Banks

The array of SRAM cells constituting a bank is 
typically not one monolithic structure but is split into 
multiple smaller units called subarrays. This helps keep 
capacitances within the bank low, reducing delay and 
allowing faster access. The subarrays in a bank are 
typically connected using a balanced H-tree structure 
that serves to provide uniform time access to every 
subarray in the bank and keep complexity low. A 
key insight of our proposal is that in the process,

all accesses also become uniform power, which is an 
unnecessary constraint placed on the access. Combined 
with the fact that the H-tree is a major contributor to 
the total cache energy, this is clearly an area to target 
for significant reductions in energy.

3.1. Low-Swing Signalling

One of the primary reasons for the high power dis
sipation of global wires is the full swing requirement 
imposed by repeaters. While this can be somewhat mit
igated by reducing repeater size and increasing repeater 
spacing, the overhead is still relatively high. Low volt
age swing alternatives represent another mechanism 
to vary the wire power/delay/area trade-off. There is 
little silicon overhead to using low-swing wires since 
there are no repeaters and the wires themselves occupy 
zero silicon area. A low-swing pair does require special 
transmitter and receiver circuits for signal generation 
and amplification but these are easily amortized over 
moderately long wires. Reducing the voltage swing on 
global wires can result in a linear reduction in power 
(we assume a voltage swing of 100 mV [14], [4]). 
In addition, assuming a separate voltage source for 
low-swing drivers will result in quadratic savings in 
power (we assume a supply voltage of 0.4 V [14], [4]). 
However, these power savings are accompanied by 
some big caveats. Low swing wires suffer significantly 
greater delays than repeated full-swing wires and thus 
cannot be used over very long distances. There is also 
a non-trivial cost associated with pipelining low-swing 
wires. In spite of these problems, low-swing wiring is 
appropriate in some settings and a few studies ([15],
[16], [17]) have considered them when connecting 
cache banks to CPUs. This paper is the first to consider 
the use of low-swing signalling within a cache bank to 
address the power bottleneck posed by intra-bank wires 
in large caches. We study several ways of utilizing 
low-swing wires for this purpose (discussed next), and 
consider their architectural ramifications in Sections 4 
and 5.

3.2. Single Low-Swing Bus

A simple way to exploit differential low-swing sig
naling would be to build the H-tree entirely with a 
single low-swing bus covering the bank. This cache 
model provides excellent energy savings, coming at the 
cost of very significant drops in performance. Such a 
cache is first of all slow due to the higher latency of the 
long low-swing bus. Because the wire is not pipelined, 
accesses are essentially serial in nature, with the cache 
cycle time becoming equal to the access time, leading 
to drastically increased contention to access the bank. 
Such a scheme is not worth considering except in
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niche cases where power is a far more important 
consideration than performance.

3.3. Multiple Low-Swing Buses
To address the contention in non-pipelined low- 

swing buses, we consider an alternate scheme with 
multiple low-swing pairs in the bank, as shown in 
Figure 3. There is one low-swing bus per row of 
subarrays, connected to the controller by a vertical 
bus. This seeks to essentially spread the contention 
around, by throwing more resources at the problem. 
Despite this increased cost and complexity, however, 
we find that there is still a non-trivial performance 
hit. Aggressively throwing even more resources at 
the problem would simply lead to tremendous design 
complexity and is not considered a feasible option.

3.4. Fully Pipelined Low-Swing H-Tree
Pipelining low-swing wires requires usage of dif

ferential transmitter and receiver circuitry at every 
pipeline stage. These circuits consume non-trivial 
amounts of energy; amortized over 1 mm of low- 
swing wire, a single transmitter-receiver pair causes 
a 58% energy overhead, calculated from values in 
CACTI 6.0. Considering that the bus is likely to be 
at least 128 bits wide, there is a significant energy 
overhead to pipelining low-swing wires. Despite this, 
we still see good energy savings due to the large 
energy gap between full-swing and low-swing wires. 
The bigger problem, however, is that the low-swing 
bus is inherently slower than regular wires, and still 
causes a significant IPC drop, especially in applications 
sensitive to L2 latency.

3.5. Low-Swing H-Tree Trunk
As a novel alternative to the various schemes dis

cussed so far, we propose a non-uniform power access 
structure as shown in Figure 4. We overlay a low-swing 
bus over the central trunk of the H-tree. The rows of 
subarrays adjacent to this central low-swing bus are 
connected to the low-swing bus and not the H-tree. 
They can therefore be accessed with greatly reduced

_ LOW SWING

LOW POWER SUBARRAY

Figure  4. Low-swing H-tree trunk

energy consumption. The remaining rows continue to 
use the balanced H-tree network. The introduction of 
this low-swing interconnect does not directly affect 
the basic H-tree design in any significant way. A 
simple switch connects either the low-swing or regular 
interconnect to the cache controller depending on the 
subarray being accessed. Limiting the low-swing pair 
to just the central subarrays ensures that the access 
delay o f  the low-power region is the same as that fo r  
the high-power regions connected by the default H- 
tree. For example, in a 4 MB bank, the H-tree delay 
as computed by CACTI is approximately 0.32 ns. The 
width of the bank (and thus the length of the low-swing 
bus along the center) is 1.53 mm which corresponds to 
a low-swing wire delay of approximately 0.26 ns. We 
can thus maintain uniform time access and the scheme 
can be kept transparent to the cache controller and 
the processor. Our experiments show that delay and 
contention are low enough at this point on the design 
spectrum to see little drop in overall IPC. The energy 
savings obtained are only proportional to the percent
age of rows that are accessible by this low-swing bus, 
which is typically quite small (l/16th in our case). We 
believe, however, that the performance advantages of 
this model make it worth considering very seriously. 
We next propose simple architectural mechanisms to 
increase the percentage of accesses hitting the low- 
power region through dynamically reconfigurable data 
placement in the cache.

4. Exploiting Non-Uniform Power Access

4.1. Smart Data Placement
Energy estimates from CACTI 6.0 show that an 

access over the low-swing interconnect could be as 
much as five to seven times cheaper (depending on 
cache size and H-tree wire type) than an access over 
the default H-tree. Despite this, however, since only a 
small fraction of the total cache can be accessed via 
the low-power wires, the total energy savings obtained 
are marginal. It is clear that the default data placement 
will not effectively exploit the low-power resources at



our disposal. We will need a smarter mechanism to 
maximize the number of accesses occurring over the 
low-swing pair.

The bank is split into ‘NDBL’ rows of subarrays, 
only two central ones of which are accessible via 
the low-power interconnect structure, thus typically 
representing only a small fraction of the total cache 
capacity. We propose assigning a fraction of the ways 
of the cache to the low-power region and the remaining 
ways form the high power region. Since this is the 
last level cache, we assume a sequential tag and data 
lookup scheme, as is the norm. It must be stressed 
that in the interest of maintaining low-complexity, 
we do not alter the design or access mechanism of 
the tag array. On every access, the tags in all ways 
are looked up in parallel to determine the location 
of the required block. This would not affect energy 
consumption significantly since the tag arrays typically 
contribute less than a tenth of the total access energy 
in a cache bank. The real savings are to be had by 
optimizing data array accesses. A hit in a low-power 
way is a “low-power access” with immediate energy 
savings. A miss in the low-power way results in the 
block being brought into the low-power region from 
the high-power region or main memory. Assuming 
good temporal reuse of data, the next time that block 
is requested, it would hit in the low-power region, 
saving energy. Having set up the above basics for low- 
power cache access, we now describe two policies for 
managing blocks in low and high power regions.

In the first policy, Swap, blocks are brought into 
the low-power region on touch (either from the high- 
power region or main memory), and the blocks they 
replace are swapped out into the high power region, 
evicting the LRU way there. The low-power ways 
thus always represent the MRU ways for that set. On 
a high-power hit, the block is moved into the low- 
power region, and the block in the low-power region 
is moved into the high-power region, thus earning the 
Swap moniker. The most recently used ways (say, W) 
of every set in the cache are in the low-power region.In 
our experiments, W is 1, out of 16 ways. As already 
stated, there is no change to the UCA latency, so any 
change in performance is because of greater contention 
for the single unpipelined low-swing bus. Cache miss 
rates should also be the same as the baseline because 
replacement continues to be governed by LRU.

The more a block is touched (re-used) per fetch into 
the low-power region, the greater the energy savings. 
To estimate the level of re-use to make this fetch worth
while, consider the following analytical estimates. For 
now, we will assume that the energy of a high-power 
access H  is 7 times the energy of a low-power access L

(actual numbers are presented in Table 1). If a block 
is touched N  times before slipping out of the MRU 
position, the conventional cache would have incurred 
the energy cost of N  high-powered accesses. With the 
proposed scheme, there would have been N — l  hits in 
the low-power way and one swap at the start, resulting 
in N  +  1 low-power hits and 2 high-power hits. For 
the proposed model to consume less energy than the 
baseline,

N  x  H  > 2 x  H +  ( N +  l ) x  L  

N  > 2.5

While this policy is effective, it is expensive in that 
every low-power miss incurs a swap that requires two 
low-power and two high-power accesses.

Now consider an alternative policy, referred to as 
Duplicate. On an L2 miss, the block is fetched from 
memory and placed in the low- and high-power region 
(thus allowing duplicate copies of a block in L2). When 
a block in the low-power region is evicted, it writes 
into its copy in the high-power region if the block 
is dirty. If the block is clean, it is simply dropped. 
On a high-power hit, the block is copied into the 
low-power region and the previously resident block is 
evicted following the rules above. Thus, if the block 
that is brought into the low-power region is written 
to, its eviction results in a swap and therefore incurs 
the cost of two high-power accesses and two low- 
power accesses (just as in the Swap policy). On an 
L2 miss, the block also incurs one additional high- 
power access than the Swap policy. However, if the 
block fetched into the low-power cache is typically 
only read, on its eviction, it incurs one less high- 
power and one less low-power access as the block 
is quietly discarded. Even though this policy seems 
initially wasteful because it maintains a duplicate copy 
of the block, it ends up being more efficient than the 
Swap policy because blocks are frequently read-only 
and having the duplicate copy means that a new block 
is simply fetched instead of a swap being required. Our 
results show that the Duplicate policy consumes less 
power than the Swap policy.

Forming equations similar to those developed for 
Swap, the first fetch that brings the block into the low- 
power way consumes H  (reading from the high-power 
region) plus L  (writing into the low-power region). The 
subsequent low-power hits consume L. A copy back 
into the high-power region again costs one L  (reading 
from the low-power region) plus one H  (writing into 
the high-power region).

If the block is evicted clean at the end of the reuse 
run,

Ndean X  H  >  H  + L  + (N clean -  1 ̂  1-J



If the block is dirty and has to be written back to the 
high-power region on eviction,

Ndirty x H  = H  + L  + (Ndirty — l )xL-\-H-\-L

N d e  an >̂ 1.16; Ndirty ^  2.6

If writes are not very frequent, Duplicate is clearly 
better than Swap even though it initially appears space- 
inefficient.

4.2. D ynam ic R econfiguration

The block placement scheme described in the previ
ous subsection gives excellent energy savings, provided 
a modestly high number of accesses can be satisfied by 
the low power way. Below a certain threshold hit rate, 
we begin to see negative effects by bringing in blocks 
to the low-power way on every touch. The extra energy 
required to move blocks to the low-power region starts 
to overshadow the energy savings obtained through the 
low-swing pair when there is insufficient reuse before 
eviction. It may be the case that certain phases of 
the application show very poor data reuse in the low- 
power region, leading to negative energy savings. To 
handle application phases with low resue, we propose 
a dynamic reconfiguration scheme where the cache, if 
necessary, is able to switch off the placement scheme 
described above. In this mode, the L2 cache simply 
behaves like a conventional cache, and blocks are not 
brought in to the low-power way(s) on access. To facil
itate such a mechanism, we would need to accurately 
characterize the local behavior of the application at 
any point in time. We simply maintain a saturating 
counter that increments every time an access hits in 
the low-power way and decrements on a miss. When 
the counter value falls below a certain threshold, the 
L2 starts to operate in the conventional manner. While 
in this mode, the counter increments on a hit in the 
most recently used (MRU) way and decrements on a 
miss. When the counter value goes above a threshold, 
the cache moves back into smart placement mode. We 
empirically found that a skewed 5 bit counter going 
between -15 and +15, with increments in steps of 2 
and decrements in steps of 1, with the threshold value 
being 0, effectively captured various reuse scenarios. 
Note that there is a single global counter, not one per 
cache line.

4.3. D iscussion

We now discuss some of the finer points of our 
proposals and a few associated overheads. Since our 
Duplicate scheme deviates slightly from the LRU 
replacement policy, a minor fluctuation in miss rates is 
observed. The duplicate entries also mean that capacity

is slightly lowered. In most cases, the cache behaves 
like a 15-way cache (for our 16-way cache with 1 way 
in the low-power region). This is, however, not always 
true because the LRU policy may evict a high-power 
cache line while its copy is still resident in the low- 
power cache. This does not violate correctness as a 
duplicate copy is not a requirement.

The look-up for this scheme is also complicated 
slightly compared to baseline. If we are looking for 
block A, the tag search may reveal that block A is in 
way-6. This block must now be brought into the MRU 
way-1. This means that block B which is currently 
resident in way-1 and dirty has to be written back 
into its high-power copy. The tags must again be 
searched to locate the way that houses B’s duplicate 
copy. Additional look-ups of the tags are not expensive, 
considering that high-power accesses are the bottleneck 
and this policy minimizes high-power accesses. The 
presence of duplicate copies also does not lead to 
coherence issues. If there are duplicate copies, there 
will be a hit in way-1 and this automatically causes the 
copy in the high-power way to be dis-regarded. When 
the low-power block is evicted, it will over-write the 
copy in the high-power way.

Also, under the smart line placement scheme, every 
access to a non-MRU way forces a swap in L2. This 
swap requires an access to a low and high power way, 
unlike the baseline that would have simply required 
one high power way access. However, we show with 
our analytical models that the energy savings obtained 
on every cache hit in the low-power way easily amor
tize this swap cost over as few as three accesses.

Our data placement and mapping schemes bear re
semblance to an L2/L3 hierarchy or a filter cache [18] 
based hierarchy. However, we believe our approach is 
orthogonal to the actual hierarchy and can continue to 
be used for the largest last level cache structure. Fur
ther, we eliminate the need for interconnects between 
multiple physical cache structures. Our experiments 
show that our non-uniform scheme provides on average 
25% more energy savings than a filter cache model 
with similar capacities, i.e., it is more efficient to 
access a portion of a large cache with low-swing wires 
than it is to access a small cache with conventional 
full-swing wiring.

The dynamic reconfiguration scheme is simply a 
decision between bringing the most recently touched 
block into the low-power way or not. It suffers prac
tically no additional performance or energy overheads 
over the smart placement scheme. There is also little 
hardware overhead since we only use a single five bit 
saturating counter for the entire cache.



Model Latency
(cycles)

Access Energy 
(nJ)

IPC

Baseline 5 0.185 1.456
Single Low-swing 12 0.016 1.181

Pipelined Low-swing 12 0.040 1.376
Multi Low-swing 8 0.015 1.337

Non-uniform model 5 0.014{LP) 1.430

Table 1. Access characteristics for a 4MB bank

5. R e su lts

5.1. M ethodology
All of our architectural analysis was carried out 

using the SimpleScalar-3.0 [19] out-of-order simulator 
for an 8-issue Alpha AXP with an ROB size of 80 
and an LSQ size of 40. The baseline processor is 
assumed to have separate 2-way, 1-cycle 32 KB I- 
and D- L l caches with a unified 16-way 4 MB L2 
cache. The L l and L2 have cache line sizes of 32 
and 64 bytes respectively. Main memory latency is 
assumed to be 300 cycles. The L2 cache is organized 
as a 32x32 grid of equally sized subarrays, based 
on Ndwl and Ndbl values obtained from CACTI 6.0. 
The two central rows are accessible via the low- 
swing pair, allowing 64 of the 1024 subarrays to be 
low-power. The low-power region is therefore one- 
sixteenth of the cache, i.e., one way. As a workload, 
we employ the SPEC2k programs executed for a 100 
million instruction window identified by the Simpoint 
toolkit [20]. The caches are warmed up for 25 million 
cycles before making measurements.

All delay and power calculations are for a 32nm 
process technology and a clock frequency of 5 GHz, 
as computed by CACTI 6.0. The baseline wiring 
is assumed to be 10% delay penalty2 repeated full- 
swing wires. We also show a sensitivity analysis for 
other baseline wiring assumptions. We measure in 
detail the cache access statistics in the low-power and 
high-power ways, including hit rates and writebacks. 
Bank access characteristics and IPC values for the 
various models are shown in Table 1. Every high- 
power access consumes the energy of one default H- 
tree access plus the remaining components (bitlines, 
wordlines, senseamps etc.). Every low-power access 
consumes a reduced H-tree access energy with all other 
components assumed to be identical to the default case.

A hit in the low-power way simply consumes one 
low-power access energy. A hit in the high-power way 
requires a swap, thus incurring the energy for two low- 
power accesses and two high-power accesses. A cache

2. There are inherent tradeoffs between delay and power in the 
design of repeated full-swing wires. Smaller and fewer repeaters 
result in slow wires but decreased power consumption. More heav
ily repeated wires are fast but bum more power. A “ 10% wire” 
would incur a 10% delay penalty from optimal for reduced power 
consumption [21J.

miss requires the block to be placed in the low-power 
way; the current resident in the low-power way is 
copied to a high-power way; the LRU block is written 
back to memory if dirty. Thus, up to two memory 
accesses, two low-power accesses, and up to two high- 
power accesses are performed.

5.2. A nalysis o f Low-Sw ing D esign Points

Figures 5 and 6 show the energy savings obtainable 
and performance degradation suffered by the various 
models that introduce low-swing wiring inside cache 
banks. Building the H-tree entirely out of low-swing 
wires provides more than 90% savings in energy 
compared to the baseline full-swing bus case. However, 
we see that this is accompanied by a 17% drop in 
IPC due to the increased delay and contention of the 
low-swing bus. By pipelining the low-swing bus with 
additional transmitters and receivers, an energy penalty 
of 12% is incurred, but IPC degradation is greatly 
reduced. Though the average IPC drop relative to the 
baseline in this case is just over 5%, there is a subset 
of benchmarks (not shown separately due to space 
constraints) that are sensitive to L2 latency and suffer 
as much as 17% decrease in IPC due to increased 
delay of the low-swing wires. The multiple low-swing 
model gives mediocre energy savings with moderate 
IPC degradation and does not represent an appealing 
design point. The non-uniform power access model 
displays IPC drops that are within error margins (just 
over 1% on average, with 3% in the worst case) and 
is the best from the performance view point. We note 
that not all SPEC2k benchmarks have large enough 
working set sizes to be significantly impacted by the 
capacity reduction of roughly 1/16 in our scheme. 
However, since even the largest program in SPEC2k 
is impacted by just 3%, we expect performance trends 
to be similar even for other larger benchmark suites. 
The energy savings of our scheme by itself are very 
marginal, typically less than 5%. When supported 
by simple architectural schemes, however, we see a 
considerable 42% energy saving, proving to be an 
attractive choice if both energy and performance are 
considered important. When we consider the overall 
processor ED2 metric, the non-uniform access model 
provides a 5% improvement on average over the base
line, with a best case improvement of up to 25% (this 
assumes that the L2 cache contributes 20% of total 
chip power). The pipelined low-swing model has the 
next best ED2, yielding an average 3% improvement 
over the baseline. Clearly, these two models represent 
the most compelling design points, with the proposed 
non-uniform power model having the best performance 
and ED2 while incurring the cost of block movements.
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Details of the block swap/duplication mechanisms are 
discussed next.

5.3. A rch itec tu ra l M echanism s
Copying the most recently used block of every 

set into the low-power way is an effective way of 
maximizing the number of accesses hitting the low- 
power region. As shown earlier, the Duplicate scheme 
is more energy efficient and we pick this for all of 
our analysis. We also see only marginal fluctuations in 
miss rates and IPC when moving between Duplicate 
and Swap. Figure 7 shows the energy savings obtained 
by doing this kind of smart block placement. There 
is a 42% saving on average, with the best benchmark 
showing an 88% energy advantage. Table 2 details the 
access statistics for all applications in the L2 cache. 
We see that even with the moderate hit rates seen 
in the low power way, energy savings are substantial. 
This is explained simply by the huge energy difference
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F igure  8. Energy savings with dynamic reconfiguration

between low-power and high-power accesses (7x-10x). 
The energy savings achieved are also proportional to 
the reuse count per fetch N , since the copy cost is 
amortized over multiple accesses and we begin to see 
additional savings. For example, eon and gcc have 
reuse counts greater than 35, and show energy savings 
of over 80% :

There are a couple of applications that show an 
increase in energy consumed when data is copied on 
first-touch. These are programs that have poor hit rates 
in the low-power way of the cache, typically under 
40%, due to low reuse counts (lucas and art). Data 
is repeatedly copied into the low-power way, only 
to be thrown out without being reused sufficiently to 
amortize the cost of the copy. For example, lucas and 
art have reuse counts less than 0.5, which means that 
more often than not, blocks are brought into the low- 
power way and evicted without reuse. Such blocks are 
best left in the high-power way and accessed directly 
from there.

Our dynamic reconfiguration scheme keeps track 
of the application’s access patterns at run-time and 
turns off block copying when required. Figure 8 shows 
energy savings obtained in this case. We see that 
the energy savings of applications that were already 
benefiting from the smart placement scheme remain 
practically untouched, while the previously negative 
numbers are now positive, though relatively small. Our 
experiments show that applications in the former class 
remain in “copy-on-touch” mode upwards of 95% of 
the time, whereas the latter are in this mode less than 
30% of the time. This indicates that our simple counter 
is effectively capturing the behavior of the application 
in a small time window.

The energy savings obtained are clearly a function 
of the capacity of the cache, since this determines the 
baseline access energy and the percentage of accesses 
that can be satisfied by the low-power way for a 
given workload. As shown in Figure 9, the larger 
the cache, the better the savings are, making this 
scheme even more attractive as cache sizes increase. 
We see that beyond a point, simply employing smart 
data placement actually increases energy consumption 
due to insufficient reuse. The dynamic reconfiguration

5



Benchmark L2 Accesses* LP Hits* LP Misses* LP to HP WrtBk ' LP Hit Rate (%) % Dirty Misses Avg Reuse Count
ararap 33.2 19.3 13.9 3.6 58.1 26.1 1.4
applu 24.0 12.8 11.2 0.5 53.4 4.9 1.2
apsi 18.7 13.4 5.3 2.1 71.8 40.6 2.5
art 172.2 54.7 117.5 31.2 31.7 26.6 0.5

bzip 23.3 12.0 11.2 2.3 51.7 20.8 1.1
crafty 13.4 12.2 1.3 0.1 90.7 10.5 9.7
eon 5.9 5.7 0.1 0.0 97.5 14.0 39.7

equake 83.8 55.1 28.7 3.8 65.7 13.2 1.9
fma3d 34.1 17.9 16.2 6.2 52.5 38.4 1.1
galgel 39.6 27.0 12.6 4.0 68.2 31.6 2.2

gap 5.7 4.1 1.6 1.4 71.7 84.9 2.5
gcc 57.7 46.4 11.3 9.0 80.5 80.1 4.1
gzip 31.2 30.4 0.8 0.4 97.4 49.4 36.7
lucas 70.8 19.5 51.4 20.1 27.5 39.1 0.4
racf 212.6 86.5 126.1 28.5 40.7 22.6 0.7

mesa 4.1 3.2 0.9 0.7 78.8 81.9 3.7
ragrid 28.4 16.8 11.7 2.7 59.0 22.9 1.4
parser 22.1 15.6 6.5 2.3 70.6 35.1 2.4
swim 74.4 51.5 22.8 9.6 69.3 42.1 2.3
twolf 40.8 24.8 16.0 5.7 60.7 35.6 1.6
vortex 11.6 9.2 2.4 0.3 79.3 11.1 3.8

vpr 36.3 18.2 18.2 6.5 50.0 35.7 1.0
wupwise 7.5 3.8 3.8 0.6 49.9 15.6 1.0

Table 2. Cache access statistics (LP - Low Power Way, HP - High Power Way, 'Access Counts x100,000)

cessing elements and cache subarrays in a reconfig- 
urable environment. CACTI 6.0 [4], the latest version 
of the popular cache modeling tool now incorporates 
support for low-swing wiring inside the cache. Ho et 
al. recently proposed a capacitively driven low-swing 
wire design for high-speed and low-energy [22], There 
have been numerous other proposals to reduce energy 
consumption in caches. Flautner et al. [11] proposed 
putting a subset of cache lines into a state-preserving 
low-power drowsy mode based on cache activity. Agar- 
wal et al. [23] utilize the concept of Gated-Ground 
(NMOS transistor inserted between Ground line and 
SRAM cell) to achieve reduction in leakage energy. 
Yang et al. [24] propose an L0 instruction cache 
before the Ll to achieve lower capacitance and thus 
lower energy without affecting performance. Ishihara 
et al. [25] advocate using non-uniformity in the number 
of ways per set to achieve energy advantages. All of 
the above schemes do little to reduce energy in the H- 
tree, a major contributor to cache energy. Our H-tree 
optimizations can work in tandem with all of these 
schemes to reduce the power consumed in the wiring 
connecting the cells.

7. C o n c lu s io n s

Future processors will accommodate large multi
megabyte caches. The energy consumed by large cache 
banks will continue to be a growing problem, es
pecially as CPU cores become more power-efficient. 
This paper isolates the H-tree within a bank as the 
major energy bottleneck within a large cache. We study 
various ways of introducing low-swing wires within 
the cache to address this bottleneck. Using a pipelined
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type
scheme detects such situations and reverts to default 
behavior in program phases with poor locality.

The savings are also a function of the kind of wiring 
assumed for the default H-tree network. As the wires 
pay more delay penalty, they are themselves cheaper 
to operate in terms of energy, and the room for energy 
improvement reduces. Figure 10 shows the results of 
this sensitivity analysis, normalized to the 10% case.

6 .  R e l a t e d  W o r k

Low-swing wires are gaining popularity as energy 
consumption becomes a major issue in electronics 
design. The Smart Memories project ([15], [16], [17]) 
explored using a low-swing crossbar to connect pro

1 .5
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low-swing bus for the entire H-tree provides the best 
energy savings but can lead to as much as 17% drops 
in IPC. We show that the use of a single low-swing 
bus, providing low-power access to a small part of the 
cache, gives the best energy-performance tradeoff. We 
thus introduce the notion of non-uniform power access 
within a cache bank. Since the low-power region is 
a very small fraction of the total cache, architectural 
mechanisms are required to boost its access frequency. 
We advocate a policy that is based on MRU access and 
block duplication within the L2. We see overall cache 
energy reductions of 42% on average with just over 
1% drop in IPC.

We believe that non-uniform power access (NUPA) 
has much potential, just as non-uniform cache access 
(NUCA) has opened up several opportunities in recent 
years.
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