
Non-Uniform Power Access in Large Caches with Low-Swing Wires

Aniraddha N, Udipi Naveen Muralimanohar Rajeev Balasubramonian
University o f Utah H P Labs University o f Utah
udipi @ cs. Utah, edu naveen. muralimanohar @hp. com rajeev @ cs. Utah, edu

A b s tr a c t

M odem processors dedicate more than ha lf their
chip area to large L2 and L3 caches and these
caches contribute significantly to the toted processor
power. A large cache is typically split into multiple
banks and these banks are either connected through
a bus (uniform cache access - UCA) or an on-
chip network (non-uniform cache access - NUCA).
Irrespective o f the cache model (NUCA or UCA), the
complex interconnects that must be navigated within
large caches are found to be the dominant part o f
cache access power. While there have been a number
o f proposcds to minimize energy consumption in the
inter-bank network, very little attention has been paid
to the optimization o f intra-bank network power that
contributes more than 50% o f the toted, cache dynamic
power in large cache banks. In this work we study
various mechanisms that introduce low-swing wires
inside cache banks as energy saving measures. We pro
pose a novel non-uniform power access design, which
when coupled with simple architectural mechanisms,
provides the best power-performance tradeoff. The
proposed mechanisms reduce cache bank energy by
42% while incurring a minor 1% drop in performance.

1. I n t ro d u c tio n
To alleviate the growing gap between processors and

main memory, contemporary processors have begun
to provide large multi-megabyte last level caches,
often occupying upwards of half the total die area.
For example, the Montecito processor from Intel has
24 MB of L3 cache [1]. Intel’s consumer desktop
Nehalem processors have 8 MB of L3 cache [2], With
the memory wall showing no signs of breaking down,
these trends are likely to continue, with future caches
only growing larger.

Large caches are likely to use a Non Uniform Cache
Access (NUCA) architecture, with the cache split into
multiple banks connected by an on-chip network [3].

This work was supported in parts by NSF grants CCF-0430063,
CCF-08JJ249, CCF-0916436, NSF CAREER award CCF-0545959,
Intel, SRC grant 1847.001, and the University o f Utah.

The CACTI 6.0 tool computes the characteristics of
large NUCA caches and shows that optimal behavior
is exhibited when the cache is partitioned into large
banks, where each bank can accommodate a few mega
bytes of data [4], About 50% of the NUCA cache’s
dynamic power is dissipated within these large banks
(the rest is mostly within the inter-bank network).
Processors that do not employ NUCA will implement
monolithic multi-megabyte private or shared L2s or
L3s (the Nehalem and Montecito serving as examples).

In addition to consuming silicon area, these caches
will also contribute significantly to the energy con
sumed by the processor. Large last-level shared caches
often serve as the cache coherence interface on multi
core processors. Multi-threaded applications will likely
make frequent expensive look-ups into the L2 to access
shared data. There already appears to be a trend to sim
plify the design and power efficiency of cores. Intel’s
shift from the Netburst to Core microarchitecture is a
sign of things to come. Sun’s Niagara and Rock proces
sors are also designed for low energy-per-instruction
among other things. In the meantime, if SRAM cache
arrays remain stagnant in design, their contribution to
overall chip power will continue to grow. Hence, this
paper attempts to provide circuit/architecture innova
tions to improve energy dissipation within large cache
banks.

We show that energy dissipation in a large cache
is dominated by the H-tree network within each bank.
To address this bottleneck, we propose various designs
that leverage low-swing wiring within the cache. Low-
swing wires are an attractive choice from the power
perspective but are inherently slow. Pipelining them is
inefficient and requires additional transceivers at inter
mediate points along the bus. If employed judiciously,
however, their performance penalty can be mitigated
while exploiting their low-power characteristics. We
discuss these trade-offs in detail for a variety of
designs. We finally show that limited use of low-swing
wiring provides the best balance between performance
and power. This leads us to introduce the notion of
non-uniform power access, with certain regions of the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276284988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

cache being accessible at low energy with low-swing
wires. Architectural mechanisms are required to exploit
the low-power region of a cache bank and we explore
novel block placement policies to maximize use of the
low-power region. Our results show significant cache
energy savings at a very modest performance penalty,
the penalty primarily arising from the non-pipelined
nature of our low-swing transfers.

The paper is organized as follows. Section 2 pro
vides basics on cache bank organization. Section 3 dis
cusses different novel designs that employ low-swing
wiring within a cache bank. Architectural innovations
that support non-uniform power access are described in
Section 4. Section 5 shows results. We discuss related
work in Section 6 and draw conclusions in Section 7.

2. B a c k g ro u n d

Large caches of the future are expected to experience
increasing disparity between access delays to different
parts of the cache depending on their proximity to the
processor core or cache controller. This mandates a
Non-Uniform Cache Access (NUCA) architecture [3],
with large caches being divided into multiple banks
connected by an on-chip network for data and address
transfer between banks. A recent study [5] has shown
that due to high power and latency overheads associ
ated with on-chip network routers, NUCA caches will
implement a few banks, each of non-trivial size. The
bank count/size of each bank is determined by the
relative contributions of the banks and the network
to the total delay and energy consumption of the
cache, and associated design constraints. According to
CACTI 6.0 [4], a NUCA modeling tool that identifies
an optimal trade-off point between bank and network
components, a 64 MB NUCA cache will likely be
partitioned into large 2 MB or 4 MB banks. Up to
50% of cache dynamic power is dissipated within
these large banks. Some processors may also adopt
a tiled architecture where every core is associated
with a large L2 bank (either a private cache or a
slice of a large shared cache) [1], Thus, regardless of
whether future processors adopt private/shared caches,
or UCA/NUCA architectures, or tiled/contiguous L2
caches, it is evident that several large cache banks
will be found on chip. This work focuses on reducing
the significant component of dynamic power within
these large cache banks. As per estimates from CACTI
5.3 [6], leakage in a 4 MB cache contributes about
20% to total power consumption. However, there are
well studied circuit ([7], [8], [9]) and microarchi-
tectural ([10], [11], [12], [13]) techniques in current
literature to tackle leakage in caches. We assume that
several of these can continue to be applied to the cache

orthogonal to our optimizations, and focus on dynamic
power for the rest of the paper.

We now describe briefly the factors that influence
the organization, power, and delay of a cache bank. A
naive cache takes the form of a single array of mem
ory cells and employs centralized decoder and logic
circuitry to store and retrieve data from cells. Such a
monolithic model, however, has serious scalability is
sues. First, wordlines (due to a lack of available silicon
area) and bitlines (due to differential signaling) cannot
be repeated at regular intervals, causing their delay to
increase quadratically with the size of the cache. Sec
ond, the bandwidth of the cache is a function of cycle
time1 and a single array cache’s bandwidth deteriorates
quickly as the array size grows. The performance of the
cache is thus limited by long bitlines and wordlines that
span the array. To reduce this quadratic delay impact,
the cache is divided into multiple segments referred to
as subarrays. These subarrays need to be connected
through an interconnect fabric to transfer addresses
and data within the cache. In order to reduce design
complexity, an interconnect with easily predictable
timing characteristics is essential. A balanced H-tree
network (Figure 1) provides uniform pipelined access
without complex switching circuits and proves to be an
ideal choice. The number of subarrays that the bank
is split into, the height/width of the grid of subarrays
(the aspect ratio of the bank) and the aspect ratio of the
subarrays themselves are defined by three fundamental
parameters of cache bank design:

• NDWL - Number of vertical partitions in the array
i.e., the number of segments that a single wordline
is partitioned into. This determines the number of
columns of subarrays.

• NDBL - Number of horizontal partitions in the
array i.e., the number of segments that a single
bitline is partitioned into. This determines the
number of rows of subarrays.

• NSPD - Number of sets stored in each row of a
subarray. For given Ndwl and Ndbl values, this
decides the aspect ratio of the subarray.

An example organization is illustrated in Figure 1. The
design space of bank design is defined by variations of
these parameters and the resultant complex interaction
of various internal power and delay components.

For example, a small subarray count would enable
tighter packing of cells leading to increased area
efficiency (cell area/total area), but would result in
increased delay due to longer wordlines and bitlines. A
large subarray count would give better delay character
istics but result in increased silicon area consumption.

1. The cycle time of a cache is the sum of the wordline, bitline,
and senseamp delays.

CACH E

CORE

CACH E

CORE

F igure 1. An example cache bank organization

■ H-tree
■ Decoder
■ Wordlines
■ Bitline mux & drivers
■ Senseamp mux & drivers
□ Bitlines
■ Sense amplifier
■ Subarray output drivers

F igu re 2. Contributors to total cache access energy

The effect of this design space exploration on the
energy consumption of the cache is described in more
detail in the upcoming subsection.

A typical cache modeling tool like CACTI iterates
over a large range of NDBL, NDWL, NSPD etc.,
and determines the optimal configuration of the cache
for a given set of design constraints, specified by
weightage given to area/power/delay and the maximum
permissible deviation of these values from optimum.
Understanding Bank Energy Consumption: The
total energy spent on a cache access is the sum of
energies consumed by the decoder circuitry, bitlines,
sense-amps, multiplexers, and the H-tree network. For
various large bank CACTI layouts that optimize delay,
power, area, and their combinations, we consistently
observe a large dynamic power contribution from the
H-tree network. Figure 2 shows a representative dy
namic energy breakdown across various cache compo
nents for banks designed for low latencies, resulting
in a relatively larger number of small subarrays. The
work in this paper targets the dominant contributor in
this breakdown, the H-tree network.

3. Low-swing Wires in Cache Banks

The array of SRAM cells constituting a bank is
typically not one monolithic structure but is split into
multiple smaller units called subarrays. This helps keep
capacitances within the bank low, reducing delay and
allowing faster access. The subarrays in a bank are
typically connected using a balanced H-tree structure
that serves to provide uniform time access to every
subarray in the bank and keep complexity low. A
key insight of our proposal is that in the process,

all accesses also become uniform power, which is an
unnecessary constraint placed on the access. Combined
with the fact that the H-tree is a major contributor to
the total cache energy, this is clearly an area to target
for significant reductions in energy.

3.1. Low-Swing Signalling

One of the primary reasons for the high power dis
sipation of global wires is the full swing requirement
imposed by repeaters. While this can be somewhat mit
igated by reducing repeater size and increasing repeater
spacing, the overhead is still relatively high. Low volt
age swing alternatives represent another mechanism
to vary the wire power/delay/area trade-off. There is
little silicon overhead to using low-swing wires since
there are no repeaters and the wires themselves occupy
zero silicon area. A low-swing pair does require special
transmitter and receiver circuits for signal generation
and amplification but these are easily amortized over
moderately long wires. Reducing the voltage swing on
global wires can result in a linear reduction in power
(we assume a voltage swing of 100 mV [14], [4]).
In addition, assuming a separate voltage source for
low-swing drivers will result in quadratic savings in
power (we assume a supply voltage of 0.4 V [14], [4]).
However, these power savings are accompanied by
some big caveats. Low swing wires suffer significantly
greater delays than repeated full-swing wires and thus
cannot be used over very long distances. There is also
a non-trivial cost associated with pipelining low-swing
wires. In spite of these problems, low-swing wiring is
appropriate in some settings and a few studies ([15],
[16], [17]) have considered them when connecting
cache banks to CPUs. This paper is the first to consider
the use of low-swing signalling within a cache bank to
address the power bottleneck posed by intra-bank wires
in large caches. We study several ways of utilizing
low-swing wires for this purpose (discussed next), and
consider their architectural ramifications in Sections 4
and 5.

3.2. Single Low-Swing Bus

A simple way to exploit differential low-swing sig
naling would be to build the H-tree entirely with a
single low-swing bus covering the bank. This cache
model provides excellent energy savings, coming at the
cost of very significant drops in performance. Such a
cache is first of all slow due to the higher latency of the
long low-swing bus. Because the wire is not pipelined,
accesses are essentially serial in nature, with the cache
cycle time becoming equal to the access time, leading
to drastically increased contention to access the bank.
Such a scheme is not worth considering except in

HIGH POWER SUB ARRAY

LOW SWING BUS

F igu re 3. Multi low-swing interconnect structure

niche cases where power is a far more important
consideration than performance.

3.3. Multiple Low-Swing Buses
To address the contention in non-pipelined low-

swing buses, we consider an alternate scheme with
multiple low-swing pairs in the bank, as shown in
Figure 3. There is one low-swing bus per row of
subarrays, connected to the controller by a vertical
bus. This seeks to essentially spread the contention
around, by throwing more resources at the problem.
Despite this increased cost and complexity, however,
we find that there is still a non-trivial performance
hit. Aggressively throwing even more resources at
the problem would simply lead to tremendous design
complexity and is not considered a feasible option.

3.4. Fully Pipelined Low-Swing H-Tree
Pipelining low-swing wires requires usage of dif

ferential transmitter and receiver circuitry at every
pipeline stage. These circuits consume non-trivial
amounts of energy; amortized over 1 mm of low-
swing wire, a single transmitter-receiver pair causes
a 58% energy overhead, calculated from values in
CACTI 6.0. Considering that the bus is likely to be
at least 128 bits wide, there is a significant energy
overhead to pipelining low-swing wires. Despite this,
we still see good energy savings due to the large
energy gap between full-swing and low-swing wires.
The bigger problem, however, is that the low-swing
bus is inherently slower than regular wires, and still
causes a significant IPC drop, especially in applications
sensitive to L2 latency.

3.5. Low-Swing H-Tree Trunk
As a novel alternative to the various schemes dis

cussed so far, we propose a non-uniform power access
structure as shown in Figure 4. We overlay a low-swing
bus over the central trunk of the H-tree. The rows of
subarrays adjacent to this central low-swing bus are
connected to the low-swing bus and not the H-tree.
They can therefore be accessed with greatly reduced

_ LOW SWING

LOW POWER SUBARRAY

Figure 4. Low-swing H-tree trunk

energy consumption. The remaining rows continue to
use the balanced H-tree network. The introduction of
this low-swing interconnect does not directly affect
the basic H-tree design in any significant way. A
simple switch connects either the low-swing or regular
interconnect to the cache controller depending on the
subarray being accessed. Limiting the low-swing pair
to just the central subarrays ensures that the access
delay o f the low-power region is the same as that fo r
the high-power regions connected by the default H-
tree. For example, in a 4 MB bank, the H-tree delay
as computed by CACTI is approximately 0.32 ns. The
width of the bank (and thus the length of the low-swing
bus along the center) is 1.53 mm which corresponds to
a low-swing wire delay of approximately 0.26 ns. We
can thus maintain uniform time access and the scheme
can be kept transparent to the cache controller and
the processor. Our experiments show that delay and
contention are low enough at this point on the design
spectrum to see little drop in overall IPC. The energy
savings obtained are only proportional to the percent
age of rows that are accessible by this low-swing bus,
which is typically quite small (l/16th in our case). We
believe, however, that the performance advantages of
this model make it worth considering very seriously.
We next propose simple architectural mechanisms to
increase the percentage of accesses hitting the low-
power region through dynamically reconfigurable data
placement in the cache.

4. Exploiting Non-Uniform Power Access

4.1. Smart Data Placement
Energy estimates from CACTI 6.0 show that an

access over the low-swing interconnect could be as
much as five to seven times cheaper (depending on
cache size and H-tree wire type) than an access over
the default H-tree. Despite this, however, since only a
small fraction of the total cache can be accessed via
the low-power wires, the total energy savings obtained
are marginal. It is clear that the default data placement
will not effectively exploit the low-power resources at

our disposal. We will need a smarter mechanism to
maximize the number of accesses occurring over the
low-swing pair.

The bank is split into ‘NDBL’ rows of subarrays,
only two central ones of which are accessible via
the low-power interconnect structure, thus typically
representing only a small fraction of the total cache
capacity. We propose assigning a fraction of the ways
of the cache to the low-power region and the remaining
ways form the high power region. Since this is the
last level cache, we assume a sequential tag and data
lookup scheme, as is the norm. It must be stressed
that in the interest of maintaining low-complexity,
we do not alter the design or access mechanism of
the tag array. On every access, the tags in all ways
are looked up in parallel to determine the location
of the required block. This would not affect energy
consumption significantly since the tag arrays typically
contribute less than a tenth of the total access energy
in a cache bank. The real savings are to be had by
optimizing data array accesses. A hit in a low-power
way is a “low-power access” with immediate energy
savings. A miss in the low-power way results in the
block being brought into the low-power region from
the high-power region or main memory. Assuming
good temporal reuse of data, the next time that block
is requested, it would hit in the low-power region,
saving energy. Having set up the above basics for low-
power cache access, we now describe two policies for
managing blocks in low and high power regions.

In the first policy, Swap, blocks are brought into
the low-power region on touch (either from the high-
power region or main memory), and the blocks they
replace are swapped out into the high power region,
evicting the LRU way there. The low-power ways
thus always represent the MRU ways for that set. On
a high-power hit, the block is moved into the low-
power region, and the block in the low-power region
is moved into the high-power region, thus earning the
Swap moniker. The most recently used ways (say, W)
of every set in the cache are in the low-power region.In
our experiments, W is 1, out of 16 ways. As already
stated, there is no change to the UCA latency, so any
change in performance is because of greater contention
for the single unpipelined low-swing bus. Cache miss
rates should also be the same as the baseline because
replacement continues to be governed by LRU.

The more a block is touched (re-used) per fetch into
the low-power region, the greater the energy savings.
To estimate the level of re-use to make this fetch worth
while, consider the following analytical estimates. For
now, we will assume that the energy of a high-power
access H is 7 times the energy of a low-power access L

(actual numbers are presented in Table 1). If a block
is touched N times before slipping out of the MRU
position, the conventional cache would have incurred
the energy cost of N high-powered accesses. With the
proposed scheme, there would have been N — l hits in
the low-power way and one swap at the start, resulting
in N + 1 low-power hits and 2 high-power hits. For
the proposed model to consume less energy than the
baseline,

N x H > 2 x H + (N + l) x L

N > 2.5

While this policy is effective, it is expensive in that
every low-power miss incurs a swap that requires two
low-power and two high-power accesses.

Now consider an alternative policy, referred to as
Duplicate. On an L2 miss, the block is fetched from
memory and placed in the low- and high-power region
(thus allowing duplicate copies of a block in L2). When
a block in the low-power region is evicted, it writes
into its copy in the high-power region if the block
is dirty. If the block is clean, it is simply dropped.
On a high-power hit, the block is copied into the
low-power region and the previously resident block is
evicted following the rules above. Thus, if the block
that is brought into the low-power region is written
to, its eviction results in a swap and therefore incurs
the cost of two high-power accesses and two low-
power accesses (just as in the Swap policy). On an
L2 miss, the block also incurs one additional high-
power access than the Swap policy. However, if the
block fetched into the low-power cache is typically
only read, on its eviction, it incurs one less high-
power and one less low-power access as the block
is quietly discarded. Even though this policy seems
initially wasteful because it maintains a duplicate copy
of the block, it ends up being more efficient than the
Swap policy because blocks are frequently read-only
and having the duplicate copy means that a new block
is simply fetched instead of a swap being required. Our
results show that the Duplicate policy consumes less
power than the Swap policy.

Forming equations similar to those developed for
Swap, the first fetch that brings the block into the low-
power way consumes H (reading from the high-power
region) plus L (writing into the low-power region). The
subsequent low-power hits consume L. A copy back
into the high-power region again costs one L (reading
from the low-power region) plus one H (writing into
the high-power region).

If the block is evicted clean at the end of the reuse
run,

Ndean X H > H + L + (N clean - 1 ̂ 1-J

If the block is dirty and has to be written back to the
high-power region on eviction,

Ndirty x H = H + L + (Ndirty — l)xL-\-H-\-L

N d e an >̂ 1.16; Ndirty ^ 2.6

If writes are not very frequent, Duplicate is clearly
better than Swap even though it initially appears space-
inefficient.

4.2. D ynam ic R econfiguration

The block placement scheme described in the previ
ous subsection gives excellent energy savings, provided
a modestly high number of accesses can be satisfied by
the low power way. Below a certain threshold hit rate,
we begin to see negative effects by bringing in blocks
to the low-power way on every touch. The extra energy
required to move blocks to the low-power region starts
to overshadow the energy savings obtained through the
low-swing pair when there is insufficient reuse before
eviction. It may be the case that certain phases of
the application show very poor data reuse in the low-
power region, leading to negative energy savings. To
handle application phases with low resue, we propose
a dynamic reconfiguration scheme where the cache, if
necessary, is able to switch off the placement scheme
described above. In this mode, the L2 cache simply
behaves like a conventional cache, and blocks are not
brought in to the low-power way(s) on access. To facil
itate such a mechanism, we would need to accurately
characterize the local behavior of the application at
any point in time. We simply maintain a saturating
counter that increments every time an access hits in
the low-power way and decrements on a miss. When
the counter value falls below a certain threshold, the
L2 starts to operate in the conventional manner. While
in this mode, the counter increments on a hit in the
most recently used (MRU) way and decrements on a
miss. When the counter value goes above a threshold,
the cache moves back into smart placement mode. We
empirically found that a skewed 5 bit counter going
between -15 and +15, with increments in steps of 2
and decrements in steps of 1, with the threshold value
being 0, effectively captured various reuse scenarios.
Note that there is a single global counter, not one per
cache line.

4.3. D iscussion

We now discuss some of the finer points of our
proposals and a few associated overheads. Since our
Duplicate scheme deviates slightly from the LRU
replacement policy, a minor fluctuation in miss rates is
observed. The duplicate entries also mean that capacity

is slightly lowered. In most cases, the cache behaves
like a 15-way cache (for our 16-way cache with 1 way
in the low-power region). This is, however, not always
true because the LRU policy may evict a high-power
cache line while its copy is still resident in the low-
power cache. This does not violate correctness as a
duplicate copy is not a requirement.

The look-up for this scheme is also complicated
slightly compared to baseline. If we are looking for
block A, the tag search may reveal that block A is in
way-6. This block must now be brought into the MRU
way-1. This means that block B which is currently
resident in way-1 and dirty has to be written back
into its high-power copy. The tags must again be
searched to locate the way that houses B’s duplicate
copy. Additional look-ups of the tags are not expensive,
considering that high-power accesses are the bottleneck
and this policy minimizes high-power accesses. The
presence of duplicate copies also does not lead to
coherence issues. If there are duplicate copies, there
will be a hit in way-1 and this automatically causes the
copy in the high-power way to be dis-regarded. When
the low-power block is evicted, it will over-write the
copy in the high-power way.

Also, under the smart line placement scheme, every
access to a non-MRU way forces a swap in L2. This
swap requires an access to a low and high power way,
unlike the baseline that would have simply required
one high power way access. However, we show with
our analytical models that the energy savings obtained
on every cache hit in the low-power way easily amor
tize this swap cost over as few as three accesses.

Our data placement and mapping schemes bear re
semblance to an L2/L3 hierarchy or a filter cache [18]
based hierarchy. However, we believe our approach is
orthogonal to the actual hierarchy and can continue to
be used for the largest last level cache structure. Fur
ther, we eliminate the need for interconnects between
multiple physical cache structures. Our experiments
show that our non-uniform scheme provides on average
25% more energy savings than a filter cache model
with similar capacities, i.e., it is more efficient to
access a portion of a large cache with low-swing wires
than it is to access a small cache with conventional
full-swing wiring.

The dynamic reconfiguration scheme is simply a
decision between bringing the most recently touched
block into the low-power way or not. It suffers prac
tically no additional performance or energy overheads
over the smart placement scheme. There is also little
hardware overhead since we only use a single five bit
saturating counter for the entire cache.

Model Latency
(cycles)

Access Energy
(nJ)

IPC

Baseline 5 0.185 1.456
Single Low-swing 12 0.016 1.181

Pipelined Low-swing 12 0.040 1.376
Multi Low-swing 8 0.015 1.337

Non-uniform model 5 0.014{LP) 1.430

Table 1. Access characteristics for a 4MB bank

5. R e su lts

5.1. M ethodology
All of our architectural analysis was carried out

using the SimpleScalar-3.0 [19] out-of-order simulator
for an 8-issue Alpha AXP with an ROB size of 80
and an LSQ size of 40. The baseline processor is
assumed to have separate 2-way, 1-cycle 32 KB I-
and D- L l caches with a unified 16-way 4 MB L2
cache. The L l and L2 have cache line sizes of 32
and 64 bytes respectively. Main memory latency is
assumed to be 300 cycles. The L2 cache is organized
as a 32x32 grid of equally sized subarrays, based
on Ndwl and Ndbl values obtained from CACTI 6.0.
The two central rows are accessible via the low-
swing pair, allowing 64 of the 1024 subarrays to be
low-power. The low-power region is therefore one-
sixteenth of the cache, i.e., one way. As a workload,
we employ the SPEC2k programs executed for a 100
million instruction window identified by the Simpoint
toolkit [20]. The caches are warmed up for 25 million
cycles before making measurements.

All delay and power calculations are for a 32nm
process technology and a clock frequency of 5 GHz,
as computed by CACTI 6.0. The baseline wiring
is assumed to be 10% delay penalty2 repeated full-
swing wires. We also show a sensitivity analysis for
other baseline wiring assumptions. We measure in
detail the cache access statistics in the low-power and
high-power ways, including hit rates and writebacks.
Bank access characteristics and IPC values for the
various models are shown in Table 1. Every high-
power access consumes the energy of one default H-
tree access plus the remaining components (bitlines,
wordlines, senseamps etc.). Every low-power access
consumes a reduced H-tree access energy with all other
components assumed to be identical to the default case.

A hit in the low-power way simply consumes one
low-power access energy. A hit in the high-power way
requires a swap, thus incurring the energy for two low-
power accesses and two high-power accesses. A cache

2. There are inherent tradeoffs between delay and power in the
design of repeated full-swing wires. Smaller and fewer repeaters
result in slow wires but decreased power consumption. More heav
ily repeated wires are fast but bum more power. A “ 10% wire”
would incur a 10% delay penalty from optimal for reduced power
consumption [21J.

miss requires the block to be placed in the low-power
way; the current resident in the low-power way is
copied to a high-power way; the LRU block is written
back to memory if dirty. Thus, up to two memory
accesses, two low-power accesses, and up to two high-
power accesses are performed.

5.2. A nalysis o f Low-Sw ing D esign Points

Figures 5 and 6 show the energy savings obtainable
and performance degradation suffered by the various
models that introduce low-swing wiring inside cache
banks. Building the H-tree entirely out of low-swing
wires provides more than 90% savings in energy
compared to the baseline full-swing bus case. However,
we see that this is accompanied by a 17% drop in
IPC due to the increased delay and contention of the
low-swing bus. By pipelining the low-swing bus with
additional transmitters and receivers, an energy penalty
of 12% is incurred, but IPC degradation is greatly
reduced. Though the average IPC drop relative to the
baseline in this case is just over 5%, there is a subset
of benchmarks (not shown separately due to space
constraints) that are sensitive to L2 latency and suffer
as much as 17% decrease in IPC due to increased
delay of the low-swing wires. The multiple low-swing
model gives mediocre energy savings with moderate
IPC degradation and does not represent an appealing
design point. The non-uniform power access model
displays IPC drops that are within error margins (just
over 1% on average, with 3% in the worst case) and
is the best from the performance view point. We note
that not all SPEC2k benchmarks have large enough
working set sizes to be significantly impacted by the
capacity reduction of roughly 1/16 in our scheme.
However, since even the largest program in SPEC2k
is impacted by just 3%, we expect performance trends
to be similar even for other larger benchmark suites.
The energy savings of our scheme by itself are very
marginal, typically less than 5%. When supported
by simple architectural schemes, however, we see a
considerable 42% energy saving, proving to be an
attractive choice if both energy and performance are
considered important. When we consider the overall
processor ED2 metric, the non-uniform access model
provides a 5% improvement on average over the base
line, with a best case improvement of up to 25% (this
assumes that the L2 cache contributes 20% of total
chip power). The pipelined low-swing model has the
next best ED2, yielding an average 3% improvement
over the baseline. Clearly, these two models represent
the most compelling design points, with the proposed
non-uniform power model having the best performance
and ED2 while incurring the cost of block movements.

SS 80

LOWSWING

F igure 5. Average Energy savings for different design
points

0

£ ~10
uQ.
- -15

"20

PIPELINED
LOW SWING

SCHEME
MULTI O
LOWSWING SINGLE LOW

SWING

F igure 6. Average IPC degradation for different design
points

Details of the block swap/duplication mechanisms are
discussed next.

5.3. A rch itec tu ra l M echanism s
Copying the most recently used block of every

set into the low-power way is an effective way of
maximizing the number of accesses hitting the low-
power region. As shown earlier, the Duplicate scheme
is more energy efficient and we pick this for all of
our analysis. We also see only marginal fluctuations in
miss rates and IPC when moving between Duplicate
and Swap. Figure 7 shows the energy savings obtained
by doing this kind of smart block placement. There
is a 42% saving on average, with the best benchmark
showing an 88% energy advantage. Table 2 details the
access statistics for all applications in the L2 cache.
We see that even with the moderate hit rates seen
in the low power way, energy savings are substantial.
This is explained simply by the huge energy difference

00 c
■> ro i/i
So
01 c

100
80
60
40
20

0
20

■ i
D I 1

■ f t ■ . i
i n i m i ■ n i
I I I X l I I I I I I l

n m m
1 1 1 1 1 1 1 i

i ■cun-jr tt<J ttio’+r ran v- c x ^ cuE ĈCPra'NM̂ p ££ra x i r a o jr a r a —
bra u ct.E m E E S S3

Benchmark s

F igure 7. Energy savings with smart data placement but
no dynamic reconfiguration

ooc
■>njio
>oo
<uc

100
80
60
40
20

0

■ 1
n 1

■ f t l a ■ ■ ■ ■ 1
i n i r i 11 ■ n i
1 1 1 m 1 1 1 1 1 1 1

n i n
1 1 1 1 1 m

c u -a ^ n a u c i o n f r r a -a ^ c t x cu

Benchmark s

F igure 8. Energy savings with dynamic reconfiguration

between low-power and high-power accesses (7x-10x).
The energy savings achieved are also proportional to
the reuse count per fetch N , since the copy cost is
amortized over multiple accesses and we begin to see
additional savings. For example, eon and gcc have
reuse counts greater than 35, and show energy savings
of over 80% :

There are a couple of applications that show an
increase in energy consumed when data is copied on
first-touch. These are programs that have poor hit rates
in the low-power way of the cache, typically under
40%, due to low reuse counts (lucas and art). Data
is repeatedly copied into the low-power way, only
to be thrown out without being reused sufficiently to
amortize the cost of the copy. For example, lucas and
art have reuse counts less than 0.5, which means that
more often than not, blocks are brought into the low-
power way and evicted without reuse. Such blocks are
best left in the high-power way and accessed directly
from there.

Our dynamic reconfiguration scheme keeps track
of the application’s access patterns at run-time and
turns off block copying when required. Figure 8 shows
energy savings obtained in this case. We see that
the energy savings of applications that were already
benefiting from the smart placement scheme remain
practically untouched, while the previously negative
numbers are now positive, though relatively small. Our
experiments show that applications in the former class
remain in “copy-on-touch” mode upwards of 95% of
the time, whereas the latter are in this mode less than
30% of the time. This indicates that our simple counter
is effectively capturing the behavior of the application
in a small time window.

The energy savings obtained are clearly a function
of the capacity of the cache, since this determines the
baseline access energy and the percentage of accesses
that can be satisfied by the low-power way for a
given workload. As shown in Figure 9, the larger
the cache, the better the savings are, making this
scheme even more attractive as cache sizes increase.
We see that beyond a point, simply employing smart
data placement actually increases energy consumption
due to insufficient reuse. The dynamic reconfiguration

5

Benchmark L2 Accesses* LP Hits* LP Misses* LP to HP WrtBk ' LP Hit Rate (%) % Dirty Misses Avg Reuse Count
ararap 33.2 19.3 13.9 3.6 58.1 26.1 1.4
applu 24.0 12.8 11.2 0.5 53.4 4.9 1.2
apsi 18.7 13.4 5.3 2.1 71.8 40.6 2.5
art 172.2 54.7 117.5 31.2 31.7 26.6 0.5

bzip 23.3 12.0 11.2 2.3 51.7 20.8 1.1
crafty 13.4 12.2 1.3 0.1 90.7 10.5 9.7
eon 5.9 5.7 0.1 0.0 97.5 14.0 39.7

equake 83.8 55.1 28.7 3.8 65.7 13.2 1.9
fma3d 34.1 17.9 16.2 6.2 52.5 38.4 1.1
galgel 39.6 27.0 12.6 4.0 68.2 31.6 2.2

gap 5.7 4.1 1.6 1.4 71.7 84.9 2.5
gcc 57.7 46.4 11.3 9.0 80.5 80.1 4.1
gzip 31.2 30.4 0.8 0.4 97.4 49.4 36.7
lucas 70.8 19.5 51.4 20.1 27.5 39.1 0.4
racf 212.6 86.5 126.1 28.5 40.7 22.6 0.7

mesa 4.1 3.2 0.9 0.7 78.8 81.9 3.7
ragrid 28.4 16.8 11.7 2.7 59.0 22.9 1.4
parser 22.1 15.6 6.5 2.3 70.6 35.1 2.4
swim 74.4 51.5 22.8 9.6 69.3 42.1 2.3
twolf 40.8 24.8 16.0 5.7 60.7 35.6 1.6
vortex 11.6 9.2 2.4 0.3 79.3 11.1 3.8

vpr 36.3 18.2 18.2 6.5 50.0 35.7 1.0
wupwise 7.5 3.8 3.8 0.6 49.9 15.6 1.0

Table 2. Cache access statistics (LP - Low Power Way, HP - High Power Way, 'Access Counts x100,000)

cessing elements and cache subarrays in a reconfig-
urable environment. CACTI 6.0 [4], the latest version
of the popular cache modeling tool now incorporates
support for low-swing wiring inside the cache. Ho et
al. recently proposed a capacitively driven low-swing
wire design for high-speed and low-energy [22], There
have been numerous other proposals to reduce energy
consumption in caches. Flautner et al. [11] proposed
putting a subset of cache lines into a state-preserving
low-power drowsy mode based on cache activity. Agar-
wal et al. [23] utilize the concept of Gated-Ground
(NMOS transistor inserted between Ground line and
SRAM cell) to achieve reduction in leakage energy.
Yang et al. [24] propose an L0 instruction cache
before the Ll to achieve lower capacitance and thus
lower energy without affecting performance. Ishihara
et al. [25] advocate using non-uniformity in the number
of ways per set to achieve energy advantages. All of
the above schemes do little to reduce energy in the H-
tree, a major contributor to cache energy. Our H-tree
optimizations can work in tandem with all of these
schemes to reduce the power consumed in the wiring
connecting the cells.

7. C o n c lu s io n s

Future processors will accommodate large multi
megabyte caches. The energy consumed by large cache
banks will continue to be a growing problem, es
pecially as CPU cores become more power-efficient.
This paper isolates the H-tree within a bank as the
major energy bottleneck within a large cache. We study
various ways of introducing low-swing wires within
the cache to address this bottleneck. Using a pipelined

_ 60

•C 30> 30

$ 20 / 0
(.

a
a i

ent rf
Q

£ 0 -
UJ -10 V
5? -20
<

4096 1024 256
Cache Capacity (kB)

64

F igure 9. Sensitivity of energy savings to bank capacity

0)N >:= rere </)

0.5

0

I Global

10%

20%

I 30%
Benchmark *

F igure 10. Sensitivity of energy savings to baseline wire
type
scheme detects such situations and reverts to default
behavior in program phases with poor locality.

The savings are also a function of the kind of wiring
assumed for the default H-tree network. As the wires
pay more delay penalty, they are themselves cheaper
to operate in terms of energy, and the room for energy
improvement reduces. Figure 10 shows the results of
this sensitivity analysis, normalized to the 10% case.

6 . R e l a t e d W o r k

Low-swing wires are gaining popularity as energy
consumption becomes a major issue in electronics
design. The Smart Memories project ([15], [16], [17])
explored using a low-swing crossbar to connect pro

1 .5

1

low-swing bus for the entire H-tree provides the best
energy savings but can lead to as much as 17% drops
in IPC. We show that the use of a single low-swing
bus, providing low-power access to a small part of the
cache, gives the best energy-performance tradeoff. We
thus introduce the notion of non-uniform power access
within a cache bank. Since the low-power region is
a very small fraction of the total cache, architectural
mechanisms are required to boost its access frequency.
We advocate a policy that is based on MRU access and
block duplication within the L2. We see overall cache
energy reductions of 42% on average with just over
1% drop in IPC.

We believe that non-uniform power access (NUPA)
has much potential, just as non-uniform cache access
(NUCA) has opened up several opportunities in recent
years.

R e fe re n c e s

[1] C. McNairy and R. Bhatia, “Montecito: A Dual-Core,
Dual-Thread Itanium Processor,” IEEE Micro, vol.
25(2), March/April 2005.

[2] “First the Tick, Now the Tock: Next Generation Intel
Microarchitecture (Nehalem).” Intel Whitepaper. Tech.
Rep., 2008.

[31 C. Kim, D. Burger, and S. Keckler, “An Adaptive, Non
Uniform Cache Structure for Wire-Dominated On-Chip
Caches,” in Proceedings o f ASP LOS, 2002.

[41 N. Muralimanohar, R. Balasubramonian, and N. Jouppi,
“Optimizing NUCA Organizations and Wiring Alterna
tives for Large Caches with CACTI 6.0 ” in Proceed
ings o f MICRO, 2007.

[51 N. Muralimanohar and R. Balasubramonian, “Intercon
nect Design Considerations for Large NUCA Caches,”
in Proceedings o f ISCA, 2007.

[61 “CACTI: An Integrated Cache and Memory Access
Time, Cycle Time, Area, Leakage, and Dynamic Power
Model,” http://www.hpl.hp.com/research/cacti/.

[71 “High-k and Metal Gate Research,”
http://www.intel.com/technology/silicon/high-k.htm.

[81 S. Rusu, S. Tam, H. Muljono, D. Ayers, J. Chang,
B. Cherkauer, J. Stinson, J. Benoit, R. Varada, J. Leung,
R. Lim, and S. Vora, “A 65-nm Dual-Core Multi
threaded Xeon Processor With 16-MB L3 Cache,” IEEE
Journal o f Solid State Circuits, vol. 42, no. 1, pp. 17
25, January 2007.

[91 K. Zhang, U. Bhattacharya, Z. Chen, D. Murray,
N. Vallepalli, Y. Wang, B. Zheng, and M. Bohr, “A
SRAM Design on 65nm CMOS Technology with Inte
grated Leakage Reduction Scheme ” in Proceedings o f
VLSI, 2004.

[101 S. Heo, K. Barr, M. Hampton, and K. Asanovic, “Dy
namic Fine-Grain Leakage Reduction Using Leakage-
Biased Bitlines,” in Proceedings o f ISCA, 2002.

[I l l K. Flautner, N. Kim, S. Martin, D. Blaauw, and
T. Mudge, “Drowsy Caches: Simple Techniques for
Reducing Leakage Pow er” in Proceedings o f ISCA,
2002.

[121 S. Kaxiras, Z. Hu, and M. Martonosi, “Cache Decay:
Exploiting Generational Behavior to Reduce Cache
Leakage Power,” in Proceedings o f ISCA, 2001.

[131 S. Yang, M. Powell, B. Falsafi, K. Roy, and T. Vi-
jaykumar, “An Integrated Circuit/Architecture Ap
proach to Reducing Leakage in Deep Submicron High-
Performance I-Caches,” in Proceedings ofH PCA, 2001.

[141 R- Ho, “On-Chip Wires: Scaling and Efficiency,” Ph.D.
dissertation, Stanford University, August 2003.

[151 R- Ho, K. Mai, and M. Horowitz, “Efficient On-Chip
Global Interconnects,” in Proceedings o f VLSI, 2003.

[161 K. Mai, R. Ho, E. Alon, D. Liu, Y. Kim, D. Patil, and
M. Horowitz, “Architecture and Circuit Techniques for
a Reconfigurable Memory B lock” in Proceedings o f
ISSCC, 2004.

[171 K. Mai, T. Paaske, N. Jaysena, R. Ho, W. J. Dally, and
M. Horowitz, “Smart Memories: A Modular Reconfig
urable Architecture,” in Proceedings o f ISCA, 2000.

[181 J- Kin, M. Gupta, and W. H. Mangione-Smith, “The
Filter Cache: An Energy Efficient Memory Structure,”
in Proceedings o f MICRO, 1997.

[191 D- Burger and T. Austin, “The Simplescalar Toolset,
Version 2.0 ” University of Wisconsin-Madison, Tech.
Rep. TR-97-1342, June 1997.

[201 T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
“Automatically Characterizing Large Scale Program
Behavior,” in Proceedings o f ASPLOS, 2002.

[211 K. Banerjee and A. Mehrotra, “A Power-optimal Re
peater Insertion Methodology for Global Interconnects
in Nanometer Designs,” IEEE Transactions on Electron
Devices, vol. 49. no. 11. pp. 2001-2007. November
2002.

[221 R- Ho, T. Ono, F. Liu, R. Hopkins, A. Chow, J. Schauer,
and R. Drost, “High-speed and low-energy capacitively-
driven on-chip wires,” in Proceedings o f ISSCC, 2007.

[231 A. Agarwal, H. Li, and K.Roy, “DRG-Cache: A Data
Retention Gated-Ground Cache for Low Power,” in
Proceedings o f the 39th Conference on Design Automa
tion, June 2002.

[241 C.-L. Yang and C.-H. Lee, “HotSpot Cache: Joint
Temporal and Spatial Location Exploitation for I-cache
Energy Reduction,” in Proceedings o f ISLPED, 2004.

[251 T. Ishihara and F. Fallah, “A Non-Uniform Cache
Architecture for Low Power System Design,” in Pro
ceedings o f ISLPED, 2005.

http://www.hpl.hp.com/research/cacti/
http://www.intel.com/technology/silicon/high-k.htm

