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Abstract—In this paper, a personal niicronavigation system that 
uses high-resolution gait-corrected inertial measurement units is 
presented. The goal of this paper is to develop a navigation system 
that uses secondary inertial variables, such as velocity, to enable 
long-term precise navigation in the absence of Global Positioning 
System (GPS) and beacon signals. In this scheme, measured zero- 
velocity duration from the ground reaction sensors is used to 
reset the accumulated integration errors from accelerometers and 
gyroscopes in position calculation. With the described system, an 
average position error of 4 m is achieved at the end of half-hour 
walks.

Index Terms—Dead reckoning, inertial measurement, Kalman 
filter (KF), pedestrian navigation system, pressure sensor array.

I . I n t r o d u c t i o n

ARE developing a personal micronavigation system
▼ Y  that uses high-resolution gait-corrected inertial mea­

surement units (IMUs). The system combines a commercial 
off-the-shelf (COTS) IMU with a high-resolution thin flexible 
error-correcting biomechanical ground reaction sensor cluster 
(GRSC) that is connected to a handheld processing and read­
out unit. The final sensor parts, including the IMU and the 
GRSC, will be placed within the heel and at the sole of a 
personnel boot and wirelessly connected to a handheld unit, 
which will process the data in real time. In this approach, the
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Fig. 1. Stance phase in human bipedal locomotion. I n this phase, the foot is in 
contact with the ground. Only at specific times, during the midstance, the foot 
heel remains stationary (figure modified from |14 |).

IMU will measure inertial displacements, and the GRSC will 
independently measure dynamic ground forces, shear strains, 
and sole deformation associated with a ground locomotion gait. 
The high-resolution biomechanical GRSC data can be used to 
accurately detect periods of zero velocity. These zero-velocity 
points provide discrete zero-velocity corrections to the IMU 
that dramatically increase its effective positioning resolution.

Step-corrected (also known as dead reckoning) IMU and 
GPS navigation systems have been in existence for several 
years [1]—[12]; however, unlike our proposed approach, these 
systems detect the step impact shock with accelerometers that 
are placed away from the ground. This approximate detection 
technique typically results in a l%-2% positioning error. In 
our approach, we use a data-rich high-resolution GRSC that 
is placed very close to the point of heel-to-ground contact to 
provide detailed contact information to an IMU that is located 
in close proximity to the GRSC. We believe that this extra infor­
mation and the close mechanical (near rigid) relation between 
the velocity at the GRSC and IMU locations [13] are key to 
reach the high-resolution positioning improvements. Our goal 
with this unique sensor data fusion approach is to ultimately 
permit accurate navigation on any indoor or outdoor terrain, 
unassisted by external signals.

In human bipedal locomotion, the walking mode or gait 
consists of two separate phases [14], In the swing phase, the 
leg is off the ground. This period extends from the instant the 
toe leaves the ground until the heel strikes. In the stance phase 
(Fig. 1), the foot heel first contacts the ground, and then it rolls 
until the midstance is reached resulting in pivoting of the leg on 
the ankle (and the corresponding forward motion of the body). 
Beyond the midstance, detachment of the foot takes place 
through gradual rolling. It is evident that only during a fraction 
of the midstance the velocity of the heel is exactly zero [15].
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Fig. 2. Comparison of position calculations with and without ZUPT’ing. The 
user walks on a straight line headed toward northeast. The figure shows the 
position of the user with respect to time, where Easting refers to the eastward- 
measured distance, and Northing refers to the northward-measured distance. 
Foot-stepping positions are shown with horizontal grid lines. Dashed lines in 
the figure indicate the drifted position. Drifting errors build up in a few seconds 
without zero-velocity correction.

Hence, we propose to detect this time period veiy precisely 
with the GRSC. A high-density GRSC can detect very small 
changes in the stationary contact yielding very small errors in 
the velocity determination in the stance phase. Relating the 
velocity of the rolling contact to the heel velocity, where the 
IMU is located, can provide us to detect zero-velocity points.

Our initial design goals for the personal micronavigation 
system are as follows: 1) navigation accuracy below 10 m 
for half-hour walking; 2) velocity sensing bias per step below
4 mm/s; 3) maximum volume for the GRSC below 10 cm3; 
4) power consumption of the GRSC (including the transmission 
system) below 300 mW; and 5) a GRSC with at least ten 
sensor elements. If these design goals are met, the developed 
system will exceed the current state-of-the-art micronavigation 
systems.

The navigation accuracy goals were set relative to the state 
of the art, 45 m in one-half hour projected from a shorter 
walk [10]. The velocity sensing bias of 4 mm/s was chosen 
as the minimum detectable velocity threshold that could be 
verified experimentally. Based on this sensing bias, and the 
heel contact area as the sensing area, the minimum number of 
sensor elements was determined. The volume was chosen to fit 
the GRSC under the shoe insole. The power consumption of 
300 mW was chosen to enable selection from a wide spectrum 
of potential COTS GRSC technologies.

II. N a v ig a t io n  W i t h  t h e  IM U  a n d  Z U P T ' in g

The basic idea behind a gait-corrected navigation system is 
to use the walking stride to periodically reset the drifting IM U , 
thus dramatically reducing cumulative navigation errors. The 
correction occurs when the foot is on the ground, when all 
velocities and accelerations of the shoe are zero. Without this 
correction, even the smallest measurement errors, due to sensor 
drift or sensor noise, will amplify and cause drifting errors of a 
few meters in four to five steps. Fig. 2 compares the position 
that is calculated by integrating the acceleration twice with

zero-velocity updating (ZUPT'ing) during the stance period and 
the position that is calculated without any velocity updates.

The effectiveness of stance-based ZUPT'ing depends on the 
detection of zero velocity at the stance period. Most personal 
dead-reckoning (PDR) systems detect steps using a pedometer 
or an accelerometer and move the position estimate forward 
by the step length in the direction that is determined by a 
magnetic compass or a yaw gyroscope [6], [7], [16]-[18]. The 
sensors that are attached to the upper body detect motion from 
normal acceleration or phasing acceleration axes that exhibit 
cycles that are typical of a human's walking motion. The 
number of steps is counted in a pedometer system. The average 
step length is adjusted for the walking speed and then used 
to calculate the user's position. More sophisticated systems 
analyze the accelerometer signals to estimate step lengths. 
All of these systems require calibration to an individual user 
because everyone's gait has different acceleration profiles. An 
inertial navigation system embedded in a soldier's boot heel is 
described by Elwell [19], but no experimental validation was 
performed. Stirling et al, [20] describe an experiment using a 
prototype shoe-mounted sensor that measures stride length with 
accelerometers and direction with magnetometers. The system 
measures angular acceleration using pairs of accelerometers. 
The system stops integrating and resets the velocity before each 
step. Errors up to 20% of distance traveled were reported.

A more complex pedometer-like approach was introduced by 
Cho and Park [21 ]. Their system uses a two-axis accelerometer 
and a two-axis magnetometer located on a shoe. Step length is 
estimated from accelerometer readings that are passed through 
a neural net work, and a Kalman filter (KF) was used to reduce 
magnetic disturbances. Although their outdoor results are good, 
they could not filter the magnetic disturbances well indoors, 
which resulted in large errors. A fiducial-based position esti­
mation system was proposed by Saarinen et al, [22]. Ultrasonic 
sensors attached to boots were used to measure the length of 
every stride in real time. In straight-line walking experiments, 
the authors report an average and a maximum error of 1.3% and 
5.4%, respectively. Another fiducial-based approach introduced 
by Brand and Phillips [23] uses radio frequency phase changes 
between a reference signal that is located in a waist pack and 
the one coming from a transmitter that is located on each boot. 
This system's measurements are limited to 2-D environments 
and cannot detect altitude changes.

Recently, Ojeda and Borenstein [10] and Borenstein et al. 
[12] have developed a shoe-based navigation system that uses a 
small six-degree-of-freedom (6-DOF) IMU that is attached to a 
user's boot. The IMU provides rate-of-rotation and acceleration 
measurements that are used in real time to estimate the loca­
tion of the user relative to a known stalling point. To reduce 
the most significant errors of this IMU-based system, they 
used ZUPT'ing. With the ZUPT technique and related signal 
processing algorithms, the relative error of the system was 
about 2% of the distance traveled. In this typical PDR system, 
the error is independent of the gait or the speed of the user. Their 
PDR system works in 3-D environments, although errors in the 
^-direction are usually larger than 2% of the distance traveled. 
Feliz et al. [24] used an IMU and a GPS and barometer unit in 
their PDR system. They did short indoor and outdoor walks to
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test the system. Their best relative position loop-closing errors 
were around 2% for outdoor walks and 10% for indoor walks.

Many of the PDR devices attempt to perform the ZUPT’ing 
by detection of the contact of the foot with the ground. Most 
stance-based schemes in the literature equate zero-velocity 
detection to the impact of the heel when it hits the ground. 
The problem with this scheme is that the impact shock event 
only signals the beginning of the stance phase, which involves 
several subphases itself. Not all subphases have zero velocity. 
Zero velocity only occurs at some point around the midstance 
subphase, after all rolling contact of the foot with the ground 
has been reached. If the zero-velocity point is not accurately 
determined, the resulting ZUPT’ing scheme will have an in­
trinsic zero-velocity bias that will reduce its effectiveness. To 
accurately detect zero-velocity stance, it is necessary to utilize 
a sensor at the IMU location to record sufficient data detailing 
the nature of the contact with the ground. In this paper, we 
propose to use a GRSC that is placed in close proximity to the 
IMU location to more accurately estimate the periods of zero 
velocity, improving ZUPT’ing and reducing the position error.

For initial system development, a COTS IMU and a high- 
resolution GRSC were connected to a laptop that served as 
a data acquisition and integration component of the system. 
The collected data were processed offline. The ultimate goal 
is to replace the laptop with a more portable handheld device 
like a personal digital assistant that is capable of real-time data 
processing. In the following, each of the sensors that are used in 
the system and their integration approach is explained in detail.

III. IMU

We used an InterSense InertiaCube3 module that integrates 
two two-axis accelerometers, three single-axis gyroscopes, 
and a three-axis magnetometer compass within a low vol­
ume (2C.2 x 39.2 x 14.8 mm3), which can fit within the heel. 
This IMU module is temperature-compensated producing a 
lower error bias than those of other COTS IMUs. InterSense 
[25] has developed one of the most sophisticated extended 
KF schemes for micronavigation. InertiaCube3 combines the 
aforementioned sensing elements with an integrated Kalman fil­
tering algorithm. The unit can provide orientation and gravity- 
compensated acceleration information aligned with the Earth’s 
magnetic north. InertiaCube3 can measure accelerations up to 
±6 g. Prior to shipment, the IMU performance was verified to 
specifications using a rate table. No additional calibration for 
individual IMU components was necessary prior to use.

The choice of the IMU module was primarily dictated by 
the size to be able to fit the unit inside the heel of the shoe. 
The IMU incorporated a sensor data fusion algorithm that 
helped speed up the initial sensor integration. However, this in­
creased the unit cost. With technology maturation and success­
ful commercialization, we anticipate unit cost to substantially 
decrease.

IV. P r e s s u r e  S e n s o r

In our walk experiments, we used a COTS pressure sensor 
array, i.e., DigiTacts II Array Tactile sensors manufactured by

Fig. 3. Propagation o f a pressure contour created by the heel.

Fig. 4. Pressure contour velocities for a stance period.

Pressure Profile Systems, as our biomechanical GRSC sensor. 
DigiTacts II sensors have 24 sensing elements with a sensing 
area of 82.3 x 45.1 mm2. These sensors use a capacitance- 
based sensing scheme that can detect pressures up to 140 kPa. 
The GRSC incorporated an I2C to a Universal Serial Bus 
converter that could be directly interfaced to a PC. The overall 
power consumption of the GRSC was 20 mW (3.3 V/6 mA). 
The GRSC was a custom-built unit that was calibrated prior to 
shipment.

Pressure sensor arrays can be used to detect pressure con­
tours that are generated by the heel if the sensor is placed 
between the heel of the shoe and the shoe insole. One can find 
the centroid velocity of the pressure contours (Fig. 3) as

-v a  ^  dr(0,t) r(0,t  +  At) — r(0,t) _  
v(&,t) =  — ^ —  * v «  —----------—----- ------* r  (1)dt

2tt

o

A t

(2)

where v is the velocity of a point on the contour, r  is the 
radius of the contour point, r  is the unit vector that lies on the 
line between the center of the contour and the contour point, 
and vcntr is the centroid velocity of the contour. Fig. 4 shows 
the velocities of pressure contours of the heel, i.e., 20-70 kPa 
during a typical stance phase. The contour velocity can be used 
to detect the zero velocity of the shoe. We can assume that the 
shoe, and the IMU, is at rest when the centroid velocity is below 
a velocity threshold, i.e..

k ’c n l r l l  "j: r t h rs li  • (3)
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Pressure
Sensor

Fig. 5. Boot sensors: A boot with the pressure sensor inserted in (he insole is 
shown. The IMU is externally located on the heel attached to an optical marker 
tool frame. The position and the orientation of the IMU are captured using the 
3-D optical motion tracker system.

Fig. 6. Pressure contours overlaid on the heel portion o f (he pressure sensor 
insole.

This zero-velocity information can be used in the ZUPT’ing 
scheme to reduce the drift in the IMU measurements.

To verify that pressure sensor arrays can be used to detect 
zero velocities of the heel, we conducted experiments using an 
external sensor in addition to the IMU and the biomechanical 
sensor. A 3-D optical motion capture system, i.e.. Eagle Digital 
RealTime System from Motion Analysis Corporation [26], was 
used as the external sensor. This sensor can provide 6-DOF 
position and orientation information with submillimeter root- 
mean-square accuracy using optical markers. The calibration of 
the system was performed using the procedure that is specified 
by the manufacturer immediately prior to data acquisition. 
Optical markers and an IMU were placed on a plate that was 
attached to the heel of a combat boot (Fig. 5). An insole-shaped 
pressure sensor, i.e.. Novel Pedar Pressure Sensor System [27], 
was placed in the boot as the biomechanical sensor. This sensor 
has 99 sensing elements. We used 54 of the 99 elements that 
are located in the heel portion of the sensor (Fig. 6). Using all 
these sensors, walk data from each of the sensors were captured, 
and calculated velocity outputs were compared. Fig. 7 shows 
the velocity measurements from the three sensors: a boot’s

Boot and heel velocities in the walking direction

j____ ,____ ,____ ,___>/_____: : : : ____
9.8 10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 

Time [s]

Fig. 7. Velocity measurements from the optical motion capture system, the 
IMU. and the pressure sensor array during a stance period. The minimum 
detectable velocity sensing bias goal is 4 mm/s.

Fig. 8. Integration with the ZU PT’ing scheme followed to calculate the 
position from the IMU and pressure sensor outputs.

heel velocity along the walking direction, i.e., vx , from the 
optical motion capture system: the angular velocity in the pitch1 
rotation, i.e., u;pitch, from the IMU: and the pressure contour 
centroid velocity of the heel, i.e., t'c„tr, from the pressure sys­
tem. This figure shows that the minimum detectable velocity of 
the boot can be observed from the pressure contour velocity of 
the heel, i.e., vclltr- This provides additional and more accurate 
zero-velocity detection, independent of the measurements from 
the IMU. The optical sensor was not used in the calibration of 
the overall system, which is described in the latter parts of this 
paper.

V. P o s i t i o n  C a l c u l a t i o n  F r o m  t h l  S l n s o r s

The sensor data fusion scheme that we followed to inte­
grate acceleration is given in Fig. 8. First, acceleration and 
orientation information, which is represented in the navigation 
coordinate frame,2 was retrieved from the IMU. Next, a KF 
[29] is employed to find acceleration biases. This estimation is 
performed in the sensor’s body coordinate frame, and then the 
resultant biases are transformed to the world coordinate frame. 
Bias-compensated acceleration from the IMU and zero-velocity 
points from the pressure sensor array are used in the integration

1 Pitch is the measure o f the rotation to which the boot’s nose tilts up or down 
relative to its heel.

2A navigation coordinate frame or miv frame (also known as a spatial 
coordinate frame or a world coordinate frame) is the name that was used by 
the IMU manufacturer, which is the locally level geographic frame with its 
x-axis pointing north, y -axis pointing east, and ;-ax is pointing down [28J.
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via ZUPT'ing to calculate the position of the user. Finally, 
a calibration is applied to correct the drifts in the calculated 
position. This calibration is used to correct future collected 
walk data.

In the following, the steps of this position calculation process 
are explained in detail.

A. Acceleration Bias Compensation

The IMU software provides gravity-compensated acceler­
ation in the navigation coordinate frame, i.e., a nav, and the 
matrix that defines the rotation between navigation and body 
coordinate frames, i.e., R „ b -  Gravity-compensated accelera­
tion in the sensor body coordinates, i.e., «body, can be cal­
culated as

a body[A:] =  R i;,J[A:]a”av[A:].

d_
dt

Xg 0 r X g 0
Xg 0 0^ X g

+ I

where

_,navab

..bodv bodv
h  ' '

..bodv

[0]z +  [0]'U +  [0]u’ 

A B B ,

0.01

- 0.01

- 0.02

KF Bias output for IMU’s Gravity-compensated Accelerometer Data

9  -0.03

.2 - 0.02

ro -0.04

-0.06

I— x|

0 1 2 3 4 5 
Time [min]

I— yi

Time [min]

(4 ) Fig- 9- Kalman filter bias output for the IMU’s acceleration outputs.

Dynamics of the IMU are governed by the following equa­
tion of motion:

and using (7), the output equation during the measurement 
update (where abody =  0) is

..bodv

(5)

(6)

2/2
..bodv (9 )

c

Here, x s is the sensor position that is measured in the navigation 
frame, a'™N is the measured acceleration in the navigation 
frame, aj,’av is the acceleration bias in the navigation frame, 
a'(’av is the zero-mean noise acceleration in the navigation 
frame, and «"av is the actual acceleration that is represented 
in the navigation frame that exists on the heel.

We fine-tuned the IMU measurements via a bias estimator. 
KF formulation from [29] is used to drive the estimator equa­
tions.

During the zero-velocity region of the stance period, i.e., 
x s =  0, the actual acceleration of the IMU is zero, i.e., a"av =  
0. Then, from (6), we can write the following measurement 
equality in the body coordinates:

For the discrete equivalent of the dynamic plant

z[k +  1] =  Fz[k] +  Gu[Jfc] +  Gr'u,’[A'] 

with measurements

y[k] =  H z [*] +  v{k]

the following equations can be used to estimate the ac­
celeration bias in the body coordinates during zero-velocity 
periods— measurement update (during the zero-velocity region 
of the stance period):

HM[A:]

(7)

Consider a dynamic plant

z =  A z +  B-u +  BjU’

with measurements

y =  C z  +  v

where the process noise u: and the measurement noise v are 
random sequences with zero means and have covariances S„, 
and S t,, respectively.

Let z =  aj)x,dy. Assuming a constant bias, i.e., z =  0, we can 
rewrite the state-space equations as

z[A:] =  z[A:] +P[A:]HTS ; 1 ( - a * ,dy[A:] -  (Hz[A:])) 

where

P[A:] =  M[A:] -  M[A:]HT (HM[A:]HT +  S t # 

model update (time update):

z[A: +  l] =Fz[A :]+ G abfdy[A:]

M[A: +  1] =FP[A:]Ft +  G iE ,0G j\

One-hour-long motionless sensor data were collected to es­
timate the covariances and S t„ so that w  and v would 
approximately be white.

Finally, the estimated bias a'bx>dy is transformed to be repre­
sented in the navigation coordinate frame and then subtracted 
from the measured acceleration to get the actual acceleration in 
the navigation frame, as given by

R , i i - l r t b o d y [frl ■nbI#! * (10)

(8)
The output of the KF is plotted in Fig. 9. With this extra 

level of filtering, the final position error was decreased by about 
5%-10% in most of our tests. Positions that are calculated

I
V

I

I
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Fig. 10. Comparison of two positions calculated from measured and actual 
accelerations using the ZUPT’ing scheme. Easting refers to the movement 
toward the east, and Northing refers to the movement toward the north.

Fig. 12. Linear fits are shown for the steps during the calibration walk. The 
average slope of the linear fits was used to correct the deviation in the future 
data. Easting refers to the movement toward the east, and Northing refers to the 
movement toward the north.

Fig. 11. Calibration step points around the square calibration loop.

from measured and actual (bias compensated) accelerations are 
compared in Fig. 10. For the case shown in this figure, the loop- 
closing error was decreased by 26%.

R. Calibration

In initial loop-closing tests, we realized that our position 
results have drifts toward a fixed direction. We believe that 
this is due to an error in the IMU's internal gravity com­
pensation algorithm. To cancel this random drift effect, we 
developed a calibration scheme that was applied each time that 
we performed an experiment. We marked 40 points around an
11.7-m/edge square in the field such that the user can walk on 
these marked step points. Walking with uniform steps, the user 
completed four to six laps (Fig. 11) around the square. Using 
these initial data, 40 lines were fitted through the position of the 
same step points (Fig. 12). An average slope was determined 
from the linear fits, and the slope was used to correct the 
deviation in the future collected data. A developed calibration 
scheme was found to be user-independent but depended on the 
sensors that were used.

C. Walk Experiments

We performed loop-closing half-hour walks to test our sys­
tem. The procedure that we followed is depicted in Fig. 13. 
First, we performed a 5-min short walk to be used in the

Fig. 13. Procedure for loop-closing half-hour walks. 1) Short walk around a 
square (11.7 m/edge) for 5 min. 2) Longer half-hour walks around the same 
square as a short walk or a random path (paths are shown for illustrative 
purposes only).

calibration process described in the previous section. Next, we 
performed longer half-hour walks ending at the starting point to 
calculate the loop-closing error for each walk.

The field where we performed our walk tests is a sports 
field with a reasonably flat surface, and we are assuming that 
the person is walking on a horizontal surface. Therefore, the 
position errors reported in this paper are the Euclidean norm of 
the 2-D errors. We have conducted six half-hour loop-closing 
experiments; the subject first walked along the square-shaped 
path for about 5 min for the calibration. Then, we collected 
additional half-hour walk data either around the same square 
as the calibration walk or a random path in the field.

D. Walk Results

Figs. 14 and 15 show two of the walk results. “Position Er­
ror” is calculated by integrating the measured acceleration a m
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Overhead View of Position Calculated from IMU Data (w/ZUPT’ing)

Calibrated Position. 
Error = 104 cm 
Position
Error = 1665 cm 

0  Start
■ End (Calibrated)
A End _______ |

20 25
Easting [m]

Fig. 14. Half-hour square loop walk results. Position is calculated by integrat­
ing the measured acceleration am  with ZUPT’ing, and Calibrated Position is 
calculated from integrated actual acceleration aa with ZUPT’ing followed by 
the calibration. Loop-closing error is 1.04 m (0.098%). Easting refers to the 
movement toward the east, and Northing refers to the movement toward the 
north.

Overhead View of Position Calculated from IMU Data (w/ZUPT’ing)

60

50

40

^  30
COc
f  20
oz

10

0

-10

-2 0 ______________________________________________________________
-20 -10 0 10 20 30 40 50 60 70 

Easting [m]

Fig. 15. Half-hour random walk results. Position is calculated by integrating 
the measured acceleration am  with ZUPT’ing, and Calibrated Position is 
calculated from integrated actual acceleration aa with ZUPT’ing followed by 
the calibration. Loop-closing error is 1.45 m (0.078%). Easting refers to the 
movement toward the east, and Northing refers to the movement toward the 
north.

with ZUPT’ing, and “Calibrated Position Error” is calculated 
from integrated actual acceleration aa with ZUPT’ing followed 
by the calibration. Fig. 14 shows a walk experiment where 
the user followed the square loop for the whole experiment. 
Loop-closing error for this experiment is 1.04 m (0.098%). This 
result shows the effectiveness of the calibration process that 
was performed. Fig. 15 shows a calibration walk followed by
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Fig. 16. Half-hour random walk results. Loop-closing error is 1.45 m 
(0.078%) for ZUPT’ing with the PPS pressure sensor array’s zero-velocity 
points and 3.89 m (0.21%) for ZU PT’ing with the gyroscope’s zero-velocity 
points. Easting refers to the movement toward the east, and Northing refers to 
the movement toward the north.

TABLE I 
E x p e r i m e n t a l  R e s u l t s

Exp
No

Distance [m] Gyroscope [m] Pressure Sensor [m]

1 987 1.97 (0.20%) 2.96 (0.30%)

2 656 4.98 (0.76%) 6.14 (0.94%)

3 930 6.45 (0.69%) 4.90 (0.53%)

4 1056 2.52 (0.24%) 1.04 (0.098%)

5 1848 3.89 (0.21%) 1.45 (0.078%)

6 1811 9.39 (0.52%) 9.33 (0.52%)

M ean 1215 4 .87± 2 .75  (0.40%) 4 .30± 3 .15  (0.35%)

Same ZU PT’ing and calibration techniques are applied to calculate 
loop-closing position errors (and percent relative errors) using zero-velocity 

points provided from the two sensors.

a random walk experiment in the field. Loop-closing error for 
this experiment is 1.45 m (0.078%).

The average path length walked during half-hour walks was 
1215 m (this is in addition to an average of 235-m calibration 
walks). We have conducted six walk experiments, and the loop- 
closing errors have a mean of 4.30 db 3.15 m (mean db standard 
deviation), which makes the average relative error 0.35%.

It is also possible to get the zero-velocity information from 
the IMU’s integrated accelerometer or gyroscope. We compared 
the position results obtained with ZUPT’ing using zero-velocity 
points provided from the IMU and those of the pressure sensor 
array. In our tests, we found that the IMU’s gyroscope can be 
used to detect zero-velocity points; therefore, angular velocity 
was used to detect the zero-velocity of the user. In Fig. 16, two 
walk paths that are calculated using the zero-velocity points of 
the pressure sensor and the gyroscope are shown. The same 
ZUPT’ing and calibration techniques are applied. For the walk

0  Start
ZUPT’ing with gyroscope 
Error = 389 cm 

A End (gyroscope)
__ ZUPT’ing with pressure array

Error = 145 cm 
■ End (pressure sensor array)
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TABLE II 
D e s ig n  G o a l s  a n d  M e a s u r e d  R e s u l t s

System Metric State of the art Goal Results
Navigation accuracy for 1/ 2  hour walk [m] 45 < 10 4.30±3.15
Zero-velocity sensing bias per step [mm/s] 28 < 4 4 (imaging limited)
Maximum volume for velocity sensor alone [cm3] 125 < 10 5
Power consumption of the velocity sensor [mW] 2000 < 300 20
Number of GRSC sensor elements 10 > 10 (COTS) 24 (COTS)

shown in the figure, the pressure sensor’s zero-velocity points 
provide two times better accuracy than the gyroscope’s zero- 
velocity points.

If the gyroscope’s zero-velocity points were used in 
ZUPT’ing instead of those of the pressure sensor, the mean 
loop-closing error for all the half-hour walks would be 4.87 db 
2.75 m. The experimental results are summarized in Table I. 
When the two means are compared, an average of 12% im­
provement in the end-position accuracy was obtained with the 
use of a biomechanical sensor in the developed micronavigation 
system. Although the difference between these two data sets 
is not statistically significant, we believe that with more data 
points, statistical significance can be shown.

VI. Conclusion

In this paper, we have presented a personal micronavigation 
system that uses inertial measurements from an IMU and zero- 
velocity measurements from a GRSC. Our design goals, spec­
ifications from state of the art, and results from the developed 
system are given in Table II. All of the design goals have been 
achieved. Only the zero-velocity sensing bias goal has been 
reached indirectly. That is due to the placement of the pressure 
sensor array in the shoe. The closer the sensor is to the ground, 
the better the detection of zero-velocity regions gets. Although 
the pressure sensor array in our setup has been placed under 
the insole of the shoe, we have been able to effectively observe 
the zero-velocity points using pressure contour velocities. Also, 
we have assumed acceleration bias to be invariable, but such a 
scheme can also adapt to slowly drifting bias values due to the 
nature of the KF.

Using a higher density pressure sensor array is a possi­
ble way to further improve the system. As the number of 
the pressure sensor elements increases, the resolution of the 
pressure contours increases, and with that, the minimum de­
tectable velocity becomes closer to zero. This would improve 
the performance of ZUPT’ing. We also would like to note that, 
in this paper, only the loop-closing errors have been used to 
verify the system accuracy. A differential GPS (DGPS) could 
be used to measure the accuracy of the system throughout 
the trajectory. Our straight-walk and around-the-square-loop 
experiments have shown that we did not have any other form 
of error that would not be shown by the loop-closure check, but 
would be visible in the DGPS data.

Finally, our walking tests have been carried out on the 
surfaces that provided uniform foot reaction at all times. Ad­
ditional testing of the pressure sensor array and algorithm

development is necessary for surfaces such as gravel, rocks, 
sand, mud, and snow. This is beyond the scope of this paper 
at this stage of development.
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