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ABSTRACT

The inhomogeneous Laplace (Poisson) equation with internal Dirich- 
let boundary conditions has recently appeared in several applica
tions to image processing and analysis. Although these approaches 
have demonstrated quality results, the computational burden of so
lution demands an efficient solver. Design of an efficient multi
grid solver is difficult for these problems due to unpredictable 
inhomogeneity in the equation coefficients and internal Dirich- 
let conditions with arbitrary location and value. We present a 
geometric multigrid approach to solving these systems designed 
around weighted prolongation/restriction operators and an appro
priate system coarsening. This approach is compared against a 
modified incomplete Cholesky conjugate gradient solver for a range 
of image sizes. We note that this approach applies equally well to 
the anisotropic diffusion problem and offers an alternative method 
to the classic multigrid approach of Acton [1].

1. INTRODUCTION

The solution of the inhomogeneous Laplace (Poisson) equa
tion with internal Dirichlet boundary conditions has recently 
appeared in several applications, ranging from image seg
mentation [2, 3] to image filtering [2] and image coloriza- 
tion [4]. Although these algorithms are framed in a discrete 
(graph) setting, they have been almost exclusively employed 
in a rectilinear coordinate system, resulting in the use of 
a (widely) banded Laplacian matrix. Unfortunately, tradi
tional fast Laplace/Poisson solvers are inappropriate due to 
the inhomogeneity of the PDE coefficients. This paper ad
dresses the problem of an efficient solution to the inhomo
geneous problem by introducing a weighted multigrid ap
proach [5].

A multigrid approach was applied by Acton [1] to the 
similar problem of anisotropic diffusion. His approach em
ployed a simple injection restriction operator and a tradi
tional interpolation prolongation method to prevent smooth
ing/restriction across edge boundaries. The formal relation
ship and relative advantages of our approach will be dis
cussed in Section 4.
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Fig. 1. Example of the multilabel segmentation obtained from the 
algorithm of [3]. Gray marks represent the result of user interac
tion (i.e., seeds) to indicate three objects (corpus callosum, cere
bellum and background). Thick black lines indicate the computed 
segment boundaries. Even though no prior knowledge is built into 
the algorithm to find a particular object, the algorithm correctly 
segments both objects, despite unusual shapes and textures.

The general application is this: Given knowledge at cer
tain pixels, termed seeds, of a certain quantity of interest 
(e.g., object labels in [3], grayscale intensities in [2] or col
ors in [4]), assign appropriate quantities to the unlabeled 
pixels that reflect the spatial structure of the image. The 
approach is then to set the seed pixels as Dirichlet bound
ary conditions (despite being internal to the domain), allow 
the pixel intensities to define the coefficients (weights) and 
then solve the Laplace equation (or Poisson equation, in the 
case of [2]) to find the quantities at the unlabeled nodes. As 
shown in [3], this approach respects weak (or absent) object 
boundaries, has provable robustness to noise and admits in
terpretation in the context of a random walk in the domain. 
Figure 1 shows segmentation results on a medical image 
obtained through application of the segmentation technique 
described in [3].
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2. PROBLEM

Since [3, 2,4] were formulated on a discrete space (due to a 
finite set of pixels and corresponding “diffusion constants”) 
we find the language of graph theory most suitable for expo
sition. A graph consists of a pair G =  (V, E )  with vertices 
(nodes) v € V  and edges e € E  C V  x V .  An edge, 
e, spanning two vertices, Vi and Vj, is denoted by ey. A 
weighted graph assigns a nonnegative value to each edge 
called a weight. The weight of an edge, ey , is denoted by 
w(eij) or Wij. The degree of a vertex is di =  w (eij)  f°r 
all edges ey incident on Vi. The following will assume that 
our graph is connected. In our context of 2D image process
ing, the graph nodes are taken as the image pixels, which lie 
on a rectangular, 4-connected, grid. Image intensities may 
by converted into edge weights (i.e., diffusion constants) 
through many different methods [6 ,4, I, 3], Although these 
values may be interpreted as diffusion constants, we will 
refer to them as weights throughout this manuscript.

Define the combinatorial Laplacian matrix [7] as

{
dVi if i =  j ,
—Wij if Vi and Vj are adjacent nodes. (I) 
0 otherwise.

where L ViVj is used to indicate that the matrix L  is indexed 
by vertices Vi and Vj.

Given a set of marked pixels (obtained interactively or 
automatically) to be set with Dirichlet boundary conditions, 
we may partition the vertices into two sets, Vm  (marked/seed 
pixels) and Vu (unmarked pixels) such that Vm  U Vu =  V  
and Vm  (~l Vu =  0- The Laplacian may be decomposed into 
the form

L m  B
B T Lrr ’ (2)

corresponding to the marked/unmarked sets. Fixing some 
of the nodes as “boundary” nodes results in their removal 
from the Laplacian matrix and incorporation into the right 
hand side (see [2]). Therefore, our purpose is to develop a 
multigrid technique that is addressed to solving the problem

Lu'Xu =  f , (3)
for xtj  in the presence of some right hand side, / ,  that de
pends on the application (cf,  [2, 4, 3]). Given the context 
of potential theory for these applications, we refer to the 
quantities x \j as the potentials for the unmarked set. The 
potentials of the marked set are assumed known and fixed 
(depending on the application).

We note that the anisotropic diffusion problem has a 
similar formulation with Vm  =  0 and Vu =  V .  In this 
context, the solution to the combinatorial diffusion (heat) 
equation [7] requires solution to

given some time, t, and initial distribution, Xq- By em
ploying a backward Euler approach to solving the diffusion 
equation, a linear system may be established with the form

I  J j  j x Xo, (5)

dx
dt

-Lx. (4)

which is equivalent to our system (3) with /  =  jXo  and a 
constant addition to the diagonal of L. Since there are typi
cally no Dirichlet boundary conditions in the formulation of 
diffusion, a multigrid approach to this problem is often less 
complicated. Although we will ignore the addition of a con
stant to the diagonal of our Laplacian operator, the multigrid 
methods developed in the present work have straightforward 
application to the problem of anisotropic diffusion.

3. MULTIGRID REVIEW

Multi grid methods have proven extremely successful at solv
ing the systems of equations that arise in the solution of 
PDEs with linear complexity [5], In general, there are two 
branches of the method — geometric and algebraic. Alge
braic multigrid approaches aspire to a “black box” method 
that can apply the technique to an arbitrary linear system. 
In contrast, geometric methods evolved out of attempts to 
solve PDEs on a rectilinear domain (especially elliptic and 
parabolic systems) where it may be assumed that coarsened 
versions of the operator also represent rectilinear grids. Al
though discrete in nature, and therefore equally defined on 
arbitrary graphs, application of the methods in [6 , 2, 4, 3] 
to standard images results in a Laplacian operator with a 
sparsity structure that represents a grid. For this reason, the 
method we develop is a geometric multigrid method.

A review of the steps involved in the multigrid method 
is referred to [5], The main issues that must be addressed in 
order to design a multigrid method are:

1. Specifying the restriction operator
2. Specifying the prolongation operator
3. Producing a coarsened operator

Section 4 outlines the design of these operators in the con
text of inhomogeneous Laplacian operators with internal 
boundary conditions. We note that design of these operators 
also specifies the nested dissection method and therefore al
lows the “full multigrid method”.

4. MULTIGRID DESIGN

Acton [1] specifies the restriction operator as simple injec
tion and the prolongation operator as “traditional interpo
lation”. These operators may work well enough for calcu
lating a few iterations of diffusion, but do not offer rapid 
convergence for the steady-state (i.e., elliptical) equations



(a) Coarse-level solution (b) Unweighted projection (c) Weighted projection

Fig. 2. Example of a ID  projection over an object boundary (represented by the vertical dashed line), (a) Current solution at coarse level, 
(b) Unweighted projection operator. Note that projected values do not respect object boundary, (c) Weighted projection operator. The 
weighted restriction operator is defined naturally as the adjoint of this projection operator.

addressed in the present work. One reason for this, we be
lieve, is that the weight structure of the image is not taken 
into account in the operator design. Secondly, there is solid 
theoretical foundation [5] for requiring that the prolongation 
and restriction operators be formally adjoint to each other. 
To review, two operators, A  and A*, are adjoint if

{Ax, y) =  (x ,A * y ) , (6)

is satisfied. For a finite, linear, operator represented by ma
trix A, the adjoint is given by A* =  A T [8]. We note that 
Acton’s prolongation/restriction operators are not adjoint to 
each other.

4.1. Prolongation

Our approach to designing the prolongation/restriction op
erators will be to define the prolongation operator (since this 
is intuitive) and then specify the restriction operator as its 
adjoint.

Bilinear interpolation is a standard prolongation oper
ator, often termed the “full weighting” operator. Unfortu
nately, in our case, this operator does not respect the edge 
weights and therefore may interpolate over object bound
aries. Therefore, we propose to use a weighted bilinear in
terpolation, with weights given by the edge weights. Specif
ically, the prolongation operator proceeds in three steps for 
values at the fine level, x°, and the coarse level, x 1. For ease 
of exposition, we use north/south/east/west notation to indi
cate the neighbors of a node and the corresponding weight 
between them.

x ° (2 i ,2 j )  =  ^ ( i ,  j )  Vi, j ,

(wEx% +  ^w ^ w ) 
w e  +  ®w ’

U)Nxg, +  +  U’S.Tg +  I B w l J ,

x  (2i +  1 , 2j) = 

x n(2i +  1 , 2j  +  1 ) =
k;n +

(7)

bilinear interpolation over the remaining fine-level pixels. 
We note that for a unity-weighted (i.e., homogeneous) do
main, this operator becomes standard bilinear interpolation.
In Figure 2 we show ID projection over an object boundary 
(represented by the vertical, dashed line) and the effects of 
applying standard and weighted projection.

4.2. Restriction

The restriction operator is defined as the adjoint of the weighted 
prolongation operator defined above. This adjoint may be 
written in four steps. For ease of exposition (and imple
mentation) we first modify the fine-level vector. In practice 
this would be done with a temporary vector.

x«(2i + l,2i) = A2i + l,2i) + ^  + ^ ,
cLe  cLw

x ° (2 i ,2 j  + l)  = x °{2 i ,2 j  + l)  + Wn X% WsX%
(In

+

x °(2 t ,2 j )  = x ° (2 t ,2 j )  +
W N X% W E X %

dN
+

d s
+

w s x°s  w w x ^  
d s  d w

^ ( h j )  = x ° (2 i ,2 j) .
(8)

The factor djy denotes the degree of the node to the 
north, etc. Effectively, one may think of this operator as 
reversing the projection. We note that a unity weighted lat
tice (i.e., homogeneous domain) would cause the weighted 
restriction operator above to be the standard “full-weighting 
restriction” given in [5].

4.3. Operator coarsening

The recommended operator coarsening, given an adjoint pro
longation/restriction operator is

Effectively, the first step injects the coarse-level solution to 
the fine grid. The subsequent equations describe a weighted L k+1 =  R L kP. (9)



Fig. 3. Comparison of the conjugate gradient method (with 
incomplete Cholesky preconditioner) to the proposed multigrid 
method for solving (3) when segmenting images [31. All images 
were square, with the length of one side given by the x-axis.

Unfortunately, such a construction of the coarsened oper
ator yields a matrix with a sparsity pattern that does not 
correspond to a lattice representation, resulting in a lower 
efficiency implementation of coarse operations and storage. 
Therefore, an effective heuristic to coarsen a fine-level L  
while maintaining the sparsity structure of a lattice is to treat 
the vertical/horizontal weights as two ( N  — 1) x ( N  — 1) 
images, and applying the restriction operator to determine 
the weights of the coarse lattice. We employ this proce
dure, using the weighted restriction/prolongation operators 
described above.

In the methods of [3,4] the marked nodes (i.e., removed 
nodes) must also be incorporated into the higher-level op
erator. This is done by considering a coarse-level node to 
be marked if any of its eight fine-level neighbors are also 
marked1.

5. VALIDATION AND CONCLUSION

We compared our multigrid approach for solving (3) (ob
tained from the segmentation problem of [3]) to a conjugate 
gradients method with a modified incomplete Cholesky pre
conditioner [9] on images of increasing size. Figure 3 plots [7] 
the relative speed for the two methods and demonstrates that 
the proposed multigrid approach has a linear relationship to 
data size, and outperforms the conjugate gradient approach 
by roughly an order of magnitude. Furthermore, the vari- [®] 
ability of computation time for the multigrid method was 
also much lower.

We have presented a multigrid method for solving prob
lems of the form (3) that have recently become important in

image processing applications. Furthermore, our approach 
offers an alternative to Acton’s [1] multigrid method for 
solving the anisotropic diffusion problem that employs ad
joint restriction and prolongation operators which respect 
the diffusion constants (edge weights). The main feature of 
these weighted operators is that they do not smooth or re
strict over object boundaries (represented by edge weights).

Future work includes extension of the multigrid method 
to a 3D lattice and use of an algebraic multigrid technique 
to design even more effective prolongation, restriction and 
coarsened operators.
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