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1 Introduction 

Scientists are now faced with an incredible volume of 
data to analyze. To successfully analyze and validate various 
hypotheses, it is necessary to pose several queries, correlate 
disparate data, and create insightful visualizations of both 
the simulated processes and observed phenomena. Data 
exploration through visualization requires scientists to go 
through several steps. In essence, they need to assemble 
complex workflows that consist of dataset selection, specifi
cation of series of operations that need to be applied to the 
data, and the creation of appropriate visual representations, 
before they can finally view and analyze the results. Often, 
insight comes from comparing the results of multiple visual
izations that are created during the data exploration process. 
For example, by applying a given visualization process to 
multiple datasets; by varying the values of simulation para
meters; or by applying different variations of a given process 
(e.g., which use different visualization algorithms) to a given 
dataset. Unfortunately, today this exploratory process is far 
from interactive and contains many error-prone and time
consuming tasks. 

Visualization systems such as Paraview1 and SCIRun2 al
low the interactive creation and manipulation of complex 
visualizations. These systems are based on the notion of 
dataflows, and they provide visual interfaces to produce vi
sualizations by assembling pipelines out of modules that are 
connected in a network. However, these systems have im
portant limitations which hamper their ability to support the 
data exploration process. First, there is no separation be
tween the definition of a dataflow and its instances. In order 
to execute a given dataflow with different parameters (e.g., 
different input files), users need to manually set these para
meters through a GUI-clearly this process does not scale 
to more than a few visualizations. And second, modifica
tions to parameters or to the definition of a dataflow are 
destructive-no change history is maintained. This places 
the burden on the scientist to first construct the visualiza
tion and then to remember the values and the exact dataflow 
configuration that led to a particular image. 

I http://www.paraview.org 
2http://software.sci .utah.edu/scirun.html 

At the University of Utah, we have started to build Vis
Trails, a visualization management system. VisTrails pro
vides a scientific workflow infrastructure which can be com
bined with existing visualization systems and libraries. A 
key feature that sets VisTrails apart from previous visualiza
tion as well as scientific workflow systems is the support for 
data exploration. By maintaining detailed provenance of the 
exploration process-both within and across different ver
sions of a dataflow-it allows scientists to easily navigate 
through the space of dataflows created for a given explo
ration task. In particular, this gives them the ability to return 
to previous versions of a dataflow and compare their results. 
In addition, in VisTrails there is a clear separation between 
a dataflow definition and its instances. A dataflow definition 
can be used as a template, and instantiated with different sets 
of parameters to generate several visualizations in a scalable 
fashion-allowing scientists to easily explore the parameter 
space for a dataflow. Finally, by representing the provenance 
information in a structured way, the system allows the visu
alization provenance to be queried and mined. 

Although the issue of provenance in the context of sci
entific workflows has received substantial attention recently, 
most works focus on data provenance, i.e., maintaining in
formation of how a given data product was generated [5]. 
This information has many uses, from purely informational 
to enabling the regeneration of the data product, possibly 
with different parameters. However, while solving a partic
ular problem, scientists often create several variations of a 
workflow in a trial-and-error process. These workflows may 
differ both in the parameter values used and in their spec
ifications. If only the provenance of individual data prod
ucts is maintained, useful information about the relationship 
among the workflows is lost. 

To the best of our knowledge, VisTrails is the first sys
tem to provide support for tracking workflow evolution. In 
this paper, we describe the provenance mechanism used in 
Vis Trails, which uniformly captures changes to parameter 
values as well as to workflow definitions. 

Outline. The rest of this paper is outlined as follows. In 
Section 2, we describe our motivating example. Section 3 
gives a brief overview of the VisTrails architecture. Our new 
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approach for tracking dataflow evolution is presented in Sec
tion 4. Although our focus is on dataflows for visualization, 
our ideas are applicable to general scientific workflows. We 
discuss this issue in Section 5. 

2 Motivating Example: EOFS 

Paradigms for modeling and visualization of complex 
ecosystems are changing quickly, creating enormous oppor
tunities for scientists and society. For instance, powerful 
and integrative modeling and visualization systems are at 
the core of Environmental Observation and Forecasting Sys
tems (EOFS), which seek to generate and deliver quantifi
ably reliable information about the environment at the right 
time and in the right form to the right users. As they ma
ture, EOFS are revolutionizing the way scientists share in
formation about the environment and represent an unprece
dented opportunity to break traditional information barriers 
between scientists and society at large [1]. However, the 
shift in modeling paradigms is placing EOFS modelers in 
an extremely challenging position, and at the risk of losing 
control of the quality of operational simulations. The prob
lem results from the breaking of traditional modeling cycles: 
tight production schedules, dictated by real-time forecasts 
and multi-decade simulation databases, lead even today to 
tens of complex runs being produced on a daily basis, re
sulting in thousands to tens of thousands of associated visu
alization products. 

As an example, Professor Antonio Baptista, the lead in
vestigator of the CORlE3 project prepares figures for pre
sentations showing results of simulations that he has de
signed. The component elements of his figures (whether 
static or animated) are generated over a few hours by a se
quence of scripts, activated by a different staff member in 
his group. To create the composite figure, Baptista has to 
request, bye-mail, information on which runs have been 
concluded. He then draws the composite figure for a par
ticular run in PowerPoint using cut-and-paste. This process 
is repeated for similar and complementary runs. Because 
element components are static and visually optimized for 
each run, cross-run synthesis often have scale mismatches 
that make interpretations difficult. 

The process followed by Baptista is both time consuming 
and error prone. Each of these visualizations is produced by 
custom-built scripts (or programs) manually constructed and 
maintained by several members of Baptista's staff. For in
stance, a CORlE visualization is often produced by running 
a sequence of VTK4 and custom visualization scripts over 
data produced by simulations. Exploring different configu
rations, for example, to compare the results of different ver
sions of a simulation code, different rendering algorithms, 
or alternative colormaps, requires the scripts to be modi
fied, and/or the creation of new scripts. Since there is no 

3http://www.ccalmr.ogi .edu/CORIE 
4http://www.vtk.org 

Figure 1. VisTrails Architecture. 

infrastructure to manage these scripts (and associated data), 
often, finding and running them are tasks that can only be 
performed by their creators. This is one of main reasons 
Baptista is not able to easily produce the visualizations he 
needs in the course of his explorations. Even for their cre
ators, it is hard to keep track of the correct versioning of 
scripts and data. Since these visualization products are gen
erated in an ad-hoc manner, data provenance is not captured 
in a persistent way. Usually, the figure caption and legends 
are all the metadata available for this composite visualiza
tion in the PowerPoint slide-making it hard, and some
times impossible, to reproduce the visualization. 

3 The VisTraiis System 

With VisTrails, we aim to give scientists a dramatically 
improved and simplified process to analyze and visualize 
large ensembles of simulations and observed phenomena. 
Vis Trails manages both the data and metadata associated 
with visualization products. The high-level architecture of 
the system is shown in Figure 1. Users create and edit 
dataflows using the Vistrail Builder user interface. The 
dataflow specifications are saved in the Vistrail Repository. 
Users may also interact with saved dataflows by invok
ing them through the Vistrail Server (e.g., through a Web
based interface) or by importing them into the Visualization 
Spreadsheet. Each cell in the spreadsheet represents a view 
that corresponds to a dataflow instance; users can modify 
the parameters of a dataflow as well as synchronize para
meters across different cells. Dataflow execution is con
trolled by the Vistrail Cache Manager, which keeps track 
of operations that are invoked and their respective parame
ters. Only new combinations of operations and parameters 
are requested from the Vistrail Player, which executes the 
operations by invoking the appropriate functions from the 
Visualization and Script APIs. The Player also interacts 
with the Optimizer module, which analyzes and optimizes 
the dataflow specifications. A log of the vis trail execution 
is kept in the Vistrail Log. The different components of the 
system are described below. Since our emphasis in this pa
per is on dataflow evolution and history management, we 
only sketch the main features of the system here, for further 
details see [2]. 
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(a) (b) 

Figure 2. The Vistrail Builder (a) and Vistrail Spreadsheet (b) showing the dataflow and visualization products of the CORlE data. 

Dataflow Specifications A key feature that distinguishes 
VisTrails from previous visualization systems is that it sep
arates the notion of a dataflow specification from its in
stances. A dataflow instance consists of a sequence of op
erations used to generate a visualization. This information 
serves both as a log of the steps followed to generate a 
visualization-a record of the visualization provenance
and as a recipe to automatically regenerate the visualization 
at a later time. The steps can be replayed exactly as they 
were first executed, and they can also be used as templates
they can be parameterized. For example, the visualization 
spreadsheet in Figure 2 illustrates a multi-view visualization 
of a single dataflow specification varying the time step para
meter. Operations in a vis trail dataflow include visualization 
operations (e.g., VTK calls); application-specific steps (e.g., 
invoking a simulation script); and general file manipulation 
functions (e.g., transferring files between servers). To han
dle the variability in the structure of different kinds of oper
ations, and to easily support the addition of new operations, 
we defined a flexible XML schema to represent the general 
dataflows. The schema captures all information required to 
re-execute a given dataflow. The schema stores information 
about individual modules in the dataflow (e.g., the function 
executed by the module, input and output parameters) and 
their connections-how outputs of a given module are con
nected to the input ports of another module. The XML rep
resentation for vis trail dataflows allows the reuse of standard 
XML tools and technologies. An important benefit of using 
an open, self-describing, specification is the ability to share 
(and publish) dataflows. 

Another benefit of using XML is that the dataflow spec
ification can be queried. Users can query a set of saved 
dataflows to locate a suitable one for the current task; query 
saved dataflow instances to locate anomalies documented 
in annotations of previously generated visualizations; locate 

data products and visualizations based on the operations ap
plied in a dataflow; cluster dataflows based on different cri
teria; etc. For example, an XQuery query could be posed by 
Professor Baptista to find a dataflow that provides a 3D visu
alization of the salinity at the Columbia River estuary (as in 
Figure 2) from a database of published dataflows. Once the 
dataflow is found, he could then apply the same dataflow 
to more current simulation results, or modify the dataflow 
to test an alternative hypothesis. With VisTrails, he has the 
ability to steer his own simulations. 

Caching, Analysis and Optimization Having a high-level 
specification allows the system to analyze and optimize 
datafiows. Executing a dataflow can take a long time, es
pecially if large datasets and complex visualization opera
tions are used. It is thus important to be able to analyze the 
specification and identify optimization opportunities. Pos
sible optimizations include, for example factoring out com
mon subexpressions that produce the same value; removing 
no-ops; identifying steps that can be executed in parallel; 
and identifying intermediate results that should be cached to 
minimize execution time. Although most of these optimiza
tion techniques are widely used in other areas, they have yet 
to be applied in dataflow-based visualization systems. 

In our current VisTrails prototype, one optimization we 
have implemented is memoization. VisTrails leverages the 
dataflow specification to identify and avoid redundant oper
ations. For complete details, see [2]. Caching is especially 
useful while exploring multiple visualizations. When varia
tions of the same dataflow need to be executed, substantial 
speedups can be obtained by caching the results of overlap
ping subsequences of the dataflows. 

Playing a Vistrail The Vis trail Player (VP) receives as in
put an XML file for a dataflow instance and executes it using 
the underlying Visualization or Script APIs. Information 
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<action parent""-54- l ime,,,,"SS" what",-addModule"> 
<object c8che="O" id=~8· name="vlkTextAetor"/> 

<laction> 

I 
<action parenl::"10S' time="11 " 

what="changeParameter"> 

<action parentz"SS" time","S6" whal::"addConneclion"> 
<coonectid=7'> 

<objecllnput desUd::"6" name="AddAclor2D" 
sourceld="5"/> $ <set funclion='SetTimeSlep' fUJlCtionld=' , " 

moduleld",'O" parameler="(unnamed)" 
parameterld='O' type::: 'int" value::"90"/> 

<laction> 

<lcoonecl> 
<laction> 

Figure 3. A snapshot of the VisTrails history management interface. Each node in the vistrail history tree represents a dataflow 
version. An edge between a parent and child nodes represents to a set of (change) actions applied to the parent to obtain the dataflow 
for the child node. The image and dataflow instance corresponding to the node labeled "Time Step 90" are shown on the right. 

pertinent to the execution of a particular dataflow instance is 
kept in the Vistrail Log (see Figure 1). There are many ben
efits from keeping this information, including: the ability to 
debug the application-e.g. , it is possible to check the re
sults of a dataflow using simulation data against sensor data; 
reduced cost of failures-if a visualization process fails, it 
can be restarted from the failure point. The latter is espe
cially useful for long running processes, as it may be very 
expensive and time-consuming to execute the whole process 
from scratch. Logging all the information associated with 
all dataflows may not be feasible. VisTrails provides an in
terface that lets users select which and how much informa
tion should be saved. 

Creating and Interacting with Vistrails The Vis trail 
Builder (VB) provides a graphical user interface for creating 
and editing dataflows (Figure 2(a)). It writes (and also reads) 
dataflows in the same XML format as the other components 
of the system. It shares the familiar nodes-and-connections 
paradigm with dataflow systems. To allow users to compare 
the results of multiple dataflows, we built a Visualization 
Spreadsheet (VS). The VS provides the user a set of separate 
visualization windows arranged in a tabular view. This lay
out makes efficient use of screen space, and the row/column 
groupings can conceptually help the user explore the visu
alization parameter space. The cells may execute different 
dataflows and they may also use different parameters for the 
same dataflow specification (see Figure 2(b)). To ensure ef
ficient execution, all cells share the same cache. Users can 
also synchronize different cells using the VS interface. 

4 Capturing Dataflow Evolution 

Vistrail: An Evolving Dataflow To provide full provenance 
of the visualization exploration process, we introduce the 
notion of a visualization trail-a vis trail. A vis trail captures 
the evolution of a dataflow-all the trial-and-error steps fol
lowed to construct a set of visualizations. A vistrail consists 
of a collections of dataflows-several versions of a dataflow 
and its instances. A vistrail allows scientists to explore visu-

alizations by returning to and modifying previous versions 
of a dataflow. 

An actual vistrail is depicted in Figure 3. Instead of stor
ing a set of related dataflows, we store the operations or ac
tions that are applied to the dataflows. A vistrail is essen
tially a tree in which each node corresponds to a version of 
a dataflow, and each edge between nodes P and C, where P is 
the parent of C, corresponds to one or more actions applied 
to P to obtain C. This is similar to the versioning mechanism 
used in DARCS5 . More formally, let DF be the domain of 
all possible dataflow instances, where 0 E DF is a special 
empty dataflow. Also, let x: DF --+ DF be a function that 
transforms a dataflow instance into another, and fjJ be the 
set of all such functions. A vistrail node corresponds to a 
dataflow constructed by a sequence of actions: 

vt = Xn 0 Xn - l 0 ... 0 Xl 00 

where each Xi E fjJ. 

An excerpt of the XML schema for a vis trail is shown 
in Figure 4.6 A visTrail has a unique id, a name, an 
optional annotation, and a set of actions. Each action is 
uniquely identified by a timestamp (@time), which corre
sponds to the time the action was executed. Since actions 
form a tree, an action also stores the timestamp of its parent 
(@parent). The different actions we have implemented in 
our current prototype are described below. To simplify the 
retrieval of particularly interesting versions, a vistrail node 
can optionally have a name (the optional attribute tag in 
the schema). 
Dataflow Change Operators. In the current VisTrails pro
totype, we implemented a set of operators that correspond 
to common actions applied in the exploratory process, in
cluding: adding or replacing a module, deleting a module, 
adding a connection between modules, and setting parame
ter values. We also have an import operator that adds a 
dataflow to an empty vistrail-this is useful for starting a 
new exploration process. 

5http://abridgegame.org/darcs 
6Due to space constraints, we only show subset of the schema and use 

a notation that is less verbose than XML Schema. 
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type VisTrail = 
visTrail [ @id, @name, Action*, annotation? ] 

type Action = 
action [ @parent, @time, tag?, annotation?, 

(AddModuleI DeleteModuleI ReplaceModuleI 
AddConnectionlDeleteConnection SetParameter)] 

Figure 4. Excerpt of the vistrail schema. 

This action-oriented provenance mechanism captures im
portant information about the exploration process, and it 
does so through a very simple tracking (and recording) of 
the steps followed by a user. Although quite simple and intu
itive, this mechanism has important benefits. Notably, it uni
fornuy captures both changes to dataflow instances (i.e., pa
rameter value changes) and to dataflow specifications (i.e., 
changes to modules and connections). 

In addition, the action-oriented model leads to a very nat
ural means to script dataflows. For example, to execute a 
given dataflow J over a set of n different parameter values, 
one just needs to apply a sequence of set parameter actions 
toJ: 
(setParameter(idn , valuen ) o .. . (setParameter(idl, valuel) 0 f) .. . ) 

Or to compare the results of different rendering algorithms, 
say Rl and R2, a bulk update can be applied that replaces all 
occurrences of Rl with R2 modules. 
User Interface. At any point in time, the scientist can 
choose to view the entire history of changes, or only the 
dataflows important enough to be given a name (i.e., the 
tagged nodes). The history tree in Figure 3 shows a set of 
changes to a dataflow that was used to generate the CORlE 
visualization products shown in Figure 2. In this case, a 
conunon dataflow was created from scratch to visualize the 
salinity in a small section of the estuary for all time steps. 
This common dataflow (tagged "With Text"), was then used 
to create four different dataflows that represent different 
time steps of the data and are shown separately in the spread
sheet. Note that in this figure, only tagged nodes are dis
played. Edges that hide untagged nodes are marked with 
three short perpendicular lines. We are currently investi
gating alternative structures and techniques to display the 
history tree. One issue with the current interface is that it 
does not convey the chronological order in which the ver
sions were created-the structure only shows the dependen
cies among the versions. Thus, it can be hard to identify the 
most current branch one has worked on. To aid the user in 
this task, we plan to use visual cues, e.g., to use different 
saturation levels to indicate the age of the various dataflows. 
In addition, a vistrail is often used in a collaborative setting, 
where several people can modify a given vis trail. For shared 
vistrails, it is also important to distinguish nodes created by 
different people, and we plan to use color to identify differ
ent users. 
Related Work. Kreuseler et al. [3] proposed a history 
mechanism for exploratory data mining. They use a tree
structure, similar to a vistrail, to represent the change his
tory, and describe how undo and redo operations can be cal
culated in this tree structure. They describe a theoretical 
framework that attempts to capture the complete state of a 

software system. In contrast, in our work we use a simpler 
model and only track the evolution of dataflows. This allows 
for the much simpler action-based provenance mechanism 
described above. 

5 Conclusion and Future Work 

In this paper, we proposed a novel provenance mecha
nism that unifornlly captures changes to parameters as well 
as to dataflow definitions. This mechanism has been im
plemented in Vis Trails, a visualization management system 
whose goal is to provide adequate infrastructure to support 
data exploration through visualization. Although our focus 
in the Vis Trails project has been on dataflows for visualiza
tion, the techniques we have developed are general and have 
been adopted in other domains. For example: the VisTrails 
cache management infrastructure was implemented in Ke
pler, a scientific workflow system [4]; and our provenance 
mechanism is being used in the Emulab testbed, to track re
visions of experiments 7 . 

An alpha release of VisTrails (available upon request) is 
currently being tested by a select group of domain scientists. 
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