
Fsimac: A Fault Simulator for Asynchronous Sequential Circuits

Susmita Sur-Kolayl, Marly Roncken2 , Ken Stevens2 , Parimal Pal Chaudhuri3 , and Rob Roy4

lIndian Statistical Institute, Calcutta 700035, India - ssk@isical.ac.in

2Intel Corporation, Santa Clara CA / Hillsboro OR, USA - mroncken@scdt.intel.com / kstevens@ichips.intel.com

3Bengal Engineering College, Howrah 711103, India, - ppc@ppc.becs.ac.in

4Mobilian Corporation, Hillsboro, OR, USA - robroy@technologist.com

Abstract

At very high frequencies, the major potential of asyn
chronous circuits is absence of clock skew and, through that,
better exploitation of relative timing relations. This paper
presents Fsimac, a gate-level fault simulator for stuck-at
and gate-delay faults in asynchronous sequential circuits.
Fsimac not only evaluates combinational logic and typi
cal asynchronous gates such as Muller C-elements, but also
complex domino gates, which are widely used in high-speed
designs. Our algorithm for detecting feedback loops is de
signed so as to minimize the iterations for simulating the un
folded circuit. We use min-max timing analysis to compute
the bounds on the signal delays. Stuck-atfaults are detected
by comparing logic values at the primary outputs against
the corresponding values in the fault-free design. For delay
faults, we additionally compare min-max time stamps for
primary output signals. Fault coverage reported by Fsimac
for pseudo-random tests generated by Cellular Automata
show some very good results, but also indicate test holes
for which more specific patterns are needed. We intend to
deploy Fsimac for designing more effective CA-BIST

1 Introduction

This research originated from the testability study on
RAPPID (Revolving Asynchronous Pentium®Processor
Instruction Decoder), an asynchronous IA32 instruction
length decoding and steering unit, developed at Intel to
demonstrate the potential of aggressive self-timed tech
niques for microprocessor design [14, 15, 13]. The testa
bility results were based on non-invasive Built-In Self Test
(BIST) using Cellular Automata (CA). The CA-BIST solu
tion was tuned to the RAPPID design, resulting in excellent
stuck-at fault coverage, and enabling us to analyze unde
tected and untestable faults. Our analysis showed that a
majority of the escapees changed the transition delays in
the domino gates, which for approximately 5% of the to-

1081-7735/00 $10.00 © 2000 IEEE
114

tal stuck-at faults could lead to catastrophic behavior [13].
The fault simulator Fsimac, reported here, focuses on both
stuck-at and gate-delay faults to fill this gap.

A basic technique to simulate sequential circuits is to un
fold the circuit either in time or in space, and simulate
the unfolded circuit. We use time-unfolding and assume a
fundamental mode of ope ration [16, 1] where signals at the
primary inputs (PIs) are allowed to change only after the
signals at the primary outputs (POs) have stabilized. For
synchronous sequential circuits, the time-frame boundaries
typically coincide with the clock boundaries. This is dif
ferent for asynchronous sequential circuits, where we need
to identify the boundaries separately so that we can use the
fundamental mode of operation on a frame-by-frame basis
until the PO signals stabilize. Identification of the frame
boundaries essentially involves identifying feedback loops.

Our feedback identification algorithm differs from tradi
tional methods used for instance by [7, 10, 9] for partial
scan selection, in that we take a breadth-first rather than a
depth-first search approach. The set of feedback cuts is gen
erally larger than the traditional minimum feedback vertex
set solutions but, as a pro, results in a lower (typically mini
mal) number of iteration cycles per frame - which can lead
to significant reductions in simulation time.

The core of the fault simulator lies in timing analysis of the
frames, which are essentially combinational circuits. Be
cause our target circuits are those of RAPPID, which in
some sense resemble extended burst mode machines, we de
cided to follow the timing simulation approach developed
for 3D-style extended burst mode machines [4, 3], using
min-max timing analysis and 13-valued logic.

The organization of the paper is as follows. Section 2 gives
some basic background on delay and event modeling, and
Section 3 shows how complex domino gates are incorpo
rated. Section 4 contains our feedback identification algo
rithm. Fault coverage and simulation details for Fsimac are
given in Section 5, and conclusions in Section 6.

2 Timing models

From a gate-level perspective, the timing simulator in
Fsimac operates on combinational circuits. Any remain
ing sequential logic is inside a gate, e.g. a latch or complex
domino gate. Each gate has pre-specified delay bounds in
dicating the minimum and maximum input-to-output wave
form delays, and a 13-valued waveform description that in
cludes the input-to-output behavior regarding hazards. The
gates are evaluated in topological order, as determined by
the underlying directed graph structure. For all signals, we
compute 13-valued logic values as well as time stamps for
the earliest and latest arrival time, measured with respect to
the input change at the PIs and feedbacks. We do this to
capture the asynchronous nature of the circuit and to enable
validation of relative timing constraints. Sections 2.1-2.2
give more background on delay and waveform models.

2.1 Delay Model
The following three types of delay models are commonly
used in the design and analysis of asynchronous circuits:

• Fixed delay
The delay of each component is assumed to be fixed.
Due to variations in processing and operating condi
tions, IC component delays are seldom fixed - and as
such, this is not a realistic delay model.

• Unbounded delay
Component delays can take any non-negative value.
Asynchronous design methods based on this model
are extremely robust to delay variations. In general,
though, this model is over-conservative.

• Bounded delay
The delay of each component varies between given
lower and upper bounds. This model intends to capture
delay variations due to fluctuations in the fabrication
process, ambient temperature, power supply, etcetera.

Asynchronous design methods, in particular those for self
timed circuits, make frequent use of the unbounded delay
model in order to manage the design complexity and to sup
port a wide range of implementation technologies without
the need forre-design [2]. RAPPID makes use of handshake
protocols for exactly these reasons, but adds local and rela
tive timing information to enable a smaller, faster and lower
power implementation in a given technology [15]. This tim
ing information is made explicit for purposes of verification
and re-synthesis or re-design. The measured performance
of RAPPID correlates well with the simulation numbers of
COSMOS that are based on fixed delays [14], which in
dicates that fixed delay modeling works for RAPPID as a
system performance metric. At the gate level, though, the
bounded delay model is the most likely fit for simulating
the circuit with regard to relative timing constraints, and for
tackling the 5% test coverage gap observed in [13].

115

Fsimac follows the min-max tlmmg analysis approach
by [4,3] which is based on the bounded delay model. We
assume that the gate delay bounds are known in advance for
a given circuit and process technology. In addition, we as
sume equal nominal gate delays for rising and falling tran
sitions, and zero wire delays - but these assumptions can
be changed without jeopardizing the simulation model. To
further simplify the analysis, we conservatively assume that
the component delays are uncorrelated.

In other words, our focus is on lumped gate delays. We
mainly consider pure delays, for which the waveforms are
shifted in time and do not change shape. However, we
model some forms of inertial delay, for instance in com
plex domino gates, where narrow evaluation pulses are sup
pressed at the output side (see Section 3).

2.2 Waveform Model

13-Valued waveform logic, originally proposed by [5]
makes it possible to deal with hazards during circuit anal
ysis, and to avoid unnecessary event proliferations by ab
stracting the details of multi-transition waveforms. We
adopt the interpretation and notation of [3] and represent
signal waveforms as triples (b, m, e), with b denoting the
begin state of the signal, e the end state, and m the interme
diate transition behavior. More precisely:

• b, e E {O, 1, X}, where X indicates an unknown signal
value which can be either 0,1, or change repeatedly.

• m E {O, 1, t,..j.., X}, where t,..j.., X indicate a single
rising, respectively, falling transition, and potentially
multiple transitions.

• 13-valued waveforms

(constant)
(transition)
(hazard)
(stabilizing)
(unstabilizing)
(undefined)

(1,1,1), (0,0,0)
(O,t,I), (1,..j..,0)
(0, X, 0), (0, X, 1), (1, X, 0), (1, X, 1)
(X, X, 0), (X, X, 1)
(0, X, X), (1, X, X)
(X,X,X)

Functions f(do, d1 , ... , dn) : {O, 1, x}n -+ {O, 1, X} can
be extended to this 13-valued logic domain, assuming
di = (bi , mi, ei) and output result (bl' ml, e/), as follows:

• Take all sequences of input waveforms, and compute
the corresponding sequences of (single input change)
states from (bo, b1 , ... ,bn) to (eo, el, ... , en).

• Definebz=f(bo,bl, ... ,bn),ez=f(eo,el, ... ,en).

• For the definition of m I, we need to monitor f
throughout the state sequences. If the value of f stays
constant 0 (1), then ml =0 (1). If, on the other hand, .
f changes from 0 to 1 (or from 1 to 0) exactly once per
state sequence, then m I = t (..j..). Otherwise, m I = X.

VDD

en
en f z

z
000, qo, OXO previous z

111, On, lXI, OXI, XXI OXX,XXO, XXX XXX
do
d1 f on, OXI, lXI, XXI, 111, IXO, IXX 000, q 0

dn
000,1..1.0, OXO, IXO, XXO any 13-value 111, On

XXX, lXX, OXX any 13-value XXX

Figure 1 Generic footed domino gate with full-keeper (left) and part of the look-up table with 13-valued logic behavior (right).

wO

w6

w10

w1

w2 w9

File dbyc.v
module dbyc(wO,wl,w2,w6,w9);
input wO,wl,w2;
output w6,w9;
wire w3,w4,w5,w7,w8;

cdom CDOM3_0(w4,w3,wlO,wO);
nand NAND2_0(w5,wlO,wO);
inv INVLO(w3,wl);
inv INVLI(w6,w4);
inv INVL2(w7,w5);
inv INVL3(wlO,w9);
cdom CDOM3_l(w8,w7,w2,w3);
inv INVL4(w9,w8);

end module

File dbyc.des
CDOM3_0 Oh; /* domino AND */
CDOM3_1 Oh; /* domino AND */

Figure 2 Asynchronous circuit dbyc from RAPPID with complex domino gates in grey (left) and Fsimac description (right).

To extend a Boolean function, just take its 3-valued
logic expansion for {O, 1, X} and follow the above proce
dure. For efficiency, all standard I3-valued functions are
pre-computed and kept in a look-up table.

3 Complex Domino Logic

Domino logic uses a single control signal to precharge and
evaluate a cascaded set of dynamic logic blocks. The con
trol signal can be a clock, as is typically the case in syn
chronous design, or a local signal triggered by a self-timed
protocol as in [14, 15,8]. Domino logic is used frequently
in high-speed circuit design.

The generic CMOS domino gate shown in Figure 1 has a
full-keeper (latch) to maintain the logic value at the output
z, when the control signal en is high. The en-controlled
n-transistor, called foot, ensures mutual exclusion between

116

the precharge (high) and evaluate (low) phases. Part of the
look-up table with the 13-valued logic behavior is shown
on the right. Row I gives the table inputs en, f and the
table output z, rows 2-4 describe the behaviors for which
we consider the gate to be in evaluation phase, row 5 does
the same for the precharge phase, and row 6 addresses the
undefined hazardous situation where we cannot tell which
phase applies. Note the output suppression of the narrow
(f 1\ en) evaluation pulses for f = 1 +0, OXO in row 1.

Figure 2 shows the circuit schematics dbyc from the Byte
Controller in RAPPID [14], with the two Fsimac file for
mats dbyc.v and dbyc.des. File dbyc.v contains the struc
tural Verilog description of the circuit. File dbyc.des de
scribes the functionalities of the two domino AND gates
with the Boolean functions f given in reverse Polish nota
tion: Oh , using numeric input names i for di in Figure I.

4 Feedback Identification

Our algorithm for feedback identification, Jeedback-lietect,
uses a breadth-first traversal of the directed graph
G = (V, A) that we generate from the gate-level circuit de
scription in structural Verilog. Vertex set V contains the
circuit gates and PIs. Arc set A contains the (directed) wire
segments connecting two vertices. For each vertex g, we
use A to derive predecessor vertices fanin (g) and succes
sor vertices fanout(g). For each g, we compute an inte
ger variable called level to denote the maximum number of
gates between the PIs and g, and we keep a Boolean vari
able called flag to indicate that the level computation for 9
has completed.

Two traversal lists, called TRUE-LIST and FALSE-LIST,
keep track of the vertices for which flag is true and false
respectively. Both lists are ordered by level. For efficiency,
the ordering is descending for TRUE-LIST, and ascending
for FALSE-LIST.

Feedbacks are identified and stored on-the-fly in a separate
list FEED whenever 9 has a level greater than one of its
fan-out gates f, and both levels are partially evaluated. We
include such f by ascending level in a third traversal list,
called EVALFEED-LIST.

Each traversal phase starts from TRUE-LIST, proceeds
with FALSE-LIST, where the actual feedback identification
takes place, and ends with EVALFEED-LIST. This contin
ues phase-after-phase until allflags are true. Figure 3 shows
the resulting feedback list for an example circuit.

Algorithm Jeedback-lietect has a linear time complexity,
and provides a solution which typically leads to a minimal
number of iterations when the circuit is simulated in funda
mental mode, i.e. from PI changes until PO stabilization.

PI1

PI2 1 fJSt7:tr
Figure 3 (feedback_detect example) After the first
repeat phase, FALSEiJST= EVALFEED-LIST= (),
TRUE-LIST= (gl, g3), thefiags are true only for gl, g3
and the levels for gO . .. g6 are 1,4,1,2,3,4. After the
second repeat phase, the level values are unchanged but
allfiags are now true, and the algorithm terminates with
FEED = «g2-+ g3), (g4-+ g3), (g6-+ gl)).

117

Algorithm feedbacLdetect

~fu~ ~

/* Directed graph G = (V, A) */
/* Output */
1* List of feedbacks FEED ~ (V -+ V) *1
1* level(g) for 9 E V */
/* Initially */
1* level(g) = 0 and eval(g) = false, for all 9 E V */
1* fiag(g) = true, for primary inputs 9 E V n PI */
/* flag(g) = false for gates 9 E V - PI */
/* TRUE-LIST = FALSE-LIST = () */
/* EVAL.FEED-LIST=FEED= () */

Procedure comp(g);

/* computes level(g) andflag(g), for 9 E V *1
begin

level(g) :=

max {level(f) + 1 I f E fanin(g) 1\ (g -+ I) 9! FEED} U {I}
flag (g) :=

1\ {flag (f) I f E fanin (g) 1\ (g -+ I) 9! FEED} U {true}

if flag (g) then
add 9 to TRUE-LIST by descending level
delete 9 from FALSE-LIST and EVAL.FEED-LIST

else

fi
end

add 9 to FALSE-LIST by ascending level
eval(g) := true

/* main program */

forall 9 E V n PI do
forall f E fanout(g) do comp(f) od

od
repeat

while TRUE-LISTi= () do
9 := head(TRUE-LIST)
TRUE-LIST:= tail(TRUE-LIST)

forall f E fanout(g) do
if (g -+ I) 9! FEED then comp(f) fi

od
while FALSE-LISTi= () do

9 := head(FALSE-LIST)
FALSE-LIST: = tail (FALSE-LIST)
forall f E fanout(g) do

if (level (g) > level (I) 1\ eval(f) 1\ (g -+ I) 9! FEED)
then

od
od

add (g -+ I) to FEED
add f to EVAL..FEED-LIST by ascending level

else comp(f)
fi

while EVAL..FEED-LISTi= () do
9 := head(EVAL..FEED-LIST)
EVALFEED-LIST:= tail(EVAL..FEED-LIST)
comp(g);

od
until flag (g) = true, for all 9 E V

Circuit Characteristics Stuck-at Fault Simulation Transition Fault Simulation
Circuit Gates PIs POs Internal Wires Feedbacks Faults Tests Coverage % Faults Tests Coverage %

Exs3dl 51 1 7 37 25 132 15 71.97 51 4 86.27
30 83.33 6 88.23
50 99.24 12 92.16
75 99.24 15 92.16

Exs3d2 57 7 3 51 8 222 15 42.79 57 15 59.69
30 56.76 30 59.69
75 78.83 50 77.19
125 84.68 60 80.12

Exs3d3 19 1 3 13 6 46 4 67.39 19 15 78.94
7 91.30 25 89.47
13 100.0 50 89.47

60 94.73
Exs3d4 10 3 2 2 2 26 3 84.0 \0 5 70.0

5 100.0 9 80.0
15 100.0 15 80.0

MUX 7 3 2 2 2 26 3 73.08 7 5 71.42
5 80.77 33 85.71
15 100.0 46 100.0

dbyc 8 3 2 5 I 24 3 62.5
7 70.83
9 75.0 work in progress
II 83.33

Table 1 Fsimac fault coverage for single stuck-at and gate-delay faults on circuits from 3D, Tangram and RAPPID.

5 Fault simulation

The inputs for Fsimac are (I) a gate-level circuit description
in structural Verilog, (2) minimum and maximum gate delay
bounds, and (3) a sequence of test stimuli. We first simu
late the fault-free circuit, and then the faulty circuits with
a single fault each, and we compare the simulation results
between the latter and the first. When no fault list is spec
ified, we take all single stuck-at and gate-delay faults. We
use the standard stuck-at all fault model on gate inputs and
outputs. A gate-delay fault can either shrink or grow the
minimum and maximum input-to-output waveform delays
for the gate.

The simulations are done frame-after-frame, where the
frame boundaries are the feedbacks identified by algorithm
Jeedback..detect given in Section 4. To initialize the circuit,
the designer can specify a set of initial signal values. The
unspecified PIs and inputs from feedbacks are set to 0 and
the circuit is simulated to obtain stable logic values for the
initially unspecified feedback wires. When initialized, we
simulate the current frame, using min-max timing analysis
and using the first test stimuli as PI values. When the PO re
sults become stable, we take the final output value of fanin
gate 9 for every feedback (g --+ f) as the next input value for
the corresponding fanout gate f, and set the PI values to the
next test stimuli. Then we simulate the next frame, etcetera
- until either the tests are exhausted or all faults detected.

118

For stuck-at faults, we compare the logic PO values for
the circuit with the fault against the logic PO values for
the fault-free design. We do this at the end of each sim
ulated time frame. If the results do not match, the fault
is detected. For a gate-delay fault, we additionally check
the time stamps for the PO signals at the end of each time
frame: i.e., we (1) compare the signal orderings by min
imum delay bound, and (2) verify if the minimum delay
bound is lower than the corresponding maximum bound for
the fault-free simulation. If either one fails, the fault is con
sidered detected.

We benchmarked Fsimac on 3D circuits [18], on Philips
handshake circuits from Tangram [17, 12], and on Intel cir
cuits from RAPPID [14, 15]. The test sequences were gen
erated pseudo-randomly using Cellular Automata (CA) [6].
Table 1 gives results for 3D circuits Exs3dl. .. Exs3d4,
Tangram circuit MUX, and RAPPID circuit dbyc. We in
jected all single stuck-at faults, and single gate-delay faults
with a fixed increase (beyond comfort level) in both delay
bounds. The results are largely validated by hand. Note that
a significant increase in the number of tests does not always
lead to a significant increase in fault coverage. This can
mean that either a significant portion of the uncovered faults
are untestable, or more specific test patterns are needed.
Fsimac cannot do much about the former situation, but we
have reason to believe that Fsimac can help with the latter,
and coach the CA into generating more design specific tests.

6 Conclusion

Fsimac is a gate-level fault simulator for asynchronous

sequential circuits that use relative timing in addition to

delay-insensitive design. We support min-max timing anal

ysis, using bounded gate delays and I3-valued waveform
logic for combinational as well as sequential gates, such as

Muller C-elements and complex domino gates. This analy

sis is performed on the time-unfolded circuit, after cutting

feedback loops. Our feedback identification algorithm is

new, and differs from existing approaches in that it uses

breadth-first rather than depth-first search. The correspond
ing feedback cuts result in a lower (typically minimal) num

ber of iteration cycles during timing analysis.

The fault simulator handles single stuck-at 011 faults on gate

inputs and outputs, and gate-delay faults that either shrink

or grow the minimum and maximum input-to-output wave

form delays of a gate. We validated the coverage results for

Fsimac on benchmark circuits from 3D, Tangram (Philips),
and RAPPID (Intel).

There is ample room for improvement in the capacity and
speed of the fault simulation procedure. Capacity and speed

were not our inital focus, which was (I) being able to fault

simulate aggressive self-timed circuits like RAPPID, and

(2) capture coverage gaps dropped by existing fault simu
lators based on fixed delay models. The latter two focus
points are orthogonal to the former efficiency issues. There

fore, it should be relatively easy to adopt existing solutions

for reducing memory requirements and run times [I, 11],
and incorporate them in Fsimac.

Our ultimate goal is to use this fault simulator for designing
more efficient Built-in Self Test (BIST) based on Cellular

Automata (CA). In RAPPID, we tuned the CA-BIST solu
tion by hand to better fit the design needs. In future, we
would like to use Fsimac to do the tuning automatically.

Acknowledgements Our special thanks go to Supratik
Chakraborty, whose work on min-max timing analysis was

used as starting point for Fsimac. We thank the students
Kaushik Patra, C.v. Krishna, Rajatish Mukherjee, Souvk

Ghosh, Ananda Sarkar, Shameek Ghosh, and Chitta Haty

for their efforts in implementing this fault simulator.

References
[I] M. Abramovici, M. Breuer, and A. Friedman. Digital Sys

tems Testing and Testable Design. Computer Science Press,
1990.

[2] G. Birtwistle and A. Davis, editors. Asynchronous Digital
Circuit Design, Workshops in Computing. Springer-Verlag,
1995.

[3] S. Chakraborty, D. Dill, and K. Yun. Min-max timing analy
sis and an application to asynchronous circuits. Proceedings
of the IEEE, 87(2):332-346, Feb. 1999.

119

[4] S. Chakraborty, D. Dill, K. Yun, and K.-Y. Chang. Timing
analysis for extended burst-mode circuits. In Proc. Interna
tional Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 101-111. IEEE Computer So
ciety Press, 1997.

[5] T. Chakraborty, V. Agrawal, and M. Bushnell. Delay fault
models and test generation for random logic sequential cir
cuits. In Proc. ACMIIEEE Design Automation Conference,
pages 165-172, 1992.

[6] P. Chaudhuri, D. Chowdhury, S. Nandi, and
S. Chattopadhyay. Additive Cellular Automata: The
ory and Applications - Volume I. IEEE Computer Society
Press, 1997.

[7] K. Cheng and V. Agrawal. A partial scan method for sequen
tial circuits with feedback. IEEE Transactions on Comput
ers, C-39(4):544-548, April 1990.

[8] W Hwang, G. Gristede, P. Sanda, S. Wang, and D. Heidel.
Implementation of a Self-Resetting CMOS 64-Bit Parallel
Adder with Enhanced Testability. IEEE Journal of Solid
State Circuits, 34(8):1108-1117, Aug. 1999.

[9] M. Kishinevsky, A. Kondratyev, L. Lavagno, A. Saldanha,
and A. Taubin. Partial-scan delay fault testing of asyn
chronous circuits. IEEE Transactions on Computer-Aided
Design, 17(11): 1184-1199, Nov. 1998.

[10] D. Lee and S. Reddy. On determining scan flip-flops in
partial-scan designs. In Proc. International Con! Computer
Aided Design (ICCAD), pages 322-325, Nov. 1990.

[II] T. Niermann, W-T. Cheng, and J. Patel. PROOFS: A fast,
memory-efficient sequential circuit fault simulator. IEEE
Transactions on Computer-Aided Design, 11(2): 198-207,
Feb. 1992.

[12] M. Roncken and E. Bruls. Test quality of asynchronous cir
cuits: A defect-oriented evaluation. In Proc. International
Test Conference, pages 205-214, Oct. 1996.

[13] M. Roncken, K. Stevens, R. Pendurkar, S. Rotem, and
P. Chaudhuri. CA-BIST for asynchronous circuits: A case
study on the RAPPID asynchronous instruction length de
coder. In Proc. International Symposium Oil Advanced Re
search in Asynchronous Circuits and Systems, pages 62-72,
2000.

[14] S. Rotem, K. Stevens, R. Ginosar, P. Beerel, C. Myers,
K. Yun, R. Kol, C. Dike, M. Roncken, and B. Agapiev.
RAPPID: An Asynchronous Instruction Length Decoder. In
Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 60-70, 1999.

[15] K. Stevens, R. Ginosar, and S. Rotem. Relative Timing.
In Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 208-218, 1999.

[16] S. Unger. Asynchronous Sequential Switching Circuits.
Wiley-Interscience, John Wiley & Sons, Inc., New York,
1969.

[17] K. van Berkel, R. Burgess, 1. Kessels, A. Peeters,
M. Roncken, and F. Schalij. Asynchronous circuits for low
power: A DCC error corrector. IEEE Design & Test of Com
puters, 11 (2):22-32, Summer 1994.

[18] K. Y. Yun and D. Dill. Automatic synthesis of 3D asyn-
chronous state machines. In Proc. International Con!
Computer-Aided Design (ICCAD), pages 576-580, 1992.

