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ABSTRACT 

We present an efficient asynchronous VLSI architecture for 
calculating running maximum or minimum values over a 
sliding window. Running maximums or minimums are very 
useful for many signal and image processing tasks. Our 
architecture performs the calculation using the MAXLIST 
algorithm. In order to take advantage of the wide delay 
variations due to data-dependencies and operating condi­
tions, an asynchronous approach is taken to achieve higher 
performance and lower power. Simulation results demon­
strate that our asynchronous architecture is significantly 
faster than existing and potential synchronous architectures. 

1. INTRODUCTION 

Many signal and image processing algorithms require the 
calculation of a running maximum or minimum over a slid­
ing data window. For example, in a normalized least-mean­
square (NLMS) adaptation algorithm given in [1], the filter 
coefficient which is chosen to be modified is the one which is 
associated with the input sample with the largest absolute 
value in the window of samples currently in the filter. 

In [2), an efficient algorithm is presented for such cal­
culations. This algorithm stores data elements in a pruned 
list. The data elements which are stored are those which are 
currently or have the potential of becoming the maximum 
or minimum within the sliding data window. This pruned 
list can be substantially smaller than the actual size of the 
sliding window. 

In this paper, we present an asynchronous architecture 
to implement the MAX LIST algorithm. We have designed 
and simulated it in VHDL on a large set of correlated ran­
dom data samples. Our results show a wide variation in de­
lay due to both data-dependencies and operating conditions. 
We compare our asynchronous design with an existing syn­
chronous design and the best possible synchronous design 
with an architecture comparable to ours. 

2. ALGORITHM 

The MAXLIST algorithm generates the pruned list of po­
tential maxima (or minima) lIB follows. When a new element 
arrives it firsts checks to see if an element already on the 
list h~ fallen out of the sliding window. If it has, it is re­
moved from the list. Next, it searches the list until it finds 
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Figure 1. Example of the MAXLIST algorithm. 

the smallest element which is larger than the new element. 
It adds the new element after this one, and it removes all 
smaller elements since they will never become the maximum 
across the window. 

An example (courtesy of [2)) is shown in Figure 1. In this 
example, the sliding window is 6 elements long. Initially, 
element 3 is in the list because it is the maximum, and 
element 6 is in the list because it is a potential maximum. 
Elements 1 and 2 are dominated by element 3 since it is 
larger and appears later in the list. Elements 4 and 5 are 
dominated by element 6. At time 1, the window shifts, and 
element 7 is added to the list. At time 2, the window shifts 
again, element 8 is added, and since it dominates 6 and 
7, they are removed from the list. At time 3, element 3 
slides out of the window, and element 9 is added, dominating 
element 8. 

By construction, the elements in the list are ordered by 
size and age. The head of the list is always the maximum 
and always the oldest element. The remaining elements have 
the potential to become a maximum as larger, older elements 
fall out of the sliding window. 

In hardware, the pruned list must be of fixed size. If 
this size is less than the window size, it is possible that the 
running maximum or minimum may be in error. In [2], it 
is shown that the average size of the pruned list for random 
data goes like In( n) where n is the size of the window. Since 
small errors can usually be tolerated in signal and image 
processing algorithms, the list size is usually chosen to be 
sligh tly larger than In ( n ). 
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Figure 2. Distribution of forward comparisons. 
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Figure 3. Distribution of backward comparisons. 

3. ARCHITECTURE 

In our asynchronous architecture, we have chosen to com­
pute the maximum over a sliding window of 256 elements 
with a list size of 8 elements, where each element is rep­
resented as an 8-bit value. It is relatively straightforward 
to adapt our architecture to minimum calculations and to 
different size windows and lists. 

One important architecture decision is how to search the 
li"t to find the loca.tion where a. new dement "hould be in­
serted. Our initial architecture began the search at the be­
ginning of the list (i.e., the current maximum element) and 
worked towards the end. It was brought to our attention 
that this may result in more comparisons than necessary 
[3]. As shown in Figures 2 and 3, by starting the search 
at the end of the list (i.e., the smallest potential maximum 
or newest element) and searching backwards, the average 
number of comparisons is reduced from 5.5 to only 104. 

Our architecture, depicted in Figure 4, is composed of 
seven main parts: an input latch, a counter, a FIFO, two 
comparators, an output latch, and a controller. In each data 
cycle, the following events occur: 
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Figure 4. Overall block diagram. 
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Figure 5. Block diagram of the FIFO. 

1. When the request signal goes high, the data is latched, 
and the counter is incremented. 

2. The current count and the position of the maximum are 
compared. If they are equal, the maximum has fallen 
out of the window, and it is shifted out of the FIFO. 

3. The new data element is compared with each element in 
the list beginning with the most recently added element 
until the insertion position has been found. 

4. The new data element is placed in the location of the 
oldest element that it is greater than or equal to. If it 
is smaller than all elements in the list, it is placed in 
the first empty location. If the list is full, the element 
is discarded. 

5. The maximum data element and its position are output, 
and the acknowledge signal is asserted. 

4. IMPLEMENTATION 

The major blocks which must be implemented in our asyn­
chronous MAX LIST architecture are the FIFO, two com­
parators, and the controller. The structure of the FIFO is 
shown in Figure 5. The FIFO must be able to shift data 
when the element at the head of the list has left the data 
window, put data on the eMP bus for the search through 
the list, and accept inserted data at arbitrary locations while 
clearing all subsequent locations. The information stored in 
the FIFO is composed of three parts: a Full/Empty bit, the 
position (i.e., the count when the data arrived), and the data 
itself. 
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Figure 6. Block diagram of a comparator. 

The comparator is composed of eight I-bit comparators 
as shown in Figure 6. It is started with a request to the high­
est order bit. Each bit of the comparator returns whether ai 
is greater than (gt), less than (It), or equal (eq) to bi. For the 
compare equals block, not equal is returned when any bit re­
turns gt or It. For the compare greater equals block, greater 
than or equal is returned for gt and less than is returned for 
It. If the two bits are equal (eq), the next bit is compared. 
Finally, if the last bit returns eq, then equal is returned for 
the compare equals block, and greater than or equal is re­
turned for the compare greater equals block. This block is 
highly data-dependent as the comparison may complete at 
varying times. The asynchronous design methodology takes 
advantage of this data-dependency to produce a more effi­
cient architecture. 

The last important block is the controller. This block is 
split into ten separate control blocks as shown in Figure 7. 
The main block accepts the request when a new datum is 
ready and sends the acknowledge when the current maxi­
mum has been determined, controls the input latches, out­
put latches, and the counter. It also coordinates the shift 
and insert control blocks. The shift block is called much 
like a subroutine in software. When called, it handles the 
control signals related to the counter and maximum posi­
tion comparison, and it executes the FIFO shift when the 
comparison determines that they are equal. The ins8 block 
is called to check if the new datum can be inserted in the 
last location. If it can, the ins8 block asks the ins7 block to 
check, etc. until one block cannot accept the data. At that 
point, a signal is sent back to tell the previous block the 
data should be inserted in the list position that it controls. 
That block inserts the data in the list position that it con­
trols, and it forwards an acknowledgement through the ins 
blocks to its left to the main block. Each of these control 
blocks has been described in behavioral VHDL which can 
be synthesized by our asynchronous synthesis system ATACS 

[4,5). 

5. RESULTS 

We implemented our architecture in VHDL and simulated it 
for 100000 correlated random data elements. The data was 
generat:ed by filtering pseudo-random G~ussian white noise 
by a single-pole filter, and the output IS then scaled and 
quantized to an 8-bit value. Due to the asynchronous na-
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Figure 7. Block diagram of the controller. 
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Figure 8. Data cycle delay distribution (fixed). 

ture of our architecture, it is able to take advantage of data­
dependent delay variations. The sources for data-dependent 
delay variations are in the counter, each comparator, and 
the number of elements in the FIFO. These variations re­
sult in an extremely variable data delay cycle as shown in 
Figure 8 which depicts a histogram of the delay to accept 
a new datum and output the current maximum. Over the 
course of the 100,000 elements, our minimum delay was as 
small as 29 gate delays and our maximum was as large as 
161 gate delays. The average delay is 58.6 gate delays with 
a standard deviation of 17.3. As mentioned earlier, since 
the list size is much smaller than the window size, elements 
may need to be discarded. This event happened 8925 times, 
but never did the dropped element become a maximum in 
the sliding window. 

One advantage of asynchronous design is the ability of an 
asynchronous design to adapt to operating conditions. The 
delay of a transistor in a VLSI design can vary significantly 
depending on the quality of the process run, the operat­
ing temperature, and the supply voltage. In a synchronous 
design, this variation is taken into account by adding a sub­
stantial margin to the clock cycle to guarantee that the chip 
operates correctly even in the most adverse circumstances. 
In reality, a chip typically comes from an average process­
ing run and runs much cooler and at a higher supply volt­
age than in the worst-case. The speed of an asynchronous 
design adapts to the current operating conditions. We took 



8000r---.---~--~--~--~----r---~--~--, 

7000 

6000 

5000 

4000 

3000 

2000 

1000 

I~ %L---2ll0WWnll40llWWW6~ollllW8~0~~100~~12=0--~1~40~~lW~~'80 
Gate delays 

Figure 9. Data cycle delay distribution (bounded). 

this fact into account in the simulation by replacing all fixed 
delay parameters by delay parameters which are randomly 
generated each cycle within a delay bound from the worst­
case down to 50 percent of the worst-case. Our simulation 
results using these bounded delays are shown in Figure 9. 
The average delay improves to 43.9 gate delays with a stan­
dard deviation of 12.9. The minimum and maximum delays 
also improve to 19.1 and 124.3 gate delays, respectively. 

6. COMPARISON 

We compared our results with several synchronous imple­
mentations of the MAXLIST algorithm that were designed 
as class projects at the University of Utah. The best im­
plementation designed by Julsgaard and Xu [6] had a clock 
frequency of 75 MHz for a 1.2/-Lm CMOS process, and it 
required 6 + 2X cycles to accept a new datum and output 
the current maximum where X is the number of compar­
isons required. On average, they need 1.4 comparisons, or 
117ns. Assuming a 0.5ns gate delay for this process, this 
synchronous design requires on average 234 gate delays per 
data cycle. 

In order to draw a fairer comparison, we examine the per­
formance of a hypothetical synchronous design which uses 
the same architecture as our asynchronous design. For each 
data element in a synchronous design, one cycle would be 
required to latch the data and increment the counter. An­
other cycle is needed to perform the position comparison to 
see if a shift is necessary. If a shift is necessary, a clock 
cycle would be needed to perform it. Next, a minimum of 
two cycles are needed for each comparison that is going to 
be performed to find the location in which to insert the data 
into the FIFO. One is needed to determine and obtain the 
next element to be compared against, and the second is to 
perform the comparison. After the position is determined, 
one cycle is needed to insert the element. Finally, one cycle 
is required to output the current maJ9.mum. Putting it all 
together, we get the following: 

data cycle delay 4 + p(shift) + 2· avg(cmp) 

In the 100,000 data samples, the list needs to be shifted 
only 227 times, so p( shift) is negligible. Using 1.4 as the 
average number of compares, the approximate average data 
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cycle delay in a synchronous design would be about 6.8 
cycles. The counter and comparator would require at least 
one gate delay per bit and at least two more for control and 
latching data in and out. Thus, the fastest possible clock 
cycle time would be at least 10 gate delays. Using a 10 
gate delay cycle time, the synchronous design would require 
on average 68 gate delays per data cycle. Therefore, our 
asynchronous design is at least 14 percent faster considering 
only data-dependent delay variations and fixed delays, and 
at least 35 percent faster when operating conditions are also 
considered using bounded delays. 

If we are given a fixed throughput requirement, this speed 
improvement can be turned into improved power perfor­
mance by lowering the supply voltage. For example, to get 
the same performance as the best synchronous design at 5 
volts, our asynchronous design can be run at 3.2 volts. This 
leads to a 59 percent savings in power, since power scales 
as the square of the voltage. 

7. CONCLUSION 

As clock speeds increase, difficulties in distributing a global 
clock is forcing many designers to consider asynchronous 
architectures as a viable design alternative to synchronous 
ones. Asynchronous designs also can take advantage of 
delay variations due to data-dependencies and operating 
conditions at a very fine grain. The complexity of the 
computations in the MAXLIST algorithm are largely data­
dependent, so we designed an asynchronous architecture to 
implement it. Due to the fact that the clock cycle in a syn­
chronous design must be set for worst-case delays, we are 
able to show over a five times improvement in speed when 
compared with an existing synchronous design. We are also 
able to show .that our asynchronous design can outperform 
an extremely aggressive, comparable synchronous design by 
more than 35 percent in speed or 59 percent in power. 

ACKNOWLEDGMENTS 

We would like to thank Professor Scott Douglas of the U ni­
versity of Utah for introducing us to the MAX LIST algo­
rithm. We would like to thank Kashif Ikram and Syed Rab 
for their contributions in the initial architecture design. 

REFERENCES 

[1) S. C. Douglas. A family of normalized LMS algo­
rithms. IEEE Signal Processing Letters, 1(3):49-51, 
March 1994. 

[2) S. C. Douglas. Running max/min calculation using a 
pruned ordered list. IEEE Transactions on Signal Pro­
cessing, 44(11):2872-2877, November 1996. 

[3] S. C. Douglas. Private communications, 1996. 

[4] C. J. Myers. Computer-Aided Synthesis and Verification 
of Gate-Level Timed Circuits. PhD thesis, Stanford Uni­
versity, 1995. 

[5) H. Zheng and C. J. Myers. Specification and compila­
tion of mixed-timed systems using VHDL. forthcoming 
paper. 

[6) K. Julsgaard and Z. Xu. A VLSI implementation of the 
MAX LIST algorithm. Project report for CSjEE 542, 
University of Utah, 1995. 


