
AN ASYNCHRONOUS IMPLEMENTATION OF THE MAXLIST ALGORITHM

Chris J. Myers Hao Zheng'

Electrical Engineering Department
University of Utah Salt Lake City, UT 84112

{myers,hao }@ee.utah.edu

ABSTRACT

We present an efficient asynchronous VLSI architecture for
calculating running maximum or minimum values over a
sliding window. Running maximums or minimums are very
useful for many signal and image processing tasks. Our
architecture performs the calculation using the MAXLIST
algorithm. In order to take advantage of the wide delay
variations due to data-dependencies and operating condi­
tions, an asynchronous approach is taken to achieve higher
performance and lower power. Simulation results demon­
strate that our asynchronous architecture is significantly
faster than existing and potential synchronous architectures.

1. INTRODUCTION

Many signal and image processing algorithms require the
calculation of a running maximum or minimum over a slid­
ing data window. For example, in a normalized least-mean­
square (NLMS) adaptation algorithm given in [1], the filter
coefficient which is chosen to be modified is the one which is
associated with the input sample with the largest absolute
value in the window of samples currently in the filter.

In [2), an efficient algorithm is presented for such cal­
culations. This algorithm stores data elements in a pruned
list. The data elements which are stored are those which are
currently or have the potential of becoming the maximum
or minimum within the sliding data window. This pruned
list can be substantially smaller than the actual size of the
sliding window.

In this paper, we present an asynchronous architecture
to implement the MAX LIST algorithm. We have designed
and simulated it in VHDL on a large set of correlated ran­
dom data samples. Our results show a wide variation in de­
lay due to both data-dependencies and operating conditions.
We compare our asynchronous design with an existing syn­
chronous design and the best possible synchronous design
with an architecture comparable to ours.

2. ALGORITHM

The MAXLIST algorithm generates the pruned list of po­
tential maxima (or minima) lIB follows. When a new element
arrives it firsts checks to see if an element already on the
list h~ fallen out of the sliding window. If it has, it is re­
moved from the list. Next, it searches the list until it finds

"This research is supported by a grant from Intel Corporation
and NSF CAREER award MIP-9625014.

0-8186-7919-0/97 $10.00 © 1997 IEEE 647

1=0 1=1

1=2 1=3

Figure 1. Example of the MAXLIST algorithm.

the smallest element which is larger than the new element.
It adds the new element after this one, and it removes all
smaller elements since they will never become the maximum
across the window.

An example (courtesy of [2)) is shown in Figure 1. In this
example, the sliding window is 6 elements long. Initially,
element 3 is in the list because it is the maximum, and
element 6 is in the list because it is a potential maximum.
Elements 1 and 2 are dominated by element 3 since it is
larger and appears later in the list. Elements 4 and 5 are
dominated by element 6. At time 1, the window shifts, and
element 7 is added to the list. At time 2, the window shifts
again, element 8 is added, and since it dominates 6 and
7, they are removed from the list. At time 3, element 3
slides out of the window, and element 9 is added, dominating
element 8.

By construction, the elements in the list are ordered by
size and age. The head of the list is always the maximum
and always the oldest element. The remaining elements have
the potential to become a maximum as larger, older elements
fall out of the sliding window.

In hardware, the pruned list must be of fixed size. If
this size is less than the window size, it is possible that the
running maximum or minimum may be in error. In [2], it
is shown that the average size of the pruned list for random
data goes like In(n) where n is the size of the window. Since
small errors can usually be tolerated in signal and image
processing algorithms, the list size is usually chosen to be
sligh tly larger than In (n).

2 .--!--

-1. 8 -

1. 6 r--

1. 4 r--

1. 2

1 r--

o. 8

o. 6

o. 4 r--

o. 2

0
r--:-l

4 5 6
Comparisons

Figure 2. Distribution of forward comparisons.

nr--:--J %L--L-L-U~~~~~~4~~~5~--~--~7~---L--~

Comparisons

Figure 3. Distribution of backward comparisons.

3. ARCHITECTURE

In our asynchronous architecture, we have chosen to com­
pute the maximum over a sliding window of 256 elements
with a list size of 8 elements, where each element is rep­
resented as an 8-bit value. It is relatively straightforward
to adapt our architecture to minimum calculations and to
different size windows and lists.

One important architecture decision is how to search the
li"t to find the loca.tion where a. new dement "hould be in­
serted. Our initial architecture began the search at the be­
ginning of the list (i.e., the current maximum element) and
worked towards the end. It was brought to our attention
that this may result in more comparisons than necessary
[3]. As shown in Figures 2 and 3, by starting the search
at the end of the list (i.e., the smallest potential maximum
or newest element) and searching backwards, the average
number of comparisons is reduced from 5.5 to only 104.

Our architecture, depicted in Figure 4, is composed of
seven main parts: an input latch, a counter, a FIFO, two
comparators, an output latch, and a controller. In each data
cycle, the following events occur:

648

Rcq Ack
CONTROLLER

Figure 4. Overall block diagram.
POS

• • •

••• NEXTMAX

•• •

Figure 5. Block diagram of the FIFO.

1. When the request signal goes high, the data is latched,
and the counter is incremented.

2. The current count and the position of the maximum are
compared. If they are equal, the maximum has fallen
out of the window, and it is shifted out of the FIFO.

3. The new data element is compared with each element in
the list beginning with the most recently added element
until the insertion position has been found.

4. The new data element is placed in the location of the
oldest element that it is greater than or equal to. If it
is smaller than all elements in the list, it is placed in
the first empty location. If the list is full, the element
is discarded.

5. The maximum data element and its position are output,
and the acknowledge signal is asserted.

4. IMPLEMENTATION

The major blocks which must be implemented in our asyn­
chronous MAX LIST architecture are the FIFO, two com­
parators, and the controller. The structure of the FIFO is
shown in Figure 5. The FIFO must be able to shift data
when the element at the head of the list has left the data
window, put data on the eMP bus for the search through
the list, and accept inserted data at arbitrary locations while
clearing all subsequent locations. The information stored in
the FIFO is composed of three parts: a Full/Empty bit, the
position (i.e., the count when the data arrived), and the data
itself.

.7

b7

06

b6

req

• • •

gt
It
eq

gt
It
eq

::~~
Figure 6. Block diagram of a comparator.

The comparator is composed of eight I-bit comparators
as shown in Figure 6. It is started with a request to the high­
est order bit. Each bit of the comparator returns whether ai
is greater than (gt), less than (It), or equal (eq) to bi. For the
compare equals block, not equal is returned when any bit re­
turns gt or It. For the compare greater equals block, greater
than or equal is returned for gt and less than is returned for
It. If the two bits are equal (eq), the next bit is compared.
Finally, if the last bit returns eq, then equal is returned for
the compare equals block, and greater than or equal is re­
turned for the compare greater equals block. This block is
highly data-dependent as the comparison may complete at
varying times. The asynchronous design methodology takes
advantage of this data-dependency to produce a more effi­
cient architecture.

The last important block is the controller. This block is
split into ten separate control blocks as shown in Figure 7.
The main block accepts the request when a new datum is
ready and sends the acknowledge when the current maxi­
mum has been determined, controls the input latches, out­
put latches, and the counter. It also coordinates the shift
and insert control blocks. The shift block is called much
like a subroutine in software. When called, it handles the
control signals related to the counter and maximum posi­
tion comparison, and it executes the FIFO shift when the
comparison determines that they are equal. The ins8 block
is called to check if the new datum can be inserted in the
last location. If it can, the ins8 block asks the ins7 block to
check, etc. until one block cannot accept the data. At that
point, a signal is sent back to tell the previous block the
data should be inserted in the list position that it controls.
That block inserts the data in the list position that it con­
trols, and it forwards an acknowledgement through the ins
blocks to its left to the main block. Each of these control
blocks has been described in behavioral VHDL which can
be synthesized by our asynchronous synthesis system ATACS

[4,5).

5. RESULTS

We implemented our architecture in VHDL and simulated it
for 100000 correlated random data elements. The data was
generat:ed by filtering pseudo-random G~ussian white noise
by a single-pole filter, and the output IS then scaled and
quantized to an 8-bit value. Due to the asynchronous na-

649

Lalch
Counter (oulpul)

... ~ Req

Ack

DaJapaJh

Da/apalh

Figure 7. Block diagram of the controller.

8000'---~--'-~rr---r---'----'---~--'---,

7000

6000

5000

4000

3000

2000

1000

20 40 60 80 100 120 140 160 180
Gate delays

Figure 8. Data cycle delay distribution (fixed).

ture of our architecture, it is able to take advantage of data­
dependent delay variations. The sources for data-dependent
delay variations are in the counter, each comparator, and
the number of elements in the FIFO. These variations re­
sult in an extremely variable data delay cycle as shown in
Figure 8 which depicts a histogram of the delay to accept
a new datum and output the current maximum. Over the
course of the 100,000 elements, our minimum delay was as
small as 29 gate delays and our maximum was as large as
161 gate delays. The average delay is 58.6 gate delays with
a standard deviation of 17.3. As mentioned earlier, since
the list size is much smaller than the window size, elements
may need to be discarded. This event happened 8925 times,
but never did the dropped element become a maximum in
the sliding window.

One advantage of asynchronous design is the ability of an
asynchronous design to adapt to operating conditions. The
delay of a transistor in a VLSI design can vary significantly
depending on the quality of the process run, the operat­
ing temperature, and the supply voltage. In a synchronous
design, this variation is taken into account by adding a sub­
stantial margin to the clock cycle to guarantee that the chip
operates correctly even in the most adverse circumstances.
In reality, a chip typically comes from an average process­
ing run and runs much cooler and at a higher supply volt­
age than in the worst-case. The speed of an asynchronous
design adapts to the current operating conditions. We took

8000r---.---~--~--~--~----r---~--~--,

7000

6000

5000

4000

3000

2000

1000

I~ %L---2ll0WWnll40llWWW6~ollllW8~0~~100~~12=0--~1~40~~lW~~'80
Gate delays

Figure 9. Data cycle delay distribution (bounded).

this fact into account in the simulation by replacing all fixed
delay parameters by delay parameters which are randomly
generated each cycle within a delay bound from the worst­
case down to 50 percent of the worst-case. Our simulation
results using these bounded delays are shown in Figure 9.
The average delay improves to 43.9 gate delays with a stan­
dard deviation of 12.9. The minimum and maximum delays
also improve to 19.1 and 124.3 gate delays, respectively.

6. COMPARISON

We compared our results with several synchronous imple­
mentations of the MAXLIST algorithm that were designed
as class projects at the University of Utah. The best im­
plementation designed by Julsgaard and Xu [6] had a clock
frequency of 75 MHz for a 1.2/-Lm CMOS process, and it
required 6 + 2X cycles to accept a new datum and output
the current maximum where X is the number of compar­
isons required. On average, they need 1.4 comparisons, or
117ns. Assuming a 0.5ns gate delay for this process, this
synchronous design requires on average 234 gate delays per
data cycle.

In order to draw a fairer comparison, we examine the per­
formance of a hypothetical synchronous design which uses
the same architecture as our asynchronous design. For each
data element in a synchronous design, one cycle would be
required to latch the data and increment the counter. An­
other cycle is needed to perform the position comparison to
see if a shift is necessary. If a shift is necessary, a clock
cycle would be needed to perform it. Next, a minimum of
two cycles are needed for each comparison that is going to
be performed to find the location in which to insert the data
into the FIFO. One is needed to determine and obtain the
next element to be compared against, and the second is to
perform the comparison. After the position is determined,
one cycle is needed to insert the element. Finally, one cycle
is required to output the current maJ9.mum. Putting it all
together, we get the following:

data cycle delay 4 + p(shift) + 2· avg(cmp)

In the 100,000 data samples, the list needs to be shifted
only 227 times, so p(shift) is negligible. Using 1.4 as the
average number of compares, the approximate average data

650

cycle delay in a synchronous design would be about 6.8
cycles. The counter and comparator would require at least
one gate delay per bit and at least two more for control and
latching data in and out. Thus, the fastest possible clock
cycle time would be at least 10 gate delays. Using a 10
gate delay cycle time, the synchronous design would require
on average 68 gate delays per data cycle. Therefore, our
asynchronous design is at least 14 percent faster considering
only data-dependent delay variations and fixed delays, and
at least 35 percent faster when operating conditions are also
considered using bounded delays.

If we are given a fixed throughput requirement, this speed
improvement can be turned into improved power perfor­
mance by lowering the supply voltage. For example, to get
the same performance as the best synchronous design at 5
volts, our asynchronous design can be run at 3.2 volts. This
leads to a 59 percent savings in power, since power scales
as the square of the voltage.

7. CONCLUSION

As clock speeds increase, difficulties in distributing a global
clock is forcing many designers to consider asynchronous
architectures as a viable design alternative to synchronous
ones. Asynchronous designs also can take advantage of
delay variations due to data-dependencies and operating
conditions at a very fine grain. The complexity of the
computations in the MAXLIST algorithm are largely data­
dependent, so we designed an asynchronous architecture to
implement it. Due to the fact that the clock cycle in a syn­
chronous design must be set for worst-case delays, we are
able to show over a five times improvement in speed when
compared with an existing synchronous design. We are also
able to show .that our asynchronous design can outperform
an extremely aggressive, comparable synchronous design by
more than 35 percent in speed or 59 percent in power.

ACKNOWLEDGMENTS

We would like to thank Professor Scott Douglas of the U ni­
versity of Utah for introducing us to the MAX LIST algo­
rithm. We would like to thank Kashif Ikram and Syed Rab
for their contributions in the initial architecture design.

REFERENCES

[1) S. C. Douglas. A family of normalized LMS algo­
rithms. IEEE Signal Processing Letters, 1(3):49-51,
March 1994.

[2) S. C. Douglas. Running max/min calculation using a
pruned ordered list. IEEE Transactions on Signal Pro­
cessing, 44(11):2872-2877, November 1996.

[3] S. C. Douglas. Private communications, 1996.

[4] C. J. Myers. Computer-Aided Synthesis and Verification
of Gate-Level Timed Circuits. PhD thesis, Stanford Uni­
versity, 1995.

[5) H. Zheng and C. J. Myers. Specification and compila­
tion of mixed-timed systems using VHDL. forthcoming
paper.

[6) K. Julsgaard and Z. Xu. A VLSI implementation of the
MAX LIST algorithm. Project report for CSjEE 542,
University of Utah, 1995.

