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Suppression of Local Degrees of Freedom of Gauge Fields by Chiral Anomalies 
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A path-integral quantization is presented for the chiral Schwinger model on a Riemann surface. 
Gauge invariance is maintained by integrating over all gauge potentials without the usual gauge fixing. 
All local degrees of freedom of the gauge field are suppressed after the integration of the anomalous 
effective action over a gauge orbit. The resulting theory is a topological one for the surviving global 
gauge excitations. The general implications for consistent quantization of chiral gauge theories are also 
discussed. 
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By now it is well known that gauge fields can have 
purely global dynamical degrees of freedom, I which are 
best described by nonintegrable phase factors for non
contractible loops. 2 Recently, a lot of interest has been 
attracted to theories with only such global gauge excita
tions present. Known examples include discrete gauge 
theories in continuum space-time 3 and topological 
Chern-Simons theories. 4,5 In either case the locally 
propagating gauge-field degrees of freedom are sup
pressed, at least at large distances. Thus the gauge fields 
become locally trivial everywhere (except perhaps at iso
lated points in D = 2 + I or at stringlike singularities in 
D = 3 + I ), but nonetheless give rise to interesting and 
observable physical effects, such as discrete quantum 
hairs of black holes,6 non-Abelian Aharonov-Bohm 
effects for cosmic strings, 7 anyon superconductivity,8 and 
topological order in the quantum Hall effect and the 
chiral spin states. 9 

In this Letter we are going to show that suppression of 
local gauge excitations occurs also in a third wide class 
of theories, i.e., quantized gauge theories coupled to 
chiral fermions. More concretely, we will quantize the 
Euclidean chiral Schwinger model, i.e., D=2 QED 
asymmetrically coupled to left- and right-handed fer
mions; the action is given by 

/[A,'I',VI1= hd 2xJi[ !F]v+iw[vp-ieAp l~r3'1')]' 
(I) 

e.g., with a left-handed fermion. More generally, one 
may consider more than one species of chiral fermions 
with charges eL, eR, etc. We note that this model is 
analogous to (but much simpler than) two-dimensional
induced quantum gravity 10 in that integrating out matter 
fields leads to an "anomalous" effective action. Because 
of the generally uncanceled chiral anomaly, we have 
been careful in employing a path-integral quantization, 
in which gauge invariance is maintained by integrating 

over all gauge potentials. II We are able to perform the 
integration of the anomalous effective action over a 
gauge orbit without the usual gauge fixing. It suppresses 
all locally propagating degrees of freedom of the gauge 
field and, on a Riemann surface, results in a sensible to
pological theory for the surviving global gauge excita
tions. The general implications of this exercise for con
sistent quantization of chiral gauge theories will be dis
cussed later. 

The chiral Schwinger model (I) on a Minkowskian 
plane (or on a sphere) has been studied by Jackiw and 
Rajaraman, 12 using the bosonized action 

.Lb = - t F}v+ t (optf»2+e(gPV-cpvHJptf>Av 

(2) 

where a is a real parameter in regularizing the fermion 
determinant. They showed that if a > I, the theory is 
unitary and the physical spectrum consists of a massless 
excitation and a massive vector boson with m 2 =e 2a/(a 
- I); and the a < I case is nonunitary. In our opinion, 
a = I is a preferred choice in that it corresponds to the 
consistent anomaly cPv opAv, and for the left-right
symmetric cases it automatically gives a gauge-invariant 
effective action. Observe that when a --- lone has 
m 2 ___ 00, thus no propagating gauge excitations can be 
present. Though this makes the theory trivial on a plane 
(or sphere), there are global excitations surviving on a 
Riemann surface ~ with genus g 2: I. 

Now we define the partition function on ~ as 

z(~)-f 1)'I'1)ii!1)Aexp{-/[A,'I',ii!]} , 0) 

where the integral for A is taken over the space of all 
gauge potentials. To carry out this integration, one 
needs to know how to parametrize the gauge potentials 
on ~ and then give the A space a "volume" measure. 
For simplicity, we assume the U(J) potentials are those 
on a trivial bundle (i.e., Jr.F=O). Therefore, A 
=eAlJdxl' is a one-form on~. According to the Hodge 
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theorem, 13 anyone-form A can always be uniquely writ
ten as 

A =dT]+o~+ y, 

where T] is a zero-form, ~ is a two-form, and y is a har
monic one-form on L; d is the exterior derivative, and 
0=* d* with the * the Hodge dual with respect to the 
metric g/lV on L, which one may take to be of constant 
curvature. According to the de Rham theorem, 13 

y= f x'a, + f yipl. (5) 
i-I i-I 

Here xi,y' are real numbers and a',p i are canonical har
monic one-forms satisfying 

with a"h, (i=1,2, ... ,g) a set of canonical one-cycles 
on L (see Fig. I). The gauge-transformation degrees of 
freedom hidden in Eq. (4) is 

ig(x) -I dg(x) =dT]+ f miai + f niPi , (7) 
I-I I-I 

where mi,ni are integers. dT] corresponds to small gauge 
transformations and the remaining represents large ones. 
Therefore, the gauge-invariant part 14 in the parametri
zation (4) is 

A =A -ig(x) -I dg(x) =8~+ Lxia,+ Ly'Pi' (8) 

with O.:s x',y' < I. While the o~ term represents locally 
propagating degrees of freedom, the harmonic forms al
ways have zero strength and represent global Aharonov
Bohm configurations: Xi and y' are nothing but the 
nonintegrable phases around the holes of L. 

In the A space, we introduce the gauge and con
formal-invariant inner product: 

(9) 

The three parts in the decomposition (4) are orthogonal 
to each other, 13 so one has 

g 

=:JJT] :JJsdet(~o)(21r)g n dx' dyi. (10) 
,-I 

Here we have made a change in the variables: (dT]) 
---+ 1], o~- S with s=*~ the zero-form dual to~. ~o is 

a, 

FIG. I. A set of canonical a and b cycles on L. 

the Laplacian acting on zero-forms. The measure (10) is 
independent of 1] (x). 

For how to define chiral fermions and the chiral Dirac 
operator on a Riemann surface L, we refer the reader to 
Ref. 15. Like Minkowskian chiral fermions, which are 
functions of only one light-cone coordinate x ± = x I 
± xo, chiral fermions on L can be defined through 
(antj)holomorphy on the complex coordinate z = x I 

+ ix 2, with the complex structure that is compatible with 
the metric on L. One has to fix a spin structure on L for 
each species and couple only the Az (Ai) components to 
left- (right-) handed fermions. 

The fermionic integral in Eq. (3) leads to, as usual, 
the D = 2 chiral Dirac determinant: 

Zj[A] = J :JJ",:JJijexp [-i J d 2xJ"iijY+",) =detiY+. 

(II) 

Because of chiral anomaly, Zj[A] is not invariant under 
both small and large gauge transformations. For an 
infinitesimal gauge transformation oA = d (01]), one has 
the local consistent anomaly [corresponding to the choice 
a = 1 in Eq. (2)] 

where F = t f/l v C1/lA v • (With more than one species, the 
right-hand side should be multiplied by a constant K" 

=LL el- LR d which we assume is nonzero.) Note 
that though the chiral Dirac operator depends only on Az 
for left-handed fermions, its determinant depends also on 
Ai' because of the counterterm like the last one in Eq. 
(2). We emphasize that the local anomaly is of the same 
form on all Riemann surfaces, since it is local in A and 
can be calculated by one-loop perturbation theory. In
tegrating Eq. (12) simply gives 

Zj[A] =Zr[o~+r]exp [2i
7r J d 2x T](X)F(X») . (13) 

Substituting Eqs. (10), 0 I), and (3) into Eq. (3) 
leads to 

(4) 

The key observation is that since both the Maxwell action 10 and det~o are independent of 1](x), it is trivial to perform 
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the 1](x) integration and obtain the 0 functional 

n o(i(x» =(det~o) -I n o(~(x». (IS) 
xE~ xE~ 

It is this 0 functional of i(x) that suppresses all local 
gauge excitations. Thus the partition function (3) is re
duced to a finite-dimensional integral 

Z(:E) = I 'vyZj[Y] 

= I_:ndXidyiz/(~xiai+~/Pi)' (16) 

leading to a theory for flat U(I) potentials with the 
chiral determinant Zj[Y] (or a product of such deter
minants for more than one species) as induced action. 

According to Alvarez-Gaume, Moore, and Vafa, 15 the 
latter is essentially a 0 function up to some phase choice. 
For example, when ~ is a torus T2, for a left-handed fer
mion satisfying the antiperiodic (A,A) boundary condi
tion on both the a and b cycles, 

Z/[Oa -I/>P] = 1]( r) -It? [: ] <01 r) , (I7) 

and the complex conjugate, for a right-handed fermion. 
Here the complex r parametrizes the flat metric ds 2 

=ldxI+rdx212 on T2, 1](r) is the Dedekind eta func-

tion, and 

t? [:] <olr) = ~exp{j1l'(N+0)2r+2i1r(N+(J)I/>}. 
Under a global gauge transformation 0-- 0+ m, 1/>- I/> 
- n, the Z j transforms as 

Z/[{O+ m)a - (I/> - n )p] =exp{ - i211'nO)Zj[Oa -I/>p] . 

(18) 

Using it we reduce Eq. (16) to an integral over the 
moduli space of flat potentials: 

Z{T 2)=211'L (ldO (l dI/>Z/[Oa-l/>p]exP(-i211'nO) 
n Jo J o 

211' (I [0] 211' 
= T](-r) Jo dl/>l1 I/> <olr) = T]{r) . 

Here we have neglected an infinite constant arising from 
the summation over m, and the sum over n gives a 0 
function of 0. The chiral determinant for the (P,A), 
(A,P), and (P,P) spin structures on T2 can be ob
tained 15 by shifting 0- 0+ fl and 1/>-1/> - f2, with 
(fl,f2)=(t,0), (O,t), and (t,t), respectively. This 
shifting does not change the expression (19) for Z (T 2) 
with only one chiral fermion. With more than one spe
cies, the partition function remains invariant if one shifts 
all spin structures by one and the same pair (fl,f2). 

To see the topological nature of the resulting field 
theory, we examine the Wilson loop <W(C» 
=(exp(ik ~eA» as a gauge-invariant observable: 

<W(C» = I 'v1(I,Viii'vA exp (ik PeA) exp{ - ilA, 1(1, iii]} / Z(T 2
) = I_oooo dOdl/>exp [ik PeA (0,1/» ) 11 [: ] <01 r) . (20) 

Decompose the loop C in terms of the a and b cycles: 
C = M a + Nb with M ,N integers: 

exp [ik PeA (0,1/» ) =exp{21I'ik(MO - NI/»}. (21) 

It is easy to see that k has to be an integer in order for 
W(C) to be invariant under larger gauge transforma
tions. Inserting (21) into (20) and proceeding as before, 
one obtains 

(22) 

We note that <W{C» is homotopy invariant, though de
pending on the conformal moduli parameter r of the 
background metric. That the result (22) is asymmetric 
with respect to the a and b cycles is because of the asym
metric global anomaly (18) implied by the phase choice 
in the chiral determinant (17). If we multiply the right
hand side of Eq. (17) by exp( - i1l'01/», then both (18) 
and (22) will become symmetric in 0, I/> or in M,N. Thus 
the resulting topological theory depends on the phase 
choice of the chiral determinant. 

All of the above results can be generalized to higher 
genus, again involving the 0 functions on~. Obviously if 

the insertions involve the local- and gauge-invariant 
function i(x), it must be put to zero after the gauge
orbit integration. It would be interesting to calculate the 
gauge-invariant fermion propagator < iii(x )exp(i J; A) 
x I(I{Y». Also it is possible to consider the cases with a 
nontrivial bundle (j.e., with J ~F~O); in such cases 
A - Ao is always a one-form with Ao a potential on the 
same bundle. The details will be published elsewhere. 16 

The intriguing possibility of quantizing a gauge theory 
with uncanceled chiral anomaly has been advocated in 
the literature 10.12, 17, 18 for some time. The first lesson 
from our above exercise is that the original concern that 
gauge anomaly would make the partition function van
ishing turns out unnecessary. We have seen that the in
tegration of the anomalous effective action over a gauge 
orbit gives rise to a 0 functional in the A space [see Eq. 
(IS) and below Eq. (19)1, rather than an identically van
ishing factor as usually thought. So at worst, local 
gauge anomaly renders the theory trivial, but never 
internally inconsistent. The same is true for a global 
anomaly on an infinite number of disconnected com
ponents of a gauge orbit. Second, in our present exam-
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pie one can see more explicitly why the quantum theory 
with anomalous effective action can be gauge invariant: 
Gauge-field configurations for which the effective action 
ZJ is not gauge invariant are all suppressed, so nothing 
surviving in the theory is inconsistent with gauge invari
ance, despite the original presence of chiral anomaly. Fi
nally, we have seen that local gauge anomaly suppresses 
local gauge-field excitations. Thus, the perturbation 
theory which presumes the existence of locally propaga
ting dynamical gauge bosons is predestined to introduce 
internal inconsistency into the theory.19 On the other 
hand, anomaly cancellation is still needed for the elec
troweak theory or any grand unified model to have prop
agating dynamical gauge bosons. 

To conclude, let us mention some future directions. 
How can one confirm the above new understanding of 
the role of chiral anomaly in a different quantization 
scheme, say, in canonical or Becchi-Rouet-Stora-Tyutin 
or geometric quantization? How about non-Abelian 
cases or two-dimensional gravity or gauge theory plus 
gravity? Could the present development shed some light 
on the yet mysterious equivalence of two-dimensional to
pological gravity 20 to two-dimensional-induced quantum 
gravitylO or the matrix models of noncritical strings?21 
Finally, of course, the most interesting situations would 
be in higher dimensions, especially in D = 3 + I. We ob
serve that presumably not all local gauge excitations 
would be suppressed by anomalies, so possibly there are 
surviving degrees of freedom in a topologically trivial 
space-time. 
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