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ABSTRACT 

This paper is concerned with the blind identification of 
bilinear systems excited by higher-order white noise. Un­
like prior work that restricted the bilinear system model to 
simple forms and required the excitation to be Gaussian dis­
tributed, the results of this paper are applicable to a more 
general class of bilinear systems and for the case when the 
excitation is non-Gaussian. We describe an estimation pro­
cedure for the computation of the system parameters using 
output cumulants of order less than four. 

1. INTRODUCTION 

We consider bilinear systems of the form 

Ka Kb 

yen) L a(i)y(n - i) + L b(i)u(n - i) 
i=1 i=O 

Kcu Key 

+ L L c(i,j)y(n - i)u(n - j) + v(n) (1) 
j=1 i=j 

where yen) is the output of the system, u(n) its input and 
v(n) the measurement noise. We assume that b(O) = 1, 
c(Keu, Keu) =J:. 0, Keu ~ Kb, and C, the matrix of coeffi­
cients c(i,j), is lower triangular. We assume also that the 
measurement noise v(n) belongs to a Gaussian white pro­
cess with zero mean value and is independent of the input, 
and that the input signal u(n) is a higher-order white pro­
cess that has zero mean value and is not necessarily Gaus­
sian distributed. The cumulants of u(n) are given by 

cum[u(n), u(n -lI),' .. , u(n - lk-d] = 

/'ko(h,···, lk-d (2) 

where 0(l1, ... ,lk-d is the (k -1) dimensional unit impulse 
signal and /'k denotes the signal intensity of order k. The 
coefficients a(i), b(i) and c(i,j) are such that yen) is a sta­
tionary process. Sufficient conditions for the stationarity of 
bilinear processes are derived in [1, 4, 5]. The blind iden­
tification problem addressed in this paper is formulated as 
follows. Given the system orders K a , Kb, Keu and Key and 
the output statistics, determine the system parameters a(i), 
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b(i) and c(i,j), as well as the higher-order signal intensities 
/,2, /'3, /,4 and /'5 associated with the input signal u(n). 

Closed form expressions that relate measurable statis­
tics of the output signal to the parameters that must be es­
timated are available only for a very restricted class of non­
linear system models [6, 7]. Consequently, the most com­
mon approach to estimating the parameters of the model is 
to resort to some form of numerical search algorithm that 
operates in an iterative manner [8]. This paper describes 
a set of equations that relate parameters of the system in 
(1) to cumulants of the output signal up to order four, and 
then provides a direct method for estimating the parame­
ters based on these relationships. 

The rest of this paper is organized as follows. The next 
section describes the blind estimation procedure. The es­
timation is performed in a sequential manner. The coeffi­
cients a(i) are estimated first, and the estimated parame­
ter values are employed to find the remaining parameters. 
Because of space limitations, we only describe the method­
ology employed in our approach. Complete derivations will 
be presented in [3]. The concluding remarks are made in 
Section 3. 

2. BLIND ESTIMATION OF THE 
PARAMETERS 

2.1. Estimation of a(i) 

The first stage of the blind estimation algorithm involves 
the computation of the a(i) parameters through the out­
put covariance c~2)(I) = cum[y(n), yen -I)]. It is relatively 
straightforward to show that the covariance function of the 
output signal satisfies the following results for sufficiently 
large values of the lag: 

Proposition 1. Let L > K = max(Kb, Keu). Then, 
the output covariance sequence satisfies the autoregressive 
model 

Ka 

c~2)(L) = L a(i)c~2)(L - i). (3) 
i=l 

Proposition 1 states that the output covariance sequence 
behaves in a manner that is identical to the covariance func-



tion of an autoregressive signal for sufficiently large values 
of the lag I. This property enables the computation of the 
a( i) parameters with the aid of the second-order statistics 
and a linear system Toeplitz solver such as a variant of the 
Levinson algorithm [2]. 

Estimation of the c( i, j) coefficients relies on the third 
and fourth order cumulant sequences 

(4) 

and 

The behavior of the cumulants of order 3 or 4 when all 
arguments 11, 12 and b are large is easy to predict. Similar 
to the results in Proposition 1, we can show that C~3) (h, 12 ) 

and C~4) (h, 12, b) satisfy the same autoregressive model: 

Ka 

c~3)(Ll,L2) = La(i)c~3)(Ll-i,L2 -i)j 
i=l 

(6) 

and 

Ka 

c~4)(Ll,L2,L3) = La(i)c~4)(Ll-i,L2 -i,L3 -i)j 
i=l 

2.2. Estimation of the Last Column of C 

To estimate the remaining parameters b( i) and c( i, j) re­
quires the derivation of relationships that relate the cumu­
lants for smaller lag values through these coefficients. To 
derive such relationships in a manageable fashion we hold 

one of the arguments at a large value and analyze the cumu­
lants as the remaining lag values fall in the range 0 ::; 1 ::; K. 
The following result allows the estimation of the last column 
of the coefficient matrix C. 

Proposition 2. Let 

Ka 

D2(1) = - L a(i)c~2)(1 - i) a(O) = -1, (8) 
i=O 

Ka 

D3(l1, 12) = - L a(i)c~3)(ll - i, 12 - i) (9) 
i=O 

and 

Ka 

D4(ll, 12 , 13 ) = - L a(i)c~4)(ll - i, 12 - i, b - i). (10) 
i=O 

Then 

Key 

D3(K,L) =,2 L c(i,Kcu)C~2)(L - i) (11) 
i=Kcu 
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and 

Key 

2,2 L ·c(i, Keu)C~3) (K - i, L - i) 
i=Kcu 

+ ,3 D 3 (K, L). ,2 (12) 

The quantities Drn (-) can be computed from the out­
put cumulants since the parameters a(i) have already been 
computed. Application of (11) for Key - Kcu + 1 different 
values of L enables us to determine the last column of C 
scaled by the input variance ,2. Furthermore, evaluation of 
(12) at a value of L such that D 3 (K, L) f. 0, enables us to 
determine the ratio ,3/,2. 

2.3. Estimation of b(K) 

We analyze the statistics of the output signal sequentially, 
starting with lag values of K, and then descending to smaller 
lag values. The following expressions provide useful infor­
mation for lag values equal to K. 

Key 

D2(K) = ,2b(K) + fh2 L c(i, K) + ,3c(K, K) (13) 
i=K 

Key 

,3b(K) + y,3 L c(i, K) + ,4c(K, K) 
i=K 

Key 

+2,2 L c(i, K)C~2)(K - i) (14) 
i=K 

Key 

,4b(K) +y,4 L c(i, K) + ,5c(K, K) + 
i=K 

Key 

+3,2 L c(i, K)C~3\K - i, K - i) 
i=K 

Key 

+3,3 L c(i, K)C~2) (K - i) (15) 
i=K 

In the above expressions y denotes the mean value of yen). 
Equation (13) yields '2b(K). Equations (14) and (15) pro­
vide ,4h2 and '5h2. 

2.4. Estimation of Other Parameters 

The remaining calculations require the definition of the fol­
lowing parameters: 

K 

S3(m, L) = - L a(l- m)D3(1, L), 
l=m 

(16) 
and 

K 

S4(m, K, L) = - L a(l-m)D4(1, K, L), l::;m::;K-l. 
l=rn 

(17) 



The estimation of the remaining columns of C relies on 
expressions of the following form: 

Key 

S4(K -1,K, L) + a(I)--y2 L c(i, K)C~3)(K - i, L - i) 
i==K 

Key 

-'YZ I: c(i, K)C~3) (K - 1 - i, L - i) = 

Key 

2: [D2(K)c~3)(1 - i, L - K + 1 - i) + 

(D3(K,K)-'Y2 %c(n'K)c~2)(K-n») X 

xc~2)(L-K+l-i)+ 

Key 

"(2 L c(n, K) X 

n=K 

X c14 )(n - K + 1 - i, 1 - i, L - K + 1 - i) + 

Key 

+'Y3 2: c(n, K)c~3)(n - K + 1 - i, L - K + 1 - i) 

Key 

+'Y4 2: c(n, K)c~2)(L - n)J(i - 1) + 
n:;:.:K 

Key 

'Y2 L c(n, K)c~2) (L - n)c~2) (1 - i) + 
n=K 

Key 

1113 L c(n,K)c~2)(L - n) + 
n==K 

Key 

+13 2: c(n, K)c~3) (K - n, L - n)J(i - 1) + 

Key 1 
Y'Y2 ~ c(n, K)C~3)(K - n, L - n) c(i, 1) + 

+12c(K -1, f( - l)c~3)(1, L - K + 1) + 
Key 

L ("(2 c(i, f( -1) + b(1)--y2c(i, K» c~3)(K - i, L - i) + 
i=K 

The above equation evaluated for different choices of 
L leads to a linear system of equations with the following 
groups of unknowns: 

1. The first column of C, c(i, 1) 

2. The term 'Y2c(K - 1, K - 1) 

3. A linear combination of the last two columns of C: 
'Y2c(i, K - 1) + b(1h2c(i, K). 

4. Thetermb(1)~+"(2c(I,1). 

We estimate the four unknown groups of parameters by 
solving the system of linear equations resulting from (18). 
In group 4 we have one linear equation with unknowns bel) 
and 12, since 'Y3/'Y2 and c(l, 1) are already available from 
prior calculations. A second equation for b(l) and 12 is 
obtained using an expression similar to (18) for S3(K -1, K) 
and given by 

Key 

S3(K - 1, K) + a(lh2 I: c(i, K)C~2)(K - i) -

Key key 

1'22: c(i, K) L c(n, l)c;3)(i - K + 1 - n, 1 - n) -
i=K n=l 

Key key 

"(3 L c(i, K) L c(n, 1)c~2)(i - K + 1 - n) -
i=K n=l 

Key 

"(22: c(i, K)C~2) (K - 1 - i) -
i=K 

Key 

i=l 

Key 

14c(K, Klfj L c(i, 1) -12c(K -1, K - l)c~2)(I) -
i=l 

Key 

- L ("(2 c(i, K - 1) + b(lh2c(i, K» c~2)(K - i) 
i=K 

Key -c(l, 1)':3 L c(i, K)C~2) (K - i) -
i=K 

Key key 

-fj L c(i, 1h2 2: c(n, K)c~2)(K - n) 
i=l n=k 

(

Key ) 

-c(l,lh4 b(K) + 11 t; c(i, K) -

Key ( Key ) 

- ~ c(i, 1hz b(K) + fj ~ c(n, Kl C~2) (1 - i) -

(

Key ) Key 

Y13 b(K) + Y t; c(i, K) ~ c(n, 1) 

= bel) ['Y4C(K, K) + 'Y3 (b(K) + 17 ~ c(i, K») 1 + 

12 [3'Y3C(K, K)c(l, 1) + c(l, 1h2 (bCK) + fj ~ c(i, K») 1 
(19) 

The determinant of the above system is 

c(l, 1 )c(K, K) (,,(4 _ 3;:) 
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Provided that c(l, 1) =I- 0, c(K, K) =I- ° and 1'4 =I- 3"t5h2, 
b(l) and 1'2 are uniquely determined. It is shown in [3] that 
the above assumption can be rei axed if we use cumulants of 
order 5. Having determined bel) and 1'2 we return to groups 
2 and 3 and compute the K - 1 columns of C. Finally 
b(K - 1) is obtained from 5 2(K - 1) as 

b(K - 1)'2 = 

52(K - 1) -1'3c(K - 1, K - 1) - Y1'2c(K - 1, K - 1) 
Key 

-y L (r2c(i, K - 1) + b(1),2c(i, K)) 
i=K 

Key 

-D2(K)fj L c(i, 1) 
i=l 

Key key 

-1'22::: c(i, K) 2::: c(n, 1)c~2)(i - K + 1 - n) 
i=K n=! 

-c(l,l) [1'3 (b(K)+Y~C(i'K))+1'4C(K'K)l 
-b(l) (1'2b(K) + 1'3c(K, K)) -1'2/2c(K, K)c(l, 1).(20) 

In summary, (18)-(20) lead to the estimation of the first 
column of C, c(i, 1), the (K -l)th column of C, c(i, K -1), 
b( 1), b( K - 1) and 1'2. The remaining parameters can be de­
termined in a similar manner through successive evaluation 
of 54(1, K, L), 5 3(1, K) and 5 2(1) for 1= K - 2, K - 3,···. 

3. CONCLUDING REMARKS 

This paper has dealt with the blind identification of bilinear 
systems from measurements of the output signals. The pa­
rameters are determined via a sequence of linear systems in­
volving cumulants up to order four. Unlike prior work that 
restricted the bilinear system model to simple forms and re­
quired the excitation to be Gaussian distributed [6, 7], the 
results of this paper are applicable to a more general class 
of bilinear systems and for the case when the excitation is 
non-Gaussian. 

4. REFERENCES 

[1] T. Bose and M. Q. Chen, "BIBO Stability of the Dis­
crete Bilinear Systems," Digital Signal Processing: A 
Review Journal, Vol. 5, No.3, 1995. 

[2] N. Kalouptsidis, "Signal Processing Systems: Theory 
and Design", John Wiley, 1997. 

[3] N. Kalouptsidis, P. Koukoulas and V. J. Mathews, 
"Blind Identification of Bilinear Input Output Sys­
terns", under preparation. 

[4] S. Kotsios and N. Kalouptsidis, "BIBO Stability Crite­
ria for a Certain Class of Discrete Nonlinear Systems," 
Int. J. Control, vol. 58, No.3, pp. 707-730, September 
1993. 

[5] J. Lee and V. J. Mathews, "A Stability Theorem for 
Bilinear Systems," IEEE Trans. on Signal Processing, 
vol. SP-41, No.7, pp. 1871-1873, July 1994. 

3504 

[6] V. J. Mathews and T. K. Moon, "Parameter Estima­
tion for a Bilinear Time Series Model," Proc. IEEE Int. 
ConI Acoust. Speech and Signal Proc., pp. 3513-3516, 
Toronto, May 1991. 

[7] S. A. Sesay and T. Subba Rao, "Difference Equations 
for Higher Order Moments and Cumulants for Bilin­
ear Time Series Model BP(p,O,p,I)," J. Time Series 
Analysis, vol. 12, No.2, pp. 159-177, February 1991. 

[8] T. Subba Rao, "On the Theory of Bilinear Time Series 
Models," J. Royal Soc. Ser. B, vol. 43, pp. 244-255, 
1981. 


