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Amplitude and phase modes in frans-polyacetylene: 
Resonant Raman scattering and induced infrared activity
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The resonant Raman scattering (RRS) from the three As modes of frans-polyacetylene and the 
charged-induced ir modes are analyzed with use of the amplitude- and phase-mode theories. It is 
shown that the observed phonon frequencies and the relative intensities of all modes obtained at vari­
ous laser excitation energies fuoL is accounted for by a single phonon propagator which also describes 
the charge-induced infrared-active modes. The dispersion of the RRS frequencies with fuoL exhibits 
inhomogeneity of the sample which in turn provides the functional dependence of the 7r-electron gap 
Eg on an effective coupling parameter X. We show that inhomogeneity in both the electron-phonon 
and the electron-electron interaction parameters yields inhomogeneity in X. The experimental gap- 
versus-X relation is consistent with the Peierls model but allows for weak electron-electron interac­
tions which enhance the gap. We propose a method by which the distribution in P( J-), is directly 
derived from the experimental spectra. It appears that different samples show different breadth for 
the distribution function; samples with sharper RRS features have narrower P ()<.). We give an exper­
imental estimate of the a-bond contribution to the force constant of the carbon-carbon stretching 
mode and the electron-phonon interaction parameter. The pinning parameter of the charged carriers 
and its distribution are derived directly from the infrared absorption spectra induced either by doping 
or by photogeneration. The pinning of the doping-induced carriers is stronger and its distribution is 
wider; giving thus rise to the broader lines in the doping-induced infrared spectra. The mass of the 
photogenerated solitons is estimated from the relative strength of the infrared spectra and is approxi­
mately equal to the band effective mass of the electrons.

I. INTRODUCTION

Resonant Raman scattering (RRS) has been extensively 
used in recent years to study the inhomogeneity and dis­
order of Zrans-polyacetylene. The Raman spectrum of 
frans-polyacetylene has by now been measured on many 
different samples by various groups,1-4 and it has several 
unique features. As the incident laser photon energy 
(•fkoL ) is increased from deep-red, the RRS bands change 
gradually from a narrow, slightly asymmetric line into a 
more-complicated two-peak band consisting of an unshift­
ed primary peak and an upward shifted satellite portion 
which becomes the prominent feature of the band at 
deep-blue and uv excitations (see Fig. 1). The exact shape 
of the RRS bands depends strongly on sample quality: 
“better” samples show sharper double-peak features. 
However, the position of the primary and the satellite 
peaks are sample independent. These distinctive features 
have been regarded as evidence for the presence of inho­
mogeneity (or disorder) in fra«s-polyacetylene. The disor­
der results in a distribution of the electronic energy gaps 
and the respective frequencies, which are selectively 
probed by the RRS process, leading to the shift and 
broadening of the phonon bands.

In early attempts to account for the RRS features, the 
inhomogeneity was attributed to a distribution of chains

with varying length of 7r-electron conjugation.2,3 In this 
approach (using either the particle-in-the-box model3,5 or 
Huckel-type calculations6,7) chains with shorter conjuga­
tion length have larger electronic gap, thereby becoming 
selectively probed at higher laser excitation energies. In 
addition, based on the observation in finite polyene 
chains,8 the phonon frequencies are assumed to increase 
with decreasing conjugation length. The satellite peak in 
that model is then assumed to result from a considerable 
amount of chains with short conjugation length. Using 
this model to fit the RRS spectra in detail, several au­
thors6,9,10 have inferred that the disorder in trans­
polyacetylene is caused by a double-peak distribution of 
conjugation lengths: one peak corresponds to relatively 
long (>  200 carbon atoms) chains, while the other is due 
to a substantial amount of chains with short (10-20 C 
atoms) conjugation length.

In a more general point of view the skeleton chain (i.e., 
without 17 electrons) has a few “bare” normal modes 
which have the right symmetry to induce dimerization 
(there are three such modes in rraw.s-polyacetylene). The 
coupling of the ir electrons to these normal modes drives 
the dimerization, and each normal mode becomes a sym­
metric vibration of the dimerization am plitude— a 
Raman-active “amplitude mode.” 11-13 The restoring 
force of these vibrations is associated with the dimeriza-
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tion mechanism itself, i.e., the coupled electron-phonon 
system resists changes in the dimerization amplitude.

When charge carriers are added to the chain the 
translational symmetry of the system is broken. New nor­
mal modes (“phase modes”) which are related to the 
translational degree of freedom of the charge, become in­
frared (ir) active and they describe charge oscillations. 14 

The limit of many excess charges is the incommensurate 
case with similar ir activity . 15 Each bare mode results in 
an infrared-active vibration with restoring force given by 
the “pinning” potential which resists the charge transla­
tion. In particular, in a perfectly translationally invariant 
system (i.e., no pinning potential) the lowest-frequency 
mode, commonly called the “pinned mode,” shifts down 
to zero frequency.

Experimentally, by adding a charge onto the chain, ei­
ther by doping or by photogeneration, several ir-active vi­
brations (IRAV) were observed1 , 1 6 - 2 1  (Fig. 2). The ob­
served IRAV lines induced by photogeneration are corre­
spondingly lower in frequency than those induced by dop­
ing. The IRAV spectra were originally attributed 16 to 
molecular vibrations made ir active by the added charge 
and subsequently were considered 18 ,22 as an evidence for 
the soliton defect.2 3 ' 26 However, as was shown by one of 
us , 14 these IRAV modes are a universal result of the 
translation degree of freedom for the added charge, in­
dependent of its configuration. It was also shown that the 
doping-induced ~  900-cm “ 1 mode in trans-{CH)x [or the 
~ 7 5 0 -cm ~ 1 mode in trans-(CD)x (see Fig. 2)] is the 
“pinned” mode which indeed shifts down21 to —500 
cm - 1  for the more weakly pinned photogenerated 
charges.

R A M A N  S H IF T  t n  ( c m - ')

FIG. 1 Resonant Raman spectra of trans-(CD)* at 300 K. 
The symbols P and 5  denote primary and satellite lines, respec­
tively.

In previous reports28,29 we have applied the amplitude­
mode (AM) approach to frarcs-polyacetylene and have 
shown that the behavior of the RRS as well as the IRAV 
spectra can indeed be accounted for in detail. We have 
found also that the disorder in frans-polyacetylene can be 
described as a distribution P (k )  of a dimensionless 
effective coupling parameter X. Furthermore, unlike the 
conjugation length models, our derived P ( h i  is a single­
peak distribution, and the existence of chains with very 
short conjugation lengths in the material is not a neces­
sary condition to account for the dispersion of the RRS 
lines. In addition, we have concluded that the measured 
gap E g in the range of 1.8-3.5 eV is consistent with a 
Peierls-type relation in X, i.e., E g ~exp( — 1 /2k ) .

The purpose of this paper is to elaborate on the RRS 
and the IRAV analysis in terms of the amplitude- and 
phase-mode theories, and to extend our earlier con­
clusions by including electron correlation effects. The pa­
per is organized as follows. In Sec. II we describe the 
relevant part of the amplitude-mode theory for the inter­
pretation of the Raman and charge-induced infrared data 
of rrafl.v-polyacetylene, including the treatment of finite 
chains in the Hiickel approximation and the effect of 
electron-electron interaction. In Sec. I l l  we analyze in 
detail the Raman data using the amplitude-mode theory 
and show that the observed spectra are Raman scattering 
from amplitude modes. Using the experimental RRS 
spectrum we show how to derive the distribution function 
P ( k )  for inhomogeneous samples. The amplitude-mode 
theory, together with the distribution of the effective cou­
pling parameter A., can account for the frequencies, rela­
tive intensities, shape, width, excitation profile of the Ra­
man lines, and the dispersion with the incoming laser 
photon energy. In Sec. IV we analyze the IRAV data and 
show that the phase-mode theory reproduces all the de­
tails of the IRAV spectrum with one additional pinning 
parameter. In Sec. V we analyze the functional depen-

u) ( c m '1 )

FIG. 2. IRAV spectra of trans-(CD)x. (a) Photogenerated ir 
absorption of an undoped sample (Ref. 20). The arrow at 400 
cm 1 indicates the position of the pinning mode (Ref. 21). (b) ir 
absorption of lightly doped AsF5 sample (Ref. 18).
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dence between X and the gap and show that the electron 
correlations may play an important role in trans-(CH)*. 
We also give estimates for the cr-bond force constant and 
the electron-phonon interaction.

II. THEORETICAL CONCEPTS

A. A single-phonon case

The dimerization of long conjugated molecules such as 
polyacetylene has long been known to be the result of a 
delicate balance between the decrease in the energy E„  of 
the t t  electrons and the increase of the a-electron elastic 
energy E a upon dimerization.30 Defining the dimeriza­
tion amplitude u as half the difference between the lengths 
of the single and double bonds projected in the chain 
direction, we schematically plot (for weak e-ph coupling) 
in Fig. 3 the energies E a (curve a) and E-, (curve b) and 
the total energy E T =  E a + E u (curve c) as a function of u 
for trans-(CH) x . Positive and negative values of u refer to 
“ right” and “left” dimerization patterns, as shown in the 
insets of Fig. 3. It is seen that equilibrium occurs for 
u=jtO and that the curvature d2E T / d u 2 at the energy 
minimum of the total energy is smaller than that of the 
elastic energy. Furthermore, since E ” < 0  (at least near 
the maximum, i.e., in weak coupling), it is readily seen 
that d2E T / d u  2 < d2E a/ d u  2 even for cases where equilibri­
um occurs for u =  0, i.e., even when the system is undi- 
merized. In other words, the force constants (and conse­
quently the vibrational frequencies) are reduced due to the

FIG. 3. Schematic energy-dimerization diagram for trans- 
(CH),. a, a-electron elastic energy; b, 7r-electron energy; and c, 
total energy. The inset shows the two degenerate ground-state 
dimerization patterns.

tt electrons by an amount proportional to j . Thus in 
the case of a single-vibrational-mode system the vibration 
frequency co is lower than the elastic (or “bare” ) vibration 
frequency a>0:

co2 =  co20- ( c o l / K ) \ E ' ; \  , (1)

where K = d 2E a / d u 2 is the elastic force constant (due to 
the potential of the a  electrons). The vibrational force 
constant is thus reduced, with respect to the elastic force 
constant K,  by a factor 2 A. given by

2X=£U2 / c ^ = 1 -  | £ "  | / K  . (2)

When the system is dimerized (i.e., u=/= 0 in equilibrium), 
a dimerization gap 2Ad is opened in the 7r-electron sys­
tem. If e-e interactions are not included (however, see 
Sec. IIF ), this gap is given by 2Ad =  8/3u where P  is the 
linear electron-phonon (e-ph) interaction. Thus, the vibra­
tional mode of the dimerized chain reflects oscillations of 
the 77-electron dimerization gap and is then an amplitude 
mode around the static configuration of the dimerized lat­
tice. In weak coupling we expect 2 k  < 1 and an 
amplitude-mode frequency less than co0. Note that E„  
may depend on e-e interaction and disorder, so that Eq.
(2 ) is a general result for an adiabatic single-phonon case.

B. The multiphonon case

In this section we review the amplitude-mode formal­
ism developed earlier by one of us . 14 Consider N m pho­
non normal modes in a uniformly dimerized infinite 
chain. These q =  0 phonons correspond to time- 
dependent fields A„(f), n =  1,2, . . . , N m . They couple to 
the electrons by the interaction Hamiltonian

Nm t  f f e-ph= 2  A „ U )(C + C t ) , (3)
n = 1

where C  involves "-electron operators describing scatter­
ing between opposite sides of the Fermi surface. For 
bond dimerization, as in trans-(CH )x , 
C  =  2  m ~  '  YnC*n Cm + | where C*m creates an electron at 
site m. Modes which couple to site dimerization, i.e., 
C =  ^ (  — l ) mC ^Cm  are ignored in this scheme. The 
presence of such modes does not affect the following Ra­
man analysis, 31 but may affect the analysis of the induced 
ir spectra.

To identify the various modes in trans-(CH)x , note first 
that modes which lead to either bond or site dimerization 
break the glide line symmetry of the chain (if the chain 
was straight rather then zigzag, then these modes would 
be at the Brillouin zone boundary). There are four such 
modes corresponding to the in-plane oscillations of the C 
and H atoms. The inversion center at a bond center 
determines three of these modes to be symmetric ; 32 i.e., 
having the symmetry of bond dimerization, while one 
mode is antisymmetric , 32 having the symmetry of site di­
merization. The latter mode is a C -H - ty p e  vibration at
— 3000 cm 1 and is very weakly coupled to the ir elec­
trons. The fields A„ and the normal mode displacement 
un are proportional through the dimensionless electron- 
phonon coupling constant for each mode (A„)
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A„ =
/x„(cu° )2X,

2 N  (0)

1/2

(4)

where co°„ are the bare frequencies, i.e., the normal-mode 
frequencies in the absence of the 77 electrons. (in are the 
mode reduced mass and N (  0) is the electron density of 
states at the Fermi energy. The electrons then respond by 
Eq. (3) to the combination field A( t ) = '2 inA„(t).

Define now the expectation value of the total 77-electron 
energy E n as the sum of the electron kinetic energy (el), 
electron-electron (e-e), electron-phonon (e-ph) interactions, 
and disorder term (dis) by

E lr= { H el+ H e_e + H e^ h +  H dls) =  - N ( 0 ) E i (&) ■ (5)

In the adiabatic limit, i.e., all phonon frequencies con are 
much lower than the electronic energy gap E g, E, does 
not depend on time derivative A but on A(t) only. This is 
the single assumption in the theory, and is valid for po­
lyacetylene since con / E g < 0 .1 (Ref. 14).

The total-energy density for the combined electron- 
phonon system is now

(6)II O ' £ ( * K r x , 0,2 + A « - E / (  A)
K )

where we have used Eq. (4) to write the kinetic and poten­
tial energies of the bare phonons in terms of A„ . Minim­
izing Eq. (6) with respect to A„, we obtain 
A °=2A „£/(A 0) with A0= X „ A ° .  Therefore, the 
ground-state gap parameter A0 is given by

A0 =  2X£/(A0) , (7)

where k = ^ nXn and A °= A 0X„/X. To obtain the pho­
non modes we assume small oscillations around the 
ground state: A„U) =  A° + y „(f)  and expand the total- 
energy density Eq. (6) keeping terms to second-order only. 
These terms yield the effective classical Hamiltonian for 
the phonon modes

H \ y n } = N (  0)
f l

(co°n Y
+ r l

- f e / ’(A0) r 2 (8)

where y U ) = '^ tn y nU). Note that the second derivative 
E "  acts as an extra potential-energy term, thereby renor­
malizing the bare phonon modes of the system. Equation 
(8) yields N m coupled equations of motion with eigenfre- 
quencies given by the solution of the following equation:29

D 0( c o ) = - ( \ - 2 X ) ~ l , 

where the phonon propagator D a(co) is given by

k„ (<y° )2
Z>0(<d) =  2

-((o„ ) —ico8„

(9)

(10)

and the renormalization coupling parameter X is defined 
by

Note that Eq. (11) is the same as Eq. (2) of the single­
mode theory. Figure 4(a) shows the form of D 0(co) for 
three coupled modes; a given coupling parameter X 
defines a horizontal line at —(1—2A .) '1 and its intersec­
tion with D 0(a>) [Eq. (9)] yields the renormalized frequen­
cies. These frequencies correspond to spatially uniform 
oscillations in the amplitude of the dimerization; being 
symmetrical modes, they are Raman active.

Equation (9) is an N m th-order polynomial equation in 
co2 which thus can be written in the form ir(a>2—col )= 0  
where co„ are the roots of the equation. Comparing these 
two forms of Eq. (9), we obtain a useful “product rule,” 14

f l  (con /co°n )2 =  2 l  . (12)

Note that the amplitude-mode formalism described in 
this section includes electron-electron interaction and 
effects of disorder in an implicitly way via is,(A). In the 
following sections we treat specific examples of chains 
with various types of interactions.

C. Peierls chains

When the electron-electron interaction is neglected, the 
total 77-electron energy, and hence £,•(A), can be calculat­
ed and expressed in a closed form. For an infinitely long 
uniform chain the energy levels in the tight-binding or

2 k = l - 2 X E " ( & 0) (11)

w ( cm ' 1 )

FIG. 4. a, The function Da(co) [Eq. (10)]. The horizontal line 
represents — (1 — 2X)— 1 or —(1—a ) -1 for determining the Ra­
man or ir modes, respectively, b, Calculated RRS spectrum of a 
three-oscillator inhomogeneous system with a single-peak distri­
bution function P(X), and negligible natural phonon width. The 
resonance condition corresponds to the peak of P(%). c, Same as 
b, but for resonance away from the peak of P(X) (see text).
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Hiickel approximation are given by

e° =  — 2t cos ( k a ) , (13)

where t is the nearest-neighbor transfer integral, a is the 
lattice constant, and k  is the one-dimensional wave vector. 
In the commensurate case with one electron per atom the 
Fermi energy is at e =  0 and the dimerized state is charac­
terized by two different nearest-neighbor transfer integrals 
t x and t2- In the weak-coupling limit | r, —r2 

P„un , where j8„ is the change in the transfer in­
tegral due to a unit displacement of the mode n. Identify­
ing A„ of Eq. (3) with 4/3„u„, we see that the electrons are 
coupled to the phonons via the field

(14)

W ith the dimerization A taking place, the electron energy 
levels become30

ek = ± 2 t [ c o s 2(ka /2 )  +  ( A / 2 t ) 2]W2 , (15)

where in Eq. (15) t — ( t xt 2)l n , and £ , is now eiven bv

£ ,- ( A ) = 2 <  |e*  I — |eg | ) / N ( 0 )  . (16)
k

With N ( 0 )  =  (-irta)~l for the tight-binding approximation, 
we find

E i ( A ) = 4 t z[ \ + ( A / 2 t Y ] ' / lE  , (17)

where E  is the complete elliptic integral of the second 
kind with an argument /c = [ l+ (A /2 f )2]_1/2. The value 
of the 7r-electron binding energy E„ =  —ntE j  is in agree­
ment with that of Ref. 30. For A « 2t we obtain, by 
neglecting terms of order higher than (A /21)2, the familiar 
form 14'33

£ ;(A) =  A2/4  +  (A2/2 )ln (2 £ c/A ) , (18)

where E c = 4 t  is an “electron cutoff energy.” The form 
(18) for the dependence of E t on A (for A « E c) is in­
dependent of the dispersion relation z°k for the uniform 
chain; however, the actual value of E c does depend on e° . 
For a linear dispersion z°k = fivFk, E c =faiFk F (Refs. 25 
and 33), whereas for the free-electron chain with 
e° =1&k2/2 m ,  E c =  2ef (Ref. 34), where vF and zF are the 
Fermi velocity and energy, respectively.

Equation (17) then yields for the gap equation of the 
infinite chain

(2k r l = K (K )  , (19)

where K  is the complete elliptic integral of the first kind 
with an argument /c = [ l  +  (A /2r)2] ,/2. For A o « 2 f  we 
obtain the Peierls relation for the gap

A0= 2E C exp( — 1 /2A.) . (20)

For a finite polyene chain with N  carbon atoms, the 
bonding and antibonding orbital energies are also given by 
Eq. (15) with N  discrete values of k. For an odd chain 
there is an additional nonbonding orbital at e = 0 . £ ,( A ) 
is given by Eq. (16) with N ( 0 )  =  (wta )_1. In general, 
closed-form formulas for E ,(A )  and its derivatives cannot 
be given and they should be computed numerically. It

should be emphasized, however, that whereas for the 
infinite chain case the electronic gap in the dimerized state 
was given by 2A0, here the discreteness of the levels leads 
to a minimum separation E g between bonding and anti­
bonding orbitals given by

E g = 4 f  [cos <t>N +  (A / 2 t r ]2il/2 (21 )

where <f>N is determined by the chain length; for even cy­
clic chains <j)N =  ( 1 — 2 / N ) n / 2 .  The gap parameter A is, 
in general, a function of N  and its equilibrium value A0 is 
determined by Eq. (7).

An important experimental parameter is A [Eq. (11)], 
which can be determined from the observed Raman fre­
quencies using the product-rule relation, Eq. (12). For the 
infinite chain we find A =  A; thus the RRS frequencies 
yield the e-ph coupling parameter A. Numerical calcula­
tions for finite chains show that X(N)  < A. and increases as 
N  increases. Recalling that in finite chains the RRS fre­
quencies (and hence X) decrease with chain length, we 
must conclude that either Coulomb interactions are 
significant or the parameters A and t are N  dependent; 
e.g., a decreasing A(AO could overcome the “bare” (i.e., 
with A and t fixed) N  dependence.

D. Cross section for Raman scattering 
from amplitude modes

Conventionally, the Raman cross section for molecules 
or polymers is expressed in terms of the electronic 
excited-state parameters.2-7,9,10 In another approach, 
used primarily in semiconductors, one uses ground-state 
wave functions and the e-ph coupling constant A. to ex­
press the Raman cross section. While the two methods 
are equivalent, the latter is preferred in our quasi-one- 
dimensional case since it explicitly shows the divergence 
of the Raman cross section near the band edge and the 
coupling between the various vibrational modes inherent 
to the AM  analysis. The form of the cross section for the 
Peierls model is calculated in Appendix A utilizing the 
frequency-dependent electronic conductivity of the Peierls 
semiconductor. The result is29a

d o
d f ld c o f

ftCOr
lm

- D 0(co)

1 + (1  — 2A)Z)0(&>)

(22)

where the co dependence is contained only in the second 
factor, which is the propagator for the amplitude modes. 
The matrix-element function f ( f f coL / E g ) contains the res­
onance effect, i.e., it reaches its maximum at -fuoL = E g 
and it is independent of the Raman frequency shift co if 
fico «  fui>i, | fia>L —E g \ .  A detailed derivation is given in 
Appendix A where it is shown that for a one-dimensional 
(ID) Peierls chain /  is given by29lb)

/ ( x ) = - 1
■+-

l - 2 x '
x d - x 1)

X tan

2 \i /2

( l - x 2)2 ) 1/2 , X  <  1 (23)
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and

/ ( * )  =
x 1 - !

■ +
2x ‘ 1

X

2x ( x 2 — \ )3/2

X  —  { x 2 —  1 ) 1/2ln
* + ( x  — 1 )1/2 +  777

3jD 0 ( cl>)

d c o

where x = f m L / E g . The function f ( x )  given in Eqs. (23) 
and (24) strongly diverges at resonance (x =  1) due to the 
singularity of the ID  density of states at the band edge. 
In a real system, like polyacetylene, finite interchain cou­
pling leads to a modified density of states in the vicinity of 
the band edge;35' 37 the divergence is smeared to a finite 
peak with width ~  W L< the transverse bandwidth. The 
function f i x )  and the Raman scattering cross section be­
come finite. Although the detailed shape of f i x )  near res­
onance depends on the detailed three-dimensional band 
structure, it should be smooth function peaked at x  =  1. 
We have therefore approximated f i x )  near resonance by a 
function with a finite peak at x  =  1 (e.g., a Gaussian) and 
connected it smoothly to the one-dimensional f ( x )  [Eqs. 
(23) and (24)] at | ikoL — E g j =  W L. An example of an 
approximation to f ( x )  which has been used for fitting the 
RRS data of /ra«.s-polyacetylene is shown in Fig. 5.

The propagator for the amplitude modes in Eq. (19) 
yields the position, width, and relative intensities of the 
various Raman lines. When the natural phonon widths 
are small, the position of each line, co„, is given by the 
poles of Eq. (22), while the intensity I n is proportional to 
the residue at the poles, i.e.,

(25)

E. Inhomogeneous systems

So far we have assumed a homogeneous quasi-one- 
dimensional system for which the chain parameters 
(k, f, X, etc.) are spatially uniform. A static inhomo­
geneity (caused, for instance, by variable chain length, 
bond length disorder, etc.) can be incorporated into the 
condensation energy function E t(A) resulting in a spatial 
distribution of the internal chain parameters. From RRS 
experiments one determines two of these parameters: E g 
and A. E g is obtained from the resonance effect fkoL = E g, 
and A from the measured RRS frequencies, using either 
Eq. (9) or the product-rule relation Eq. (12). Thus by 
selectively probing various regimes in the distribution, an 
inhomogeneous system can provide directly the relation 
between A. [or E "(  A), Eq. (11)] and E g [or EH  A), Eqs. (7) 
and (21)], which can be compared with models for Ei(A) 
(e.g., Peierls, electron-electron interaction, extrinsic gaps, 
etc.).

It is convenient to characterize the inhomogeneity of 
the system by a distribution function Pi k )  in the renor­
malization coupling constant k.  The distribution in A 
translates into a distribution in the gap via Eqs. (7), (11), 
and (21). The Raman cross section is then obtained by 
integrating the cross section [Eq. (A4), Appendix A] over 
A:

Eg(eV )

FIG. 5. The function I f  (fuo, /E g) | 2 as a function of E% for 
■hcoi_= 2.6 eV and ^ = 0 .3  eV.

d o
d i ld c o

f  d k P ( k ) -
■ficOr

X lm

/

-D 0ico)
(26)

1 +  ( l —2 k )D 0(co)

where f  P i k ) d k = \ .  Equation (26) predicts several im­
portant characteristics of the Raman spectrum regardless 
of the type of the interaction. Defining 
gico) =  1 + (1  — 2 k )D 0ia ) ,  we see that for negligible natu­
ral phonon width [8„ ~ 0  in Eq. (10)] one can approximate 
the amplitude-mode propagator by a sum of 5 functions:

Im
—D 0(co)

1 +  (1 — 2 k )D Q(a>)
■ — Z)0(£u)5[g(w)]

(27)

The last equality is obtained using Eq. (9) for the Raman 
lines: D 0{co)= — (1 — 2X)_1, where con are the observed 
RRS frequencies. Consequently, the expression for the 
RRS cross section of an inhomogeneous system [Eq. (26)] 
can be integrated to yield a very simple form:

2

PiXj , (28)
dSldco E 2A k J

f
fkOr

E A K

where 2 k a =  1 + D q X (co).  Equation (8) predicts the fol­
lowing features in the Ram an spectrum, (a) In the case 
of a m ultiphonon system all the Ram an lines are of 
equal height while their total intensity (and therefore 
their width) is proportional to  [ f l j f f f l ) ] '1, as seen in Fig. 
4(b). (b) Each of the Ram an lines is double peaked: a 
prim ary line which corresponds to the maximum of 
P ( k )  at A =  A0 and a satellite line at a frequency which 
corresponds to the maximum in f i x ) ,  i.e., to the reso­
nance condition HcoL = E gi k ) > E g(X0). This is shown in 
Fig. 4(c), where the prim ary lines do not shift with the 
laser excitation energy and the satellite lines shift up­
ward with increasing a>L . N ote again the equal heights 
of all three prim ary Ram an lines and of all three satellite
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lines. The equal heights are the result of the negligible 
natural width; a reduction in the height is expected for a 
finite natural width.

The conclusions so far are completely general, indepen­
dent of the specific model for inhomogeneity. We now 
turn to analyze several models of interacting electrons.

F. The effect of the electron-electron interaction

The effect of electron correlations on the dimerization 
of ID  Peierls systems was studied extensively by many 
groups employing various approximations for the e-e in­
teraction .3 8 - 4 3  The effect of the correlations on the vibra­
tional modes of the ID  electron system such as polyace­
tylene has recently been studied by Horovitz and Solyom 
(HS) using renormalization-group methods44 and by Baer- 
iswyl and Maki (BM) using a variational approach45 to 
solve the Peierls-Hubbard Hamiltonian.

In their renormalization-group approach HS consider 
the general case of e-e backward, forward, and umklapp 
scatterings with couplings g !, g 2, and g 3, respectively. 
The effect of the e-e interaction on the gap and the renor­
malized phonon frequencies is expressed by a single ex­
ponent S given in terms of the renormalized couplings g !, 
g 2 , and g 3 . Positive 8 , which is a necessary condition for 
dimerization, enhances the Peierls gap. Minimizing 
yields the gap equation,

£ g = 2 £ c[A /U  +  S ) ] , / 2  , (29)

where E c is the cutoff energy (approximately equal to the 
bandwidth) and k  the e-ph dimensionless coupling con­
stant. Note that for 8 —>0 (i.e., no e-e interaction) Eq. (29) 
reduces to the Peierls relation Eq. (20). Considering small 
oscillations around the equilibrium gap, the phonon re­
normalization parameter k  [defined in Eq. (11)] is

X =  U  +  8 ) / ( l + 8 ) . (30)

HS have shown also that for weak e-e couplings, 
8 = g 2 — 2 g i~ g 3 and the on-site Coulomb repulsion U 
cancels out.

In the variational approach of BM the effect of the e-e 
interaction is contained in the on-site Coulomb repulsion 
U. In the limit of small U (U <4t) the dimerization is 
enhanced and the Peierls gap increases according to the 
relation

A =  2 £ ce x p ( - l /2 A fi) (31)

with

k B ~ k  + 0 .2 6 ( U /4 t ) 2 . (32)

Small oscillations around the equilibrium gap yield the 
following relation for the phonon renormalization param ­
eter X:

T _i 1 + 0 .52( U / 4 t ) 2 0 .26( U / 4 t  )2 . . . .
A I 2 '

Grabowski, Hone, and Schrieffer43 (GHS) have studied 
the effect of the Coulomb interaction in an “extended 
Peierls Hubbard” model in which nearest neighbor, as 
well as on site terms, were included. Using perturbation

theory, GHS have shown that the Coulomb interaction 
enhances the gap for positive values of the nearest- 
neighbor term, V. The gap is given then by the relation

E g =  4 E C exp[ — 1 /2( +  v) ] (34)

where v = V /2 iT t .  Similar results were obtained by H oro­
vitz and Krum hansl46 (HK), who considered only the 
forward-scattering terms of the e-e Coulomb interaction. 
In the Hartree-Fock approximation, H K  found that the 
gap is given by Eq. (34), where the dimensionless coupling 
constant v corresponds to the conventional nonretarded 
g 2 and g 4 couplings. We shall refer to these two models 
simply as the Hartree-Fock (HF) approximation. Calcu­
lating the phonon frequencies in these two equivalent 
models, we have found that the renormalization coupling 
parameter X [see Eq. (I l)] is given by

k  =  ( k  +  v ) 2/ k  . (35)

Note that in the H F approximation the on-site Coulomb 
repulsion cancels out, both for the gap equation and for k.

Inhomogeneous systems are described by a distribution 
P ( k )  (see the preceding section). We assume phenomeno­
logically, that the inhomogeneity arises from a variation of 
some parameter (yet unspecified), which causes variations 
in both the e-ph coupling parameter k  and the e-e interac­
tion parameter. The renormalization parameter X will 
then vary according to the above relations [e.g., Eqs. (30), 
(33), or (35)] and will give rise to a specific X-A relation 
which characterizes the system. Starting from the ordered 
state we assume that a small change of the inhomogeneity 
parameter causes small changes A(A.) =  e in k  and 
A(e-e) =  £e in the e-e coupling parameter (e.g., 8 in the 
HS model [Eqs. (30)], ( U/ 4 t ) 2 in the BM model [Eq.
(33)], or v in the H F approximation [Eq. (35)]). Substitut­
ing these variations in the equations describing the various 
models [e.g., Eqs. (29)—(35)], we have found in the limit 
of weak disorder

=  1 — 2A.c [Inf A /A 0) —2Ar 2ln2(A /A 0)
k

+ O i ln3(A /A 0)) , (36)

where X0, A0, k 0 refer to the ordered system, and Ci and 
c 2 are determined by the parameters of the ordered sys­
tem. In Eq. (36) the explicit dependence on e is eliminat­
ed by incorporating it into the gap A, i.e., A =  A(e,£). 
Specific expressions for c i and c 2 in the various models 
are given in Appendix B. Note the logarithmic depen­
dence of X -  l on A implied by Eq. (36); in the absence of 
e-e interactions, the Peierls relation is obtained: 
A ~exp( — 1 / 2 k ) with k  =  k,  c x =  1, and c2= 0 . Non- 
negligible e-e interaction leads to c2^ 0  and to deviations 
from the Peierls relation. Below we shall analyze the 
k  — A relation for frans-polyacetylene and discuss the 
relevance of the e-e correlations.

G. Charge-induced infrared phonons— “phase inodes”

When a charge is added to the chain the translation 
symmetry is lost and ir activity appears. In a multipho-
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non system, the ir conductivity due to the translational or 
phase modes was derived in detail before14 and is given by

o(co) =  ia> e 2Pc
M ri l 2n

—D 0(o))
1 +  ( 1-

(37)
-a ) D 0(co) '

In Eq. (37), p c is the average charge density, M c is the ki­
netic mass of the charged defect, ^ o 2 =  ^ „ ( X „  /X)(a°n) ^ 2, 
and a  is a “pinning” parameter defined by

?2 f  d x V " (x )p c( x ) / ( M cN cn l ) ,a  = (38)

where V( x )  is the pinning potential for a single charge 
distribution p c(x)  and N c is the number of unit charges. 
The ir frequencies cof, are therefore solutions of

D 0(co) =  — (1 —a Y (39)

This is identical to the equation which determines the 
Raman-active frequencies con except that 2k  is replaced by 
a.  Thus, in Fig. 4(a) a given pinning parameter defines a 
horizontal line and its intersection with D 0(co) yields the 
IRAV frequencies. Likewise, a similar product rule holds 
for the ir frequencies, i.e.,

12

n (40)

It is im portant to stress that the same D 0(cl>), which de­
scribes the Raman amplitude modes, also determines the 
ir phase modes induced by the charge added either by 
doping (a =  a dop) or by photogeneration (a =  a PG). In 
fra/w-polyacetylene it has been found that 
2A >  ^dop ^  ^PG"

III. RRS RESULTS: AMPLITUDE MODES 

A. Description of the Raman spectra

The unique feature of £ran.s-poly acetylene samples that 
makes it possible to correlate the electronic gap with the 
phonon spectrum is the presence of a special type of inho­
mogeneity (or disorder), which leads to a distribution of 
the energy gap. This inhomogeneity is manifested by a 
broad interband absorption spectrum35 as well as by the 
unusual dispersive RRS spectra (Fig. 1).

In this section we analyze the RRS spectrum and pro­
vide evidence for identifying the three Raman intrachain 
vibrations in frons-polyacetylene as amplitude modes asso­
ciated with the dimerization gap. The dispersion in the 
Raman profiles is accounted for by a narrow distribution 
in the effective coupling constant X.

Raman scattering from free-standing films of trans­
polyacetylene, excited with two laser energies, are shown 
in Fig. 6 for (CD)* and in Fig. 7 for (CH)*. For both iso­
topes there are two strongly enhanced bands, co, and <a3, 
and a weaker line in an intermediate Raman shift, a>2. 
When excited by a red laser line (i m L < 2 eV) the lines are 
relatively narrow and slightly asymmetric: they are 
steeper on their low-frequency side. As a>L increases, a 
shoulder emerges on the high-frequency side of each of 
the bands which gradually develops into a prominent sa­
tellite peak. Each of the Raman bands is then composed

of a nonshifting primary line and a satellite peak which 
shifts away from the primary as the laser photon energy 
increases from the red to the uv. This behavior is clearly 
seen for the two strong lines in Figs. 1, 6, and 7, and also 
for the intermediate weak line (line 2) of trans-(CH)x in 
the inset of Fig. 7. Three resonantly enhanced Raman 
lines are observed also in trans-(n CH)*, and show similar 
dispersion behavior with f e / . . 1,47 We therefore conclude 
that fraras-polyacetylene consists of three phonons which 
have a considerable electron-phonon coupling.48 [A 
three-phonon system behavior is also seen in the IRAV 
spectrum of mjft.s-polyacetylene (all isotopes) which will 
be discussed in Sec. IV.]. To define the peak positions we 
deconvoluted each band into a symmetric line peaked at 
the primary frequency and a satellite line. The room- 
temperature frequencies of the primary lines con for each 
isotope are given in Table I. The straight vertical lines in 
Figs. 6 and 7 point at the primary (P) and at the satellite 
frequencies at the respective a>L (a and b). The frequency 
shift Aa>„ =a>„ —a>„ of each of the three satellites is plot­
ted for (CD)* and (CD)* as a function of in Fig. 8. It 
is seen that A<u„ (and therefore the satellite frequency it­
self) increases with coL; the primary frequencies &>„ are 
practically independent of coL . Another peculiar feature 
of the satellite lines is the behavior of the integrated inten­
sity Figure 9 shows / ; , / / ,  for the two isotopes as a 
function of ftcoL- It is seen that the third (&>3) satellite line 
monotonically increases in intensity relative to the first 
(co i) one as a L increases.

'c
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FIG. 6. RRS spectrum of transACD)* at 300 K excited at (a) 
2.71 eV and (b) 1.93 eV. The function Do(co) is shown in (c). 
The horizontal lines a and b correspond to the two resonance 
conditions and P to the primary position.
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B. Analysis with the amplitude-mode model

The Raman data provide clear evidence that the inho­
mogeneity can be expressed as a distribution in the renor­
malization coupling parameter X [Eq. (11)]. The 
product-rule relation [Eq. (12)] shows that the upward 
shift of all satellite frequencies with cot infers a depen­
dence of X on fiML . Defining co* and X * as the satellite 
frequency and X at some reference laser energy -fko* , we 
obtain from Eq. (12) the following product rule based on 
experimentally measured frequencies alone:

where a>„ are the satellite frequencies. In deriving Eq. 
(41), we have assumed that the bare frequencies are 
fixed and independent of the disorder. Figure 10 shows 
the product (41) for both (CH), and (CD), as a function 
of ln(1mL ) for ten different laser photon energies in the 
range 1.9-3.5 eV for -fko* = 2 .6  eV. It is seen first that 
the product (or the ratio X* /X) is nearly independent of 
the isotope, although the satellite frequencies themselves 
differ substantially for these two isotopes. This is an ex­
perimental indication that X is not a pure “phononic” 
quantity but indeed originates from an electronic term in

cu ( c m -1 )

FIG. 7. RRS spectrum of trans-(CH ), at 300 K excited at (a) 
2.60 eV and (b) 1.92 eV. The insets are blown up scales of line 
2, showing the change in shape with coL. The function D0(co) is 
shown in (c). The horizontal lines a and b correspond to the two 
resonance conditions and P to the primary position.

TABLE I. The primary frequencies (in cm 1) for trans-(CH), 
and trans-(CD), at 300 K.

(O ] co 2 CO}
( c m '1) (cm-1 ) (cm-1 )

(CH), 1065 1291 1460
(CD), 855 1197 1355
(13C H ),a 1054 1266 1442

“Reference 1.

the Hamiltonian as implied by Eq. (11). Secondly, the 
straight solid line through the data points in Fig. 10 infers 
a linear dependence of X ~ 1 on l n ( f e / ). A least-square fit 
of the data to a linear dependence gave the following rela­
tion between X and ln (ficoL):

(2X)~l = B * [ \n ( 4 A )  — \n(ivoL )] (42)

with A  = 6 .3 ± 0 .3  eV, B*  =  (0.44±0.01 )/2X *, and fuoL 
is expressed in eV. Note that X * cannot be determined 
from this plot. The resonance condition fuoL = E g implies 
an increase of the gap with X in a m anner similar to the 
Peierls relation [Eq. (20)], identifying thus X with the e-ph 
coupling constant X. However, in deference to Eq. (36) 
which gives the X-A relation when the Coulomb correla­
tions are included, we have fitted the data presented in 
Fig. 10 by including also a ln2(fuoL ) term. We have 
found that the coefficient of this term  is small; in the nota­
tion of Eq. (36), c 2/ c i  <0.1 . In spite of the small devia­
tion from a Peierls-type relation, we shall see below that 
the Coulomb interaction should not be neglected.

To actually fit the data, obtained from the 10 laser en­
ergies shown in Figs. 8 and 9 to Eq. (9) (30 equations for 
a three-line spectrum at 10 laser energies), we used the 
following parameters: the three bare frequencies (<u°, 
n = 1 ,2 ,3 ) and two independent couplings (X„/X,

tiojL ( e v )

FIG. 8. The dependence of the satellite shifts (Aoj„) on the 
laser energy (fuoL) for (rans-ICH), (open symbols) and trans- 
(CD ), (solid symbols). The solid lines are theoretical.
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Tiuil (eV)

F IG . 9. T h e  in te n s ity  ra t io  / 3 / / 1  vs tkoL fo r trans-(C H )*  a n d  
(C D )* . T h e  so lid  lines a re  c a lc u la te d  usin g  E q . (25).

n = 1 ,2 ,3 , X„ =X)  of the function D 0(a>) and the 10 
values of X at each of the 1 0  laser energies. Utilizing the 
product rule [Eq. (12) or (41), for each laser energy], we 
reduce the parameter space by a factor of 3 from 15 to 5 
while reducing the number of the independent equations 
from 30 to 20 only. The parameters of D 0(co) obtained in 
this way are given in Table II for (CH), and (CD)*. Also 
given in Table II for comparison are the parameters for 
trans-(l3C H ) x that we have determined elsewhere .47 Us-

tia)L( e V )
2.0 25 3.0 3.5

fnChcijL)

F IG . 10. T h e  e x p e r im e n ta l re la tio n  /co„)2 vs
ln (fuoi,) fo r  trans-(C H )x a n d  (C D ) , a t 300 K . T h e  *  c o r re ­
sp o n d s to  th e  d a ta  a t  fico* = 2 .6  eV. T h e  s tr a ig h t  line is a  l in e a r  
fit th ro u g h  th e  d a ta  p o in ts . D a ta  a t  fuoL = 3 .0 5  eV  (R ef. 4) a n d  
3.53 eV  (Ref. 1) a re  sh o w n  a s  op en  sym bols .

ing now the product-rule relation [Eq. (12)] we can deter­
mine X from the RRS spectrum, for each laser excitation 
energy. In particular, for ftco* = 2 .6  eV we have found 
2X*  = 0 .44+ 0 .01 ; thus in Eq. (42), £ *  =  1.00+0.04 for 
both trans-(CH)x and (CD),. Thus Eq. (42) expresses a 
special type of inhomogeneity, and we shall discuss below 
how to describe it by a disorder mechanism which affects 
both the e-ph and e-e interactions.

The calculated D 0(a>) for each isotope is plotted in Figs.
6  and 7 showing the way in which the satellite frequencies 
co„ increase with a>L . A t higher ojj , resonance conditions 
are matched by larger Eg (and 2X) so that the horizontal 
lines drawn at — (1—2A) _ 1  intersect D 0(a>) at higher fre­
quencies. In this way we obtained the curves of the satel­
lite line shifts Acon versus fuoL for the six phonons of 
trans-(CH ), and trans-(CD)x in Fig. 8 . It is seen that the 
above solution for D 0(co) indeed yields a remarkably good 
agreement with the experimental Acon. In addition, using 
Eq. (25) for the line intensity, we obtained the relative in­
tensity curves shown in Fig. 9; again the agreement is re­
markably good. Note that the intensities I„{coL ) were not 
included in our fitting process, so that the good agreement 
is not obvious as for con(coL ). As discussed above, not 
only I„ is inversely proportional to D'0(co), but also the sa­
tellite shifts Aco„ and the Raman linewidth 8 con (in the 
case of small natural width) also are. This can be clearly 
seen, for instance, in Fig. 6  for (CD), where D'()(a>2 ) is the 
highest and Aa>2, 12 , and 8&>2 are the smallest; also for 
(CH), 7i > / 2 > / 3  (for fico 1  = 2  eV), while the order is re­
versed in Z?q(&>„ ).

We have thus clearly shown in this section that the AM 
theory accounts for the frequency shift of all three lines in 
all isotopes and for the relative intensities of the two 
strong RRS lines as coL is varied. We have also deter­
mined the X-A  relation characteristic of the inhomogenei­
ty in ?ra/).v-polyacetylene.

C . T h e  distribution function

The good agreement obtained so far shows that the sa­
tellite frequencies are solutions of D 0(co)= — (1 — 2 X ) ~ l at 
different X values. The system can therefore be character­
ized by a distribution P( X)  of the renormalization cou­
pling parameter A,. The Raman cross section is thus given 
by the expression for an inhomogeneous system, Eq. (26). 
We note again that since the quasi-one-dimensional ma­
trix elements function /  [Eqs. (23) and (24) and Fig. 5] 
has a sharp and strong peak at resonance, ficoL = E g, the 
cross section [Eq. (26)] is double peaked corresponding to 
Raman frequencies which are determined by Eq. (9) with 
different values of X: the primary  line at the maximum of 
P( X)  and the satellite at the X of the resonance given by 
E g(X) =  -fkoL . We emphasize that a single-peak distribu­
tion is sufficient to account for a double-peak Raman 
structure. The fact that for each phonon there is only one 
“prim ary” line, which does not shift with , strongly 
indicates a single-peak distribution P(X) ,  contrary to pre­
vious suggestions. 6,9’ 10 Using the primary frequencies of 
Table I and the product-rule relation, we find that P( X)  
peaks at 2X0 =  0.371 ±0.005 for (CH), and at
0 .375±0.005 for (CD), at 300 K. The corresponding
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TABLE II. The parameters of D0(io) for fran^-polyacetylene isotopes at 300 K. co°„ are given in 103 
cm-1.

trans-i CH )x trans-(CD)x trans-{ 13C H ),
ti>°n /x <£°n *2 A„/a

1.23 0.07 0.92 0.06 1.22 0.05
1.31 0.02 1.21 0.005 1.29 0.05
2.04 0.91 2.04 0.93 1.96 0.90

one-dimensional gaps can be obtained from Eq. (42) with 
B *  — 1.0 (see Sec. I l l  B). We find 2A = 1 .7 ± 0 .1  eV for 
both trans-{CH)X and trans-(.CD)x at 300 K. An upper 
limit estimate of the width of P(X) can be obtained from 
the width of the lines recorded at red excitation where the 
resonance appears near the peak of P(X). Although the 
functional dependence of P ( k )  away from its mean value 
cannot be determined without extensive fittings, the fact 
that the absolute cross section of the satellite does not di­
minish very rapidly as coL increases towards the uv means 
that P( A.) falls relatively slowly for X > X0.

The shape of P( X)  can be estimated using Eq. (28). 
When the broadening of the Raman line due to the pho­
non natural width is small, the RRS cross section is pro­
portional to \ f \ 2P( X) / Eg .  The gap Eg(X > has been 
determined experimentally and is given by Eq. (40). The 
function /  is assumed to have the ID  Peierls form, as in 
Eqs. (23) and (24). However, in order to obtain reliable 
results for P( X)  we have analyzed spectra showing clearly 
both primary and satellite structure (1uoL > 2 .6  eV) such 
that the deduced P( X)  is practically insensitive to the de­
tailed shape of /  at resonance. Thus, by dividing the RRS 
cross section by | /  | 2/E g ,  we obtain the derived distribu­
tion function P(k) shown in Fig. 11. Figure 11(a) shows 
the function P( X)  derived from lines 1 and 3 of the trans- 
(CH)X spectrum shown in Fig. 7(a). Both lines yielded al­
most identical distribution functions (as they should) 
peaked at 2A =  0.371. The low cutoff at 2A =0.36 is 
determined by the finite background of the experimental 
data. Note that although the experimental spectrum 
shows only a shoulder at the primary frequency the de­
rived P( X)  has a definite peak at X =  X0. Figure 11(b) 
shows the derived P( X)  as obtained for trans-(C£>)x from 
the spectrum shown in Fig. 6(a). The distribution func­
tion derived from line 3 of trans-(CD)* is similar in shape 
to that obtained for trans-(CH)*. On the other hand, the 
shape (below 2A.~0.38) of the distribution derived from 
line 1 is probably unreliable since line 1 in trans-(CD)x is 
narrow, and Eq. (28) may not be applicable to this line.

This method of deriving P(k) is thus suitable for sam­
ples with significant amount of disorder so that the natu­
ral width can be neglected, but may not be applicable to 
samples where the width due to the disorder is small. We 
note, however, that inspection of the curves shown in Fig.
11 shows that they follow very nearly a Lorentzian shape 
function in the range 2 A ~ 0 .36 to 2A ~0.41. Thus, in or­
der to obtain an estimate of the width of P(k) in “good” 
samples with narrow features which show explicitly 
double-peak structure we tried to fit the Raman spectrum 
by taking a Lorentzian-shape function for P(X) .  Since the

heights of the various Raman lines are not equal it is 
necessary to take into account the finite natural width of 
the bare phonon modes. The actual fit has been done by 
taking the following free parameters: (a) the natural 
width 5„ of the three bare phonon modes, (b) the mean 
value 2X0 and the half width at half maximum T (in units 
of 2k)  for the Lorentzian shaped P( k ) ,  and (c) the 3D 
cutoff W l of the matrix-element function f {-fkoL / E g ) and 
the height of f ( x )  at resonance, x = l .  An example of 
our fit for a good sample is shown in Fig. 12 as a solid 
line through the data points. It is clearly seen that the 
Lorentzian-shape function duplicates the double-peak 
structure and gives an overall good fit. We note here that 
the fits shown in Fig. 12 are not sensitive to the actual 
shape of P( X)  below 2A<0.355 (£’g < 1 .5  eV). Thus no 
information is obtained here about the low-energy side 
(below about 1.5 eV) of the distribution. The parameters 
needed for the fit shown in Fig. 12 and those needed for

G o p ( e V )

0.35 0.37 0.39 0.41

2 X

FIG. 11. The distribution function P (k)  vs 2X. for (a) trans- 
(CH)x and (b) trans-(CD)x derived [using Eq. (28)] from the data 
of Figs. 6(a) and 7(a) for lines 1 and 3. The upper scale 
translates 2k to the energy domain assuming the experimental 
relation Eq. (42).
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U) ( cm -1 )

FIG. 12. RRS spectra of trans-{CH)x sample with well- 
separated double-peak structure. Dashed line, experimental data 
of Ref. 6 . Solid line, theoretical fit with the parameters of Table 
III.

the fit of the Raman spectra of other samples are given in 
Table III. Two remarks are in order while assessing these 
parameters: (a) Since the relative intensity of the weakly 
coupled intermediate line (line 2) is not obtained accurate­
ly by the AM  model (see above), their linewidth has been 
chosen to give a representative fit to the experiment. 
Thus we believe that the actual natural linewidth of line 2 
in trans-(CH)x is smaller than the value given in Table
III, whereas that of trans-(CD)x is larger, (b) Since the 
3D cutoff energy W L should be an intrinsic property of 
the f ram-poly acetylene structure we have kept it the same 
for all samples. Its value of ^ 1 —0.3 eV is within the 
range of theoretical estimates.35-37 The main result 
which emerges from these fits is the sample dependency of 
the width T  of P( k) :  good samples which show clear 
double-peak structure have smaller 1 than those in which 
the lines are smeared. We therefore conclude that the 
samples of fra/w-polyacetylene differ mainly in the width 
of the distribution function describing their inhomogenei­
ty. Note also that the value of 2 k 0 is slightly isotope and 
temperature dependent, which indicates weak isotope and

temperature-dependent energy gap in Jrarcs-polyacetylene, 
in agreement with other experiments.49

The effects of the natural bare phonon width on the 
height of the RRS lines are apparent in Fig. 1: When the 
uv spectrum is compared with that of the red, it is seen 
that the heights of lines 1 and 2 are small compared with 
line 3. This is readily explained by the following property 
of D 0(a>) (Figs. 6 and 7): as a>L increases towards the uv 
(higher k)  the slope of D 0{a>) at the positions of lines 1 
and 2 increases much faster than that of line 3. As a re­
sult, a given width of P ( k ) causes smaller broadening of 
lines 1 and 2 and their natural width becomes more 
effective in the broadening mechanism and in the reduc­
tion of the height for the uv excitation.

D. The Raman excitation profile

The Raman excitation profiles were studied previously 
by several groups. It was found experimentally that (a) 
the absolute cross section of each RRS band is peaked 
roughly at the absorption maximum, but it is considerably 
narrower than the interband absorption band;50,51 and (b) 
the “sliced excitation profile,” where the RRS intensity at 
a fixed Raman frequency is measured as a function of coL , 
shows generally a reduction as fuoL increases from 1.8 to 
2.7 eV .10,50 The reduction is the strongest for the primary 
frequencies [1070 cm -1 for line 1 or as it is commonly 
called the “C — C band” and 1460 cm -1 for line 3 or the 
“C =  C band” of trans-iC H }^ .  As the selected vibra­
tional frequency is increased, the measured cross sections 
decrease in intensity and their dependence on weak­
ens (Fig. 13). These two features can be understood 
within our model in the following way. Both the optical 
absorption and the RRS cross section depends upon the 
density of states of the v  electrons, but in a different way. 
The optical absorption is proportional to the joint density 
of states35 which is peaked at E g in quasi-one-dimension 
and falls off as (E  — £ g )-1/2 for E  > E g . The RRS cross 
section is given by the function [ /  j 2 which also peaks at 
ficoL = E g but falls off as (fuoL —E g ) ~i , i.e., much more 
rapidly than the joint density of states. Thus the RRS ex­
citation profile is narrower than the absorption spectrum. 
For comparison, we show in Fig. 14 the calculated RRS 
cross section and the interband absorption. In Fig. 14 we 
utilize the distribution function P ( k )  given in Fig. 11, and 
assume ID  Peierls chains with 3D cutoff energy given in 
Table III. It is seen that the RRS cross-section profile is

TABLE III. Fitting parameters for RRS spectrum of several samples of frarcs-polyacetylene. See re­
marks in text for the values of 82 and W1.

s,
Natural width (cm 

82
')

83
P (k)

2l 0 r
3D cutoff
Wy (eV)

(C H )/ 20 15 20 0.371 0.015 0.3
(C D )/ 20 2 20 0.375 0.015 0.3
(CH)XC 20 15 20 0.365 0.005 0.3
(1!C H ),d 0.380

“Figure 7, 300 K. 
bFigure 6, 300 K. 
cReference 4, 80 K. 
dReferences 1 and 46, 300 K.
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indeed narrower than the absorption spectrum. The cal­
culated sliced excitation profile is compared with the ex­
perimental data in Fig. 13 (solid line); the agreement is sa­
tisfactory, showing indeed that the RRS intensity de­
creases as ficoL increases from 1.8 to 2.5 eV.

IV. PHOTOINDUCED ABSORPTION IN THE ir 
REGIME— PHASE MODES

A. Analysis of the IRAV spectra

IRAV are phase modes whose frequencies and line 
shape can be derived from the same D 0(co) that describes 
the Raman data. The IRAV frequencies are determined 
by a pinning parameter a  [Eq. (39)] instead of X in the 
case of the Raman data. There is no direct relation be­
tween a  and X since the incommensurate charge density is 
pinned by random potentials arising from the dopant ions 
or impurities which are thus a plausible source for the dis­
tribution in the values of the pinning parameter a .  It is 
necessary therefore to determine a  and its distribution 
from the observed spectrum. Figure 2 shows the IRAV 
spectra of doping and photogeneration (PG) in trans- 
(C D )j. The measured ir frequencies together with the 
predetermined D 0(a>) (see Table II) yield a weak pinning 
of a  =0 .06  for PG and a much stronger pinning of 
a =0.23 for the 1% doping. The comparison between the 
measured IRAV frequencies and relative intensities and 
those predicted are given in Tables IV and V for all three 
isotopes.

The very large width of the low-frequency IRAV line 
(“ the pinning mode”) in both doping and PG  (Fig. 2) im­
plies the presence of a distribution P ( a ) of the pinning pa­
rameter a.  In this case the ir absorption spectrum is ob­
tained by integrating Eq. (37) over a ,

Tio>l ( eV )

FIG. 13. Sliced excitation profile for line 3 of trans-(CH ),. 
Experimental points are from Ref. 50; calculated curves are with 
the parameters of Tables II and III.

E / E g
FIG. 14. Calculated RRS profile and interband absorption for 

trans-(CH )x at 300 K using the parameters of Tables II and III.

a  A(o))= f  d a  P(a)Kea(co)

J* o faP (a )Im
coe 2p c —D 0(cj)

1 + (1  — a ) D 0(co)

(43)

The absorption a  A, like the Raman cross section [Eq.
(28)], takes a very simple form when the natural bare pho­
non widths are small, i.e.,

,(o))a:o)P(a(l (44)

where a 0> satisfies a w =  1 + D q 1 (<u). Equation (44) enables 
us to experimentally derive the distribution P ( a )  from the 
measured IRAV line shapes by plotting crA /a> versus 
a {0=  1 + D q 1(co). Figure 15 shows the result of such 
plots of doping and PG IRAV, for transACD )x . It is seen 
that the distribution functions peak at a  — 0.06 for PG 
and at a  ~  0.23 for doping-induced IRAV, while the half 
width at half maximum is T ~ 0 .0 3  for PG  and T ~ 0 .1  for 
doping; similar results were obtained also for (CH )x .

B. Determination of the soliton defect mass

The amplitude-mode formalism provides a unique way 
to directly determine the mass of the soliton defect in 
frans-polyacetylene from the photoinduced absorption 
(PA) experimental spectrum. The signal in PA arises 
from the changes in the optical-absorption constant due to 
the presence of photoexcited carriers. The PA spectrum 
in /nan.v-polyacetylene is composed of vibrations (IRAV 
modes; see above) and electronic transitions as shown in 
Fig. 16 for the two isotopes (CH )x and (CD)X. The PA
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TABLE IV. Induced ir active phonon frequencies (in cm 1) in polyacetylene by doping and photo-
generation. T  denotes theoretical, E  denotes experimental.

a  =  0.23 
ir doping

T E
ir

T

a  =  0.06 
photogeneration 

E

(CH)* 1 886 888 488 500
2 1285 1288 1278 1275
3 1397 1397 1364 1365

(CD)* 1 770 790 410 400
2 1148 1140 1045 1045
3 1236 1240 1216 1224

( 13CH)* 1 844 821 465
2 1251 1250 1247
3 1385 1382 1359

spectrum  contains also an absorption band at 1.4 eV ,52 
which is due to  neutral photoexcitation ,53 and thus does 
not produce any IRA V . The low-energy (LE) band which 
peaks at 0.43 eV (Fig. 16) is due to charged solitons21,54 
on the chains and therefore the photoinduced IR A V  are 
intim ately rela ted14 to this electronic transition. Since the 
photoinduced IR A V  and LE band are m easured sim ul­
taneously w ith the same setup, it is possible to com pare 
their absorption strength  in the PA  spectrum  in order to 
determ ine the soliton mass.

The sum of the three IR A V  absorption intensities 
I v =  jLn is related to  the soliton m ass via the equa­
tio n 1. 14,55

I„ =
rne  fl

(45)

where p c is the photoinduced charge density and &>„ are 
norm alized phonon frequencies14

< V 2=  2  a „  r 2, n ? =  •

These param eters can be readily calculated from the pa­
ram eters o f D q(co) given in Table I.

In Eq. (45), /„ is a m easured quantity. However, since 
our experim ental setup is lim ited to  frequencies higher 
than ~ 7 2 0  c m -1 , we are unable to  record the lowest 
IR A V  line (the “ pinning m ode” ) .14 This experim ental 
difficulty can be easily overcome by calculations involving

again the D 0(co) function. T he contribution of each indi­
vidual IR A V  intensity to the sum  rule W„ = / „ / / „  is p ro­
portional to (o„/D'0(con ) (Refs. 14 and 55). Since D 0(a>) 
and a  for photogeneration are known, we can calculate 
the contributions of the three IR A V  m odes and thus ob­
tain W n. Therefore the experim ental determ ination o f a 
single IR A V , is sufficient to determ ine /„
Hv = I n / W n ).

The soliton “m idgap” integrated intensity I s within the 
Peierls model is given by56

I s = 2 .8 p ce 2/ m ' (46)

where m  * is the band effective mass m  * = 0 . \m e (Ref. 36) 
and m e is the electron mass. D ividing Eqs. (46) by Eq. 
(45), p c is elim inated and M s is given by

M t =
WlrCl

5.6 I vi l 20
(47)

where I s / /„  is derived from the PA  spectrum ; I s is the in­
tegrated intensity of the LE PA  band and I c is the in­
tegrated intensity of the PA  IRAV.

From  Fig. 16 we have m easured / / * / /  3*( 1360 
c m ~ ’ )~ 9 0  for trans-(CH)x , whereas for trans-(CD)x 
/ /V /? (  1045 cm 1) — 35. We have chosen the strongest 
IR A V  mode for each isotope to  determ ine 7, more accu­
rately. F rom  D 0(o )  o f each isotope we calculate 3(1360 
c m _ 1) =  0.15 for (CH )X and IF2(1045 c m - ' )  =  0.39 for

TABLE V. Intensity ratio for IRAV induced by doping or photogeneration and for RRS at fkoi. ■- 
eV in three Jrans-polyacetylene isotopes. T  denotes theoretical, E  denotes experimental.

h / u
ir doping 

E T

h / h  
ir doping 

E  T

h / h
ir

photogeneration 
E T

h / h  
RRS 

E T

(CH)* 0.25 0.28 10 9.5 4 5 100 16
(CD)* 0.9 0.6 0.4 0.5 0.07 0.09 6 16
(13C H)* 0.25 0.23 11 9.5 7 30 11
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FIG. 15. The derived distribution functions for the pinning 

parameter of the induced charged carriers (doping and PG) as 
obtained from the IRAV spectra of trans-(CD )x.

(CD)*. Therefore, the PA experiment gives I^1 / I ' '  =  13.5 
for (CH)* and l f / I ® =  13.7 for (CD)X. The close values 
for I s / /„  for the two isotopes justifies the method used to 
determine this ratio. The remaining unknowns in Eq. (45) 
can be readily calculated from the parameters of D 0(co) 
(Table II). We have calculated n 0=1900 cm -1 , 
n ,  =  1980 c m " 1, and ( ir /2 )n ? /f lg =  1.71 for (CH)X, while 
for (CD)X we have found f l0=1822 cm -1 , n ,  =  1988 
cm -1 , and (7r/2)Q i/flo  =  1.87. Substituting these in Eq. 
(45), we have calculated for the two isotopes 
MS((CH)X)= 0 .82m c and M5((CD)X) =  0.91me; note that 
M s((CD )x ) > M s((CH )x ) as it should. These masses devi­
ate somewhat from the predicted soliton mass of 3m e 
(Refs. 23 and 56); the deviation is due either to the uncer­
tainties of the parameters or the role of Coulomb interac­
tions. Note that if the total interband transition intensity 
were available a conductivity sum rule14 could be used in­
stead of I s and the uncertainties due to Coulomb interac­
tions would be eliminated.

A. Electron correlations in trans-polyacetylene

The experimental k-  A relation found in trans­
polyacetylene (see Sec. I l l  B) provides us with the possibil­
ity to estimate the e-e interaction parameters.

Identifying the primary lines (see for instance Fig. 1) 
with the ordered state, we obtain using Tables I and II,

__ 3

2k 0=  JX (con /a )° )2 =  0.37±0.01
n =1

for both fnzn.s-(CH )x and trans-lCD )x . The data present­
ed in Fig. 10 can then be expressed by Eq. (36) with 
2 k 0c i= 0 .3 1  and c2/c j  <0.1. Using the corresponding 
expressions for c ly c 2, and X for the three models present­
ed in Sec. I I F  [e.g., Eqs. (Bl), (B2), and (30) for the 
renormalization-group method of Horovitz and 
Solyom44], we have calculated ranges of possible values 
for the e-ph and e-e coupling parameters. These ranges 
are shown diagrammatically in Fig. 17 for two of the 
models, namely, the renormalization-group method44 and 
the Hartree-Fock (HF) approximation.43,46 The solid 
lines give the possible values of the pair 80, k 0 [Fig. 17(a)] 
or v0, k 0 [Fig. 17(b)] that are compatible with the data of

V. DISCUSSION

PHOTON ENERGY (eV)

FIG. 16. The photoinduced absorption spectrum of trans- 
(CH )x and (CD)X up to 1 eV showing the IRAV modes and the 
charge-induced absorption bands.

FIG. 17. Diagram of possible values of the e-ph and e-e di­
mensionless coupling parameters for (rans-(CH),. Solid lines, 
possible values of the pairs (a) (k0, 80) for the HS model (Ref. 44) 
or (b) (A0, v0) for the Hartree-Fock approximation (Refs. 43 and 
46). Dashed lines, the corresponding values for Ec/ A0. The 
upper scale indicates the corresponding values of the parameter f  
(see text).
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Fig. 10, with 2X0=0.37 and with Eq. (36) (i.e., with 
c 2/ c x <0.1 which determines the range of 60 or v0 in Fig. 
17). The upper scale gives the relative sensitivity of the 
e-ph and e-e couplings to disorder; for instance, C =  0 cor­
responds to inhomogeneity due only to variation in k  
whereas g =  oo corresponds to variation in the e-e cou­
pling parameter alone. The parameter f  is defined in Sec.
II F. The dashed lines give the possible values for E c / A0 
taken from Eq. (29) for the HS model44 [Fig. 17(a)] or Eq.
(34) for the H F approximation43,46 [Fig. 17(b)]. The left- 
hand-side axis in Fig. 17(a) corresponds to the Peierls 
model [i.e., no Coulomb interaction (80 =  0), and a distri­
bution in the e-ph coupling parameter only ( f  =  0)] for 
which we find A.0 =  0.185 and E c / A 0 =  7.4. With our 
value of 2A0~ 1 .7  eV at 300 K  we obtain for the it-it* 
bandwidth E c =  6.3 eV which is lower than most esti­
mates. In the presence of e-e correlations Fig. 17 yields 
smaller  e-ph coupling A0 and a finite e-e interaction pa­
rameter. The exact values cannot be determined unless 
an additional assumption is made. If we assume, for in­
stance, that the tt-tt* bandwidth is = 4 f  =  10 eV (Refs. 
36 and 37), we find for the HS model44 [Fig. 17(a)], 
A.0 =  0 .12 and 50 =  0.08 with the corresponding value of 
£ ~ 3 . These values imply finite (though small) e-e interac­
tion strength and an inhomogeneity mechanism in which 
the variation in the e-e coupling parameter is relatively 
important (£ —3). Likewise, we have found from Fig. 
17(b) for the H F approximation: /V0 =  0.13, 
v0= F 0/2 rt= 0 .0 2 5 , and f  —0.5. The value of v0 yields 
for the nearest-neighbor Coulomb interaction V0 = 0 .4  eV, 
which is in rough agreement with the GHS (Ref. 43) esti­
mate. Similarly, the Peierls-Hubbard model45 yields 
A.0= 0 .12 and £ //4 f= 0 .37  or {7=3.7 eV for the on-site 
Coulomb interaction.

We have thus shown that the k-A  plot (Fig. 10) gives a 
reasonable range of values for the e-e interaction parame­
ters which are compatible with the experimental Peierls- 
like relation and with theoretical estimates. We have also 
shown that the inhomogeneity mechanism may affect both 
the e-ph and the e-e interactions.

B. The cr-bond force constant

The high-frequency Raman mode (line 3) has long been 
associated with the carbon-carbon stretching mode of the 
rrans-polyacetylene chain. Yet by replacing H with D line 
3 shifts by ~  100 cm -1 , nearly as much as line 1 or 2 (see 
Table I). Furthermore, the frequencies of Table I seem to 
indicate that none of the modes is a pure carbon-carbon 
stretch. However, realizing that the observed Raman fre­
quencies are determined via D 0(a)  from Eq. (9), we 
should consider the changes occurring in the bare phonon 
frequencies by replacing the isotopes. Indeed, Table II 
shows that a>° is nearly the same for both (CH)t and 
(CD)X ( —2040 cm - 1 ) while it reduces to —1960 cm -1 
for (I3C H )j, i.e., approximately by the square root of the 
mass ratio of 13C and ,2C. This means that the role of the 
hydrogen atoms in this mode is very small, and we there­
fore conclude that the heighest of the three bare modes 
considered here can indeed be identified as the C -C  
stretching mode. The frequency of this mode in the po­

lyacetylene chain is given by &j2 =  2K / / i  where /j. is the 
mode reduced mass. Taking /x as half the carbon atomic 
mass, we find the bare force constant (i.e., the contribu­
tion of the a  bond to the force constant) for this mode: 
K = 46 eV /A 2. This is the first experimental determina­
tion of the force constant for the bare carbon-carbon 
stretching mode. We emphasize that this estimate of K  is 
a result of the amplitude-mode analysis (with an assump­
tion on the value of the reduced mass) but does not in­
volve any  assumption on the nature of the dimerized state 
(e-e, e-ph, etc.). Our experimentally determined K  can 
now be compared with the approximate values used in the 
literature. There have been two main ways to estimate K. 
One is to identify K  with the force constant of the single­
bond stretching mode of the ethane23,42,43,57 which does 
not have any v  electrons. For this mode (&> =  993 cm -1 ) 
d 1E a / d r 1 =  28 eV /A 2,58,59 where E a is the (7-bond elastic 
energy and r is the vibration coordinate (the value 
K  = j d 2E a / d r 2 =  21 eV /A 2, which has frequently been 
used, 23,43,57 takes into account the projection of the bond 
direction on the chain axis). The other way is to identify 
K  with the force constant of the totally symmetric A  ig 
mode of benzene which does not involve the tt electrons;45 
for this mode d 2E a / d r 2 =  41 eV /A 2 (Ref. 59) (r is now 
the bond direction), which is closer to our experimental 
value.

C. The e-ph interaction and the dimerization gap

The dimerization amplitude A„ = 4 P„un for each mode 
is given by Eq. (4) and the total “dimerization gap” is 
defined by 2 Ad = 2 ^  A n . Since in frans-polyacetylene 
k } » /* M, (see Table II), A d — A3. An estimate of A d can 
be made using, for instance, the HS model44 analyzed in 
Sec. V A. From Eq. (6) of Ref. 44 we have 
A d / A 0 — (A0/ 2 E C )s =  0.78, which means that the e-e in­
teraction enhances the gap by about 30%. Similar esti­
mates are obtained using the Hartree-Fock43,46 or the 
Peierles-Hubbard45 approximations. The e-ph interaction 
constant f3„ for each mode can be expressed in the tight- 
binding approximation using Eq. (4) as

P2n =7rtKnk n / 2  . (48)

For the carbon-carbon stretching mode (n =  3) we have 
K 3 = 4 6  eV /A  (see preceding section), k 3 =  k Q( k i / k 0) 
= 0 .1 2 x 0 .9 1 = 0 .1 1  (the value of k 3/ k 0 is taken from 
Table II), and thus / 3 ~ 0 3 =  4.3 eV /A  for E c = 4 f=  10 eV. 
Earlier estimates43,60,61 based on various data placed the 
value of j3 in the range 3 .5 -7  eV/A. Using our derived 
values for j3 and A^ we estimate for the bond distortion 
u =  A d /4 /3 ~  0.04 A in good agreement with the x-ray 
measurements of Fincher et al .62

D. The disorder

As was discussed in length in this work a critical exper­
imental test for any model is the k-E g relation. This rela­
tion yields the type of disorder, namely the functional 
dependence of k  (or the vibrational force constant) on the 
electronic gap E g. We have shown that within the ex­
tended Peierls model a disorder mechanism in which the
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intrinsic coupling parameters (e-ph and e-e) are varied, 
can account for the experimental data. A nother type of 
disorder is observed in trans-(CH)x chains embedded in a 
partially isomerized sample [denoted ?(c)].63 In these 
samples the dispersion of the RRS lines with coL is much 
stronger, giving rise to a much steeper dependence of X on 
E g. The disorder in t i c)  can be explained by a distribu­
tion in the extrinsic component of the gap, a component 
which does not exist in the ground-state degenerate all- 
trans-(CH )x but is present in ds-(CH )x . The few trans- 
(CH)X chains embedded in the cis-(CH )x matrix acquire 
an extrinsic component A e .

It has long been suggested that the disorder in trans- 
(CH)X originates from a distribution of “conjugation 
lengths.” In this model the RRS frequencies are assumed 
to increase with decreasing conjugation length as in finite 
polyenes accounting thus for the dispersion with coL. 
Especially appealing in this model is the possibility to 
characterize the sample quality by an “average” length of 
the chains. However, as was discussed in Sec. IIC , it is 
essential for any conjugation length model to include the 
variations of M N )  and t ( N) .  Numerical calculations of X 
for finite Huckel chains show that mainly a M N )  depen­
dence could account for the data of Fig. 10, and the prob­
lem then reduces to the microscopic origin of this inho­
mogeneity. With a suitable MN) ,  data on trans-(CH)x 
seem compatible with a distribution P ( N )  of conjugation 
lengths. However, it is not clear why in partially isomer­
ized trans-(CH)x (Ref. 63) the slope of X0/ X  versus 
\n(fkaL ) would change from —0.37 (see Fig. 10 and Sec.
I l l  C) to —1.0; a change in P ( N )  cannot readily account 
for this. Instead, a change in the type of disorder com­
pletely accounts for the data; the as-induced disorder has 
the effect of finite odd chains breaking the A—► —A degen­
eracy. If  the length distribution were the main effect in 
all-trans we would expect to have even and odd chains, 
with the latter producing the much steeper slope in the X 
plot. The distinct behavior of Me) from all-trans thus in­
dicates that chain-length distribution is not the main ori­
gin of inhomogeneity in all-fra/is. Also, contrary to the 
conjugation length model almost no dispersion of the 
RRS frequencies of the c;'s-(CH)x chains is observed in 
nearly all-trans samples where a distribution of m -like 
chains is expected. On the other hand, in the AM  model 
the extrinsic contribution to the gap in nondegenerate 
ground-state systems is taken into account, distinguishing 
thus between all-trans and partially isomerized (CH)X. 
The fixed value of the extrinsic component in cij-(CH)x is 
probably the cause for the nondispersive RRS spectrum. 
Furtherm ore, it is observed64 that as the temperature 
changes from 80 to 300 K, the primary and satellite fre­
quencies shift in opposite directions. This is readily ex­
plained by the AM  model as a result of opposite tempera­
ture dependence of the gap49 and the bare phonon fre­
quencies. The conjugation-length model, on the other 
hand, would predict that the primary and satellite shift in 
the same direction.

VI. SUMMARY AND CONCLUSIONS

We have shown that the resonant Raman data observed 
in rrans-polyacetylene is due to scattering from amplitude

modes. A single-phonon propagator D q(o>) accounts for 
all the observed phonon frequencies and relative intensi­
ties at all laser excitation energies. In disordered systems 
we have presented a method to derive the inhomogeneity 
distribution function P (X) which describes the spatial 
variation of the gap and the dispersion of the RRS with 
ikoL . We have found P(X) which corresponds to our 
samples and have shown how to characterize other sam­
ples by the breadth of P(X) .  We have also shown that the 
data provide the functional dependence of the gap on the 
coupling parameter X, which is consistent with extended 
Peierls models including e-e interactions which enhance 
the gap by about 30%. The mechanism at the origin of 
the distribution P(X) affects both the e-ph and e-e cou­
pling parameters.

We have shown that the same phonon propagator 
D 0(co) obtained from the Raman data determines also the 
charge-induced IRAV modes. A single pinning parame­
ter a  is needed to fix all phonon modes. It is found that 
a  ~  0.06 for all photoinduced modes for all isotopes, 
whereas a  ~ 0.23 for doping-induced IRAV. The distri­
bution function for the pinned charges is derived directly 
from the spectrum and is shown to be narrower for the 
photogenerated carriers.

We have provided evidence that the highest Raman and 
IRAV modes originate from the backbone C -C  stretching 
mode. We have, for the first time, determined experimen­
tally the cr-bond contribution to the C -C  stretching force 
constant: K = 46 eV /A 2.

Finally, the amplitude-mode model is not limited, of 
course, to rrarc.s-polyacetylene and may be applied to vari­
ous conjugation systems in which dimerization plays an 
important role. We have recently applied the ideas 
presented above to systems such as ris-(CH)x (Refs. 63 
and 65) and partially isomerized trans-(CH)x (Ref. 63), 
and have shown the presence of amplitude modes in all of 
them. Preliminary analysis of polythiophene66 and finite 
polyene chains such as /3-carotene reveals that their pho­
non spectrum may also be described by amplitude modes.
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APPENDIX A

In this appendix we evaluate the Raman cross section 
for the Peierls model. The relevant diagram is given in 
Ref. 29 and is evaluated in detail elsewhere.67 Here we 
derive the result in the adiabatic limit oj « coL by taking a 
derivative of the conductivity.68

The amplitude modes yield a time-dependent modula­
tion of the gap of the form A +  8(f), 8 ( r ) «  A. Since this 
time variation is slow (the adiabatic limit) one may con­
sider the electronic conductivity of frequency a>L to be 
time dependent with the form cr(coL ,A  +  &(t))

a(coL ,A  +  8 ( t ) ) ^ a ( c oL , A ) + ^ - b ( t )  . (Al)
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An incident electric field E  exp(icoL t) leads to current 
oscillations of frequencies coL +a>, where 8(f) 
=  8(fu)exp(/&>r). This oscillating current radiates the R a­
man shifted power proportional to | 3<t/8A 8(<y) | 2. The 
| &(a>) | 2 factor yields the dressed phonon propagator

D(co) = 2XD0(co)/N  (Q)[\ +  ( \  - 2 X ) D 0(cd)]

(Ref. 67). The resonance effect is contained in the func­
tion da(o)L , A)/3A.

The conductivity o(coL ,A )  for the Peierls model (with 
electronic linear dispersion around the Fermi points) is 
known11

ff(&)) =
477/(1)

[g(<u/2A)— 1] , (A2)

d o
dCldco

where cop =  [ 47re 2v}-N (0 )]1/2 is the plasma frequency and

a: —( x 2— l ) W2

g ( x )  =

1
2x  (x ' 1,1/2

In
x  + ( x 2— 1) 1/2

1
I l - x 2)2\ l / 2 tan

( 1 -
, 2 \ l / 2

+  77/

X  <  1

(A3)

This excludes the phase-mode contribution,11 which is ab­
sent in the present y-filled-band situation.

The radiation intensity ~a>2L \ o E  \ 2 yields the Raman 
cross section

-(ol do  / d A  | 2D ( c o ) ~ ( X / A2) \ f ( f uoL / 2 A)  \ 2D 0(co)/[\ +  ( \ - 2 X ) D 0(co)} (A4)

where f ( x ) =  — x d g ( x ) / d x  is given by Eqs. (23) and (24). 
Thus all the a>L and A dependence, including the reso­
nance effect at ficoL =  2A, are contained in | / | 2/A 2. 
Direct diagrammatic evaluation of the cross section yields 
the same result when co «  o), (Ref. 67).

APPENDIX B

The expressions for the coefficients c, and C2/C[ in the 
HS model44 are given below,

l +  ( l - A .0) f / ( l + 8 0)

£ l
Cl

where

a =

1 -

28o 
: b

A0 A0(A0 +  50)
—  —--------;------ In

Ao +  8()

I So ^0

£.

(Bl)

(B2)

£ A0 +  80
“ A.'o Ao

+ £

50X0(80 +  X0) 

So +  280A0

2( A0 +  80) 2A.q(A0 +  80)

and

=  ^ - ln
An

Sq — A0g 
A-o(A-o +  So)

In the above equations />.0 and 80 refer to the ordered state 
and £ is the ratio between the first-order changes in 8 and 
A due to the inhomogeneity. £ may formally be written as
£ = d b / d X .

The analogous expressions in the Hartree-Fock approxi­
m a t i o n 43,46 are as follows:

1 +  v0/A 0
(1 + 2 f  — vq/ X 0) ,

f l

1 + f

2A.q( 1 ~ ] - V q / X q ) { v q / X  — £) 

1 + 2 £  — v 0/ v 0

(B3)

(B4)

Similarly, X0 and v0 refer to the ordered state while f  can 
formally be written as y —d v / d X .
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