
2010 IEEE Symposium on Asynchronous Circuits and Systems

C o n c u rre n c y R e d u c tio n o f U n tim e d
L a tc h P ro to c o ls - T h e o ry an d P ra c tic e

Santosh N. Varanasi K enneth S. Stevens G raham B irtw istle
Electrical and C om puter Engineering D epartm ent o f C om puter Science

U niversity o f U tah The U niversity o f Sheffield

Abstract—A systematic investigation into concurrency reduc
tion of untimed asynchronous 4-phase latch controllers is re
ported. Starting with a state graph that exhibits maximal con
currency, rules are provided for systematically reducing its states
and thereby curtailing its behaviors. The rules predict liveness
and occupancy, as well as the regularity and behavior of their
pipelines. The rules also reveal the precise extent of the design
space and thus provide a secure platform on which to study the
implications of concurrency reduction on power, performance
and area by implementing and evaluating the complete set of
abstracted controllers. This complete characterization enhances
the understanding and usage of concurrency and its reduction in
handshake protocols. Trade-offs have been observed and reported
which will aid designers in trying to find the best protocols for a
required specification. Finally, the best synthesized protocols in
this class have been identified.

I. I n t r o d u c t io n

This study is m otivated by the desire to gain a better
understanding o f concurrency and synchronization, exam ine
the im pact com position has on protocols, how to verify such
system s, and to validate som e assum ptions o f concurrency
reduction on synthesized hardw are im plem entations. It is an
extension o f previous w ork w hich derived a fam ily o f untim ed
4-phase latch controller protocols w here data is bundled and
valid before the request signal rises [2]. In this paper we give
this fam ily a sim pler structural categorization, use it to char
acterize som e behavioral properties, and present experim ental
results about the V LSI im plem entation o f the com plete family.

The origins for this study lie in w ork carried out designing,
specifying and verifying control signal structures over a range
o f asynchronous m icroprocessors culm inating in variants (one
show n in Fig. 1) on the M anchester A M ULET3 [11], [1].
W hen experim enting w ith architectural changes to data paths
by varying p ipeline depths and widths, w e noticed that upon
the m inim ization o f our m odels dow n to the sm allest equiva
lent state graph, pipeline w idth had no im pact. Each variation
w ould m inim ize dow n to be equivalent to som e single pipeline,
but rarely one w ith the our initial building blocks.

Each asynchronous p ipeline stage consists o f control and
a data path. W hen the data path is abstracted out, only the
controller w ith its handshake signals rem ains. Such a controller
is represented as a single stage controller, S T , in Fig. 2. Such
single stage controllers are com posed in parallel to create
series pipelines S P d o f arbitrary depth d. Series pipelines are
often connected in parallel w ith fork and join com ponents

.■ "III.| PMUX |

rPCT

DECODER

PC i Ra

i-1-------1-------'- iLOCK
1 1 1| SE | | RB

m r n r*Ci

I~ |amx| |bMx|

PC i h Ra]M |posT | res | fp | r"c

MEM/WBACK

1 DMUX 1 I (1
1 DM

res Ra

1 1
1 R

^Mfre
1 1B

Fig. 1. Abstracted control structure of a simplified AMULET3

to form a parallel p ipeline P P w ,d o f w idth w and depth d.
Such structured p ipeline segm ents can be observed in the
m icroprocessor in Fig. 1.

The results in this paper address the evaluation o f data
abstracted linear pipelines w here each stage contains the same
protocol. D iscussing pipelines w ith feedback and addressing
the rich set o f tim ed protocols (e.g. burst-m ode and relative
tim ed) are not herein addressed.

A . W h a t h as been do n e

The key phases in this study have been:
1. In c u b a tio n : Som e 40 published latch controller designs
(usually specified as STGs) w ere surveyed and translated to
a generalized state graph notation in w hich internal state
variables and latch control signals w ere hidden w hilst retaining
the constraints they im posed on how the external pipelining
signals interleave. We then ran experim ents for each protocol
w hen com posed into single pipelines S P d o f depths 1..8 and
parallel pipelines P P w ,d o f w idths and depths 1..8 (Fig. 2).

978-0-7695-4032-0/10 $26.00 © 2010 IEEE 26
DOI 10.1109/ASYNC.2010.13

@ computer ^

ST:

SPd:

PP2

fr - >
1
1

SPd

1
1 F2

ia

SPd

Fig. 2. Single (ST), Series (SP), and Parallel (PP) Pipeline Control Graphs

2. G en e ra liz a tio n : All designs and their pipelines w ere now
expressed solely in term s o f the sam e external pipeline control
signals and could thus be com pared. The m ost concurrent
protocol was identified, called m a x, into w hich each abstracted
published design could be com pletely em bedded. A system atic
m ethod o f reducing concurrency by cutting away states from
m a x was developed to generate the com plete fam ily o f proto
cols. U pon exam ination o f the 40 published ST G ’s, w e noted
that the standard w ay of restricting behavior was to constrain
upstream pipeline signals and dow nstream pipeline signals
separately. E ach constraint w ould engender a characteristic
pattern o f states being rem oved, or cut away, from m a x . These
w e generalized and call the set o f all upstream cut patterns R
and the set o f all dow nstream cut patterns L .
3. S ea rch fo r s tru c tu re :

The fam ily design space is form ed applying all pair com
binations o f cuts, (one from L and one from R) on m a x. The
orthogonal cut sets L and R have lattice structures, and can
be used to specify, relate and order all fam ily m em bers [5],
[12]. The cut pairs for a specific abstracted design calculate
its liveness, behavior, and capacity w hen pipelined.
4. Im p lem en ta tio n : The effect o f concurrency reduction
was studied by synthesizing the com plete set o f pipelined
controllers and evaluating them for throughput, latency, and
power.

II. M o d e l in g 4 -P h a s e P ip e l in e S ta g es

W e use M ilner’s C alculus o f C om m unicating System s
(CCS) to m odel and reason about protocols [18]. CCS has
a num ber o f pertinent attributes that m ake it attractive for this
work. It is straightforw ard to capture signal level behavior.
i t has a sim ple form al sem antics to support reasoning about
designs. Flow graph structure and hierarchy are part o f the
language, including sem antics for how internal hidden behav
ior, represented as t , affects externally observable signals. This
allows us to form ally reason about the signal hiding techniques
w e used for protocol abstraction. It has reliable public do
m ain tool support, the C oncurrency W orkbench (CW B) [19].

Fig. 3. Bundled Data Controller and Data Latch

Finally, the CW B im plem ents the very pow erful m odal-^
property checking calculus [2 1].

A long w ith these positive points, CCS suffers from the usual
state explosion problem s. In practice this m eans that CCS is
perhaps best suited to exploring abstract view s and control
properties o f system s, rather than data path logic.

A . T he M A X P ro to co i A b stra c tio n

Fig. 3 shows a bundled data p ipeline stage. The latch is
responsible for holding the current data value captured from
input bus d I N . The latch controller (LC) is responsible for
synchronizing the input and output channels w ith the data
stream. Since the latch controller protocol w orks the same
for all bus values, d IN /d O U T can be abstracted by tokens
indicating w hen data can change and becom e stable.

The m odel developm ent used in this paper is an abstraction
o f the 4-phase bundled data protocol using a norm ally closed
(opaque) latch (the approach is equally valid for norm ally
open latches). The follow ing five constraints specify the safety
properties o f the protocol: s0: Liveness: there is a unique
quiescent state w hich can carry out only one action lr] and
w hich is reachable from all other states. s1: A new data value
m ust be stable on d IN before the input channel request lr]
is asserted. s2: The data is captured in the latch before the
input channel acknow ledgm ent la] occurs. s3: The data m ust
be passed through the latch before the output channel request
r r] . s4: The latch m ust rem ain closed, keeping d O U T stable,
until the output channel acknow ledge signal ra] is asserted.

The latch behavior is specified as follows. E nable request
and acknow ledgm ent signals rEn and aE n control the opening
and closing o f the latch. As the d IN and d O U T actions of
Fig. 3 are not m odeled, m arkers o p e n and c lo s e d are inserted
to show the state o f the latch. We assum e that if a new data
value is valid on the input d IN w hen the latch is opened, it
w ill have tim e to be stored in the latch and propagate to the
output d O U T before the latch is closed. The separating dot .
betw een actions in a CCS definition m ay be read as a n d so m e
tim e ia te r .

L A T C H = r E n] . o p en . a E n]. r E n \. closed ,a E n [. L A T C H

The m ost concurrent protocol m a x is obtained by delaying
handshake signals in the specification only to prevent a safety
violation. A CCS specification that results in the m ost concur
ren t protocol is shown in Eqn. 1.

ST
dIN dOUT

lr

27

la] lr] la] lr] la] lrj la] lr] la] lr] la] lr] ra-

rr]

ra]

rrj

ra]

C llr+

rr+

la+

ra+

lr- la-

Fig. 4. Minimized state graph of max, configured as a shape

L = lr] .gS.rEn] .aEn] .rEnj .aEnj .pV.la] .lrj.laj.L
R = gV.rr\.ra].pS.rrj.raj.R
S = gS.pS.S V = pV .gV.V

LC = (L | R | S | V) \{ g S ,p S ,g V ,p V }
LATCH = rEn] .open. aEn] .rEnj.closed.aEnj. LATCH

max = (LC | LATCH) \ {rEn, aEn} (1)

The trace variables o p e n and c lo s e d have done their job
and are now omitted. A ll the handshakes betw een L and
L A T C H are treated as CCS t moves (silent internal actions
o f arbitrary duration). Thus the interplay betw een the L A T C H
and L is equivalent to:

L = lr] .g S .T .T .T .T .p V .la] .lr { .la [.L

L A T C H = t . t . t . t . L A T C H

w here the four handshakes in L betw een g S and p V are all
reduced to t . As each o f these t signals represent nothing
m ore than an arbitrary delay, their net effect is that o f a single .
in CCS. In addition the contribution from the (norm ally closed)
L A T C H is com pletely silent. The sam e argum ent w ould apply
had we used a norm ally open (transparent latch). For exam
ple, Efthym iou and G arside [7] give norm ally open/norm ally
closed variations on four different latches. Each pair has the
sam e m inim ized state graph after hiding.

Process S is a token that ensures property s4 holds and new
data is not w ritten into the latch until the previous data has
been consum ed and the latch has space for the token. Process
V is a token that ensures that property s3 holds and data
has been stored in the latch before the dow nstream request
is asserted. Process L internally ensures property s2 holds
by com pleting the handshake w ith the latch before the input
channel acknow ledgm ent can assert. Safety property s1 , that
the data arrives before lr] , is assum ed to hold by correct
system tim ing w hen s3 holds in the upstream controller.
M axim al concurrency is obtained by releasing the tokens as
early as possible. S is released allowing latch storage upon
ra]. V is released as soon as data is stored in the latch.

B. S h a p e R ep resen ta tio n

Fig. 4 displays the m inim ized state graph o f the concurrent
protocol m ax. W e call this specific state and signal configura
tion a sh ap e . H orizontally the labels show the input channel

Fig. 5. STG for the abstracted max protocol

signals; vertically and w rapped around are the output channel
handshake signals. The initial state is m arked w ith the circle • .
T he 4 x 2 b lock o f states on the right o f the shape are reached
w hen the input channel gets ahead o f the output channel. The
leftm ost three states are reached w hen the converse is true
and the input channel m ust catch up w ith the output channel.
T he neck on the righ t is w here the device is ensuring that the
current value held is not overw ritten until it has been passed
downstream .

CCS tracks all possible interleavings. N otice that after an
initial l r] action, m a x perm its (i) L to com plete the action
sequence l a] . l r j . l a j . l r] before R carries out its r r] , and (ii)
R to com plete the action sequence f r] . r a] . f r [.r a [before L
carries out its la] action. A n equivalent STG o f the m a x shape
is shown in Fig. 5.

A less cluttered shape for m a x is derived by rem oving the
arcs as shown below. This is the shape notation w e prefer to
use.

o o o • o o o o o
o o o o o
o o o o o o o o o
o o o o o o o o o

III . C o n c u r r e n c y R e d u c t io n o n M A X w it h C u t s

O nce each protocol has been m odeled as a shape, it is clear
that less concurrent abstracted protocols contain few er states.
This can be represented in our com pact representation o f a
shape by replacing the o w ith a . if the state is unreachable
(cutaway) in a particular protocol.

Table I pictures the shapes o f m a x and three published
designs: KG due to Kol and G inosar [13]; BCKLLS due to
B lunno et. al. [3]; and FD 6 due to Furber and D ay [10].
N ote that m a x is the union o f two highly concurrent published
protocols, KG and BCKLLS; the third, FD 6 is their union. Our
experim ents confirm ed that the m a x shape is the union o f all
4 0 published designs w e investigated in the incubation phase.

L ess concurrent shapes can be generated by system atically
rem oving (or cutting away) states from m a x , ju s t as the m a x
shape can be form ed by the union of other shapes. Observation
o f the shapes o f published designs indicated that concurrency
reduction rem oved states from the left and righ t sides o f m a x .
Taking our cue from Table I, w e decided to partition our
concurrency reduction rules into tw o sets: L on the left and
R on the right. We call our system atic concurrency reduction
rules le f t cu ts L and r ig h t cu ts R from the m a x shape.

rr-

28

TABLE I
The re la tionsh ip o f th e max shape and th re e published designs

Start here

Rpt o f row 1

o o o i
L a

b
c
d : o o o : ^ o o o o o

Fig. 8. Left cut L denotation and range. The top row is duplicated at the
bottom of the shape to more easily show the Left cut ordering.

> o o o o o
: o o o : o o
: • o o : o o o o
j • • o j o o o o o o

L 0
1

3 : • • • o o o o o

Fig. 9. The shape (above the duplicated line) resulting from cutaway L0123

A . C on cu rren cy R ed u c tio n fr o m R ig h t C uts R

The states rem oved in a right cut are denoted as R ab cd
as shown in Fig. 6 . R abcd denotes the rem oval from m a x o f
a states from the right end o f row 1 , b from row 2 , c from
row 3, and d states from the right end o f row 4. The m axim al
cutaw ay per row is 4 for row s 1 and 2; and 8 for row s 3 and
4, as shown by the dashed box. If we cut away m ore states
liveness constraints w ill be violated.

o o o o o o o o o
o o o o o
o o o o o o o o o
o o o o o o o o o

R a
b
c
d

Fig. 6. Right cut R denotation and range

The result o f cut R 2152 is depicted in Fig. 7.

o o o o o o o
o o o o .
o o o
o o o o o o o . .

R 2
1
5
2

Fig. 7. The shape resulting from cutaway R2152

The fam ily o f all R cuts is generated by the constraints:

0 < a, b < 4 0 < c ,d < 8

a > b A b + 4 > c A c > d A d > a (2)

B . C on cu rren cy R ed u c tio n fr o m L e ft C uts L

L eft cuts, denoted L ab cd , rem ove from m a x a states from
the left o f row 2, b from row 3, c from row 4, and d from
the left o f row 1. The potential candidates for a left cut
now lie in a 3 x 4 block o f states in the dashed boxed of
F ig . 8 . The liveness rule that requires the initial state to be
present and reachable from any state is v iolated if any m ore
than these states are rem oved. To em phasize the ordering of
left cuts, F ig . 8 tem porarily em ploys a new representation by
duplicating the top row after the last row o f the shape.

The result o f cut L0123 is depicted in Fig. 9 .
The fam ily o f all L cuts is generated by the constraints:

0 < a , b , c ,d < 3

a < b A b < c A c < d (3)

C. U sing cu ts to g en era te th e fa m ily a n d to d e fine liveness

The com plete fam ily o f protocol shapes is generated by
applying all pair com binations o f left cuts and right cuts to
m a x . N ot all these shapes w ill be valid: for exam ple the shape
L2222 ° R 4444 is not live since it deletes all the states from
row 2 o f the shape. u s in g an obvious cut indexing, shape
L abcd ° R abcd is live iff Eqn. 4 holds. Thus the liveness o f a
shape can be calculated directly from its cuts from m a x .

La + Rb < 5 A Lb + Rc < 9 A Lc + Rd < 9 A
La + Ra < 5 A Lb + Rb < 5 A Lc + Rc < 9 A Ld + Rd < 9 (4)

D . T h e U n tim ed F am ily

The right and left cut constraints in Eqn. 2 and 3 express
all cuts, including the burst-m ode and relative tim ed protocols.
Tim ed protocols occur w hen the arrival o f an input from the
environm ent can be delayed based on another protocol input
or output signal. W e restrict the evaluation in this paper to
untim ed (delay insensitive (DI) and speed independent (SI))
protocols. C onstraint rule R1 m ust additionally hold for all
untim ed protocols. D elay insensitive protocols m ust also obey
constraint R 2.

1) R 1: input signals lr and ra m ust alw ays be accepted
2) R 2: output signals m ay be delayed only by inputs

T h e S I fam ily : W hen rule R1 is added to the cut and
liveness constraints o f Eqn. 2, 3 and 4 we obtain the speed
independent fam ily o f cuts. s ta te s m ust be rem oved in 1 x 2

pairs by left cuts and 2 x 1 pairs by right cuts. For exam ple,
referring to Fig. 4, one cannot rem ove just the rightm ost
state in any row (e.g. cut R0011) or the input l r | is delayed
(resulting in a tim ed design). The state to left m ust also be

29

rem oved (giving cut R0022). R1 is enforced by the following
cut equation.

R : a , b , c , d are even

L : a = b A c = d (5)

T h e D I fam ily : A dding rules R1 and R2 to our base cut
constraints creates the delay insensitive protocols. This is m ore
restrictive than the SI cuts, requiring states to be rem oved in
2 x 2 blocks. This rem oves “output ordering” in the protocol.
For exam ple, referring to Fig. 4, if the rightm ost tw o states
are cut in the top row, output la[is delayed, producing cut
R2022. (The bottom right four states m ust also be rem oved
for liveness by Eqn. 2). To obey R2 and prevent output la[
being delayed by output rr] , the right tw o states m ust also be
rem oved in the second row. This produces the D I cut R2222.
R1 and R2 are enforced by the follow ing equation on both L
and R cuts.

about an axis through R2262, R2244, R 4044 (w hich are self-
com plem entary). E ach cut R abcd has a com plem ent given by
R(4-b)(4-a)(8-d)(8-c).

IV. E x p e r im e n t a l D I/S I f a c t s a n d pa t t e r n s

This paper reports on hom ogeneous linear pipelines w ithout
feedback. Three im portant behaviors w ere revealed by exper
im ents on these pipelines.

1) P P w ,d (see Fig. 2) is independent o f w. Seen from the
outside, each structured parallel p ipeline behaves like a
single p ipeline S P d o f the sam e depth. The behavior o f
these pipelines alw ays em ulates a D I protocol and can
be predicted from the cuts o f the shape.

2) There are only 23 possible structured parallel P P w ,d
behaviors and they are the 23 live D I shapes.

3) Som e single pipeline behaviors can change shape w hen
in single pipelines o f depths 2 or more. Interestingly
they m ay gain or lose states.

R , L : a , b, c, d are even A a = b A c = d (6)

E. L a n d R C ut L a ttic e s

The D I definition is a subset o f the SI family. R ather than
subtracting them out, w e prefer to keep them all and refer
to it as the D I/SI family. This results in 10 left cuts and 25
righ t cuts. Com posing m em bers o f the L and R cuts to create
protocol shapes gives 250 possible protocols, w here 91 are not
live as their cuts violate the liveness constraint Eqn. 4.

R0000----R0020---- R0022---- R2022---- R2222

R0040----R0042---- R2042---- R2242---- R2262

R0044----R2044---- R2244---- R2264---- R2266

TABLE II
Pipeline Protocol Behaviors

Basic shape SPd shape PPw,d shape

► o o o o o
o o o o o
o o o o o o o o o
o o o o o o o o o

► o o o o o
. o o o o
. o o o o o o o o
. o o o o o o o o

2REGULAR

o o o o o
. . o o o
. . o o o
. . . o o o o o o

o o o o o
o o o o o
o o o o o o o o o
o o o o o o o o o

o o o o o
. o o o o
. o o o o o o o o
. o o o o o o o o

o o o o o
. . . o o
. . . o o
. . . o o o o o o

o o o o o
o o o o o
o o o o o o o o o
o o o o o o o o o

o o o o o
o o o o o
o o o o o o o o o
o o o o o o o o o

, o • o o o o o
. . o o o
. . o o o o o o o
. . o o o o o o o

L0011----L1111

L0022----L1122---- L2222

-L1133----L2233-

R4044----R4244---- R4264---- R4266

R4444----R4464---- R4466

R4484----R4486

Fig. 10. The Symmetric Lattices of Untimed DI/SI Left and Right Cuts

Both sets o f cuts form sym m etric lattices and each cut has
a com plem ent. B oth lattices are coherent and com plete. They
are both shown in Fig. 10. The lattice o f left cuts has 10
m em bers and is sym m etric about an axis through cuts L0033
and L1122. Each cut L abcd has a com plem ent given by L(3-
d)(3-c)(3-b)(3-a). The cuts on the axis are self-com plem entary.
The lattice o f righ t cuts has 25 m em bers and is sym m etric

Table II indicates the three possible categories o f valid
p ipelined behavior that arise in D I/SI shapes:

1) DI: here m a x = L0000 ° R0000, retain their left and right
profiles w hen pipelined singly or in parallel.

2) R EG U LA R: here L1111 ° R0000, retain their left and
right profiles w hen singly piped, but gain state to a DI
shape (in this case m a x) w hen p iped in parallel.

3) 2REG U LA R: here L2233 ° R0040, changes shape w hen
singly p ipelined (here it loses two left states and acts
as L3333 ° R 0040 from depths tw o onw ards), and, w hen
run in parallel, changes shape again to a D I protocol (to
L2222 ° R0000, gaining tw o states on the left and four
on the right).

A . Tableau o f D I /S I exp erim en ts

The results o f the experim ents w hich cover the w hole design
space are displayed in a L by R tableau in Table III.

1) • : a shape is DI if and only if both its cuts are DI.

DI

o o o o o o o o o

REGULAR

. o o . o o o o o

L0000

L0033 L3333 R4488

30

TABLE III
Tableau over all DI/SI cuts

L0000 L0011 L1111L0022 L1122 L0033 L1133L2222 L 2233 L3333 L o R

• i A • A A A • i A R0000
i i i i i i i i i 1 1 i i i R0020
A i A A A A A A i A R0040

• i A • A A A • i A R0022
A i A A A A A A i A R0042
A i A A A A A A i R2022
A i A A A A A A i R2042

• i A • A A A • i A R0044
i i i i i i i i i i i i R2044
A i A A R4044

• i A • A A A • i R2222
i i i i i i i i i i i i R2242
A i A A A A R2262

• i A • A A A • i R2244
A i A A A A R2264
A i A

A.
R4244

A i A R4264

• i A • A • R2266
i i R4266

• i • A R4444
i i i i R4464
A R4484

• i • R4466
A R4486

• . . R4488

•■ 23 A: 76 □ :60 .: 91 /250

2) A: a shape is regular if and only if both its cuts are
regular or ju s t one is DI.

3) □: a shape is 2regular if one or both o f its cuts is/are
2regular.

4) .: shows a non-live protocol.

O ne striking result is that the L and R cuts have orthogonal
and persistent behavior. For exam ple, L0011 cuts 2regularly
(in the sam e way) w hichever R cut it is com posed with.
Similarly, R 0040 cuts regularly w hichever L cut it is com posed
with.

The tableau is divided into blocks w ith a D I shape • in
its top-left corner. This is the m ost state rich shape in that
block. The least state rich shape sits in its bottom righ t corner
(only six o f these are live). A ll shapes in a specific block
have the sam e parallel pipelining behavior. M athem aticians
m ay prefer D I shapes because they retain that shape when
pipelined; engineers m ay prefer others if they give rise to
faster or low er pow er im plem entations for the sam e pipelining
behavior. For exam ple, the designs KG, BCKLLS and FD 6

by Kol and Ginosar, B lunno e t a l , and Furber and Day
respectively all have m a x 's behavior w hen com posed into
parallel pipelines. The doubly latched KG even has m ax’s

behavior w hen com posed into a serial p ipeline o f depth two
or more. W ithin each block, any 2regular shape w ill change
shape to a regular or DI shape from depth tw o w hen singly
pipelined. A ny regular or 2regular shape w ill change to the
D I shape o f its own block w hen p ipelined in parallel, even
from depth one. So the 23 viable D I blocks have a significant
underlying structural significance w hich w ould not have been
revealed had w e not experim ented w ith parallel pipelines.

Finally the tableau splits into 3 levels. A ll shapes w ith
R cuts betw een R0000..R2262 can achieve full occupancy,
and betw een R 2244..R 4264 half occupancy. The rest are
unpipelined.

V. C o n c u r r e n c y R e d u c t io n

The rem ainder o f the paper discusses a study to determ ine
the im pact o f concurrency reduction on a protocol family. All
protocols are derived from the single m ost concurrent protocol
shape based on system atic concurrency reduction rules o f
the left and righ t cuts. A ll o f the p ipelined protocols in this
untim ed fam ily w ere synthesized, place and routed, and their
physical designs w ere characterized in order to perform this
evaluation.

The theoretical part o f the paper defines a com plete protocol
fam ily consisting o f 137 different specifications. This provides
perhaps the first opportunity to perform a large scale system
atic study o f the effect o f regular concurrency reduction upon
a com plete class o f protocols. The theory identifies the fact
that m any specifications are indistinguishable w hen placed in
pipelines that are com m on design topologies. It also shows that
m any properties o f the protocols are persistent. This opens up
a choice space for a designer to p ick am ongst various designs
in order to m atch a particular requirem ent and optim ize the
m etrics m ost im portant for the design w hile m eeting specific
protocol requirem ents.

A tractable design space is presented by abstracting out
the data path logic. However, this also results in substantial
inaccuracy in the reported results if the goal is to build
controllers that include a data path. W e expect there to be a
substantially larger penalty in im plem enting the latch clocking
signals for the m ore concurrent protocols than for the protocols
o f lesser concurrency.

Concurrency reduction results in a com plex interplay be
tw een logic level optim ization and system level interaction
across the handshake channels. In general, concurrency re
duction tends to reduce the com plexity o f the logic w hich
can speed up the response tim e o f the controller. However, it
can also result in system level perform ance degradation by
delaying output signals on a channel w hen they otherw ise
w ould be able to p roceed in a m ore concurrent protocol. Thus,
som e am ount o f concurrency reduction produces an im proved
design, but too m uch can degrade perform ance.

Our initial hope was to find that concurrency reduction
produced a convex function that placed the optim al design
som ew here in the m iddle o f the concurrency reduction spec
trum . W e hoped this w ould be true both globally across the

31

TABLE IV
Number of state variables generated by Petrify

TABLE V
C o n tro l le r A rea in ^m2

L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333 L o R

2 4 2 2 2 2 R0000
3 2 2 2 2 1 2 1 1 R00202 2 2 2 2 2 1 2 1 1 R0040

3 3 2 1 2 2 1 2 1 1 R00222 2 2 - 2 2 1 2 1 1 R00422 2 2 2 2 2 1 2 1 D R20222 1 1 1 1 1 0 0 D R2042

3 2 2 2 2 2 1 2 1 1 R00442 2 1 1 1 1 0 0 D R20442 1 D 1 D 1 D D D D R4044

2 2 2 2 2 2 1 2 1 D R22222 1 1 2 1 1 0 0 D R22422 1 1 1 1 D D D D R2262

2 1 1 1 1 1 0 0 D R22442 1 1 1 0 D D D D R22642 1 D 1 D 1 D D D D R42441 0 D 0 D D D D D D R4264

L0000 L0011 L1111 L0022 L1122 L0033 L1133 L2222 L2233 L3333 L o R

271.6 387.7 244.3 350.2 203.2 196.4 R0000
404.8 - 285.3 288.7 240.9 302.3 217.0 223.7 237.4 189.6 R0020
261.3 339.9 292.1 264.7 339.9 309.1 244.3 206.6 213.5 240.9 R0040

346.7 428.7 203.2 213.5 333.1 210.1 206.6 175.9 155.4 162.2 R0022
418.5 268.2 257.9 - 281.8 331.1 206.6 251.1 189.6 172.5 R0042
319.4 350.2 333.1 206.6 285.3 298.9 196.4 179.3 179.3 D R2022
398.0 268.2 213.5 196.4 203.2 206.6 169.1 175.9 162.2 D R2042

247.6 196.4 237.4 162.2 199.9 227.1 172.5 206.6 152.0 155.4 R0044
206.6 210.1 186.1 189.6 186.1 189.6 162.2 124.7 155.4 D R2044
278.4 193.0 D 155.4 D 165.6 D D D D R4044

350.2 213.5 179.3 165.6 172.5 162.2 152.0 162.2 124.8 D R2222
288.7 223.7 186.1 199.8 172.5 186.1 138.3 131.5 131.5 D R2242
220.3 206.6 175.9 165.6 162.2 D D 155.4 D D R2262

179.3 162.2 128.1 117.8 134.9 128.1 104.2 97.3 83.7 D R2244
196.4 182.7 152.0 128.1 134.9 D D 107.9 D D R2264
189.6 169.1 D 134.9 D 121.2 D D D D R4244
145.2 148.6 D 104.2 D D D D D D R4264

full design space as w ell as locally inside protocol equiva
lence classes. W hile this trend does generally hold, there is
substantial noise w ith significant exceptions to the norm.

in the end we are interested in im plem enting efficient
system s and are searching to find m ore efficient designs than
have heretofore been discovered. The exhaustive nature o f this
evaluation points to locations in the design space to search for
design optim ization. o u r literature search uncovered published
im plem entations for only 40 o f the 137 untim ed shapes [3],
[6], [8], [9], [10], [13], [14], [15], [16], [22], [25], [26]. N one
o f those had the sam e protocol as the best-in-class in the study
perform ed here.

V I. C ir c u it C h a r a c t e r iz a t io n

The com plete set o f abstracted controllers w ere synthesized,
placed and routed, and characterized using post layout ex
traction em ploying the static A rtisan 12T library on IB M ’s
65nm 10sf process [23]. Each o f the controllers has been
characterized for cycle tim e, forw ard and backw ard latency
and area. Pow er results are not reported here. Sim ulation
is perform ed in M odelS im on the post layout design w ith
delays extracted from SoC encounter based on the layout
and parasitics o f the design. M ost o f the flow has been
fully autom ated since we started w ith 137 different p ipelined
controllers.

The characterization starts w ith the controller behavior
specified as a state graph “ shape” in CCS. The specification is
then synthesized and technology m apped to the A rtisan library.
Petrify is used to synthesize the design and tech m ap to the
A rtisan library [4]. We created a technology m apping file in
the genlib form at that was used by Petrify and applied the
exhaustive decom position algorithm . o f the 137 controllers,

la

Fig. 11. Controller with smallest area and backward latency: L2233 ◦ R2244

Petrify could no t find a valid state variable assignm ent for six
controllers, including m a x .

Petrify has the capability o f adding reset to a design.
H ow ever those results are inconsistent, and so w e opted to
m anually add reset to the controllers. This process was aided
by V e r i l o g 2 C C S softw are that w e w rote to m ap a Verilog
m odule to a form al CCS specification. Verilog2CCS forces the
inputs low and sim ulates the Verilog to determ ine the logic
value o f each net. i f any nets are undefined, reset is added by
m odifying one or m ore gates to drive the net to the proper
state. A n attem pt was m ade to have reset create as sm all an
im pact on area and pow er as possible.

C haracterization is perform ed by placing each structural
Verilog controller into a 4-deep linear pipeline. This pipeline
is sufficient to evaluate our design m etrics. Sim ple be
havioral interfaces are added to the left and right side
o f the p ipeline that enable sim ulation control o f the ex
ternal handshake channels. The left interface im plem ents
a s s i g n a c k = g o _ l & ' r e q and the right interface
a s s i g n a c k = g o _ r & r e q . Latency through the left
and right interfaces is an A ND or N O R gate. This m ust be no

rr

32

TABLE VI
F o rw ard l a te n c y in ps. O p tim al a v e ra g e c u t in bold.

TABLE VII
B ack w ard la te n c y in ps, o p tim a l f u l l b u ffe re d c u t in bold

L0000 L0011 LI 111 L0022 LI 122L0033 LI 133 L2222 L2233 L3333 L o R

607 177 257 552 402 401 R0000
457 - 497 200 318 155 269 478 474 501 R0020
339 367 387 150 534 234 303 366 477 543 R0040

133 486 325 293 533 236 273 362 317 379 R0022
186 309 291 - 331 164 265 405 383 382 R0042
103 210 422 203 291 107 253 295 370 D R2022
289 343 293 206 234 188 206 267 162 D R2042

124 199 301 157 275 130 240 375 299 388 R0044
262 220 255 225 273 186 214 319 253 D R2044
93 203 D 180 D 172 D D D D R4044

291 204 198 180 182 100 194 242 243 D R2222
244 206 271 174 227 68 158 304 277 D R2242
135 214 304 152 198 D D 314 D D R2262

195 126 165 113 186 118 126 226 205 D R2244
198 177 202 116 156 D D 249 D D R2264
115 146 D 135 D 58 D D D D R424488 93 D 85 D D D D D D R4264

L0000 LOO11 LI 111 L0022 LI 122 L0033 L1133 L2222 L2233 L3333 L o R

178 579 302 249 195 165 R0000
299 - 188 492 237 239 233 228 235 174 R0020
278 647 308 446 484 300 248 193 274 283 R0040

292 117 232 274 306 290 257 154 196 180 R0022
416 378 261 - 330 368 285 221 216 203 R0042
286 168 189 184 178 221 174 155 161 D R2022
370 468 274 225 228 263 221 192 173 D R2042

499 439 292 332 357 445 327 219 263 339 R0044
465 438 385 324 340 375 338 355 293 D R2044
658 458 D 392 D 419 D D D D R4044

538 400 376 320 346 274 288 275 183 D R2222
357 402 333 286 300 303 259 270 219 D R2242
341 477 463 315 339 D D 342 D D R2262

175 124 120 131 115 135 97 108 78 D R2244
177 219 195 157 127 D D 138 D D R2264
153 185 D 141 D 121 D D D D R4244
147 142 D 140 D D D D D D R4264

t half buffered

L0000 LOO11 LI111 L0022 LI122 L0033 LI133 L2222 L2233 L3333

Fig. 17. Backward latency averaged across left cuts Fig. 18. Backward latency averaged across right cuts

controller. Specifically, this is the delay from lr] to rr] in an
idle controller. Our simulations measured the delay across the
four pipeline stages in the design and then divide this delay by
four to get the latency per controller. Table VI shows forward
latency in picoseconds.

Concurrency reduction on the incoming channel generally
reduces the latency as shown in Fig. 16. This improvement is
directly related to reduction in the complexity of the design as
concurrency is reduced. This effect of concurrency reduction
is similar to that of area and state variable reduction.

Concurrency reduction on the outgoing channel displays an
interesting competition between concurrency reduction that
increases protocol latency and decreases controller latency
(Fig. 13). Left cuts that delay rr] will substantially retard
forward latency due to the reduction in protocol concurrency.
This occurs when the first components (La and Lb) of the left
cut increase. Thus as concurrency is reduced from LOOxx to
L llxx and so forth, the delay of rr] increases substantially.

However, the Lc and Ld components in the left cut generally
decrease forward latency through logic simplification.

The fully buffered circuit synthesized by Petrify with the
smallest forward latency is shown in Fig. 14. This design,
L0033 ° R4244, contains the maximal right cut and maximal
left cut where the La and Lb cuts are zero. The smallest
forward latency in a fully buffered design is L0033 ° R2242,
just lOps slower. Note that for the same amount of buffering
in an application such as a FIFO, a half buffered protocol
needs to pass through twice as many controllers. Therefore
the fastest forward latency for the same amount of buffering
is 116ps for the best half buffered protocol versus 68ps for
the best fully buffered protocol.

C. Backward Latency

There are various ways of measuring backward latency.
Here we define backward latency as the delay in a stalled
pipeline from the time that the output channel acknowledges

34

LOOOO LOO 11 L llll L0022 LU22 L0033 L1133 L2222 L2233 L3333

Fig. 19. Cycle time averaged across left cuts

TABLE VIII
Cycle time in ps

LOOOO L0011 L llll L0022 L1122 L0033 L1133 L2222 L2233 L3333 L o R

833 844 745 848 672 633 R0000
861 - 751 841 606 834 607 804 808 754 R0020
669 974 726 749 1077 673 601 631 844 929 R0040

688 826 615 632 935 620 563 588 564 612 R0022
773 723 621 - 717 801 592 701 675 673 R0042
674 880 925 505 762 801 562 632 681 D R2022
892 873 632 482 507 592 530 555 514 D R2042

678 703 661 530 687 750 636 654 638 832 R0044
800 736 692 641 698 648 611 754 627 D R2044
804 728 D 643 D 694 D D D D R4044

987 708 627 606 630 613 611 623 522 D R2222
732 730 636 607 650 652 542 733 641 D R2242
580 823 894 581 651 D D 808 D D R2262

790 547 623 620 656 722 566 745 643 D R2244
804 844 849 674 609 D D 878 D D R2264
590 710 D 601 D 559 D D D D R4244
525 523 D 576 D D D D D D R4264

that data has been latched until the input channel begins the
retum-to-zero transitions. Specifically, this is the delay from
r a \ to la \ in these controllers. Our simulations filled the
four-deep pipeline with the maximum number of tokens and
then measured this delay by allowing the output channel to
accept the token, measuring the delay to la \ on the input
channel. This value was divided by four to get the average per
controller in the 4-deep pipeline. Backward latency is shown
in Table VII. Figure 11 shows the controller with the smallest
backward latency.

Concurrency reduction on the outbound channel generally
reduces the latency as shown in Fig. 17. This improvement is
a second order effect and is directly related to reduction in the
complexity of the design as concurrency is reduced.

Concurrency reduction on the inbound channel shows some
very interesting properties. Consider full buffered protocols.
Performance initially improves and then dramatically de
creases. This can be explained by referring to our shape in
Fig. 4. The final state in the first two rows of the shape
are reached in a fully stalled pipeline where the second data
token is offered on the input channel. If the last state on the

Fig. 20. Cycle time averaged across right cuts

second row exists, then maximal progress has been made in a
stalled pipeline. The tail on the right of the shape in the last
two rows allows a protocol to quickly respond from a stalled
condition. If this tail is removed, then backward latency will be
significantly impacted due to a lack of protocol concurrency.
The tail will be removed with Rc > 4 (Rxx4x) cuts. R2022 has
been observed as the optimal average right cut for backward
latency in fully buffered protocols as shown in Fig. 18. This
cut applies the the largest possible amount of concurrency
reduction without removing the top first states of the “tail”
in the third row of the shape that would negatively impact
protocol concurrency.

Half buffered protocols show an interesting phenomenon
with a substantial reduction in backwards latency. These con
trollers only store data in ever other latch when stalled. This
results in an interesting artifact where every other controller
stalls in a different location in the shape, one waiting for
rising ra j, the other for falling raj. This results in a very fast
backward latency. However, note that since these protocols
only store data in half the latches, they need to pass through
twice as many controllers for equal storage as the full buffered
protocols (or 2 x the latency shown). Taking that into account,
they are slower than the best full buffered protocols.

D. Cycle Time

Cycle time provides information about the throughput of
the pipeline. It is measured as the largest delay between
the insertion of two tokens in the pipeline. Twelve tokens
are inserted into an empty four-deep pipeline as fast as the
pipeline will accept. All tokens are immediately consumed at
the output channel. The slowest delay between the insertion
of two adjacent tokens is recorded as the cycle time. Note
that for this number to be correct, the left and right pipeline
interfaces that control token and bubble insertion must have a
cycle time less than the controller itself. The cycle time of all
the controllers is listed in Table VIII.

Cycle time averaged across different left cuts is graphed in
Figure 19. This graph shows that for left cuts the controller
with the best average performance is near the middle of the
concurrency reduction range. On average, cut L1133 results
in the best throughput. Figure 20 graphs cycle time averaged
across different right cuts. This graph also demonstrates a
tradeoff between circuit simplicity and protocol handshake
delays for full buffered protocols. The best delay lies in the

35

w here data is bundled and valid before the incom ing channel
request (lr]) signal rises. The L and R cuts form separate
sym m etric lattices and give structure: they predict occupancy,
the regularity o f p iped behaviors, and the behavior o f non-
hom ogeneous pipelines. The lattice product enables one to
relate and com pare protocols: it also reveals the design space.

The com plete fam ily o f untim ed four-phase asynchronous
handshake controllers is characterized. This provides com para
tive data to help understand the effect o f concurrency reduction
on the area and perform ance (pow er was om itted for lack o f
space). The controllers are show n to be correct abstractions o f
controllers w ith full data path control. The logic is synthesized,
placed and routed from form al specifications and then tech-
m apped using the IBM 65nm 10sf A rtisan Library. R eset was
m anually added to each controller.

W e have show n that concurrency reduction generally in
creases the perform ance o f designs up to a point, after w hich
the designs begin to degrade in perform ance. W e showed this
is likely the case due to com peting factors o f overall faster
designs as the circuits are sim plified through concurrency
reduction, versus larger protocol delays as certain handshake
signals becom e stalled due to inefficiency in the protocols
o f highly reduced concurrency. C ycle tim e dem onstrates this
effect, as three o f the four highest throughput designs are all
full buffered near the m iddle o f the concurrency reduction,
w ith three being in the R 2042 cut. There is a notable exception
that ha lf buffered protocols have som e surprising efficiencies
that m ake them m ore com petitive than one m ight expect.
This is particularly exaggerated w ith backw ard latency. The
ultra inefficient unpipelined protocols, w ith high input channel
concurrency reduction, w ere not included in the graphs.

A final contribution is the data that points engineers to
designs that optim ize each of the perform ance m etrics. The
best synthesized circuits are published for each m etric as the
com plete design space was explored.

X . A c k n o w l e d g m e n t s

This w ork was supported in part through a gift by Sun M i
crosystem s. W e acknow ledge the helpful suggestions o f Jordi
C ortadella and Luciano Lavagno in im proving this docum ent.
Thanks are due to researchers w ho have explained or form ally
docum ented their circuits (usually as ST G ’s or CSP) so they
are clear to the com m unity at large. This body o f w ork enabled
us to m odel real practical designs rather than experim ent w ith
a few idealized ones, kept us grounded, and was sufficiently
large to help guide our research directions.

R e f e r e n c e s

[1] Graham Birtwistle and Matthew Morley. Case Study: Specifying and
Property Checking TK, and Asynchronous AMULET-like Micropro
cessor. In Alex Yakovlev and Reinder Nouta, editors, Asynchronous
Interfaces: Tools, Techniques, and Implementations”, pages 13-22, July
2000.

[2] Graham Birtwistle and Kenneth S. Stevens. The family of 4-phase latch
protocols. In 14th International Symposium on Asynchronous Circuits
and Systems, pages 71-82. IEEE, April 2008.

[3] I. Blunno, J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and
C. Sotiriou. Handshake protocols for de-synchronization. In Interna
tional Symposium on Asynchronous Circuits and Systems, pages 149
158. IEEE, Apr 2004.

[4] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano
Lavagno, and Alex Yakovlev. Petrify: a tool for manipulating concur
rent specifications and synthesis of asynchronous controllers. IEICE
Transactions on Information and Systems, E80-D(3):315-325, 1997.

[5] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, Cambridge, England, 1990.

[6] Paul Day and J. Viv Woods. Investigation into micropipeline latch design
styles. IEEE Transactions on VLSI Systems, 3(2):264-272, June 1995.

[7] Aristides Efthymiou and Jim D. Garside. Adaptive pipeline structures for
speculation control. In Ninth International Symposium on Asynchronous
Circuits and Systems, pages 46-55. IEEE, May 2003.

[8] S. B. Furber and J. Liu. Dynamic logic in four-phase micropipelines.
In Second International Symposium on Advanced Research in Asyn
chronous Circuits and Systems, pages 11-16. IEEE Computer Society
Press, March 1996.

[9] Stephen B. Furber. A small compendium of 4-phase macropipeline
latch control circuits. Technical Report v0.3, 17/01/99, University of
Manchester, Dept. of Computer Science, 1999.

[10] Stephen B. Furber and Paul Day. Four-phase micropipeline latch control
circuits. IEEE Transactions on VLSI Systems, 4(2):247-253, June 1996.

[11] J. D. Garside, S. B. Furber, and S-H Chung. AMULET3 Revealed. In
5th International Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 51-59, April 1999.

[12] G. Graetzer. Lattice Theory: First concepts and distributive lattices. W.
H. Freeman and Company, San Francisco, 1971.

[13] Rakefet Kol and Ran Ginosar. A doubly-latched asynchronous pipeline.
In Proceedings of the International Conference on Computer Design
(ICCD), pages 706-711, Oct 1996.

[14] M. Lewis, J. D. Garside, and L. E. M. Brackenbury. Reconfigurable
latch controllers for low power asynchronous circuits. In International
Symposium on Asynchronous Circuits and Systems, pages 27-35, April
1999.

[15] Andrew M. Lines. Pipelined asynchronous circuits. Master’s thesis,
California Institute of Technology, Pasadena, CA, 1998.

[16] JianWei Liu. Arithmetic and Control Componenets for an Asynchronous
System. PhD thesis, Department of Computer Science, University of
Manchester, 1997.

[17] Peggy B. McGee and Steven M. Nowick. A Lattice-Based Framework
for the Classification and Design of Asynchronous Pipelines. In
Proceedings of the Digital Automation Conference (DAC05), pages 491
496. IEEE/ACM, June 2005.

[18] Robin Milner. Communication and Concurrency. Computer Science.
Prentice Hall International, London, 1989.

[19] Faron G. Moller and Perdita Stevens. The Edinburgh Concurrency
Workbench (Version 7). University of Edinburgh, October 1992.

[20] Kenneth S. Stevens, Yang Xu, and Vikas Vij. Characterization of
Asynchronous Templates for Integration into Clocked CAD Flows. In
15th International Symposium on Asynchronous Circuits and Systems,
pages 151-161. IEEE, May 2009.

[21] Colin Stirling. An Introduction to Modal and Temporal Logics for CCS.
In A. Yonezawa and T. Ito, editors, Concurrency: Theory, Language, and
Architecture, number 491 in LNCS, pages 2-20. Springer-Verlag, 1991.

[22] Ivan E. Sutherland. Micropipelines. Communications of the ACM,
32(6):720-738, June 1989. Turing Award Paper.

[23] Santosh N. Varanasi. Performance Analysis of Four-Phase Untimed
Asynchronous Handshake Protocols. Master’s thesis, University of Utah,
Salt Lake City, Utah, May 2009.

[24] Yang Xu and Kenneth S. Stevens. Automatic Synthesis of Computation
Interference Constraints for Relative Timing. In 26th International
Conference on Computer Design, pages 16-22. IEEE, Oct. 2009.

[25] Eslam Yahya and Marc Renaudin. QDI Latches Characteristics and
Asynchronous Linear-Pipeline Performance Analysis. In Integrated
Circuit and System Design, Power and Timing Modeling, Optimization
and Simulation, Lecture Notes in Computer Science, pages 583-592.
Springer, 2006.

[26] Kenneth Y. Yun, Peter A. Beerel, and Julio Arceo. High-performance
asynchronous pipeline circuits. In Second International Symposium on
Advanced Research in Asynchronous Circuits and Systems, pages 17-28.
IEEE Computer Society Press, March 1996.

37

