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Abstract—This paper presents a theoretical analysis of the stochastic 
gradient adaptive lattice filter used as a linear, one-step predictor, when 
the effects of finite precision arithmetic are taken into account. Only 
the fixed-point implementation is considered here. Both the unnor­
malized and normalized adaptation algorithms are analyzed. Expres­
sions for the steady-state mean-squared values of the accumulated nu­
merical errors in the computation of the reflection coefficients and the 
prediction errors of different orders have been developed. The results 
show that the dominant term in the expressions for the mean-squared 
values of the numerical errors is inversely proportional to the conver­
gence parameter. Furthermore, they indicate that the quantization er­
rors associated with the reflection coefficients are more critical than 
those associated with representing the prediction error sequences. An­
other interesting result is that signals with high correlation among 
samples produce larger numerical errors in the adaptive lattice filter 
than signals with low correlation among samples. We present several 
simulation examples that show close agreement with the theoretical re­
sults. We also present some comparisons between the numerical be­
havior of the lattice and transversal stochastic gradient adaptive fil­
ters. The numerical results support the general belief that the gradient 
adaptive lattice filters have better numerical properties than their 
transversal counterparts, even though it is conceivable that the lattice 
filters can produce larger numerical errors than the transversal filters 
under some circumstances.

I. Introduction

T HREE critical considerations in the design o f digital 
adaptive filters are 1) the adaptation algorithm, 2) the 

filter structure, and 3) the effects o f finite precision arith­
metic on the filter characteristics. This paper presents a 
theoretical analysis o f the stochastic gradient adaptive lat­
tice filter when the effects o f finite precision arithmetic 
are taken into account. Only fixed-point implementation 
is considered here. A relatively extensive theoretical anal­
ysis establishing the performance o f nonadaptive digital 
filters and their specific hardware realizations can be found 
in [11], Caraiscos and Liu [3] have developed expressions 
for the steady-state mean-squared error o f the stochastic 
gradient transversal adaptive filters when implemented 
using finite precision arithmetic. Analysis o f such filters 
during adaptation is given in [1]. An empirical study of 
transversal and lattice filters that use the stochastic gra­
dient algorithm was done in [14]. However, no theoretical 
analysis o f the effect o f finite precision arithmetic on the 
gradient adaptive lattice filter has been available until 
now. On a related note, Samson and Reddy [13] have
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studied the numerical properties o f a square-root normal­
ized least-square lattice algorithm. A lso, infinite preci­
sion analyses o f gradient adaptive lattice filters can be 
found in [9] and [16],

Lattice filters, as opposed to their transversal counter­
parts, have several advantages, and consequently, fixed 
and adaptive lattice filters have been employed in a vari­
ety o f applications including noise cancellation [8], chan­
nel equalization [15], spectral estimation [6], [18], and 
linear predictive analysis [12]. Since the lattice filter or- 
thogonalizes the input signals, the gradient adaptation al­
gorithms using this structure are less dependent on the 
eigenvalue spread o f the input signal and may converge 
faster than their transversal counterparts [9], [15]. The 
computational complexity for an Mh-order stochastic gra­
dient lattice filter is between 3N  to 9N  multiplications per 
iteration, depending on the specific adaptation algorithm 
employed. While this complexity is comparable to that of 
the fast, transversal, recursive least-squares (RLS) algo­
rithms [5] (RLS algorithms have superior convergence 
properties), their better numerical properties and the re­
duced dependence o f their convergence behavior on the 
input signal statistics (when compared with gradient 
transversal filters) make the stochastic gradient lattice 
adaptive filter a very attractive digital signal processing 
tool.

Fixed lattice filters are known to have superior numer­
ical properties to that exhibited by transversal filters [4]. 
While it is possible under some circumstances for the sto­
chastic gradient lattice filters to produce larger numerical 
errors than transversal adaptive filters, several simulation 
examples and also numerical comparison o f the analytical 
results have shown that adaptive lattice filters considered 
in this paper have, in general, better numerical properties 
than their transversal counterparts.

In this paper, we consider only the lattice filter used as 
a one-step linear predictor. The extension to the more 
general filter structure is straightforward. The Mh-order 
lattice predictor is specified by the recursive equations

ef ( n \ m )  = ef ( n \ m  -  1) -  k,„(n) eh{n -  1 | m -  1) ;

m =  1, 2, • • • , N,  (1 )

and

eh( n \ m )  = eh(n -  l |m -  1) -  km( n ) e f ( n \ m  -  1) ;

m =  1, 2, • ■ • , N,  (2 )
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where ef ( n \ m )  and e h( n \ m )  are the mth-order forward 
and backward prediction error sequences, respectively, 
and km( n )  is the reflection coefficient at the mth state and 
time n. The zeroth-order forward and backward predic­
tion errors are given by

Cf ( « |0 )  =  e /,(n |0 ) =  x ( n) ,  (3 )

where x{n)  is the input signal to the predictor. The un­
normalized adaptation algorithm studied in this paper up­
dates the reflection coefficients using [6]

K„(n +  1) =  km( n)  +  y  { e f ( n \ m )  eh(n  -  1 | m -  1)

+ eh( n \ m )  ef ( n \ m  -  1 ) } ,  (4)

where m = 1 , 2 ,  • ■ ■ , N are constants that control 
the convergence o f the adaptive filter. There are several 
other unnormalized lattice filter update algorithms avail­
able in the literature (for example, see [10]), and many of 
them can be analyzed using techniques similar to that in 
this paper.

In many applications, it is convenient to use a normal­
ized version o f the update algorithm given by (4). In such 
cases, the reflection coefficients are updated using [8]

k,„{n +  1)

=  k„, (n) +  ~ n— - { e f { n \ m )  eh(n -  1 \ m -  1) 
oe(n Im)

+  eh(n | m)  ef (n | m — 1)};

m =  1, 2, • • • , N, (5)

where ae( n \ m)  is an estimate o f the sum of the mean- 
squared values o f the input signals to the mth stage o f the 
lattice predictor at time n , and is given by

cre(n \m )  =  @o,,(n -  1 | m )  +  (1 -  j8) { e j  (n  \ m -  1)

+  e 2h(n -  1 \m  -  1)} .  ( 6)

In the above equations, /x is a constant controlling the 
convergence o f the algorithm and (3, 0 <  (3 <  1, is a 
smoothing parameter used to estimate the signal powers. 
It is traditional to choose (3 and fx such that

0 = 1  -  fi. (7)

The rest o f the paper is organized as follows. Section
II presents models for the propagation o f the numerical 
errors in the normalized and unnormalized versions o f the 
stochastic gradient adaptive lattice predictor. Recursive 
expressions for the steady-state mean-squared values of 
the numerical errors in the prediction error sequences and 
reflection coefficients at each stage are summarized in 
Section III. This section also contains a discussion o f the 
filter parameters and signal characteristics on the numer­
ical properties o f the adaptive lattice predictor. Most of 
the detailed derivations are given in Appendixes A and B. 
Simulation examples that show close agreement with the 
theoretical results, and also compare the performance of

the lattice predictor with that of the transversal predictor, 
are presented in Section IV. Finally, Section V contains 
the concluding remarks.

II. Finite Precision E rro r Models fo r the 
Lattice Predictor

We will assume that the adaptive filter is implemented 
using fixed-point binary representation with rounding. We 
will also assume that the input signal has been properly 
scaled so that all overflow errors are avoided. Thus, one 
needs to consider only multiplication operations as sources 
of numerical errors. In what follows, primed variables will 
denote finite precision terms and unprimed variables will 
denote their infinite precision counterparts. Thus, using 
the same notations as in Section I, we have the following 
relationships between the finite precision and infinite pre­
cision variables in the lattice predictor.

e'f(n\m) = £y(n|m) + ef (n\m);

m = 0, 1, 2, • • • , N, (8a)

e’h(n \m ) = eh(n\m)  + efc(n|m );

m = 0, 1, 2, • • • , N, (8b)

and

K,(n) = km{n) + €k(n\m);

m = 1, 2, • ■ • , N. (8c)

Our objective is to find the steady-state mean-squared val­
ues of the numerical errors ef(n\m),  eh( n \ m ), and 
ek(n | m).  The following equations describe the finite pre­
cision update of the unnormalized lattice predictor vari­
ables:

e'f(n\m) = ej-(n\m — 1) — k'm(n) e'b(n — 1 \m — 1) 

+ r)f (n | m ) ; m = 1, 2, • • • , N, (9a) 

e'h(n | m) = e'b(n — 1 1 m — 1 ) — k'm(n) ej (n \ m — 1 ) 

+ rjh(n\m)\  m = 1,2, • • • , N, (9b)

and

k'm(n + 1 ) = k'm(n) + y  {e'f (n\m) e'h(n -  1 \ m -  1 )

-I- e'h(n \m ) e'f(n\m — 1)}

+ rji,(n +  11m); m = 1, 2, • • • , N,

(9c)

where r)f(n \ m), t)b(n\m) ,  and r]k(n \ m)  are the roundoff 
errors that occur during the computation of e’f ( n \ m ), 
e'h(n\m),  and k'm(n), respectively.

For the normalized lattice filter, the finite precision 
model can be derived by recognizing that the infinite pre­
cision-normalized version can be obtained by replacing 
Hm/ 2 in (4) with jum(n) = t i / oe(n\m).  The finite preci­
sion update equations for the reflection coefficients of the
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normalized lattice filter are given by 

k'm{n + 1)

= K M )  + {e'f{n\m) e'h(n — 11m — 1)
ct' (n I m)

+ e'b(n\m) e'f{n\m — 1)} + r)kN (n + 11 m).

(10)
Also, the finite precision update equation for ae(n \ m) is

a'e(n\m) = fio'e(n — 1 1m) + (1 — /3) {e'f 2 {n\m — 1)

+ e'b2(n -  l \ m  -  1)} + r?a(n |m ). (11)

Again, r]a(n\m)  corresponds to the roundoff errors that 
occur during the computation of ct' ( n \ m ). Let

a’e(n\m) = oe(n\m) + ea(n\m). (12)
Substituting (12) in (10), and using a first-order approxi­
mation under the assumption that \ea(n\m)\  <  ae(n\m),  
the finite precision update equations for the reflection coef­
ficients can be approximately written as

Kn (n + 1)

«  k'm{n) + 1 -
ea(n\m)

oe(n | m) (_ oe(n \ m)

• [ef(n\m) e'b(n -  1 1m -  1)

+ e'h(n \ m) e'f{n\m — 0 }  + + 11 m)

k'm(n) +

(13a)

^e'f{n\m) e'h(n — 11m — 1)
oe(n I m)

+ e'h{n\m) e'f{n\m — 1)} + £(n + 11 m );

m = 1, 2, • • • , N, (13b)

where

£ (n + 1 1 m)

ix e M \ m)
{e'f{n | m) e'h(n 1 \ m — 1

values, i.e.,

lim E{km(n)} = kopt(m)\ m = 1, 2, • • • , N.
n~* oo

(15)

Also, ixm for the unnormalized case, and fx and /3 for the 
normalized case, are such that they can be represented 
exactly. This implies that there is no finite precision error 
associated with representation of parameters of the lattice 
filter, and consequently the analysis will be that much 
simpler.

2) The input signal x(n)  belongs to a zero mean and 
stationary Gaussian process with variance a2. The steady- 
state prediction errors at each stage are also realizations 
of zero mean Gaussian processes. Furthermore, the 
steady-state reflection coefficients are uncorrelated with 
the steady-state prediction error sequences. Obviously, 
when the data are correlated, this assumption will not 
hold. However, for small values of the convergence pa­
rameters, this assumption will produce analytical results 
that closely match the behavior of practical systems, and 
therefore has been applied in several analyses of gradient 
adaptive lattice filters in the past [9], [16], A recent anal­
ysis of a single coefficient gradient adaptive filter [2] has 
shown that the analysis using correlated data assumption 
differs from that using uncorrelated data assumption sig­
nificantly only when the input data are very highly cor­
related (correlation coefficient greater than 0.99).

3) The roundoff noise sequences r}j ( n \ m ) ,  rih( n \ m ) ,  
and rjk(n\m)  (also r)a(n\m)  and 17kN (n | m ) when the nor­
malized adaptation is considered) are independent of all 
data sequences and also with each other. They all belong 
to zero mean random processes that are uniformly distrib­
uted in appropriate ranges. If the data samples and the 
filter coefficients are represented using bd and bc bits, re­
spectively (including the sign bit), then

~ nrt ( n \ ^  (16)- 2 “ rif(n\m), r]b(n\m) < 2~

It is easy to see that

2
°f = E{y1j ( n \ m) }  = E[r]2h{n\m)}  =

-2<A,/- I)

12
ae(n I m)  ae(n \m)

+ e’b(n\m) e’f (n\m — 1)} + r)kN (n + 11 m) ; 

m = 1 , 2, • • • , N. (14)

The first step toward finding the theoretical steady-state 
mean-squared values of the numerical errors is to derive 
the mean-squared values of the various roundoff error 
terms in (9a)-(14). Before doing that, let us summarize 
the main assumptions that we will employ for our analy­
sis.

1) The convergence constants nm, m = 1,2,  • • • , N 
(for the unnormalized case) and the convergence param­
eter ix (for the normalized case) are small enough to guar­
antee convergence of the adaptive filter for stationary in­
put signals. Moreover, the mean values of the infinite 
precision reflection coefficients converge to the optimal

m = 0, 1, 2, • • • , N. (17)
For the unnormalized case, we will assume that the re­
flection coefficients are updated by implementing the two 
multiplications within the brackets in (9c), adding up the 
products and then multiplying this sum by fim/2.  Then, 
rjk(n | m)  will have a variance given by

= = ( l  (IS)12

4) The accumulated noise sequences ef(n\m),  
eh(n\m),  ea(n\m),  and ek(n\m)  are uncorrelated with 
each other for all values of m and n. Obviously, this is 
never exactly true, but several simulations have demon­
strated that the contribution of statistical expectations of 
cross-error terms (for example, E{ ek(n | m ,) ef(n \ m i)}, 
E { t f(nx \ mx) eb(n2\m2)} ,  etc.) to the steady-state mean-
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squared values o f the numerical errors is negligible when 
compared to the contributions o f the variance terms. Fur­
thermore, we will assume that third- and higher-order 
products o f the error terms are negligibly small.

5) For the normalized case, ae( n \ m )  is uncorrelated 
with the other data signals and also the reflection coeffi­
cients. This is also never true in practice, but is a good 
approximation if 1 — (8 «  1 and simulations have shown 
that the approximation holds under this condition. A lso, 
we will use the following approximate result, again as­
suming that 1 — /3 «  1:

f  ne]a{n\m)  )  ^ /x£{ej(n |m) }  

l^(ae( n\ m) ) J J E1 { ae (n \ m ) }

We are essentially assuming that the statistical variations 
of ae{ n \ m)  are negligible. The above approximation is 
based on what is known as the averaging principle which 
has been used successfully in several other situations [9],
[13].

III. Summary of A naly tical Results 
For notational convenience, we will suppress the time 

index n whenever we deal with steady-state quantities and 
this suppression o f the time index causes no confusion. 
For example,

E { e j ( m )}  =  lim E { e j ( n \ m ) } . (20)
fi >00

Also, note that, because o f the symmetry o f the problems 
(both the normalized and unnormalized cases),

E { e j ( m ) }  =  E { e 2h( m) } ;  m =  0, 1 , 2 ,  • • •  , N,

(21)

and

E { e j ( m ) }  =  E { e 2h( m) } \  m =  0,  1 , 2 ,  • • •  , N.

(22)

A. Unnormal i zed Case
Using the infinite precision update equations given by 

(1), (2), and (4), the corresponding finite precision update 
equations (9a)-(9c), and the definitions o f the numerical 
errors in (8a)-(8c), we can derive the following set of 
recursive equations for the steady-state mean-squared nu­
merical errors. The derivations are given in Appendix A.

and

E { e j ( m ) }  =  E { e j ( m  -  1 )} ( l  +  E{k;„}

~  2£oPt(w )) . (26)

Equations (23)-(26) are evaluated recursively for m =  I,
2, • • • , N.  To initialize the recursion, note that

E { e } ( Q ) }  =  E { x 2{ n) }  =  a],  (27)

and

£ { e ) ( 0 ) }  *  E { [ x ( n )  -  x ' { n) ) 2} =  aj  (28)

is the mean-squared quantization error o f the input signal 
x( n) .

Equations (23)-(26) recursively generate steady-state 
mean-squared values for the finite and infinite precision 
quantities associated with the reflection coefficients and 
the prediction error sequences. To get a better feel for the 
numerical properties, we will consider the case for which 
the convergence constants /xm’s are small enough to ne­
glect the variability o f the steady-state quantities due to 
adaptation. Then from (23) and (26)

E { k 2m} *  k 2opt( m) ,  (29)

and

E { e j ( m ) }  =  E { e j { m  -  1 )}  ( l  -  k 2opt{ m) ) ;

m =  1 , 2 ,  • • • , N.  (30)

Using the same approximation (that /x,„ is small), we get 
the following expression for E {  e \ ( m ) } from (24):

E {el (m) }

___________o 2k ( m )

2 nmE { e } ( m  -  1)}

+ y  j^y  + 2E{ej {m -  1)} ( l  -  /c?,pt(w )) j .

( 31)

Several remarks are in order here.
Note that for small values o f the first term domi­

nates the second term on the right-hand side except when 
E { e j ( m  — 1 )}  is very large. The dominant terms be­
come very large as fim goes to zero. Thus, the adaptive 
lattice filter, similar to the adaptive transversal filter, pro-

kl pt( m)  +  y  E { e j ( m  -  1 )} ( l  -  4k l pt(m) )

E { k i } = ------------------------------------------------------------------- , (23)

1 -  y  E { e j { m  -  1 )} (2 +  kl pl( m ))

a 2k( m)  +  n l E { e j  (m -  1)} +  2E{ej  {m -  1)} ( l  +  E{k;n} -  2*r,pt(m )) j

E { e 2k( m) \  = -------------------------------------------------------------------------------------------------------:-----------------, (24)
HmE { e } { m  -  1 )} [2  -  fimE { e j ( m  -  1)} (2 +  k 2ipl{ m) ) \

E { ej ( m ) } =  E { e j ( m  -  1 )}  ( l  +  £{£?„}) +  E { e \ { m ) )  E { e j {  m -  1 )} +  aj ,  (25)
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duces larger numerical errors with decreasing values of 
the convergence parameters.

The dominant term depends on the variance o f the 
quantization error in the coefficient update equation (and 
not on the quantization errors associated with the predic­
tion error sequences). This shows that the filter is more 
sensitive to errors in representing the reflection coeffi­
cients than the prediction error sequences.

Finally, note that the dominant term is inversely pro­
portional to the steady-state mean-squared prediction er­
ror values. Thus, the numerical inaccuracies associated 
with the mth reflection coefficient will be very large for 
ve ry small values o f E { ej  ( m — 1 ) } .  In other words, the 
lattice filter will exhibit poor numerical properties if  the 
“ predictability” o f the input signal is very high. One con­
sequence o f this result is that the lattice filter must be im­
plemented with a high degree o f precision when working 
with highly correlated or sinusoidal signals. Another as­
pect that we should consider is the fact that the prediction 
error power decreases with increasing prediction order. 
Therefore, it may be necessary to represent the lattice fil­
ter coefficients at later stages with higher precision than 
those at earlier stages.

Substituting (29) and (31) in (25), we get

E { e2f ( m ) }

~ E {€/ ( m ~ 0 }  0  + kl A m)) +

Vm
2

a2
( m -  1 )}  j y  +  2 E { e j ( m

• ( l  -  k 2opt( m) )

al(m)
 ̂Mm

E { e j ( m  -  1 )} (1 +  k 2opt( m) )

+  y  o } E { e } ( m  -  1 )} + *}■

In (33) the second term dominates the term that has been 
neglected when jxm is small. Once again, we find a term 
that is inversely proportional to the convergence param­
eter in the approximate expression for E { e f ( m ) } .  The 
second term on the right-hand side o f (33) is also very

H2(z ) =

do demonstrate that for several types o f signals and pa­
rameters, adaptive lattice filters do have better numerical 
properties than transversal filters, and thus support the 
general belief that gradient adaptive lattice filters perform 
better than their transversal counterparts when imple­
mented with finite precision.

B. Normal i zed Case
Comparing the finite precision update equations for the 

normalized and unnormalized lattice algorithms [see (9c) 
and (13)], we find that the only differences between the 
two are 1) /z,„/2 in the unnormalized version is replaced 
by n /  ae ( n \ m ) and 2) the error term ( n +  1 | m ) in (9c) 
is replaced by a different error term £ (n  +  1 | m) in (13) 
for the normalized case. Thus, the functional form o f the 
recursive expressions for the steady-state mean-squared 
values o f the accumulated numerical errors will remain 
the same as (23)-(26), except that fi„ ,/2 must be replaced 
by (see Appendix B)

0 }

(32)

(33)

l i / 2
ae( n \ m ) )  E { e j ( m  -  1)}

(34)

and o \ ( m)  must be replaced by E { £ 2( m ) }  as obtained 
in (B8). Note that these results make use o f the assump­
tion that oe( n \ m)  is uncorrelated with the prediction er­
rors and reflection coefficients.

IV. Simulation Examples 
In this section, we present the results o f simulation ex­

amples that demonstrate the validity o f the results derived 
in this paper. We used two sets o f  signals for most o f our 
experiments. The first one (TS1) was a third-order auto­
regressive signal obtained by processing a zero mean, 
white Gaussian pseudorandom noise sequence with unit 
variance with a third-order all-pole filter with transfer 
function

fl.(z) =
0.25

(1 -  0 .8z_1) (1 -  0.4z ) (1 -  0.2z~

(35)

The second test signal, designated TS2, was obtained by 
processing a zero mean, white Gaussian pseudorandom 
sequence with unit variance with a seventh-order all-pole 
filter with transfer function

0.4

(1 0.3z“ ')2 (1 +  z ~l +  0 .5z~2) (1 -  0 .4z“ ‘; 1 -  0.5z~
(36)

interesting. Since 1 +  k\ vl is always greater than or equal 
to one ( with equality if  and only if  &opt( m)  =  0 ) , we see 
that numerical errors at the previous stages are amplified 
and propagated into the next stage o f the lattice. This im­
plies that the numerical errors may become extremely 
large when the order o f the filter is very large. This also 
indicates that we can conceive o f adaptive lattice filter 
structures whose numerical properties may be worse than 
their transversal counterparts. However, our experiments

In experiments involving TS1, the adaptive filters were 
run as 3rd-order predictors. When TS2 was used, the fil­
ters were run as 7th-order predictors. The results pre­
sented are all steady-state values. Theoretical results were 
obtained using the recursive expressions developed in the 
paper. The simulations were done on a Gould 9080 com­
puter, and the numerical errors were computed by running 
two parallel filters—one that utilizes the maximum pre­
cision available in the system, and the other with a given



MATHEWS AND XIE: FIXED-POINT ERROR ANALYSIS 75

TABLE I
£ {  t / (  3 ) }  for the T hird-O rder T est Example and  U nnormalized  

Update

\ bd 16 12 8
HC\ Theor. Simul. Theor. Simul. Theor. Simul.

16 0.11x10*® 0.12x10® 0.12x10'® 0.13x10-® 0.29xl0"4 0.32xl0'4j-2 12 0.16x10'® 0.18x 1 O' ® 0.27xl0'6 0.30x10-® 0.29xl0'4 0.32xl0*48 0.40xl0‘4 0.39xl0'4 0.40x 1 O'4 0.4 lxl O'4 0.70xl0’4 0.68xl0'4
16 0.15x10® 0.18*10'® 0.11x10® 0.10x10'® 0.29x]0"4 0.33xl0"42? 12 0.28x10® 0.26x10'® 0.39x10'® 0.36x10® 0.29xl0‘4 0.33xl0"48 0.71xl0'4 0.76xl0'4 0.7U10'4 0.73xl0"4 O.lOxlO'3 0.12x10-3

16 0.25x10® 0.28x10® 0.11x10® 0.11x10'® 0.29xl0‘4 0.33xl0‘42J 1 2 0.53x10'® 0.51x10-® 0.64x10'® 0.63x10'® 0.29xl0'4 0.33xl0-4
8 0.14xl0'3 0.12xl0'3 0.14xl0'3 0.16x10'3 0.16xl0-3 0.16x10-3

TABLE II
£ { t / ( 7 ) }  forthf. Seventh-O rder T f.st Example  and U nnormalized 

Update

V d 16 12 8
bc \

Theor. Simul. Theor. Simul. Theor. Simul.

16 0.26x10'® 0.23x10-® 0.24x10-® 0.24x10'® 0.52xl0'4 0.51xl0'4
2'- 12 0.42x10'® 0.39x10® 0.66x10® 0.63x10'® 0.52xl0'4 0.51xl0‘4

8 O.llxlO'3 O.lOxlO'3 O.llxlO'3 O.lOxlO'3 0.17x10-3 0.16x10-3

16 0.34x10® 0.36x10-® 0.21x10'® 0.22x10-® 0.51xl0'4 0.5 lxl 0‘4
2-3 12 0.67x10'® 0 65x10'® 0.88x10-® 0.89x10-® 0.52xl0"4 0.51xl0'4

8 O.nxlO'3 0 17x 1 O'3 0.17xl0'3 0.16x10-3 0.22x10-3 0.23x10-3

16 0.56x10® 0.59x10® 0.20x10'® 0.20x10'® 0.52xl0‘4 0.50xl0‘4
2̂ 12 0.12xl0'5 O.llxlO'5 0.14X10'5 0.l5xl0'5 0.53xl0'4 0.52xl0"4

8 0.32xl0-3 0 30xl0'3 0.32xl0'3 0.31x10-3 0.36x10-3 0.34x10-3

numerical precision. All the empirical steady-state results 
are obtained as the time averages over the last 200 itera­
tions of the ensemble averages over 100 independent runs 
using 2000 data samples each.

Tables I-IV display matrices obtained by comparing the 
theoretical and empirical steady-state mean-squared nu­
merical errors accumulated in computing the forward pre­
diction error (3rd-order for TS1 and 7th-order for TS2). 
Both the normalized and unnormalized versions are con­
sidered here. Tests were run using several values of /x (for 
the unnormalized filter we selected /*,„ = n for all m),  and 
bc and bd. When the normalized lattice filter was em­
ployed, bp was set to be the same as bc and j3 was selected 
as (3 = 1 -  fi. We can make several observations at this 
point.

1) The theoretical and empirical results show very good 
match. The small differences between the analytical and 
simulation results can be attributed to the approximations 
employed and also the statistical variability of the exper­
iments.

2) Both analysis [see (24), (25), (31), and (32)] and 
simulations indicate that the numerical errors increase 
with decreasing values of the convergence parameters.

This result is consistent with a similar result obtained for 
the transversal filters in [3].

3) A comparison of the mean-squared numerical errors 
indicates that it is important to represent the coefficients 
of the filter with higher precision than the data them­
selves. Once again, this finding agrees with similar results 
for the transversal filters [1], [3] and the discussion in 
Section III.

4) If we use an adequate number of bits to represent 
the data and coefficients, the excess mean-squared esti­
mation error due to finite precision implementation may 
be negligible when compared to the excess mean-squared 
estimation error due to adaptation. If only a small number 
of bits are used to represent the data and the filter coeffi­
cients, then there may be an optimum value of the con­
vergence parameter that minimizes the total excess mean- 
squared error due to adaptation and finite precision imple­
mentation.

5) It is generally believed that the stochastic gradient 
lattice adaptive filters have better numerical properties 
than the transversal, gradient adaptive filters. The discus­
sion in Section III indicates that at least for very large 
order systems, this may not be the case. In spite of this,
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TABLE 111
E {ejl 3 ) }  fo r  the  T h ird -O rd e r Test Example and N orm a lized  

Update ( b , =  b^)

V - 16 14 12n Theor. Simul. Theor. Simul. Thcor. Simul.

16 0.33x10 8 0.38x10'® 0.96x10'® O.llxlO'7 0.12x10'® 0.13x10®2-6 14 0.57x10 1 0.54xl0'7 0.63xl0'7 0.61xl0'7 0.15x10'® 0.18x10'®12 0.93x10 6 0.10x10® 0.10x10® O.llxlO'5 0.94x10® 0.12x10®
16 0.67x10 8 0.75x10-® 0.12 x 1 O'7 0.15xl0'7 0.12x10'® 0.14x10'®

T> 14 0.15x10 6 0.10x10® 0.97xl0'7 O.llxlO'6 0.19x10'® 0.23x10'®
i: 0.38x10 i 0.40x10-̂ 0.47x10'® 0.40x10'® 0.48x10'® 0.42x10®
16 0 96x10 8 0.1 lx]0'7 0.23xl0'7 0.19xl0'7 0.14x10'® 0.14x10'®2-8 14 0,36x10 6 0.34x10'® 0.31x10'® 0.34x10'® 0.51x10'® 0.49x10®12 0 88x10 5 094x10® 0.91x10'® 0.97x10'® 0.93x10'® 0.98x10'®

TABLE IV
£ {e /2( 7 ) }  fo r  th e  S eventh-O rder Test Example and N orm a lized  

Update ( b r =  b )

\ hd 18 14 10
bc\ Thcor. Simul. Theor. Simul. Thcor. Simul.

18 o . : ;x io '9 0.21 X109 0.17xl0'7 0.17xl0'7 0.43x10® 0.42x10®2-4 14 0.39xl0'7 0.36xl0"7 0.56xl0'7 0.50xl0'7 0.43x10® 0.42x10'®10 0 10xl0‘4 0.98x10® O.lOxlO'4 0.98x10® 0.14xl0'4 0.13xl0'4

18 0.26xl0-9 0.27xl0'9 0.14xl0'7 0.14x10"7 0.35x10-® 0.35x10®
2'® 14 0.53xl0"7 0.49x 10"7 0.66xl0'7 0.67x1 O'7 0.35x10'® 0.35x10'®

10 0.14xl0'4 0.14x 10'4 O.MxlO'4 0.14xl0'4 0.17xl0"4 0.17xl0-4

18 0.39x10"9 0.39xl0'9 0.13xl0"7 0.13xl0"7 0.32x10-® 0.33x10'®2-6 14 0.87xl0’7 0.90xl0'7 0.99xl0'7 0 10x10'® 0.32x10-® 0.33x10'®
10 0.23xl0'4 0.26xl0'4 0.23xl0'4 0.26xl0'4 0.25xl0'4 0.27xl0'4

A

■ Lattice (theoretical)
—- Transversal (theoretical)o Lattice (simulated) x Transversal (simulated)

0.04 0.08 0.12 0.16 0.20 0.24

H for lattice filter
Fig. 1. Comparison of steady-state numerical errors for lattice and trans­

versal filters under the same excess mean-squared error due to adaptation 
(3rd-order test example unnormalized update with b, = bt, = 12 bits).

ji. for lattice filter
Fig. 2. Comparison of steady-state numerical errors for lattice and trans­

versal filters under the same excess mean-squared error due to adaptation 
(7th-order test example normalized update with b(. = bd = 12 bits).

it is our belief that the adaptive lattice filters considered 
here do perform better than their transversal counterparts 
in a very large number o f situations. We present two nu­
merical comparisons here when the filter orders are rela­

tively small. In the results presented in Figs. 1 and 2,  the 
convergence parameters fiL ( =  ^ f° r all m f ° r the unnor­
malized case) for the lattice filters and ftT for the corre­
sponding transversal filters were chosen such that the the­



MATHEWS AND XIE: FIXED-POINT ERROR ANALYSIS 77

Steady-State M ean-Squared Finite Precision Errors at D ifferent 
Stages for the Seventh-O rder T est Example

TABLE V

V c  bd bM 

FPE \

bc=14

H=2
Unnorm.

Theor.

bd=12
-3
Update

Simul.

bc=16 bd=14

M=2 ^  
Unnorm. Update 

Theor. Simul.

bc=bH=16 bd=14

Norm. Update 
Theor. Simul.

bc=bM=18 bd=16

H=2‘ ®
Norm. Update 

Theor. Simul.

0 .6 2 x l0 '7 0.61 x lO '7 0.41x10® 0.41x10 8 0.45x10® 0.44x10® 0 .3 4x l0 '9 0 .3 2x l0 '9
E |r‘ fO)| 0 9 0 x l0 '7 0.98x10 '7 0.62x10*® 0.67x10 8 0.64x10® 0.68x10'® 0 .4 7x l0 '9 0.49x 1 O'9
E{c‘ (<3)) O .llx lO ’ 6 0.13x10'® 0.82x10'® 0 88x10 8 0.83x10® 0.89x10'® 0 .6 0x l0 '9 0.65x 10"9

E lc V 5)) 0 15x10® 0.16x10'® O.lOxlO'7 0.11x10 7 O .lO xlO 7 O .llx lO '7 0 .7 4x l0 '9 0 .8 0x l0 '9
E|c2(<5)1 0.1 Sx 1 O'® 0.2O»10'® 0.13x10 '7 0.14x10 7 0.13x l0 '7 0.13x 1 O'7 0 .8 8x l0 '9 0 .9 1x l0 '9

0.22x10'® 0.23x10-® 0 .15x l0 '7 0.16x10 7 0.15x l0 '7 0.15 x 3 0"7 0.10x10® 0.10x10'®
E{c-f(7)l 0.25x10'® 0.26x10'® 0.1 7 x l0 ‘ 7 0.18x10 7 0.17x 10"7 0.18x 1 O'7 0.12x10® 0.11x10'®

TABLE VI
E {  ej  ( 2 ) }  fo r  Three S ignals w ith  D if fe re n t P re d ic ta b ilitie s ; A) 

U np red ic tab le ; B) M o d e ra te ly  P re d ic ta b le ; C) H ig h ly  P re d ic ta b le

\ b c hd 

Signal

bc=12 

M =
Unnorm

Theor.

bd=10
2-5
Update

Simul.

bc=14

Unnorm
Theor.

bd=12
2-6
Update

Simul.

bc=b^=16 bd=14

H=2'7 
Norm. Update 

Theor. Simul.

bc=b^=18 bd=16

H=2'8 
Norm. Update 

Theor. Simul.

Unpredictable 
Mod. predictable 
Hi. predictable

0.35x10'®
0.63x10'®
O.lOvlO '3

0.32x10'® 
0.67x10'® 
0.1 1 x 1 0 '3

0.4 1 x l 0"7 
0 85* 1 O ’7 
0.21x10-5

0 .45x l0 '7
0.80xl0"7
0.19x10-5

0.37x10'® 0.44x10'® 
0.82x10® 0.78x10'® 
0.15x10'® 0.13x10®

0 .5 7x l0 '9 0 .63x l0 '9 
0.16x10'® 0.11x10'® 
0.13x10 ® 0.14x10 ®

oretical excess mean-squared estimation error due to 
adaptation were the same for both cases. The theoretical 
values for the transversal filters were obtained from [3], 
We can see that in both the comparisons, the numerical 
errors for the lattice filters are smaller than that for the 
transversal filters. While this is no conclusive proof that 
this is always the case, these results do support the gen­
eral belief that gradient lattice filters have superior nu­
merical properties than the gradient transversal filters, at 
least when the filter orders are relatively small.

The analytical and empirical values o f the steady-state 
mean-squared numerical errors in computing the forward 
prediction errors at different stages ( m =  1 , 2 ,  • • •  , 7 )  
are displayed in Table V when test signal TS2 was used 
in the experiments. In addition to showing excellent match 
between theoretical and simulation results, we can see that 
the numerical errors increase with increasing order o f pre­
diction. This result also agrees with our discussion in Sec­
tion III.

The final set o f experiments demonstrates the influence 
o f signal correlation on the numerical behavior o f the 
adaptive lattice filter. We consider a second-order lattice 
predictor for this set o f experiments. Three types o f input 
signals were used in the experiments: zero mean, white 
Gaussian signal with unit variance, and two autoregres­
sive signals (one with moderately low-pass characteristics 
and the other with highly low-pass characteristics). Both 
the autoregressive signals had zero mean value and unit 
variance. They were obtained by processing zero mean,

white Gaussian signal with second-order all-pole filters 
with transfer functions

and

H x{ z )  =

H 2 { z ) =

0.65

0.061
1.8z +  0.81z"

(37)

(38)

respectively. Obviously, the white signal is totally unpre­
dictable and the highly low-pass signal has high correla­
tion between adjacent samples and hence high predict­
ability. The other signal has only “ moderate” predict­
ability. Table VI compares the numerical errors in com­
puting the reflection coefficients for the three different sig­
nals. The results demonstrate the validity o f the discus­
sion in Section III—the higher the predictability, the larger 
the numerical errors.

V. Conclusions 

In this paper, we presented a theoretical analysis o f the 
numerical properties o f stochastic gradient adaptive lat­
tice filters when fixed-point binary arithmetic is used in 
their implementations. Expressions for the steady-state 
mean-squared values o f the accumulated numerical errors 
during the computation o f the reflection coefficients and 
the prediction errors were derived. The results show that 
the dominant term in the expressions for the mean-squared 
values o f the numerical errors is inversely proportional to
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the convergence parameter. Furthermore, they indicate 
that the quantization errors associated with the reflection 
coefficients are more critical than those associated with 
representing the prediction error sequences. Another in­
teresting result is that signals with high correlation among 
samples produce larger numerical errors in the adaptive 
lattice filter than signals with low correlation among sam­
ples. Results of some simulation experiments that showed 
good correlation with analytic results were also presented.

Analysis of several other adaptation algorithms can be 
done using techniques similar to those presented here. The 
analysis can also be easily extended to the transient case, 
even though we did not consider it in our paper.

A p p e n d ix  A
Derivation of (23)—(26) for the Unnormalized 

Lattice Predictor

Substituting (1), (8b), and (9a) in (8a), and neglecting 
products of uncorrelated error terms, the accumulated nu­
merical error sequence € f ( n \ m )  for the forward predic­
tion error at the mth stage can be written as

€j{n \m)  =  ef(n \m — 1) — km( n)  eh(n  — 1 1m — 1)

— eh(n — 1 1m — I) ek(n\m)  + r\ f(n\m)\

m = 1,2, • • • , N. ( A l )

Similarly, by combining (1), (2), (4), (8c), and (9c), we 
get

ek(n +  1 1 m)

= ek{ n \ m )  j l̂ -  ~  ( e j ( n \ m  -  1)

+ e 2b(n -  1 1m -  l ) ) j

-  nmkm( n ) {e f ( n \ m — 1) ef (n -  1 1m — 1)

+ eh(n — 1 1m — 1) eh(n — 1 1m — 1)]

+  nm {ej (n | m — 1) eh(n  -  1 1 m — 1)

+ eh(n -  1 \ m — \ )  e j {n\ m — 1)]

+  N f  ( "  Im ) eb(n — 1 1 m — 1)

+ T]h(n\m)  (n\m — 1)} + -qk(n + 1 1 m)\

m = 1 ,2, • • • , N. (A2)

The recursive relationship for E { e j ( m) }  given by (25) 
can be derived by squaring and taking the statistical ex­
pectations of both sides of (Al) as n goes to oo and then 
simplifying using assumptions 3) and 4) of Section II and 
also the equalities given by (21) and (22).

Squaring both sides of (A2) and taking the statistical 
expectations as n goes to oo after ignoring the contribu­
tions due to the product of noise sequences that are as­
sumed to be uncorrelated, we get the following expres­
sion:

E { e 2k( m) }  =  E { e 2k( m) }  { l  -  2 pmE{ e } ( m  -  1 )}

+  H2mE 2{ e 2f (m -  1 )}  (2  +  fcopt( m ) ) }

+  o l ( m)  +  n l E { e j ( m  -  1 )}

' +  2 E{ e j ( m  — 1 )}

• (1 +  E { k l }  -  2 ^ pt( m ) ) j .  (A 3 )

In deriving (A 3 ), w e made use o f  the fact that the infi­
nite precision variables ey (n  | m ) and eh( n \ m )  belong to 
zero mean Gaussian processes and expressed several 
fourth-order expectations in terms o f  second-order statis­
tical expectations using the result [15],

E { X tX2X3X4}

= E { X xX2} e { x 3x 4} +  £ { X ,X 3} e { X2X4}

+  £ { X ,X 4 } E { X 2X3).  (A 4 )

A lso , w e made use o f  the approxim ation that

lim E{ e f ( n \ m — 1) eh(n — 1 1m — 1 )}
n -* oo

*  koptE { e 2f (m -  1 ) } .  (A 5 )

Equation (24) fo llow s im m ediately from (A 3). To com ­
plete the analysis, w e need expressions for the steady- 
state m ean-squared values o f  the infinite precision quan­
tities e f ( n \ m )  and km(n).  Equation (26) can be easily  
derived by squaring and taking the statistical expectation  
o f  both sides o f  (1) as n goes to oo and then sim plifying  
using the uncorrelatedness o f  the reflection coefficients 
with the prediction error sequences in the steady state, the 
equality in (2 2 ), and also the approximation in (A 4).

F inally , to obtain E { k 2m},  w e can proceed as before. 
Com bining (4), (1 ), and (2) and sim plify ing, w e get

k,„{n +  1) =  km( n)  j^l -  y  ( ej , (n — 1 1m — 1)

+  e j ( n \ m  -  l ) ) j  +  /xmef ( n \ m  -  1)

• eh(n — 1 | m — 1 ) . ( A 6 )

The steady-state m ean-squared value o f  km(n)  can be ob­
tained by squaring both sides o f  (A 6), taking the statisti­
cal expectations o f  both sides o f  the resulting expression  
as n goes to oo and then sim plifying using the assum ptions 
1) and 2) g iven in Section II, and also using the equalities 
in (21) and (22). This g ives

E { k %} =  E { k 2m} { l  +  ix2nE 2{e j {m -  1 )}

• (2  +  k 2opt{m))  -  2 iimE { e } ( m  -  1 ) } }

+  2 n 2nk 2op[(m) E { e j { m  -  1 )}

+  fx2mE 2 { e j ( m  -  1 ) }  (1 -  4&opt(m )) ;  

m = 1 , 2 ,  • • • , N.  ( A 7 )
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Equation (23) results from solving for E { k 2m} from 
(A7).

Appendix B 
Evaluation of E{ %2( m) }

Assume that <je( n \ m )  is represented using bits, in­
cluding the sign bit. Suppose that the update equation (11) 
for ae(n \ m)  is implemented by first squaring e } ( n \ m  -
1) and e'h( n \ m -  1 ), summing them, multiplying the sum 
with (1 -  |S), and then adding to it f3oe{n \ m) .  Then, we 
can show as in (18) that

= E{r) l (n\m)}  = 2 [l + (1 -  0 )2] 2 12

Com bining (10) and (11) with (6 ), w e get a recursive 
expression for the accum ulated numerical error in the 
computation o f  ae ( n | m ) as

ea( n \ m)  =  pea(n -  1 \m) + 2 (1  -  /3)

■ { ef  (n | m -  1) ef  (n \ m -  1)

+  eb(n -  1 \m -  1) eh(n -  1 \ m -  1)}

+  (1 -  /3) { e j ( n \ m  -  1)

+  e l ( «  -  l |m  -  1 )}  +  i)a( n \ m) .  (B 2 )

Squaring (B 2), taking the statistical expectations (a s  n 
goes to oo) o f  both sides, and sim plifying by neglecting  
all error terms o f  order three or m ore, and also all the 
products o f  uncorrelated error term s, w e get the fo llow ing  
expression f o r £ { e ^ ( m ) } :

E { e 2a{ m )}

=  +  8 (1  -  13)2 E { e j ( m  -  1 )} E { e j ( m  -  1 )}  

“  ( 1 - / 3 2) '
(B 3 )

It is straightforward to show that in the steady-state

E { e a( m) }  =  2 E{ e j ( m  -  1 ) } ,  (B 4 )

and

E { a e{m)}  = 2E{ e j { m  -  1 ) } .  (B 5 )

Then using an approximate result sim ilar to that in (19),

(cre(m))

uation o f e' f {n\ m) ,  e'h(n — 1 | m — I)  +  e'h( n \ m)  e f ( n \ m
— 1) ( which will produce a roundoff error with variance
2 . 2~2{h‘ ~ ' ’/ 1 2 ) ,  division o f this quantity by a'e( n \ m) ,  
and then the multiplication by p.  Then the variance of 
r)kN ( n \ m)  is given by (in the steady-state)

2~2(/>,- 1) (
E { v 2kN(m)} «  ----—---- 1 + fi2

1 + -
{ 2 ( E { e j ( m  -  1 ) }  + E { e j ( m  -  1 ) } ) }  j )

(B7)

Now we can square both sides o f (14), take the statistical 
expectations as n goes to 0 0 , and simplify using several 
o f the assumptions and approximations used earlier to get 
(the steady-state result)

E { £ 2(m)}

= E{i)2kN{m)} +
2E { e 2a{m))  E { e j ( m  -  1 )}

[ 2 { E { e } ( m -  1 )} +  E { e j ( m  -  1 ) } } ]

(B6)

Now, let us consider the normalized, finite precision up­
date equation for the reflection coefficients. We will as­
sume that the order in which the update is done is: eval­

4 £ 4 1e 2(m -  1)}

' { l  -  4k 2opt{m) + E { k 2n} (2  +  k l pt( m) ) } .

(B8)

In order derive (B8), we made use o f the fact that the 
steady-state, infinite precision prediction error sequences 
have zero mean values and are Gaussian, and therefore 
simplified the fourth-order expectations using the result in 
(A4). Furthermore, we made use o f the approximation in 
(A5).
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