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Abstract

In this paper, we describe a weakly supervised boot- 
straping algorithm that reads Web texts and learns tax­
onomy terms. The bootstrapping algorithm starts with 
two seed words (a seed hypernym (Root concept) and a 
seed hyponym) that are inserted into a doubly anchored 
hyponym pattern. In alternating rounds, the algorithm 
learns new hyponym terms and new hypernym terms 
that are subordinate to the Root concept. We conducted 
an extensive evaluation with human annotators to eval­
uate the learned hyponym and hypernym terms for two 
categories: animals and people.

Motivation
It is generally accepted that Learning by Reading (LbR) 
systems can never start truly from scratch, knowing noth­
ing. A certain amount of basic conceptual knowledge, in the 
form of a seed set of terms and perhaps an overall frame­
work structure, has to be provided. Some frameworks that 
have been suggested are ontologies, term taxonomies, sets 
of interconnected propositions, and libraries of functions. 
It is then the task of the LbR system to read texts, ex­
tract and structure more information, and insert this into 
the framework appropriately, thereby producing additional, 
richer, sets of terms and/or interrelationships (which we call 
‘knowledge’).

In this paper we focus on one variant of this problem: 
building an enhanced term taxonomy, en route toward an 
ontology, with both its terms and its structure justified by 
evidence drawn from text. We start with one hypernym term 
and one hyponym term (i.e., one example of a hypernym re­
lation) and then set out to read texts, learn additional terms, 
and classify them appropriately. We focus solely on ISA re­
lationships, and use a definition of ISA that allows a term 
(concept) to have several ISA relationships at the same time. 
This task is not LbR in its ‘traditional’ sense, but is a form 
of LbR that enables the other forms of it, since the results of 
this task are enhanced background knowledge.

In previous work, we developed a bootstrapping algo­
rithm that begins with one instance of a hypernym rela­
tion (i.e., a hypernym/hyponym pair) and iteratively learns
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more hyponyms through a combination of web querying and 
graph algorithms (Kozareva, Riloff, & Hovy 2008). This 
process produces a list of terms that are hyponyms of the 
given hypernym. Having such a semantic lexicon is tremen­
dously useful, but our ultimate goal is to learn a richer taxo­
nomic structure, as automatically as possible. With this goal 
in mind, we have created a new bootstrapping algorithm that 
learns new hypernyms (superordinate terms) for a set of sub­
ordinate terms. Given a set of animal instances (e.g., dog, 
cat), we discover new terms that are superordinate category 
names (e.g., mammal, pet). By combining hypernym and 
hyponym learning in an alternating fashion, we can itera­
tively learn new hypernym/hyponym relations. In essence, 
our problem is to learn from reading texts all subconcepts 
for a Root concept, and to organize them appropriately.

Our work has forced us to confront head on the problem 
of evaluating the structure and contents of a term taxonomy. 
In this paper, we explain why this type of evaluation is so 
challenging and give many examples that illustrate how rich 
and complex category learning can be. First, we begin by 
presenting our previous bootstrapping algorithm to learn hy­
ponym terms. Next, we present our new bootstrapping algo­
rithm that alternately learns hypernym and hyponym terms. 
This algorithm produced a large number of hypernym cat­
egory terms, and the wide-ranging nature of the terms was 
staggering. To better understand the nature of the category 
terms that were learned, we created a detailed set of annota­
tion guidelines that classify each term based on the type of 
concept that it represents. We then had several human re­
viewers manually classify each learned term, and measured 
their inter-annotator agreement levels.

Background: Bootstrapped Learning of 
Hyponym Terms

Previously, we developed a bootstrapping algorithm 
(Kozareva, Riloff, & Hovy 2008) that learns hyponyms of 
a given concept using a doubly-anchored hyponym pattern. 
We will describe this algorithm in some detail because our 
new bootstrapping algorithm builds upon that work.

The hyponym bootstrapping algorithm begins with one 
term that represents the “Root” concept, and another term 
that is a hyponym of the Root. These terms are instantiated 
in a doubly-anchored hyponym pattern of the form:
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<hypernym> such as <hyponym> and *
We call this a hyponym pattern because we can apply the 
pattern to text to acquire additional hyponyms of the hyper­
nym, as first suggested by (Hearst 1992). The asterisk (*) 
indicates the location from which new terms are extracted. 
In contrast to to Hearst’s hyponym pattern, which is instanti­
ated only with a hypernym, our pattern is “doubly anchored” 
by both a hypernym and a hyponym. The doubly-anchored 
nature of the pattern increases the likelihood of finding a 
true list construction (our system does not use part-of-speech 
tagging or parsing) and virtually eliminates ambiguity be­
cause the hypernym and hyponym mutually disambiguate 
each other. For example, the word f o r d  could refer to an 
automobile or a person, but in the pattern “CARS such as 
FORD and *” it will almost certainly refer to an automo­
bile. Similarly, the class “PRESIDENT” could refer to coun­
try presidents or corporate presidents, and “BUSH” could re­
fer to a plant or a person. But in the pattern “PRESIDENTS 
such as BUSH”, both words will refer to country presidents.

Our bootstrapping process begins with two seed words: 
a class name (the hypernym) and a class member (the hy­
ponym). The doubly-anchored hyponym pattern is instan­
tiated with the seed words and given to Google as a web 
query. Additional hyponyms are then extracted from the 
position of the asterisk (*). The process can be boot­
strapped by replacing the seed hyponym with each of the 
newly learned hyponyms, in turn, and issuing additional 
web queries. The bootstrapping process is implemented as a 
breadth-first search that iterates until no new hyponyms are 
extracted.

Although many of the extracted words will be true hy- 
ponyms, the pattern alone is not reliable enough to pro­
duce a highly accurate set of hyponym terms. In (Kozareva, 
Riloff, & Hovy 2008), we present several graph algorithms 
that can be used to dramatically improve the accuracy of 
the algorithm. Here, we use the re-ranking algorithm with 
precompiled Hyponym Pattern Linkage Graphs. When the 
search terminates, we have a large set of candidate hyponym 
terms so a graph is constructed to capture the connectiv­
ity between the harvested terms. A Hyponym Pattern Link­
age Graph (HPLG) is created, which is defined as a graph 

, where each vertex is a candidate term
and each edge means that term generated term
v. The weight of the edge is the frequency with which u 
generated . The concepts can then ranked by their produc­
tivity, which is represented as the out-degree of each node 
(term) in the graph. The out-degree of vertex v is outD(v) = 
y  ,  ̂w{v,p)
— ------ . Terms with out-degree > 0 are considered
to be true (“trusted”) hyponym terms. The output of the hy- 
ponym bootstrapping algorithm is a list of hyponym terms 
ranked by their out-degree score.

Bootstrapped Learning of Hypernym and 
Hyponym Terms

In this section, we present a new bootstrapping algorithm 
that harvests the web for both hypernyms and hyponyms. 
As before, we begin with two seed words, one hypernym

(the Root concept) and one hyponym, which are instantiated 
in the doubly anchored hyponym pattern. The goal of our 
new bootstrapping algorithm, however, is not just to learn 
additional hyponyms of the Root concept but also to learn 
additional hypernyms. For example, suppose that the Root 
concept is animal and the seed hyponym is lion. We want to 
learn additional superordinate category terms that are also 
hypernyms of the word lion, such as mammal and predator. 
Our new algorithm consists of two internal modules that al­
ternately learn hyponyms and hypernyms. The purpose of 
jointly learning hypernyms and hyponyms is twofold: (1) 
we hope to thoroughly explore the concept space underneath 
the Root concept, to learn terms that correspond to interme­
diate concepts that ultimately could be used to structure a 
taxonomy, and (2) acquiring new hypernym terms allows us 
to re-instantiate the doubly-anchored hyponym pattern with 
new seed hypernyms, which reinvigorates the bootstrapping 
process and allows more hyponym terms to be learned.

The first module consists of the hyponym bootstrapping 
algorithm discussed in the previous section. We made one 
modification to do some additional bookkeeping and keep 
track of the pairs of conjoined hyponyms that were discov­
ered by the web queries. For example, consider the web 
query: animals such as lions and *. If this query discovers 
the hyponyms tigers and bears, then we store the “hyponym 
pairs” lions,tigers and lions,bears in a table. These hyponym 
pairs will be used during hypernym learning. These pairs 
represent examples that people naturally joined together in 
their text to exemplify a concept, and so we hypothesized 
that they are likely to be representative of the concept.

The second module of our bootstrapping algorithm fo­
cuses on the generation of new hypernym terms. The al­
gorithm uses the hyponym pairs collected during learning 
to instantiate a variant of the doubly-anchored pattern in 
which the hypernym position is left blank. We will call this a 
doubly-anchored hypernym pattern, which has the following 
form:

“* such as < hyponym  i >  and <  hyponym 2  > ” 
for example,

“* such as lions and tigers”
We instantiate this pattern with every hyponym pair that 
is collected during the previous bootstrapping step, issuing 
each instantiated pattern as a web query and extracting new 
hypernym terms from the position of the asterisk (*).

At the end of the hypernym acquisition process, we have 
a large number of candidate hypernym terms. In principle, 
we would like to use each one to instantiate the doubly- 
anchored hyponym pattern and perform additional hyponym 
learning. However, it is not practical to feed them all back 
into the hyponym bootstrapping loop because the number 
of extracted hypernyms is large and we have only a lim­
ited ability to issue web queries. Furthermore, not all of 
the learned hypernym terms are true hypernyms, so we need 
some way to choose the best ones.

We decided to rank the hypernym terms and identify the 
“best” hypernyms to use for bootstrapping. We use two se­
lection criteria: (1) the hypernym should be prolific (i.e., 
produce many hyponyms) in order to keep the bootstrapping



process energized, and (2) the hypemym should be subor­
dinate to the original Root concept (i.e., the original seed 
hypernym that began the entire process), so that the learned 
concepts stay in the targeted part of the search space.

To rank the harvested hypernym terms, we created a new 
kind of Hyponym Pattern Linkage Graph (HPLG) based on 
the doubly-anchored hypernym pattern. We define a bipar­
tite graph that has two types of vertices. One 
set of vertices represents the hypernym terms that were har­
vested. We will call these category vertices (Vc). The second 
set of vertices represents the hyponym pairs that produced 
the new hypernym terms. We will call these member pair 
vertices ( ). We create an edge between 

and when the category represented by 
was harvested by the member pair represented by , with 
the weight of the edge defined as the number of times that 
the member pair found the category (hypernym) term.

For example, imagine that the pattern “* such as li­
ons and tigers” harvests the hypernym terms “‘mammals” 
and “felines”. The bipartite graph will contain two ver­
tices u\ and U2 for the categories “‘mammals” and “fe ­
lines”, respectively, and one vertex t>3 for the member pair <

, with two edges and .
Once the bipartite graph is constructed, we can rank the 

hypernym terms using the popularity-based HPLG graph 
measure defined in (Kozareva, Riloff, & Hovy 2008). The 
popularity of vertex is defined as the in-degree

£  , w(u'.v')
score, which is computed as inD(u') = — n “ ‘------>
where . Intuitively, a hypernym will
be ranked highly if it was harvested by a diverse set of 
hyponym pairs.

The ranking criterion ranks the hypernyms, but does not 
differentiate them as being more or less general than the 
Root category. In order to prevent the algorithm from ab­
sorbing increasingly general concepts and wandering further 
and further from the original concept, it is necessary to con­
strain the search process to remain ‘below’ the Root cate­
gory. For example, when harvesting animal categories, the 
system may learn the word “species”, which is a common 
term associated with animals, but this concept is superor­
dinate to the term “animal” because it also applies to non­
animals such as plants.

To constrain the bootstrapping process, we use a Concept 
Positioning Test. For this purpose, we instantiate the 
doubly-anchored hyponym pattern with the candidate 
hypernym and the original Root concept in two ways, as 
shown below:

(a) < Hypernym> such as <R oot>  and *
(b) <Root> such as <Hypernym> and *

If the candidate hypernym produces many web hits in 
query (a), then that suggests that the term is superordinate 
to the Root concept. For example, we would expect “ani­
mals such as birds” to produce more web hits than “birds 
such as animals”. Conversely, if the candidate hypernym 
produces many web hits in query (b), then that suggests that

the term is subordinate to the Root concept.
Since web hits are a very coarse measure, our Concept 

Positioning Test simply checks that the candidate hypernym 
produces many more hits in pattern (b) than in pattern (a). 
Specifically, if pattern (b) returns at least four times as many 
web hits as pattern (a), and pattern (b) returned at least 50 
hits, then the hypernym passes the test. Otherwise it fails. 
The requirement of 50 hits is just to ensure that the hy- 
pernym is a frequent concept, which is important for the 
bootstrapping process to maintain momentum. These val­
ues were chosen arbitrarily without much experimentation, 
so it is possible that other values could perform better.

To select the “best” hypernym to use for bootstrapping, 
we walk down the ranked list of hypernyms and apply the 
Concept Positioning Test. The first hypernym that passes the 
test is used for expansion in the next bootstrapping cycle.

We evaluated the performance of our bootstrapping algo­
rithm on two categories: animals and people. We selected 
these categories because they have a large conceptual space 
and capture the complexity of the task.

Table 1 shows the 10 top-ranked hyponyms and hyper- 
nyms for the animal and people categories. The hyponym 
concepts, denoted as AHypo for animals and PHypo for peo­
ple, were ranked with the HPLG outdegree measure. The 
hypernym concepts, denoted as AHyper for animals and 
PHyper for people, were ranked based on the indegree mea­
sure and the concept positioning test.

#Ex. AHypo AHyper PHypo PHyper
1 dogs insect Jesse Jackson leader
2 kudu bird Paris Hilton reformer
3 cats specie Bill Clinton celebrity
4 sheep invertebrate Bill Gates prophet
5 rats predator Brad Pitt artist
6 mice mammal Moses star
7 rabbits pest Tiger Woods dictator
8 horses pet Gandhi writer
9 pigs crustacean Donald Trump teacher
10 cows herbivore Picasso poet

Table 1: Top 10 harvested concepts

Taxonomization Framework
In order to evaluate the results, we initially considered man­
ually defining animal and people hierarchy structures, but 
did not have a good sense of what the structure should be or 
how rich the space might get. As soon as we began to see 
the hypernyms that were being learned, we realized that the 
concept space was even more diverse and complex than we 
had originally anticipated.

We learned a stunningly diverse set of hypernym terms 
(subconcepts). Some of the learned animals terms were the 
expected types of concepts, such as mammals, pets , and 
predators. Even when just considering these concepts, it 
became clear that the taxonomic structure must allow for a 
word to have multiple hypernyms (e.g., a cat is simultane­
ously a mammal, a pet, and a predator). We also learned 
many highly specific animal subconcepts, such as labora­
tory animals, forest dwellers, and endangered species, as



well as slang-ish animal terms, such as pests and vermin. 
Many of the learned terms were food words, some of which 
seem ambiguous as to whether they refer to the animal it­
self or a food product (e.g., seafood or poultry), while other 
terms more clearly describe just a food product (e.g., beef or 
meat). Another complication was that some of the learned 
terms were relative concepts that are hard to define in an ab­
solute sense, such as native animals (native to where?) and 
large mammals (is there a general consensus on which mam­
mals are large?).

Given the rather daunting diversity of learned terms, we 
decided to embark on an extensive human annotation effort 
to assess the nature of the categories and to find out whether 
human annotators would consistently agree on these con­
cepts. Our first step was to create an extensive set of annota­
tion guidelines. This effort itself was a valuable exercise, re­
quiring us to think hard about the different types of concepts 
that exist and how we might distinguish them in a meaning­
ful yet general way. For instance, animals come in different 
shapes and sizes, they inhabit land, air and water. Some 
of the terms associated with animals represent their feeding 
habits (e.g., grazers), the shape of the teeth (e.g., sharp for 
eating meat and flat for grinding and chewing plants). Other 
concepts relate to the adaptations of the animals for protec­
tion, for movement and for caring for their young among 
others. The richness of the domain predisposes some of the 
concepts to play the role of bridges between the super and 
subordinate concepts.

In the following subsections, we describe the classes that 
we defined in the annotation guidelines for animal and peo­
ple terms. For each class, we provide a definition and some 
examples of terms that belong to the class. These annota­
tion guidelines represent our first attempt at a preliminary 
taxonomic framework.

Animal annotation guidelines
For animal concepts, we defined fourteen classes:
1. BasicAnimal -  The basic individual animal. Can be vi­

sualized mentally. Examples: Dog, Snake, Hummingbird.
2. GeneticAnimalClass -  A group of basic animals, defined 

by genetic similarity. Cannot be visualized as a specific 
type. Examples: Reptile, Mammal. Sometimes a genetic 
class is also characterized by distinctive behavior, and so 
should be coded twice, as in Sea-mammal being both Ge- 
neticAnimalClass and BehavioralByHabitat.

3. NonRealAnimal -  Imaginary animals. Examples: 
Dragon, Unicorn.

4. BehavioralByFeeding -  A type of animal whose essential 
defining characteristic relates to a feeding pattern (either 
feeding itself, as for Predator or Grazer, or of another 
feeding on it, as for Prey). Cannot be visualized as an 
individual animal.

5. BehavioralByHabitat -  A type of animal whose essential 
defining characteristic relates to its habitual or otherwise 
noteworthy spatial location. Cannot be visualized as an 
individual animal. Examples: Saltwater mammal, Desert 
animal.

6. BehavioralBySocializationIndividual -  A type of animal 
whose essential defining characteristic relates to its pat­
terns of interaction with other animals, of the same or 
a different kind. Excludes patterns of feeding. May be 
visualized as an individual animal. Examples: Herding 
animal, Lone wolf.

7. BehavioralBySocializationGroup -  A natural group of 
basic animals, defined by interaction with other ani­
mals. Cannot be visualized as an individual animal. Ex­
amples: Herd, Pack.

8. MorphologicalTypeAnimal -  A type of animal whose es­
sential defining characteristic relates to its internal or ex­
ternal physical structure or appearance. Cannot be visu­
alized as an individual animal. Examples: Cloven-hoofed 
animal, Short-hair breed.

9. RoleOrFunctionOfAnimal -  A type of animal whose es­
sential defining characteristic relates to the role or func­
tion it plays with respect to others, typically humans. 
Cannot be visualized as an individual animal. Examples: 
Zoo animal, Pet, Parasite, Host.

10. GeneralTerm -  A term that includes animals (or humans) 
but refers also to things that are neither animal nor
human. Typically either a very general word such as In­
dividual or Living being, or a general role or function such 
as Model or Catalyst.

11. EvaluativeTerm -  A term for an animal that carries an 
opinion judgment, such as “varmint”. Sometimes a term 
has two senses, one of which is just the animal, and 
the other is a human plus a connotation. For example, 
“snake” or “weasel” is either the animal proper or a hu­
man who is sneaky.

12. OtherAnimal -  Almost certainly an animal or human, but 
none of the above applies, or: “I simply don’t know 
enough about the animal to know where to classify it”.

13. NotAnimal -  Not an animal or human, but a real English 
term nonetheless.

14. GarbageTerm -  Not a real English word.

People annotation guidelines
For people concepts, we defined the following classes:
1. BasicPerson -  The basic individual person or persons. 

Can be visualized mentally. Examples: Child, Woman.
2. GeneticPersonClass -  A person or persons defined by ge­

netic characteristics/similarity. Can be visualized as a 
specific type. Examples: Asian, Saxon.

3. ImaginaryPeople -  Imaginary individuals or groups. 
Examples: Superman, the Hobbits.

4. RealPeople -  Specific real individuals or groups, by
name or description. Example: Madonna, Mother 
Theresa, the Beatles.

5. NonTransientEventParticipant- The role a person plays 
consistently over time, by taking part in one or more spe­
cific well-defined events. This class distinguishes from



PersonState, since there is always an associated charac­
teristic action or activity that either persists or recurs,
without a specific endpoint being defined. This group in­
cludes several types, including: Occupations (priest, doc­
tor), Hobbies (skier, collector), Habits (stutterer, peace­
maker, gourmand).

6. TransientEventParticipant -  The role a person plays for 
a limited time, through taking part in one or more spe­
cific well-defined events. There is always an associated 
characteristic action or activity, with a defined (though 
possibly unknown) endpoint. The duration of the event 
is typically from hours to days, perhaps up to a year, but 
certainly less than a decade. Examples: speaker, passen­
ger, visitor.

7. PersonState -  A person with a certain physical or mental 
characteristic that persists over time. Distinguishing 
this class from NonTransientEventParticipant, there is no 
typical associated defining action or activity that one can 
think of. Examples: midget, schizophrenic, AIDS patient, 
blind person.

8. FamilyRelation -  A family relation. Examples: aunt, 
mother. This is a specialized subcategory of SocialRole, 
so don’t code family relations twice.

9. SocialRole -  The role a person plays in society. Unlike 
NonTransientEventParticipant, there is no single associ­
ated defining event or activity, but rather a collection of 
possible ones together. Examples: role model, fugitive, 
alumnus, hero, star, guest.

10. NationOrTribe -  A nationality or tribal affiliation. Exam­
ples: Bulgarian, American, Swiss, Zulu. “Aboriginal” is 
a GeneticPersonClass, not a NationOrTribe.

11. ReligiousAffiliation -  A religious affiliation. Examples: 
Catholic, atheist. Some religious affiliations, notably be­
ing Jewish, have strong NationOrTribe connotations as 
well, therefore both labels should be coded for such term.

12. OtherHuman -  Clearly a human and not an animal or 
other being, but does not fit into any other class.

13. GeneralTerm -  Can be a human, but also includes other 
non-human entities. Examples: image, example, figure.

14. NotPerson -  Simply not a person.
Looking at the examples in the class definitions, it can be 

seen that the taxonomization task is challenging, because a 
term can belong to multiple categories at the same time. In 
addition, the taxonomy structure can have multiple facets. 
The initial goal of our research is to partition the learned 
terms into these thematically related groups.

Taxonomization Tests
We assessed the performance of our bootstrapping algorithm 
both on hyponym learning and hypernym learning, in sepa­
rate evaluations.

Hyponym Learning Evaluation
To evaluate the quality of the learned hyponym terms for 
the animal and people concepts, we employed two different

evaluation methods. Typically the animal terms are com­
mon nouns such as dog and duck. We compiled a gold 
standard list of animal terms and conducted an automatic 
evaluation for the animal category.1 For people, however, 
the hyponym terms were primarily proper names, such as 
Madonna, David Beckham and David Jones. It is difficult to 
find a comprehensive list of people names, so we conducted 
a manual evaluation of the people terms. We randomly se­
lected 200 people terms and asked three human annotators 
to tag each term as “Person” if it is a person name, and “Not- 
Person” otherwise. During annotation, the annotators were 
encouraged to consult external resources such as the World 
Wide Web and Wikipedia.

We ran the bootstrapping algorithm for ten iterations, both 
for the animal and people categories. Table 2 shows the 
accuracy of the learned animal hyponyms after each itera­
tion. The accuracy is calculated as the percentage of the 
learned terms that are found in the gold standard list. The 
second raw of Table 2 shows the number of hyponyms that 
the algorithm has learned after each iteration. Note that 
the first iteration corresponds to the results of our original 
hyponym bootstrapping, before any hypernyms have been 
learned. Subsequent iterations show the number of addi­
tional hyponym terms that are learned through the bootstrap­
ping of the learned hypernyms.

It. 1 2 3 4 5 6 7 8 9 10
Acc .79 .79 .78 .70 .68 .68 .67 .67 .68 .71

# Hyp 396 448 453 592 663 708 745 755 770 913

Table 2: Animal Hyponym Term Evaluation

During the early stages of bootstrapping, the accuracy is 
close to 80%. As bootstrapping progresses, accuracy de­
creases and levels off at about 70%. The algorithm harvested 
913 unique animal terms after 10 iterations. It should be 
noted that our animal gold standard is still far from com­
plete, so our accuracy results are conservative estimates of 
the true accuracy. It is nearly impossible to create a truly 
comprehensive list of animal terms for several reasons, such 
as multiple common names (e.g.,“cougar”, “panther” and 
“mountain lion” all refer to the same animal), spelling vari­
ants (e.g., “hyena”, “hyaena”) and slang short-hand terms 
(e.g. “hippo”, “hippopotomus”; “rhino”, “rhinocerus”).

For the people category, the term learning algorithm gen­
erated 1549 unique names in 10 bootstrapping iterations. Ta­
ble 3 shows the annotation results of the three annotators for

1We identified 3 web sites that catalog photographs 
or drawings of animals and compiled an extensive list 
of animal terms from their indices. These web sites are 
birdguides.com/species/default.asp?list= 11 &menu=menu_species, 
www.lib.ncsu.edu/findingaids/xml/mc00285.xml#id1524944, and 
calphotos.berkeley.edu/fauna/. To further improve the coverage 
of our gold standard, we also added the leaf node terms (i.e., 
category members) from the San Diego Zoo’s animal thesaurus 
(http://library.sandiegozoo.org/thesaurus.htm), and animal lists 
acquired from Wikipedia. In total, our gold standard list of animal 
members contains 3939 terms. Since we only generate 1-word 
hyponyms, we compared against only the head nouns of the gold 
standard items (e.g., “blue jay” was reduced to “jay”).

http://www.lib.ncsu.edu/findingaids/xml/mc00285.xml%23id1524944
http://library.sandiegozoo.org/thesaurus.htm


the 200 randomly selected terms, The average accuracy of 
the annotators is 0.95%,

code A n A c
Person

NotPerson
190
10

192
8

189
11

Accuracy ,95 ,96 ,95

Table 3: People Hyponym Term Evaluation

We conclude that our bootstrapping algorithm is able to 
learn large quantities of high-quality hyponym terms asso­
ciated with a Root concept (the seed hypernym), Table 2 
demonstrates that many hyponyms are learned as a results 
of learning new hypernyms that are then bootstrapped into 
the hyponym learning process, As a reminder, all of these 
terms are learned using only one seed hypernym and one 
seed hyponym as input,

Hypernym  Term Learning Evaluation
As we explained earlier, the evaluation of the learned hy- 
pernyms is more difficult because the algorithm learns a 
tremendously diverse set of concept terms, Ideally, we 
would like to obtain the internal category structure between 
the input Root concept and the subconcept, in order to be­
gin building up term networks and ontologies, Unfortu­
nately, by harvesting real text, the algorithm learns many 
more, and more different, terms than the ones typically con­
tained in the neat tree-like hierarchies often shown in term 
taxonomies and ontologies, A dog may be a Pet, an Animal, 
a Carnivore, a Hunter, a Mammal, and a Performing Animal 
simultaneously, and these concepts do not fall into a sim­
ple tree structure, We are currently investigating automated 
methods to identify groupings of these concepts into onto­
logically parallel families, such as Predator/Prey and Car- 
nivore/Herbivore/Omnivore, The problem is to determine 
what families there can be,

In the present work, we treat the hypernym/hyponym re­
lation as ambiguous between the mathematical operators 
subset-of ( ) and element-of ( ), and accept as correct any 
concept (set) to which the subordinate concept (or subset) 
may belong, This allows us to treat Dog and Cat as hy­
ponyms for animals, and Madonna and Ghandi as hyponyms 
for people, even though strictly speaking they are of differ­
ent ontological types: Dogs and Cats are sets of individuals 
while Madonna and Ghandi are individuals,

We do not want to preclude hypernymy relationships that 
are not present in resources such as WordNet (Fellbaum 
1998) and CYC2, but that are correct according to this ex­
panded view, so we consider simply whether a term can 
be a hyponym of another term, To establish a gold stan­
dard, we asked four independent annotators (two graduate 
students and two undergrads, all native English speakers, all 
experienced annotators employed at a different institution) 
to assign each learned hypernym term to one or more of the 
classes defined in the annotation guidelines shown earlier,

Using the Coding Analysis Toolkit (CAT)3, the annotators 
were presented with the term plus three sentence-length con­
texts from which the term was extracted, They were encour­
aged to employ web search, notably Wikipedia, to determine 
the meanings of a term,

Table 4 shows the results from the classifications of the 
learned hypernyms for the animal category, In total the an­
notators classified 437 animal terms into the fourteen classes 
we defined, The first column of the table denotes the code 
of the class label, Columns 2 to 5 correspond to the num­
ber of times a label was assigned by an annotator, Column 
“Ex” denotes the number of exact matches for the class of a 
term between all four annotators, Column “Pa” denotes the 
number of partial matches for the class of a term, The final 
column shows the Kappa agreement of the four annotators 
for a class, In the current implementation of the Kappa mea­
sure, the CAT system considers the exact and partial matches 
between the four annotators,

Animal
code A d A p A a Ex Pa K

BasicAnimal 29 24 13 4 2 12 0.51
BehByFeeding 48 33 45 49 27 17 0.68
BehlBy Habitat 85 58 56 54 36 36 0.66

BehBySocialGroup 1 2 6 7 0 3 0.47
BehBySociallnd 5 4 1 0 0 2 0.46
EvaluativeTerm 41 14 10 29 6 19 0.51
GarbageTerm 21 12 15 16 12 3 0.74
GeneralTerm 83 72 64 79 19 72 0.52

GeneticAnimalClass 95 113 81 73 42 65 0.61
MorphTypeAnimal 29 33 42 39 13 26 0.58

NonRealAnimal 0 1 0 0 0 0 0.50
NotAnimal 81 97 82 85 53 40 0.68

OtherAnimal 34 41 20 6 1 24 0.47
RoleOrFuncOfAnimal 89 74 76 47 28 56 0.58

Totals 641 578 511 488 239 375 0.57

Table 4: Animal Hypernym Term Evaluation

For instance, the code “BasicAnimal” was assigned to 29 
hypernyms out of the 437 learned hypernyms by the first an­
notator, The second annotator labeled only 24 hypernyms as 
“BasicAnimal” terms, while the third and the fourth anno­
tators assigned the “BasciAnimal” code to 13 and 4 hyper- 
nyms, respectively, There are only two hypernym terms on 
which all annotators agreed that the only label for the term 
is “BasicAnimal”, The Kappa agreement for the assignment 
of the “BasicAnimal” class is 0,51,

At the bottom, the Totals row indicates the total number 
of classifications assigned by each annotator (remember that 
more than one class label can be assigned to a hypernym), 
The first two annotators , were more liberal and as­
signed many more labels in comparison to the third and 
fourth annotators, For instance, An assigned 641 classes 
to the 437 learned hypernyms, In comparison assigned 
only 488 labels, This shows that rarely assigned more 
than one class to a term, The majority of the learned animal 
hypernyms were assigned to the GeneticAnimalClass, Be- 
haviourByHabitat, and RoleOrFunctionOfAnimal classes,

2www,cyc,com/ 3http://cat,ucsur,pitt,edu/default,aspx

http://cat,ucsur,pitt,edu/default,aspx


Table 5 shows the annotation results for the learned peo­
ple hypernyms. The annotators manually classified 296 hy- 
pernyms into the fourteen people classes that we defined in 
the annotation guidelines. The structure and the organiza­
tion of the table for people is the same as the one for ani­
mals. We can observe that also for the people category, the 
first two annotators assigned many more class labels in com­
parison to the third and fourth annotators. The majority of 
the learned people hypernyms relate to the TransientEvent- 
Participant, NonTransientEventParticipant, SocialRole, Per- 
sonState classes.

People
code A d Apj A f A q Ex Pa K

BasicPerson 10 13 10 12 6 5 0.63
FamilyRelation 3 3 4 10 3 1 0.63
GeneralTerm 44 22 34 11 7 25 0.51

GeneticPersonClass 6 13 0 2 0 6 0.44
ImaginaryPeople 10 6 1 0 0 4 0.46
NationOrTribe 2 1 1 0 0 1 0.50

NonTransEvParti 101 154 126 99 75 59 0.69
NotPerson 44 35 26 46 22 21 0.68

OtherHuman 24 13 6 4 1 7 0.49
PersonState 45 0 34 3 0 22 0.44
RealPeople 2 0 0 0 0 0 0.50

Religious Affil 14 6 14 8 3 8 0.55
SocialRole 144 144 68 111 42 102 0.56

TransEvParti 108 6 15 16 0 20 0.48
Totals 557 416 339 322 159 281 0.54

Table 5: People Hypernym Term Annotation

The manual annotations reveal two things. First, the boot­
strapping algorithm learns some terms that are not desir­
able (e.g., GarbageTerm, NotAnimal, NotPerson, General- 
Tem classes). This shows that there is room for improve­
ment to filter and remove unrelated and overly general terms 
with respect to the Root concept. Second, the inter-annotator 
agreements are mixed, with some classes getting relatively 
good agreement (say, above .65) but other classes getting 
weak agreement from the annotators. Clearly one of the 
biggest problems resulted from allowing multiple labels to 
be assigned to a term.

Related Work
Many Natural Language Processing applications utilize on­
tological knowledge from resources like WordNet4, CYC, 
SUMO5 among others. These knowledge repositories are 
high quality because they are manually created. However, 
they are costly to assemble and maintain as human effort is 
needed to keep them up to date. The trade-off of manually 
created resources is between high quality and low coverage. 
For example, often such resources will not include the latest 
best selling book or the Football Player of the Year.

Recent attempts to automatically learn bits of informa­
tion necessary for LbR focus on concept harvesting (Pan- 
tel, Ravichandran, & Hovy 2004), (Pantel & Ravichan- 
dran 2004); relation learning (Berland & Charniak 1999;

4www.wordnet.princeton.edu
5www.ontologyportal.org

Girju, Badulescu, & Moldovan 2003), (Pantel & Pennac- 
chiotti 2006), (Davidov, Rappoport, & Koppel 2007); or a 
combination of the two. Some systems take as input pre­
classified documents (Riloff 1996) or labeled document seg­
ments (Craven et al. 2000) and automatically learn domain- 
specific patterns. Others like DIPRE (Brin 1998) and Snow­
ball (Agichtein & Gravano 2000) require a small set of la­
beled instances or a few hand-crafted patterns to launch 
the extraction process. Different approaches target different 
types of information sources. For instance, Yago (Suchanek, 
Kasneci, & Weikum 2007) extracts concepts and relations 
from Wikipedia, while (Pasca 2004), (Etzioni et al. 2005) 
and (Banko et al. 2007) mine the Web. Researchers have 
also worked on ontology discovery (Buitelaar, Handschuh,
& Magnini 2004), (Cimiano & Volker 2005) and knowledge 
integration (Murray & Porter 1989), (Barker et al. 2007) 
algorithms.

Among the biggest automatically created ontologies is 
Yago (Suchanek, Kasneci, & Weikum 2007). It is built on 
entities and relations extracted from Wikipedia. The infor­
mation is unified with WordNet using a carefully designed 
combination of rule-based and heuristic methods. The cov­
erage of Yago depends on the number of entries in Wikipedia 
and the tagging of these entries with Wikipedia categories. 
A challenge which remains for Yago is the unification pro­
cess of concepts for which there is no taxonomy (for in­
stance, a taxonomy of emotions).

In comparison with Yago, the knowledge harvesting algo­
rithm we have presented in this paper does not use any in­
formation about the organization of the concepts or the cate­
gories they can be related to. Our algorithm rather mines the 
Web to extract and rank the relevant from non-relevant infor­
mation. Similar Web-based knowledge harvesting approach 
is that of DIPRE (Brin 1998). Given two seed concepts in 
a relationship, DIPRE identifies Web pages containing the 
seeds and learns the contexts in which the concepts are seen 
together. The algorithm extracts regular expressions from 
the contexts and applies them for the identification of new 
concepts that express the same relation.

Our work is most closely related and inspired by Hearst’s 
(Hearst 1992) early work on hyponym learning. Hearst’s 
system exploits patterns that explicitly identify a hyponym 
relation between a concept and an instance (e.g., "such 
authors as Shakespeare"). We have further exploited 
the power of the hyponym patterns by proposing doubly- 
anchored hyponym and hypernym patterns that can learn 
both new instances of a concept (hyponyms) and new cat­
egory terms (hypernyms). We also use the hyponym pattern 
in a Concept Positioning Test to assess the relative position 
of a term with respect to a Root Concept.

(Pasca 2004) also exploits Hearst’s hyponym patterns in 
lexico-syntactic structures to learn semantic class instances, 
and inserts the extracted instances into existing hierarchies 
such as WordNet. Other systems like KnowItAll (Etzioni et 
al. 2005) integrate Hearst’s hyponym patterns to extract and 
compile instances of a given set of unary and binary predi­
cate instances, on a very large scale. KnowItAll’s learning 
process is initiated from generic templates that harvest can­
didate instances. The learned instances are ranked with mu­

http://www.wordnet.princeton.edu
http://www.ontologyportal.org


tual information and kept when the frequency is high. To 
improve recall, KnowltAll uses multiple seed patterns of se­
mantically related concepts. For instance, to gain higher 
accuracy for the instances belonging to the concept cities, 
KnowltAll uses patterns of the type "cities such as *” and 
“towns such as *”.

Conclusion
We have presented a novel weakly supervised method for 
reading Web text, learning taxonomy terms, and identifying 
hypernym/hyponym relations. The bootstrapping algorithm 
requires minimal knowledge: just one seed hypernym and 
one seed hyponym as input. The core idea behind our ap­
proach is to exploit a doubly-anchored hyponym/hypernym 
pattern of the form: “ <hypernym> such as < hyponym ,i > 
and < hyponym -2 >  ”, which is instantiated in several dif­
ferent ways to learn both hyponyms, hypernyms, and the 
relative position of different terms.

Our approach offers the possibility of automatically gen­
erating term taxonomies in the future, surmounting the need 
for man-made resources. Our evaluation shows that our al­
gorithm learns an extensive and high quality list of hyponym 
terms. The learned hypernym terms, however, were remark­
ably diverse and will be a challenge to classify and orga­
nize automatically. We created detailed annotation guide­
lines to characterize different types of conceptual classes 
that a term can belong to, but our inter-annotator agreements 
were mixed and showed that people have difficulty classi­
fying concepts as well. In future work, we plan to further 
investigate these issues and methods for automatically in­
ducing structure among the hypernym terms.
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