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We diagonalize a many-fermion Hamiltonian consisting of terms quadratic as well as quartic in the field opera­
tors. A dual spectrum of eigenstates is an interesting result. We also derive a formula for obtaining the free 
energy at finite temperature. 

INTRODUCTION 

e Hubbard model of interacting electrons on a 
ear chain, 

N-1 

Hub = - E.6 (Cj~ Cj +1a + Cj!1 a Cja) 
j=l 

a=±1/2 
N 

+ U .6 (n jt - ~)(nj~ - ~), 
)=1 

(1) 

s given an ingenious solution by Lieb and Wu 1 who 
tained the ground state, and later by others2 who 

ound the elementary excitations. The complete set 
eigenstates has not yet been determined nor has 

e statistical mechanics, although numerical calcul­
tions 3 ,4 on finite systems (N = 6) has revealed 
any interesting features such as level crossings and 
al excitation spectra. These are totally absent in 
e approximate RPA solution of (1), and such struc­
re is lacking in the exactly soluble, relativistic 
odelof interacting electrons. s It is therefore of 
terest to discuss the predictions of a new model, a 
odification of (1), which we have been able to solve 

!actly for arbitrary N, E, and U. We obtain and 

classify the eigenstates and eigenvalues, and reduce 
the calculation of the free energy to the solution of an 
implicit equation. One of our results is a two-fold 
degeneracy of the ground state, which is antiferro­
magnetically ordered. A dual excitation spectrum is 
also a feature of this model. 

n. MODEL HAMILTONIAN 

Like (1), the exactly soluble Hamiltonian is a combin­
ation of quadratic and quartic terms: 

N-l 

JC = -4E 
.6 (cja - Cj~) (cj +1a + Cj!la) 
j=l 
o=± 

N 

+ U ~ (njt - ~)(nj~ - ~). (2) 
) =1 

The CIS are a complete set of anticommuting operators. 

An important (and anomalous) operator in the above 
is 

(3) 

which causes charges to be created or destroyed in 
pairs (as in the BCS theory of superconductivity). It 

J. Math. Phys., Vol. 13, No.8, August 1972 



1186 D. C. MAT TIS AND S. B. N A M 

is evident that the current density operator j has to 
be suitably modified to take this into account in order 
to satisfy an equation of continuity. These consider­
ations have also suggested to us that one should seek 
an analogous modification of the current operator in 
the BCS theory, as we discuss elsewhere. 6 In the pre­
sent work the anomalous terms (3) are introduced 
merely as a convenience to allow a solution of the 
problem. This device first proved useful in the exact 
solution of one and two "magnetic" impurity atoms 
in a three-dimensional nonmagnetic metal host,7 al­
though the subsequent calculations and results, in 
these problems, have little in common with the pre­
sent work. 

Our first step in the manipulation of X is a Jordan­
Wigner transformation to pseudospin matrices Ti 
and Si' defined via 

1Ii( 1: nmt+ 1: nm4) 
T - - c e all m m<] (4) 

j - j~ , 

with similar equations relating S+ and T+ to the c*'s. 
Insertion into (2) yields 

X = - E6(SJSJ+1 + T/Tj!l) + UL)SjT/. (5) 
] J 

It is now advantageous to introduce a new set of spin 
matrices, the lja and Jt, in terms of which the origi­
nal spin vectors are 

(S;, S), S;) = (J/, 2J/ p/' 2J/ p/), 
(T/, T/, T/) = (- 2P/ J/, 2P/J;, p/). (6a) 

The inverse of these relations is useful to record: 

(6b) 

[Note that our matrices are all normalized to spin~, 
such that, e.g., (px)2 = t] When this is substituted in­
to X, there results 

X = - EL)J/Jj!l(4P/Pj!l + 1) + ~U6J/. (7) 
J J 

m. EIGENVALUES 

Now we note that the Pf are the constants of the mo­
tion and can therefore each be taken to be either + ~ 
or - ~. We denote this the "P-eigenvalue." 

Inspection of (7) shows that if neighboring sites have 
opposite P-eigenvalues, the connection via theJ/J/+1 
bond becomes broken. Conversely, if they have simi­
lar P-eigenvalues, the bond strength is 

-2EJ/J/+1 

regardless of whether the P-eigenvalue is ±~. Thus 
in any eigenstate the chain of N atoms is partioned 
into a number of noninteracting "molecules" of alter­
nating P-eigenvalue. The number of such molecules 
can be as small as 1, which is indeed the case of the 
ground state, conSisting of a single molecule of N 
atoms all of which belong to a common eigenvalue of 
P/. As, however, this eigenvalue can be ±t the 
ground state is a doublet regardless of the relative 
magnitudes of E and U. At the opposite extreme, the 
largest number of molecules is N, each consisting 
of a Single site. 

J. Math. Phys., Vol. 13, No.8, August 1972 

We now solve for the eigenvalue spectrum of anyone 
such molecule, which, we shall assume, extends from 
a site A (A === 1) to a site B (A < B ::s N). The appli­
cable part of X is 

(8) 

The eigenvalues are symmetric in E, therefore we 
restrict the following to E === O. This X is reduced to 
quadrature by a transformation to fermions, the in­
verse of (4). Define the set of anticommuting opera­
tors a j : 

+ -
1Ii 1: J.J. 

a. = J.-e i<j" 
J J 

and similar Hermitian conjugates, such that 

B-1 

XAB = ~ E ~ (a j - a/) (a j +1 + a j!l) 

B 

(9) 

+ ~ u'L. (a*a, -~). (10) 
A J J 

The diagonalization of precisely this quadratic form 
has been previously studied in connection with the 
"Heisenberg-Ising model", S and it is straightforward 
to "plagiarize" these old results: 

The diagonal form of XAB becomes 

X AB .= 6 Ak(ak* ak - ~), 
A 

where 

Ak = [(U /2 - E)2 + 2UE sin2k/2]1/2 

and the k's are the roots of 

(11) 

(12a) 

sink(B -A + 2)/sink(B -A + 1) = 2E/U, (12b) 
i.e., 

Ak = 1 sink/ sink(B - A + 1) I (U /2). (12c) 

By (11), the ground-state energy is 

E o --.!."\'A 
AB - 2 L.J k' (12d) 

k 

Because of obvious symmetry in X, we have taken 
E === 0 in these relations without loss of generality. 
For 0 < E < U/2 there areB -A + 1 real roots,ex­
hausting the normal modes. For E > U /2, however, 
there are only B - A real roots but, in addition, an 
imaginary one representing a "surface" state. De­
noting it ko == iV,one finds. s 

sinh(B - A + 2)v/ sinh(B - A + l)v = 2E/U, 

.Ao = 1 sinhv/ sinhv(B - A + 1) 1 (U /2). (13) 

It is interesting to note that when B - A ---7 Cf.J, Ao -7 0 
for all U < 21 E 1 • 

W. THERMODYNAMICS 

The partition function of an i-atom molecule is 

z(i) = IT 2 cosh~ (3Ak' 
k 

(3 = l/kT, (14) 

where the set of 1 k's and Ak's are given in the pre­
ceding equations, with 1 == B - A + 1. If we decom­
pose the chain of N atoms into molecules of lengths 
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11 ,Ji.2 , ••• ,subject to the constraint 

(15) 

then the grand partition function is Z = exp( - {3F), 
where F = free energy. This is given in terms of the 
individual molecules as 

(16) 

The sum is over all possible decompositions. We now 
discuss a method for calculating this in the thermo­
dynamic limit (N -t (Xl). 

Let 

z(Ji.) == ,.J e¢(l), (17) 

where A includes the extensive contribution, and cp(Ji.) 
the influence of finite ends, of a molecule Ji. units in 
length. Thus, we define A by 

logA = lim Ji.- 1 10g z (Ji.) = 'IT- 1 f de log 
I~ro 0 

X {2 cosh~{3[(U/2 - E)2 + 2UE sin2e/2)1/2}. (17'a) 

We have 

cp(Ji.) == log[ Z(Ji.)A - I] (17'b) 

an intensive quantity,i.e., 

lim Ji. -1 cp(Ji.) = o. (17' c) 

The calculation of Z reduces to that of an auxiliary 
quantity G, defined via: 

~¢(ti) 

Z = AN:0 e' == ANG(N), (18) 

G obeys an iterative equation: 

G(N) = e¢(1)G(N - 1) + e¢{2)G(N - 2) + .". (19) 

In the thermodynamic limit (N -t (Xl) we set G(N) = g-N, 
with g > 1, and 

1 = t e¢(t)g-I 
[ ~1 

(20) 

follows from (19), and is the implicit equation deter­
mining Z. 

If cp(Ji.) were constant for Ji. 2: 1, then (20) is solved by 

1 = e¢ ~ g-l = e¢/(g -1), 
i.e., e~l 

g = 1 + e¢, (21a) 

If cp(Ji.) = cp(1) for Ji. = 1 and cp(2) for Ji. 2: 2, then 

1 = e ¢ (1) g-1 + e ¢ (2) g-1 ~ g- I 
1~1 

= e ¢ (1) g-l + e ¢ (2)/ g (g - 1), 

i.e., g = ~ (1 + e¢(l» 

+ [{ (1 + e¢(1»2 + (e¢(2) - e¢(1»]1/2. (21b) 

It is easy to see if cp(Ji.) becomes constant after r 
steps, the solution of an rth degree equation yields g, 
and hence G and Z. If cp is not really constant at 

Ji. > r, corrections may be obtained by iteration. It 
is believed that because the cp(Ji.) are analytic func­
tions of the temperature, the solution g and hence Z 
must be analytic as well, so that there is no phase 
transition at finite T. 

V. ELEMENTARY EXCITATION 

Assuming the ground state to be a single molecule of 
length N, belonging to either P-eigenvalue ±~, the 
spectra of elementary excitations are twofold: (A) 
the set of internal excitations, of energy A k , and (B) 
the (quite distinct) breaking up of the chain into smal­
ler molecules which must,of course,belong to alter­
nating P-eigenvalues. Both type excitations are 
counted in the calculation of Z in the previous chap­
ter. They must be treated distinctly in a study of the 
dynamics of our model. 

A. Internal Excitations 

Consider Eqs. (11) and (12) with B - A = N - 1 -t (Xl. 
We observe that for I E I :s ~ U the spectrum of ele­
mentary excitations represents the addition of a 
quasiparticle of energy: 

Ak = [(U /2 - E)2 + 2UE sin2k/2]1/2 (22) 

with k ranging over closely spaced eigenvalues from 
o to rr. 

When I E I > ~ U then is also a bound state of energy 
Ao = O. 

B. External Excitations 

For lack of a better name we denote "external exci­
tations" the process of creating an additional mole­
cule. 

As we are prinCipally concerned with excitations 
connecting to the ground state, the problem reduces to 
consideration of the energy to break up the original 
ground state molecule extending from (1 to N) into 
three: (1 to A - 1), (A to B), and (B + 1 to N). It may 
be assumed that A and N - B both » 1 and that B - A 
== Ji. - 1 «N. We define the ground state energy of a 
molecule of length L to be E o(L), and the ground state 
of the same molecule with the two ends connected 
(periodic boundary conditions 9 ) Eop(L), with Eop(L) 

:s Eo(L) and Eo(L) - Eop(L) = 0(1) for obvious rea­
sons. Then the energy ;l(Ji.) to break the initial mole­
cule into 3 is calculable as follows: 

;l(Ji.) = E 0(1.) + [E opeN - Ji.) - Eop(N)] 

+ [Eo(N -Ji.) -Eop(N -Ji.)], (23) 

where (N -t (Xl), 

Eop(N - Ji.) - Eop(N) = (Ji./2rr) { de AfJ 

= (Ji./rr)(U/2 + IEI)E(2UIEI/[U/2 + IEI]2). (24) 

Here E(x) is the complete elliptic integral. Also, 

Eo(N -Ji.) - Eop(N -Ji.) = H IU/2 + I E II 

-IU/2 -IEII] + (l/2rr)f de~(e)aAe, 
o ae 

(25) 

where <I> is defined through k = e + (1/ L)~(e), where 
k satisfied Eq. (12) with B - A + 1 == Land e = 
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(rrn/L), (n=O,l,"',L-l),andL --)00. Thus 

sin [(8 + i~) (L + l)J 
sin(e + ~) 2E 

sin [(0 + i~)LJ sin~ - U ' 

which has the solution 

~(e) = coP [(2E/U - cose)/sine]. 

In the special limit, 2E = U, the ~(J:) becomes 

~(J:) = U[~ - l/rr - Hcscx - l/x)], 

where x = rr/(4i + 2). For 2E > U, using e = 

(26) 

(27) 

rrn/(L + 1) in Eq. (2b), we get ~(e) for Eq. (25) by re­
placing 2EjU by U/2E in Eq.(27). 

VI. MATRIX ELEMENTS AND CORRELATION 
FUNCTIONS 

Here we are concerned with some typical ground 
state correlations and some matrix elements to ex­
cited states. The ground state of a linear chain 
(length N ---) 00) is at least twofold degenerate: Aside 
from the two choices of P-eigenvalue there exists, 
for U < 21 E 1 , the option of exciting or not exciting 
the surface state of Eq. (13) which has energy Ao = O. 
Let us label the set of possible ground states by I a). 

Then 

and 
(alnjt la) = ~ + 2(aIJ/P/la) = ~ 

(alnj~ 1(1) = ~ + (a IPfla) =~. 
(26) 

Thus a/uJ!p correlations are nonexistent for all P =1= 0: 

(a I (njt - nj • )(nj +pt - nj+p-l) I a) = O. (29) 

However, the nearest -neighbor transverse correla­
tions are 

* * (al Cjt cj-l cj +1 cj +1 t I a) 

= - (al[(J/ - ~)(P/ + iP/)] 

x [(Jj: 1 - ~)(P/+l + iP!..l)] la) 

= - i(al(J/ - ~)(Jj:l -~) I a). (30) 

This can easily be calculated by (9), (10) and a plane 
wave expansion related to use of periodic boundary 
conditions (a j = 1/N- 1/2 6keik.Rjck)' One can see 
that (30) is negative, and concludes that nearest­
neighbor sites within a molecule are antiferromag­
netically correlated. 

This also allows us to estimate the spin correlation 
of adjacent ends of two molecules. If j is at the end 
of one molecule (has P-eigenvalue Fj2) and j + 1 at 
the beginning of the next P-eigenvalue ~!1 = -P/), 
then the expectation value (30) becomes intrinsically 
positive. It is therefore tempting to interpret the 
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molecules as antiferromagnetic domains, and the 
break in P-eigenvalue between j and j + 1 as the do~ 
main wall. However, the true picture must be some~ 
what more complex than this, as we see when ex­
amining matrix elements to excited states. The 
fundamental charge density operator nit + n i .. has 
matrix element: 

(31) 

where I a) is one of the ground states. This vani~ 
shes unless (y I is an "external" elementary excited 
state, having the same P-eigenvalue as 1 a) for 
j =1= i and opposite P-eigenvalue at i. The energy of 
such a state relative to the ground state, ~(l),has 
already been calculated in a previous chapter. 

Similarly, a magnetic field (in the z direction) in­
volves matrix elements 

(32) 

which connect to the same "external" excited states 
(y 1 as the above. 

vn. CONCLUSION 

We have reduced to quadrature a many-body prob~ 
lem of fermions with spin; constrained to a linear 
chain. The problem was first brought to the form, 
Eq. (7), in which the nonlinear terms (with ~2) could 
be characterized by quantum numbers ±~. The re­
mainder, Eq. (8), could be solved by transforming to 
a quadratic form in spinless fermions. 

We found the ground state to be a single molecule. 
For U > 21 E 1 the ground state is twofold degenerate, 
such as an antiferromagnetic ISing chain, and has two 
Neel ground states (differing by one atomic transla­
tion). However, when U < 2 1 E 1 the ground state is 
fourfold degenerate. There is a "phase transition" 
for T = 0 at U = 21 E I. We obtain an impliCit expres­
sion for the partition function and estimate for fixed 
U and E, that there is no phase transition when the 
temperature T is varied. 

Finally, we find that external perturbations (magnetic 
or electric fields) connect only to that part of the 
excitation spectrum we have labelled "external" ex­
citations. Internal excitations (Ak),in which all ~2_ 
eigenvalues are conserved, are therefore not access­
ible to probing by external forces even though they 
contribute to the thermodynamic properties. Thus at 
U = 2 1 E 1 the model has an absorption threshold at 
finite energy, i.e., an "optical" gap, even though the 
continuous spectrum of internal elementary excita­
tions extends down to A k = O. 

The dual excitation spectrum suggests that a solu­
tion of the free energy equations (14)-(21) will yield 
two maxima in the speCific heat, a feature which has 
already been discovered in numerical computation4 

of the properties of finite Hubbard -model chains 
(N ::s 6). 
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