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Thermal Fluctuations and NMR Spectra of Incommensurate Systems 
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In the presence of thermal fluctuations the incommensurate NMR line shape is a convolution of a 
static inhomogeneous with a dynamic homogeneous line shape which can be determined separately by 
2D NMR. The form of the dynamic line shape and its variation over the inhomogeneous NMR spec
trum permit a separate determination of the relative sizes of the phason and amplitudon fluctuations, 
compared to the static part of the order parameter. 87Rb 2D spectra of ultrapure Rb2ZnCl4 agree with 
the above theory and show the existence of a temperature range where the incommensurate splitting in
duced by the static part of the order parameter is averaged out by thermal fluctuations. 

PACS numbers: 76.60.-k 

Incommensurate insulators [I] are characterized by a 
modulation of the atomic positions with a periodicity that 
bears no simple rational relation to that of the underlying 
crystal lattice. For the simplest case of a one-dimensional 
modulation wave, the order parameter of the normal-to
incommensurate (N-I) transition is characterized by two 
components, the amplitude and the phase of the modula
tion wave. In contrast to the amplitude fluctuations (am
plitudons), which become large only near the N-/ transi
tion, phase fluctuations (phasons) are significant over the 
entire incommensurate phase. 

Whereas the static features of the incommensurate 
phase are reasonably well understood, this is not so for 
the dynamic aspects, especially in the vicinity of the tem
perature T/ of the N-/ transition [1]. In particular, the 
effect of thermal fluctuations on the onset of incommens
urate behavior and the possible floating of the modulation 
wave near T/ have been the subject of significant contro
versy. Furthermore, determination of the critical ex
ponents, for example, requires a precise determination of 
T/ as well as a separation of the dynamic and static con
tributions to the modulation wave. 

Because of its sensitivity to small displacements in the 
atomic positions, quadrupole-perturbed NMR, as well as 
nuclear quadrupole resonance (NQR), has been used ex
tensively in the past [1,2] for studying the modulation 
wave in both dielectric [2] and charge-density-wave in
commensurate systems [3,4]. Below T/ the NMR line 
becomes inhomogeneously broadened and acquires a 
specific shape that reflects the spatial distribution of the 
atomic positions in the modulation wave. Thermal fluc
tuations [5,6] significantly affect the shape of the NMR 
line. A number of experimental studies [5-11] have been 
devoted to the investigation of this effect. However, the 
experimental results do not agree with the theoretical cal
culations [5,6] predicting a motional narrowing of the 

NMR line but no other change in its Gaussian line shape. 
The disagreement may be due in part to an uncontrolled 
concentration of random impurities in the samples [11] 
and/or to certain approximations made in the calcula
tions, such as the substitution of the time averaging of the 
fluctuating resonant frequency by averaging over a sta
tionary Gaussian distribution of the phases of the modu
lation wave [5]. 

Here, we present a theory of the NMR line shape in in
commensurate systems in the presence of thermal fluctua
tions of the order parameter. This theory is free of the 
above-mentioned approximations and is valid within the 
Landau theory [1]. It shows that thermal fluctuations 
not only reduce the linewidth but also change the shape 
of the spectrum in a characteristic way. Within a scaling 
factor, the line shape depends on just two parameters 
which are determined by the relative sizes of the phason 
and amplitudon fluctuations compared to the static part 
of the order parameter. We show that the line shape is 
given by a convolution of a static incommensurate fre
quency distribution and a dynamic line shape determined 
by phason and amplitudon order-parameter fluctuations. 
We have also shown how these two contributions can 
be simultaneously independently determined by two
dimensional (2D) nuclear magnetic resonance. The 
theoretical results agree well with a 2D 87Rb NMR study 
of Rb2ZnCI4, obtained with high temperature resolution. 
The separate simultaneous determination of the static 
(inhomogeneous) and dynamic (homogeneous) line 
shapes allows a precise determination of T/ and clearly 
shows the presence of a region where thermal fluctuations 
of the modulation wave average out the quadrupolar 
splitting due to the static part of the order parameter. 

Let us consider the case of a one-dimensionally modu
lated incommensurate system with a two-component or
der parameter [1,21. Just below T/ where the plane wave 
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approximation [I] is valid, the incommensurate distortion 
wave 17 (x) can be expressed as 

17 (x ) = 171 cos(kox) + 172 sin (kox ) , (1) 

where 171 and 172 are the two components of the order pa
rameter [1,12] describing the N-/ transition and ko is the 
wave vector of the incommensurate modulation. Thermal 
fluctuations of the order parameter result in 

17 1 (x ,t ) = 17 1 £ + 17 i (x , t) , 

1J2(X, t) == 172£ + 1J2(X,I) . 

(2a) 

(2b) 

For the equilibrium values 171£ and 172£ we can take [1] 
1JtE a: (T/ - T) and 172£ =0. Let us now assume that the 
quadrupole perturbed NMR resonance frequency 11 of a 
nucleus at a site x is linearly related (1,2] to the nuclear 
displacement 1] (x ,t) at this site: 

(3) 

Here 1](x,t) is given by expressions (I), (2a), and (2b). 
The adiabatic NMR line shape /(ill) is now obtained [13] 

as 

(4a) 

where 

G(t} =e -inot \ \ exp [ - i 50t [0 (x ,I') - ooldl')) )x . 
(4b) 

The inner brackets () represent a thermodynamic ensem
ble average whereas <) x stands for an average over the in
homogeneous static distribution of resonance frequencies. 
Inserting expression (3) into (4b) we find the autocorre
lation function G (t) in the form 

(5) 

Here 

G 1 (t ) = ex p [ - i a 1] 1 £ t cos (k OX ) ] 

represents the well known [1,2] static inhomogeneous fre
quency distribution limited by two edge singularities, 
whereas 

G 2(r) =exp [ - ia 50t [1Ji (x, t')cos(koX) + 1J2{x ,t')sin (k OX )dt' ] (7) 

describes the effects of amplitudon [1]] (x ,t)] and phason [1J2(X, t)] fluctuations on the NMR line shape. Since the prod
uct of two functions in the time domain is equivalent to the convolution of their Fourier transforms in the frequency 
domain, the Fourier transform of G 2 represents the dynamic line shape which convolutes the static [1,2] one. After a 
straightforward [13] but somewhat lengthy calculation one finds the adiabatic line shape in the incommensurate phase 
as 

where 

X =cos(kox), 01 =a1]JE , 

a 2kBTrrc T 
w - a:-----

loci - 4Jr82 (TI - T) 1/2 ' 

and 

[
a 2kB Ty 1/2 ] 2/3 

Wloc2 == 3/2 3/2 a: T 2/3 . 
24Jr 8 

Here 8 is the coefficient of the elastic term in the Landau 
free-energy expansion [11, y is the coefficient in front of 
the dissipation function [(r/2)(Tjf+Tji)1, and rc is the 
correlation radius [1] for the amplitude of the modulation 
wave. Expression (8) cannot be evaluated analytically 
because of the t 3/2 term, representing the phason contri
bution. Up to a scaling factor lew) depends on just two 
parameters, 

J= W)ocl T 
"='1== a: 

01 T[- T 

(8) 

and 
Wloc2 T2/3 

~2= a:-----
01 (T[-T)I/2 ' 

which measure the relative size of amplitudon and phason 
order-parameter fluctuations compared to the static order 
parameter. Far below T], ~ I and ~2 tend to zero, 
(G2(t»-4 I, and /(w) is reduced to the static incom
mensurate frequency distribution [I] 

which exhibits two edge singularities at + 0 I. 

It is important to note that 2D NMR allows a simul
taneous separate determination [14] of the inhomogene
ous line shape, represented by (G tG2), and the dynamic 
line shape, represented by (G 2). This is achieved by the 
application of a 180 0 refocusing pulse [14] in the middle 
of the evolution period. 

The 2D NMR line shape is obtained as 

[(WI,
r.1

2
)=J+ 1 dx rOOd rOOd i(W2- n O- O IX)t2 -[WIOCl t 2X 2+(W1oc2t 2)3/2(t-X2)] iw1tl -[COlocltlXl+(Wloc2tIP/2(1-X2)] 

LV' _ I ( 2) 1/2 J ( t 1 J ( t 2e e e e , 1 -x 0 0 

(10) 
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FIG. l. 20 Hseparation of interactions" NMR spectrum [14] 
of the 87Rb ~ -- - ~ transition in Rb2ZnC14 at an orientation 
a..LHo, {:c,Ho=122°, and T=291.2 K. Projections on both 
frequency axes are also shown. The 87Rb Larmor frequency is 
VL ( 87Rb) =88.34 MHz. 

where 1 I is the evolution and 12 the detection time [14] in 
the 2D experiment (Fig. 1). 

A high-temperature-resolution 2D NMR 87Rb ~ 
-+ - ~ transition study [14] of ultrapure Rb2ZnCl4 has 
been made in the vicinity of the N-/ transition in steps of 
0.1 K. In the W2 domain we find the static inhomogene
ous line shape convoluted with the dynamic one (Fig. 1). 
In the (01 domain the static quadrupole interaction is el
iminated [14] and the homogeneous dynamic line shape is 
determined by the time-fluctuating part of the quadru
pole interaction (Fig. 1). The dynamic line shape varies 
over the inhomogeneous static incommensurate frequency 
distribution through its dependence on X =cos(kox) 
= (W2 - n)/ n I. In the center of the inhomogeneous line 
where X ==0, the dynamic line shape is determined by 
phason fluctuations (i.e., by the 1 3/2 term). At the edge 
singularities, where X = + I, the dynamic line shape is 
determined by amplitudon fluctuations (i.e., the t term), 
yielding a Lorentzian form. 

In Fig. 2 we show the temperature dependence of the 
positions of the edge singularities of the inhomogeneous 
line shape obtained in the (02 domain on the Rb line cen
tered around (02 ==0 (Fig. 1). The full width at half 
height of the dynamic line shape obtained in the (01 

domain in the center of the inhomogeneous line shape 
(i.e., at (02 = n) is also shown. On the same plot we also 
show the temperature dependences of the soft mode as 
well as phason (TIll') and amplitudon (TIA) induced 
spin-lattice relaxation rates [1,2]. It is clearly seen that 
the width of the dynamic line shape exhibits a maximum 
at T/ == 304.4 K. At the same temperature the T I splits 
[1,2] into two branches, the temperature-independent 
phason contribution and the critically temperature-
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FIG. 2. The lower part of the figure shows the temperature 
dependence of the frequencies of the incommensurate edge 
singularities, VINH, of the inhomogeneous line shape. The upper 
part shows the temperature dependence of the full width at half 
height of the homogeneous dynamic line shape, llvH, in the 
center of the inhomogeneous spectrum. The temperature 
dependence of the soft mode (TI), phason (Tt"'), and amplitu
don (T IA) induced spin-lattice relaxation times is shown for 
companson. 
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FIG. 3. (a) Inhomogeneous and (b) homogeneous dynamic 
line shapes close to T/. The solid lines in (b) show the fit to ex
pression (10), whereas the dotted line is the fit to a Lorentzian. 
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FIG. 4. Temperature dependence of the parameters {J)loc.!2Jr, 

{J)loc2i2Jr, and n .!2Jr obtained from a least-squares fit by com
paring experimental and theoretical inhomogeneous and homo
geneous line shapes (open squares). The additional n t points 
(solid squares) are obtained from the edge singularity data in 
the temperature range between T/ - T =0.4-1.5 K. The 
dashed line represents a least-squares fit n I ex: (T/ - T) Z with 
z =0.5. Inset: The normalized quantities ~I = (()Ioct! n I and 
~2 =Wloc21 n I which measure the relative sizes of the fluctuating 
and static parts of the incommensurate order parameter. 

dependent amplitudon contribution. The temperature T/ 
is clearly the N-J phase transition temperature where the 
paraelectric soft mode condenses, resulting in a maximum 
width of the dynamic line shape. In contrast the inhomo
geneous line shape shows no splitting at this temperature. 
The incommensurate splitting starts to become observable 
only at T/ - T:> 0.4 K, i.e., outside the region where 
motional narrowing due to thermal fluctuations of the 
modulation wave is dominant. 

The inhomogeneous and the dynamical line shapes are 
shown in Fig. 3 at TJ - T =0.1, 0.3, and 0.5 K. At 
T/ - T =0.1 and 0.3 K the inhomogeneous line shape is 
still single peaked whereas the two edge singularities be
come clearly discernible at T/ - T = 0.5 K [Fig. 3 (a)]. 
The experimental and theoretical dynamic line shapes are 
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compared in Fig. 3 (b). The deviations of the dynamic 
line shapes from a Lorentzian form show the importance 
of the phason fluctuations represented by the t 3/2 term. 
The comparison between the experimental and theoretical 
line shapes allows for a determination of the parameters 
~l and ~2 from Wloc l=C[T/(T/-T)l/2], Wloc2=DT 3/2, 
and n I, which are shown in Fig. 4 as functions of temper
ature. We find that C=(5 +0.3)x 10- 3 s -I K -1/2 

whereas D = 31 + 3 s -) K -2/3. n 1 varies with tempera
ture as n 1 ex: (T[- T) z, where z =0.5 as predicted by the 
Landau theory. It should be noted that n I, which is pro
portional to the amplitude of the frozen-in modulation 
wave, becomes comparable to Wlocl and Wloc2, which mea
sure the fluctuating parts of the order parameter about 
0.1 K below T[. 

We can conclude that the adiabatic incommensurate 
NMR line shape is indeed given by the Fourier transform 
of <G> =(G IG2) and not just G 1 as tacitly assumed so far 
in all NMR studies of incommensurate phase transitions. 
The fluctuation correction, G2, which is somewhat similar 
to the Debye-Waller factor in x-ray scattering, deter
mines the form of the NMR spectrum close to TI. 
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