
Reducing the Complexity of the Register File in Dynamic Superscalar Processors *

Rajeev Balasubramonian*, Sandhya Dwarkadas*, and David H. Albonesi*
* Department of Computer Science

* Department of Electrical and Computer Engineering
University of Rochester

Abstract
Dynamic superscalar processors execute multiple in

structions out-of-order by looking fo r independent opera
tions within a large window. The number o f physical reg
isters within the processor has a direct impact on the size
o f this window as most in-flight instructions require a new
physical register at dispatch. A large multi-ported register
file helps improve the instruction-level parallelism (ILP),
but may have a detrimental effect on clock speed, especially
in future wire-limited technologies. In this paper, we pro
pose a register file organization that reduces register file
size and port requirements fo r a given amount o f ILP. We
use a two-level register file organization to reduce register
file size requirements, and a banked organization to reduce
port requirements. We demonstrate empirically that the re
sulting register file organizations have reduced latency and
(in the case o f the banked organization) energy require
ments fo r similar instructions per cycle (IPC) performance
and improved instructions per second (IPS) performance in
comparison to a conventional monolithic register file. The
choice o f organization is dependent on design goals.

1 Introduction

Modern high-performance processors use an out-of
order dynamic superscalar core to extract instruction-level
parallelism (ILP) from applications. These processors ex
amine a large window of in-flight instructions to find mul
tiple ready and independent instructions every cycle. The
size of this window is one of the key determinants of the
degree of ILP that can be achieved. However, supporting
a large window of in-flight instructions also requires large
structures within the processor, namely, a large register file,
issue queue, and reorder buffer (ROB). Since in high fre
quency designs microarchitects try to set the clock speed of
the processor based on the execution speed of simple integer
instructions, a large multi-ported register file can potentially
compromise clock cycle time.

•This work was supported in part by NSF grants EIA-9972881, EIA-
0080124, CCR-9702466, CCR-9701915, CCR-9811929, CCR-9988361,
and CCR-9705594; by DARPA/ITO under AFRL contract F29601-00-K-
0182; and by an external research grant from DEC/Compaq.

The register file size has a direct impact on the number
of in-flight instructions since every dispatched instruction
that has a destination register is assigned a new physical
register. Hence, once the free registers run out, the dis
patch stage gets stalled, causing the processor to look for
ILP within a restricted window until the oldest instructions
commit and free their registers. The growing gap between
memory and processor speeds results in an increasing num
ber of long latency instructions, causing the commit stage to
be frequently stalled and further necessitating a large num
ber o f registers. In addition, the large issue widths in such
processors also require a large read/write bandwidth to the
register file. Implementing a large number of registers with
many ports for the sake of increased ILP poses a number of
challenges in terms o f both performance and energy.

The register file is a heavily-ported R A M structure. A
processor capable of issuing eight integer instructions each
cycle may need an integer register file with sixteen read
ports (corresponding to two source operands per instruc
tion) and eight write ports. Using a register file access
time model derived from CACTT-2.0 [28], we found that
the access time for an 80-entry 24-ported register file can
exceed 1.5ns at 0.18p technology, potentially being on crit
ical paths determining the cycle time. The current trends
of increased frequencies, dominating wire delays at smaller
technologies [16, 19], and increased register requirements
because of simultaneous multithreading [26] make it harder
to implement a register file that can be accessed in a sin
gle cycle. Having a large register file with a multi-cycle
access time poses problems of its own. For example, a 3-
cycle register file access time would require three levels of
bypassing among the functional units, thereby increasing
the bypassing delay, another cycle-time critical path [19].
A multi-cycle register file access time would also degrade
instructions per cycle (IPC) by increasing the branch mis
predict penalty and the register file pressure by increasing
register lifetimes. Furthermore, pipelining the register file
is not a trivial task as it is a R A M structure.

Given these constraints, the register files in modern
dynamic superscalar processors have been very modestly
sized. The Alpha 21264 [12] has as many as 80 integer
physical registers, but requires a clustered organization to

1072-4451/01 $10.00 © 2001 IEEE
237

reduce the number o f ports and hence the access time. Clus
tering the register file can potentially have a detrimental ef
fect on IPC because o f inter-cluster communication. Farkas
et al [9] showed that larger register file sizes resulted in im
proved IPC even as the sizes were increased beyond 128
entries, but modern dynamic superscalar processors do not
support that large a size because of cycle time constraints.
Modern processors are also limited by problems relating
to power consumption. The register file consumes a non-
negligible portion o f chip power, around 10% according to
the power models based on Wattch [2],

In this paper, we address the problem of designing the
register file in a more complexity-effective manner in the
context of dynamic superscalar processors while maintain
ing IPC and significantly improving instructions per second
(IPS) performance. We follow the complexity-effective de
sign approach o f Palacharla et al. [19] in that we seek to
reduce the access time of critical processor structures (in
our case, the register file) even i f this involves introducing
other structures that are not on cycle time critical paths. We
achieve this goal via two orthogonal approaches:

• Reducing the number of required registers in the reg
ister file on the critical path by using a more efficient
register allocation policy.

• Reducing register file port complexity without unduly
sacrificing register read/write bandwidth.

In terms of energy dissipation, we find that the first tech
nique imposes an energy penalty comparable to its perfor
mance improvement, while the second technique provides a
significant reduction in register file energy consumption in
addition to im proved perform ance.

We achieve the first objective via a hierarchical division
of registers into those with active consumers and those wait
ing for precise conditions. Our design differs from previous
approaches to register file partitioning (described in Sec
tion 6) in being hardware-based rather than relying on com
piler support. Registers are allocated from the first-level
(L I) register file at the time o f dispatch. When a register
value has been completely consumed by all instructions that
source the value, it is moved to the second-level (L2) reg
ister file. These values are retained in the L2 since they
might be needed in the event of a branch misprediction or
an excepting instruction. Since the L I register file now con
tains only those values that w ill be sourced by the functional
units, it contains fewer registers than a single-level register
file, and therefore its access time is considerably smaller.
However, the additional structures that are introduced to
keep track o f the status of various registers consume non
trivial amounts o f energy, reducing the potential of such an
organization as an energy saving technique.

To reduce register file port requirements, we propose a
banked organization that bears similarities to that proposed

for data caches [10, 20] as well as other previously pro
posed banked register file organizations (discussed in Sec
tion 6). Our approach differs from these prior efforts in that
our banks have a single read port and a single write port
(which we call minimally ported), despite the fact that our
processor is capable of reading sixteen registers and writing
eight registers each cycle; and we model a dynamic, single
cluster, superscalar processor as opposed to the V L IW or
clustered superscalar processor models of other approaches.
The result is a more scalable alternative to a large, mono
lithic register file that operates considerably faster while dis
sipating significantly less energy, even with the additional
address predecoding and output multiplexing required.

We also show that combining the two techniques by us
ing a smaller banked L I in conjunction with an L2 register
file does not result in further improvements in IPS. This is
due to the fact that the access time improvement of splitting
a banked organization into two levels is overridden by the
small but additive (but no more than additive) IPC degrada
tion of the two techniques at the evaluated technology point.

The organization of the rest of this paper is as follows.
Section 2 outlines the operation o f a conventional register
file. Section 3 describes the proposed two-level register file
organization while Section 4 describes the banked register
file approach. We evaluate the proposed designs in terms
of IPC, access times, and energy in Section 5. Section 6
compares and contrasts our approaches with existing related
work. Finally, we make concluding remarks in Section 7.

2 Conventional Register File Organization
The register file is typically a R A M structure consisting

of a fixed number of registers with as many write and twice
as many read ports as the maximum number of instructions
that can issue in any cycle. In addition, dynamic super
scalar processors like the Alpha 21264 [12] and the M IPS
R 10000 [29] use a physical register allocation policy similar
to the one illustrated here by an example:

O r i g i n a l co d e Renam ed co d e
1 : l r 5 < - . . . p r l 8 < - . . .
2 : . . . < - l r 5 . . . < - p r l 8
3 : b ra n c h t o x b r a n c h t o x
4 : l r 7 < - l r 3 p r 2 2 < - p r 2 4
5 : l r 5 < - . . . p r 2 7 < - . . .

6 : x : . . . < - l r 5 x : . . . < - p:

A t dispatch, the first write to logical register 5 (lr5) causes
it to get mapped to physical register 18 (p rl8). This value
is read by the next instruction, after which a branch is en
countered. The branch is predicted to be not taken and sub
sequently, another write to lr5 occurs. At this point, lr5 gets
mapped to a different free physical register, pr27. However,

238

the value in p rl8 can still not be freed as the branch may
have been mispredicted, in which case, there would be an
other read from lr5 (instruction 6), which actually refers to
prl8. Further, if the write to lr7 (instruction 4) were to raise
an exception, to reflect the correct processor state, lr5 would
have to be mapped to the value in prl8. Hence p rl8 cannot
be released back into the free list until the next write to lr5
(instruction 5) commits, which guarantees that all previous
branches have been correctly predicted and all previous in
structions have not raised an exception. This mechanism
to release registers back into the free pool is easily imple
mented in hardware - the ROB keeps track of the old phys
ical register mapping for each instruction’s logical register
and releases it at the time of commit. However, it leads to
long register lifetimes since long latency operations (loads
from memory, for example) could hold up the commit stage
for many cycles.

3 A Two-Level Register File
Our two-level register file uses an allocation policy that

leaves values that have potential readers in the level one
(L I) register file and transfers other values into level two
(L2). This significantly reduces the number of required L I
entries for a given level of IPC performance, thereby reduc
ing register file access time. Details of the register alloca
tion policy and the required microarchitectural changes are
discussed next.

3.1 Microarchitectural Changes

Figure 1 shows a block diagram of our proposed microar
chitecture, outlining its essential features. We assume an
8-way issue processor in the following discussion.

During rename, register names correspond only to L I
physical registers; L2 registers are hidden from the rename
process. We introduce a new hardware structure, shown in
Figure 1, that monitors the usage statistics for the L I phys
ical registers. For every L I physical register, this Usage
Table maintains the following information:

• A Pending Consumers counter that keeps track of the
number of pending consumers of that value. During
rename, an instruction that sources the register incre
ments it. During issue, the same instruction would then
decrement it1.

• A single bit (called the Overwrite bit) that is set when
the physical register is no longer the latest mapping for
its logical register,

• Another bit that indicates i f a result has been written
into the physical register.

'A n instruction being squashed as a result of a branch mispredict also
decrements the counter.

• The sequence number for the branch immediately fol
lowing the instruction that writes to this physical reg
ister (sequence number 1).

• The sequence number for the branch immediately pre
ceding the next instruction that writes to the same log
ical register (sequence number 2).

Most of the information required to update this table is read
ily available during the rename stage. The sequence number
counters identify the various in-flight branches and may be
as many bits as log2(R O B size). When the number of L I
physical registers falls below a pre-set threshold, registers
that have a Pending Consumers count of zero, have a result
in them, and have their Overwrite bit set are copied into the
L2 (provided there are free L2 physical registers). The cor
responding L I registers are released into the free pool. A
single L2 ID valid bit, added to each ROB entry, indicates
that the destination register ID in that entry corresponds to
an L2 register. A t the time of commit, the register is re
leased back into the L2 free pool instead of the L I free pool.

The Copy List, which keeps track of L1-L2 copies for
recovery from a branch mispredict, contains the following
information for each L2 register:

• The L I physical register name that had earlier con
tained the value.

• The sequence number for the branch immediately fol
lowing the instruction that writes to this physical reg
ister.

• The sequence number for the branch immediately pre
ceding the next instruction that writes to the same log
ical register.

These values are copied from the Usage Table when the
transfer is made.

The two branch sequence numbers stored indicate the
‘live’ period of a physical register value, i.e., the period dur
ing which instructions sourcing this value are dispatched.
I f a branch with a sequence number between the two se
quence numbers (both inclusive) for an entry mispredicts,
then the L2 register value is reinstated back to L I , as in
structions along the correct path may need to source that
value. A ll such L2 values (referred to as the ‘live’ set) are
copied back into the L I . The original L I registers of the
‘live’ set are guaranteed to be available for the following
reasons. An L1-L2 copy can occur only when the Over
write bit is set, that is, when a newly renamed instruction
(call it instruction R I) has the same logical destination reg
ister as the copied instruction (Cl). Thus, this is the point
at which C l’s L I physical register can be reused. However,
a branch that mispredicts and causes the value of C l to be
restored back to L I by definition must have occurred before
instruction RI. Thus, instruction R I and its successors will

239

REGISTER RENAME ISSUE QUEUE LI REGISTER FILE L2 REGISTER FILE

Figure 1. The Two-Level Register File Organization.

be squashed, thereby guaranteeing the availability of C l’s
original L I register. In addition, this mechanism requires
no modifications o f the register map table checkpoint and
restoration process.

The processor also needs to recover to a valid regis
ter file state on an exception. Since exceptions are not as
frequent as branch mispredicts, most designs (the M IPS
R 10000 [29], for example) simply traverse the ROB in re
verse order to restore old register mappings. For the two-
level register file, values are also restored from the L2 to
the L I as follows. The ‘live’ set o f the branch closest to
the ROB head (the excepting instruction) is reinstated as
in a mispredict. Then, the ROB is traversed starting at the
branch instruction and moving toward the excepting instruc
tion. Each entry whose L2 ID valid bit is set has its L2 value
restored to the L I . Because of the traversal of the ROB, this
process is likely to take a number of cycles, even though
branches are often fewer than 10 instructions apart. Since
exceptions are infrequent and the process of recovering the
register mappings is of comparable complexity, the over
head of this copying operation should be negligible.

3.2 Complexity of the Proposed Structures

The Usage Table has as many entries as the L I. Each
entry requires log^^R O B size) bits for each sequence num
ber (or no more than eight bits each for current processors)
and only a few bits for the Pending Consumers counter, in
addition to the two single-bit fields. As a result, we have
found that the Usage Table access time is much less than
that of the L I register file. Note that the Overwrite bit is
checkpointed on every branch so it could be recovered in
case of a mispredict. The table look-up to determine L I
registers that are candidates for copying to the L2 requires
simple combinational logic for each entry. The Copy List
and the few-ported L2 register file are also small structures
compared to the L I. We have modeled these as well and
found their access times to be less than that of the L I .

In terms of energy, the frequent access and modification
of the various Usage Table fields adds non-trivial amounts

o f overhead. In a given cycle, up to eight instructions across
two basic blocks can be dispatched. Hence, a number of
registers could update their sequence number fields within
the usage table, although the value being written into these
fields could be only one of two values (as all instructions
belong to one of two possible basic blocks). As a result,
the structure would have two sets of bitlines and wordlines,
but many decoders. Up to eight instructions could update
sequence number 1 and eight more could update sequence
number 2. Given the small size of the fields, the decoder
energy dominates the energy consumption for this structure.
To reduce the energy consumption, this structure could be
integrated with a C A M implementation of the rename table,
or with the free list, thereby doing away with any additional
decoding to identify the registers being renamed that cycle.

For the Pending Consumers counters, in a given cycle,
up to eight instructions can dispatch and eight can issue,
resulting in many possible counter updates. We also noticed
that most registers that were copied into the L2 only had a
single consumer. Restricting the L2 to only such registers
resulted in almost no performance degradation. Hence, the
counter could be a single bit, with another bit to indicate
overflow and the register’s non-candidacy for copying into
the L2. The number of possible values that can be written,
and therefore the word and bit line energy, is reduced by
this mechanism. Again, the decoding process to identify
the counter dominates the energy consumption.

The Copy List has as many entries as the L2. It consists
of a R A M part that stores the various fields (not exceeding
24 bits). It also consists of a C A M part for improved effi
ciency as the entries would have to compare their branch se
quence numbers with that o f the mispredicted branch while
copying values back into the L I . Since the C A M is invoked
only on a mispredict, its energy consumption is negligible
compared to that of the R A M part. The energy consump
tion of the R A M structure is also low as only a single copy
is performed each cycle, requiring a single read/write port.

The copying process need not require additional ports
in the L I . The L I register ports are often not maximally

240

utilized because there aren’t enough ready instructions or
instructions have fewer register source operands. The copy
from the L I is made during these periods when spare read
ports are available.

Our modified ROB has an extra L2 ID valid bit and
log2{m a x(L lsize , L 2 size)) bits for the register identifier.
Since a comparable two-level organization is likely to have
fewer L I registers, the size of each entry is practically un
affected. The number of accesses to the ROB goes up by
the number of copies to L2, but is unlikely to increase con
tention or energy consumption significantly.

4 A Minimally-Ported Banked Register File
This section tackles the second source of complexity: the

large number of register file ports in a wide-issue processor.
In a processor capable of issuing eight integer instructions,
as many as 16 operands could be read from, and as many as
eight operands could be written to, the integer register file
each cycle (see Figure 2). Meeting this high bandwidth re
quirement via true multiporting is costly in terms of access
time, power dissipation, and scalability. A similar prob
lem exists for high bandwidth data caches, and the alter
natives to true multiporting that have been proposed in the
literature [20, 24] are double-pumping, replication of the
arrays, and banked organizations. Double pumping can be
employed if the access time for an array structure is much
smaller than the cycle time. It is not very scalable and can
usually only be employed to help reduce area as halving
the number of ports usually reduces the access time by a
factor of less than half. To reduce the complexity of the
register file, the Alpha 21264 [12] implements a replicated
register file, one in each cluster, so as to reduce the num
ber of read ports. Replication results in a penalty in terms
of IPC because of the added communication cost between
the clusters. We explore the benefits of banking to reduce
multiporting requirements in the following sections.

4.1 Register File Port Requirements
Although a processor capable of issuing eight integer

instructions and simultaneously writing back eight integer
instructions theoretically could use as many as 24 integer
register ports in a cycle, the number of ports required on
average are a lot fewer for several reasons:

• Many operands are read off of the bypass network, not
from the register file.

• Many instructions only have a single register operand.

• A number of instructions produce results that are not
written to the register file (branches, stores, effective
address computation part of a load or store).

Using the processor model described in Section 5, we eval
uated the average port requirements for the benchmark pro
grams. We found that for every issued instruction, only 0.64

values were read from the register file and 0.73 were read
off the bypass network. In terms of actual performance, we
observed that using four read and four write ports caused
very few instructions to stall due to a conflict for a port and
the resulting IPC degradation was only 2% on average. This
is a three-fold reduction in the number of register ports, but
comes at the cost of some additional complexity in the issue
stage. Along with various other structural hazards, the issue
stage with this organization has to take into account the port
requirements of the ready instructions and postpone the is
sue of instructions that do not have sufficient ports. The is
sue queue is already aware of which registers can be read off
the bypass network — these are the same registers involved
in the wakeup logic that cycle. The changes in the select
logic are described later. To handle the limited write band
width, arbitration logic is required before functional units
can write results onto the result bus. Since destination reg
isters of instructions are known in advance, this arbitration
can occur a cycle in advance of writing the result. Addi
tional registers have to be provided at the functional units to
buffer results that fail to use the result bus right away, or the
pipeline for the functional unit has to be stalled.

This additional logic overhead is small compared to the
drastic register file energy, area, and access time savings
in going from a 24-ported structure to an 8-ported struc
ture. The most significant overhead, which we quantify in a
later section, is the cost of drivers/multiplexors used to di
rect data from the eight ports to the 24 datapaths. The values
from the read ports have to now be distributed to multiple
functional unit inputs. As a worst-case scenario, we assume
that the value read from any of the ports can be sourced by
any of the functional unit inputs. Figure 2 shows the struc
ture of the limited-port organization being considered. We
start with this base case as it represents an attractive design
point and see if we can further reduce its complexity.

4.2 Register File Banking

In an TV-banked register file, the various registers are dis
tributed among N banks, with each bank having p ports.
Hence, as many as N x p values can be read in any cy
cle, with the added restriction that only p values can be read
from any one bank. I f the operands being read in a cycle
are evenly distributed among the various banks, there is al
most no IPC degradation compared to a central register file
with N x p ports, yet complexity is greatly reduced as each
structure has fewer registers and fewer ports.

We evaluate the use of a banked register file with a sin
gle read and write port per bank. Figure 2 shows a 4-banked
organization. Here, an instruction may have both its source
operands in a single bank, making it impossible for both to
be read in the same cycle. Hence, we must allow ‘partial
reads’ , i.e., if an instruction cannot issue because of bank
conflicts, but can read one of its operands, it does so and

241

ports 1-4

port 1 port 2 ... port 15 port 16

E) [] Q] [] output drivers

output driversr-1-! r—i r—I r-̂ -i . -------------------
serve as m u x L j j y y U . . . repeated 16 times asmuxtp i j Q □ ...repeated

feeds 16 muxes

4 banks, each with one port

□□□□
feeds 16 muxes

116 times

FU FU FU FU

Figure 2. A conventional monolithic register file for an 8-issue processor, a monolithic register file organization with a
limited number of ports, and a banked, single-port-per-bank organization (only read ports shown here).

saves the operand in the latch at the input to the functional
unit. The instruction continues to remain in the issue queue,
but it marks the corresponding operand as ‘read’ . In subse
quent cycles, the instruction continues to compete for the
bank corresponding to its second operand, while holding
up its functional Unit. When the instruction finally reads
its second operand, it starts executing. While this is nec
essary to avoid deadlock, this phenomenon has a minimal
impact on performance as it occurs very infrequently due
to operands being frequently read off the bypass network.
The maximum percentage o f ‘partial reads’ out of all issued
instructions was found to be only 4% for a 4-banked orga
nization while running em3d.

The select logic in the issue queue has to take into ac
count the contention for the ports and the functional units,
and different implementations can trade-off select logic ac
cess time with IPC. One possible implementation would be
to resolve conflicts for ports and functional units indepen
dently (using Palacharla’s tree of request-grant blocks [19])
and allow an instruction to issue only i f it was able to pro
cure its functional unit and at least one register file port.
W hile this implementation minimally impacts the latency of
the select logic, there could be instances where an instruc
tion could have issued, but does not, potentially degrading
IPC. An alternative implementation could take into account
port and functional unit availability at each request-grant
block, before allowing a request to propagate up the tree.
This could increase the delay of the select logic, but would
improve the allocation of resources to ready instructions.
We assumed the latter implementation in our simulations.

5 Evaluation
5.1 Simulation Methodology

We used Simplescalar-3.0 [3] for the Alpha A X P instruc
tion set to simulate a dynamically scheduled superscalar
processor with the simulation parameters summarized in
Table 1. The simulator has been modified to model the

Fetch queue size 16
Branch predictor comb, of bimodal and 2-level gshare;

bimodal size 2048;
Levell 1024 entries, history 10;

Level2 4096 entries (global)
Combining predictor size 1024;

RAS size 32; BTB 2048 sets, 2-way
Branch mispredict cost 11 cycles

Fetch, dispatch, commit width 8
int.fp issue width 8,4

ROB and Ld/St queue 200 and 100
Issue queue size 64 (int and fp, each)

LI I and D-cache 64KB 2-way, 32-byte lines, 2 cycles
L2 unified cache 1.5MB 6-way, 64-byte lines, 15 cycles

TLB 128 entries, 8KB page size
Memory latency 70 cycles for the first chunk
Memory ports 4 (interleaved)

Integer ALUs/mult-div; 8/4
FP ALUs/mult-div 4/4

Table 1. Simplescalar simulator parameters.

memory hierarchy in great detail (including interleaved ac
cess, bus and port contention, writeback buffers, etc). We
model issue queues that are smaller than the ROB size
(in Simplescalar, the issue queues and the ROB consti
tute one single unified structure called the Register Update
Unit (RUU)), a physical register file and mapping of log
ical registers to them, and split integer and floating-point
issue queues and physical register files, similar to the Alpha
21264 microprocessor [12] but enhanced for wider issue.
We also chose our ROB and issue queue sizes in order to
ensure that they did not introduce an additional bottleneck
so as to focus the results on the register file.

As benchmarks, we use a wide variety of programs,
from the Olden [22], SPEC2000, SPEC95, U C LA Medi-
abench [14], and NAS parallel benchmark [7] suites. The
benchmark set represents a mix of both integer and floating
point programs, as well as a mix of memory-intensive low
IPC programs (that tend to run out of registers because
of long latency operations that stall the commit stage) and
non-memory-intensive high IPC programs (that tend to be

242

100-L1 60-L1,40-L2
LI 258 197
L2 0 17

L1-L2 bus 0 17
usage counters 0 22

sequence number storage in usage table 0 39
copy list 0 8

Total 258 300

Benchmark Input
set

Instrs
simulated

LI
mrate

Base
IPC

em3d (Olden), FP 20K, 20 1000-1010M 28% 0.86
sp (NAS-uniproc), FP A, 2500-2525M 20% 1.44
gzip (SPEC2k), Int ref 2000-2050M 1% 2.04
vpr (SPEC2k), Int ref 2000-2050M 2% 1.49

crafty (SPEC2k), Int ref 2000-2050M 1% 2.48
art (SPEC2k), FP ref 300-350M 26% 1.53
gcc (SPEC95), Int ref 300-325M 1% 1.68
peri (SPEC95), Int ref 500-525M 0% 2.73

cjpeg (Mediabench), Int test 200-225M 0% 1.70
djpeg (Mediabench), Int test 150-175M 0% 3.87

Table 2. Benchmark description and L I D-cache miss
rates. Base IPC represents a processor model with a
monolithic register file with 160 entries and 24 ports.

constrained by register file bandwidth). To reduce simu
lation time for all programs, we studied cache miss rate
traces to identify smaller instruction intervals that were rep
resentative of the whole program. The simulation was fast-
forwarded past the initial warm-up phases and another one
million instructions were simulated in detail to prime all
structures before doing the performance measurements over
the chosen interval. Details on the benchmarks are listed in
Table 2. The programs were compiled with Compaq’s cc,
f77, and f90 compilers for the Alpha 21164 at the highest
optimization level. The program code uses 32 integer and
32 floating-point logical register names.

To quantify the complexity of the baseline and proposed
register file organizations, we used the access time and en
ergy models of CACTI-2.0 [28] at 0.18/x technology as a
baseline. We modified it to model a register file (similar to
that done by Farkas [9]). Additional changes were made to
model our proposed organizations, details of which appear
in the next subsections.

5.2 Two-level Register File Evaluation
Our base case consists of a monolithic single-level reg

ister file with four read ports and four write ports. As shall
be seen in the next section, this has almost the same IPC as
a base case with 16 read and 8 write ports. To this, we add
an L2 register file with a single read and a single write port.
For our initial experiments, the sum of the registers in the L I
and L2 equals 160 (int and fp, each), which is roughly the
maximum number of required registers for a ROB size of
200. We do not add any additional ports to the L I - copies
to the L2 are made only when there are free ports available.
We also attempt copies only i f there are fewer than eight
registers in the L I free register pool. When a mispredict
is discovered, register values need to be copied back into
the L I . We assume that up to four transfers can be made
without adding to the mispredict penalty, i.e., that it takes
at least four cycles for instructions from the correct path to
reach the issue stage and that one copy can be made in each
of these cycles. These are rather pessimistic assumptions as

Table 3. Energy breakdown for the monolithic and
two-level register files. Energy is shown as the arith
metic mean of pJ/instr across all programs.

typical superscalar pipelines today usually have more than
four stages before the issue stage. I f more than four copies
need to be made, we stall the fetch stage by an extra cycle
for every additional copy.

We start by assuming that the register file access time is
the critical path and determines the clock speed. To com
pare various organizations, we use two metrics, IPC and
instructions per second (IPS), which is derived by divid
ing the IPC by the access time for the register file. Fig
ure 3 shows overall performance results (using the harmonic
mean (H M)) for various register file organizations. The
graph on the left shows the variation in IPC with the size
of the L I register file. The solid line shows IPCs for single
level register files, while the dotted line shows IPCs when
these organizations are augmented with a second level (with
the sum of the L I and L2 register files held constant at 160
registers). The gap between the two lines represents the
speedup possible by the addition of a second level. An over
all IPC of 1.67 is the maximum possible for a ROB size
(in-flight instruction window) of 200 and the two-level or
ganization quickly saturates to this value, having an IPC of
as high as 1.63 with just 80 L I registers. The single-level
organization requires as many as 140 registers to attain an
IPC of 1.65. This suggests that out of 140 physical registers,
only about 80 are ‘active’ at any given time. The remaining
60 don’t have any consumers unless there is a misprediction
or exception and they can be moved away to the L2.

Assuming that in high frequency designs the register file
access time determines the clock speed, a designer would
use the IPS metric to pick the best design point. The graph
on the right in Figure 3 shows how IPS varies with the size
of the L I register file. For the single-level register file, this
value peaks for a 100-entry register file. The corresponding
peak for the two-level organization is seen for a 60-entry
L I . The gap between the two curves illustrates that the two-
level organization strikes a better balance between IPC and
access times - its optimal IPS is 17% better than the opti
mal IPS with a single-level register file. For the two-level
structure with a 60-entry L I , we also studied the effect of
varying the L2 register file size and found that a 40-entry
L2 yielded IPC within 1% o f a 100-entry L2.

The use of a smaller L I register file could also poten

243

L1 register file size LI register file size
Figure 3. Graphs showing IPC and IPS with varying L I register file sizes for the single and two-level organizations.

tially result in energy savings. The energy per access was
estimated using CACTI-2.0. For each port that was not ac
cessed in a cycle, we assumed that it consumed 10% of
its maximum energy. For the two-level organization, we
also considered the cost of transfers across the bus between
the L I and L2. We also attempted to model the additional
structures (usage table, copy list) with CACTI-2.0. It must
be pointed out that modeling these auxiliary structures as
RAMs represents one design point, which might not neces
sarily be the most optimal in terms of energy efficiency.

Table 3 shows the various components of the average en
ergy consumption for the 100-entry monolithic register file
and the two-level register file. When the auxiliary struc
tures are not considered, the two-level organization con
sumes 11 % less energy. The L2 register file is a single
ported structure and it does not add significant energy over
head. Rather, there is a drastic L I energy savings due to
the reduction in the size of the heavily ported L I structure.
When the energy from the other structures is taken into ac
count, the two-level organization ends up consuming 16%
more energy than the monolithic base case. Most of this
energy comes from the various decoders in these structures,
which emphasizes the need to design them carefully, so that
decoders from other stages can be integrated with them (as
described in Section 3).

To show behavior on individual applications, we also
show IPS numbers for three of the organizations in Figure 4.
The first two bars show IPSs for single-level register files
with 60 and 100 registers, while the last bar shows IPSs for
a two-level organization with 60 registers in the L I and 40
in the L2. A ll the programs show an IPC improvement in
going from a 60-entry L I to a 100-entry L I , though the in
creased access time does not always translate into higher
IPS. The two-level organization does a very good job iden
tifying ‘inactive’ registers and moving them to the L2, often

Figure 4. IPSs for individual applications for single
level register files of sizes 60 and 100 and a two-level
organization with a 60-entry L I and 40-entry L2.

achieving IPCs comparable to the larger single-level regis
ter file, while maintaining a low access time and exceeding
its IPS. The L1-L2 copies accounted for about 18% of all
accesses to the L I. Very few L2-L1 copy-backs were re
quired on each mispredict and in most cases, these were ef
fected without stalling the front-end. The program vpr was
the only exception - in a 50M instruction simulation, it ef
fected 22.5M copies from L I to L2, of which 1.6M had to
be copied back on mispredicts, resulting in as many as 0.8M
front-end stalls, and resulting in a minor 0.016 CPI loss.

5.3 Banked Register File Evaluation

We now study the implications of a register file that has
a single read and a single write port, but is organized into
N banks. For N = 4, it has the same peak read and write
bandwidth as the base case, but incurs an IPC degradation

244

because of the added constraint that two values cannot be
sourced in the same cycle if they lie in the same bank.
The banks are high-order interleaved, i.e., the high-order
operand address bits select the correct bank to read or write.

We use a processor with the parameters described in the
earlier section and use a 160-entry register file (int and fp,
each) in order to study a high IPC model with the most !
potential for bank conflicts. For the banked structure, we
show results with four and eight banks, with the registers
distributed equally among these. A t the time of rename,
free registers are picked out of the banks in a round-robin
order to ensure that there is a fair distribution of registers
among the banks. There can be at most eight outstanding
partial reads at any given time (one for each integer func
tional unit) and at most eight results can be buffered due to
a failure to get access to the write ports.

Figure 5 shows IPC results for various organizations.
The first bar shows a conventional organization with 24
ports. The second bar shows the chosen base case that has
a single bank, allowing four reads and four writes in a cy
cle. As can be seen, the chosen base is within 2% of the
24-ported register file. The third bar shows the effect of
using four banks, each with one read port and eight write
ports, while the fourth bar also has four banks, but only
a single read and a single write port. Thus, the third bar
shows the penalty imposed by conflicts for read ports and
the fourth bar shows the additional penalty because of write 1
port conflicts. When compared with the organization with
24 ports, there is a 1% drop in IPC because of read con
flicts. The degradation increases to 5% when write conflicts
are also taken into account. (However, the IPC degrada
tion when compared with the organization with the same
read/write bandwidth is only 3%.) The most significant IPC
degradations are seen for some of the high ILP programs,
like djpeg, peri, crafty, and gzip - the greater the number of
instructions issuing every cycle, the greater the number of
bank conflicts. The IPC for djpeg is about 10% worse than
the non-banked register file with the same bandwidth.

For the 4-banked organization, each functional unit input
multiplexes one of the four values read from the register file
(Figure 2). I f more than one functional unit attempts to read
the same register in the same cycle, this can be done without
having to read that value twice, i.e., the value is read once
and multiplexed to both functional units without any added
logic. Instead, if this value is read twice, it leads to a great
number of bank conflicts, resulting in a further 4% IPC loss.
This happens because some registers have many consumers
in the same cycle, most notably, the stack pointer.

To reduce bank conflicts, we attempted simple schemes
where register mappings were steered to specific banks to
avoid conflicts. Steering the two operands of the same
instruction to different banks did not yield much benefit.
Since one of the operands is usually read off the bypass net-

Isingle bank, 16-rd, 4-wr
□single bank, 4rd, 4-wr
□four banks, 1 rd. 8wr each
Bfour banks, 1rd, 1wr each

em3d sp gzip vpr crafty art gcc peri cjpeg djpeg HM
Figure 5. IPCs for the conventional and the base case
(single bank with four read and four write ports),
and for organizations with four banks. The third
bar shows the effect o f limited read ports, the fourth
shows the effect o f limited read and write ports.

Figure 6. IPCs with eight bank organizations.

work, this phenomenon is not a source for conflicts. We
tried to see i f two instructions issued in the same cycle on a
regular basis. I f such instructions were identified, the source
(and also their destination) registers could be mapped to dif
ferent banks to help reduce the chances of a conflict. How
ever, due to the unpredictable nature of scheduling because
of cache misses, resource conflicts, etc, we observed that
two instructions that issued together in a cycle were likely
to do so again during their next instantiation with a probabil
ity of only 20%. Simple predictors that exploited this prop
erty to steer registers to specific banks showed negligible
improvements. More complicated predictors could possi
bly do a better job, but because the maximum improvement
possible was only 5%, we did not attempt these.

The easiest way to reduce conflicts is to simply imple
ment more banks. Figure 6 repeats the experiments in Fig
ure 5, but with eight banks. There is almost no degradation
because of read port conflicts. The write port conflicts result

245

L1/L2
Organiza

banks
tion

ports/bank
IPC Access

time (ns)
IPS

(BIPS)
Energy
pj/instr

160 1 16-r, 8-w 1.70 2.51 0.68 1524
160 1 4-r, 4-w 1.67 1.35 1.24 368
100 1 4-r, 4-w 1.54 1.12 1.38 258
60 1 4-r, 4-w 1.18 0.91 1.30 187

60/40 1 4-r, 4-w 1.45 0.91 1.59 300
160 4 1-r, 1-w 1.62 0.97 1.67 84
160 8 1-r, 1-w 1.68 0.98 1.71 107
100 4 1-r, 1-w 1.49 0.94 1.59 73

60/40 4 1-r, 1-w 1.39 0.91 1.53 183

Table 4. Summary for various organizations.

in a 2% IPC loss when compared with the 24-ported regis
ter file. However, the cost o f an eight-banked structure is a
potential increase in access time, which we now evaluate.

In determining the access time of the monolithic struc
ture with fewer ports (four read and four write), we have
to take two additional delays into account. First, the sig
nal read off the bitline has to be distributed via a driver to
as many as 16 possible datapaths (eight integer units, two
operand inputs each). A t each of these datapaths, there ex
ists a multiplexor that then selects the data read out of one
of the four read ports and forwards it to the functional unit
input. We modified CA CTI-2.0 to take these two effects
into account. The conventional organization simply has an
output driver that transmits the data to the functional unit.
The fewer-ported structure has a buffer that feeds 16 output
drivers. The output drivers (which are tristate buffers and
serve as the multiplexors) also have a greater delay because
four of them drive the same bus.

The four-banked organization has a similar output struc
ture as the fewer-ported organization. Once the four values
are read out, they follow the same path as in the latter. How
ever, access time is reduced because the delay to read data
out o f each bank is smaller (each structure is one-quarter the
size and has one-quarter the read and write ports). We also
take into account the time taken to propagate a signal across
the breadth o f all the banks.

Table 4 summarizes the features of the four organiza
tions evaluated. According to the access times obtained
from CACTI-2.0, reducing the number of ports in the mono
lithic structure from 24 ports to 8 reduces the access time
from 2.51ns to 1.35ns, a 46% drop, even when account
ing for the additional delay of the buffer and output multi
plexors. By further splitting the register file into 4 banks,
each with one read and one write port, the access time is
reduced by an additional 28% to 0.97ns. O f this delay,
0.1 Ins was because of the buffer and the mux and 0.24ns
was because o f the propagation delay across the breadth of
all the banks. With the 8-banked structure, the access time
increases slightly. Even though the access time for an indi
vidual bank decreases, it takes longer to propagate a signal
across all banks. Given that these drastic access time reduc

tions are possible with almost negligible IPC penalties, the
IPS metrics for the banked organizations are correspond
ingly much higher - the 8-banked register file has an IPS
that is 38% higher than the single-banked register file.

In terms of register file energy, the 24-ported structure
consumes 1524pJ per instruction on average. The single
bank 8-ported structure achieves more than a factor of
four lower energy consumption (368pJ/instr). The four-
banked structure shows a further reduction by a factor of
4.4 for a per instruction consumption of 84pJ. Finally, by
using the eight-banked structure, energy increases slightly
to 107pJ/instr. This occurs because the additional decoders,
bitlines, and wordlines of the eight-banked structure still
dissipate energy under our model even when idle, although
the energy of the selected bank is reduced.

The use of fewer ports introduces some logic in the se
lect stage of the issue queue and some arbitration logic at
the functional units. Our analysis has not taken into ac
count the extra energy consumed within these structures.
Given that the proposed register file organizations consume
about 18 times less energy than the base case, we expect
that these overheads would be comparably negligible. The
power models based on Wattch [2] attribute very little power
to the select logic when compared with the register file.

5.4 Combining the Two Techniques

So far, we have studied the two orthogonal aspects of
the register file in isolation - the number of entries and the
bandwidth. In this subsection, we see the effect of combin
ing the two, i.e., using a smaller banked L I in conjunction
with an L2 register file. The banked organization reduces
access time as well as energy consumption for a marginal
IPC loss, while the two-level organization also reduces ac
cess time but with a potential increase in energy consump
tion due to auxiliary structures.

Figure 7 shows the IPS of the combined two-level,
banked approach as well as that of the individual techniques
for each benchmark. Table 4 provides a breakdown of the
performance numbers as well as average energy. In compar
ing the two-level, banked, and combined organizations, we
find that IPS performance actually degrades slightly when
the techniques are combined. The reason is that the access
time improvement of splitting a banked organization into
two levels is overridden by the IPC degradation incurred.
With such a small number of registers in each bank to begin
with, the bitline delay ceases to dominate the access time
to the point where further reducing the number of registers
in each bank via splitting into two levels has diminishing
returns. Thus, even though the IPC degradation effects of
combining the two techniques are additive (but no more
than this), the reductions in access time are not. We also
found that this held true for the larger register files likely to
be implemented in simultaneous multithreaded processors.

246

Figure 7. IPSs for the single-level base case, for the
single-level banked organization, for the two-level
non-banked, and the two-level banked organizations.

For example, with 512 total registers, an eight-way banked
register file has an access time of 1.05ns in 0.18/^ technol
ogy, while a two-level eight-way banked organization with
256 registers each in LI and L2 has only a slightly lower ac
cess time of 0.99ns. Thus, we conclude that at least for the
0.18/i parameters that we used in our analysis, combining
the techniques does not afford any advantage.

We also find that for a given number of registers (100
in this case), the two-level and banked organizations per
form identically. The advantage of the two-level organiza
tion is its simpler layout compared to the banked organiza
tion, which requires many wires to span the breadth of the
register file and many output multiplexers. If layout con
siderations are the overriding concern, then the two-level
organization is the most effective means to reduce register
file access time and increase IPS. If energy considerations
are paramount, then the banked approach provides a signif
icant energy savings in addition to a marked performance
improvement.

6 R elated W ork

Cruz et al [6] use a two-level hierarchical inclusive reg
ister file organization (where the second level contains all
values). In comparison, our organization uses an exclusive
caching policy that avoids the IPC loss from missing in the
first level. However, the penalty is a potentially larger size
and access time for the LI. Hence, the choice of which
organization works better would depend on the target fre
quency, the process parameters (the register file size that
can be supported in a single cycle), and the benchmark set.

Zalamea et al [31] proposed a two-level register file that
is compiler-controlled for reduced register spilling in the
context of VLIW processors. The Cray-1 [23] also imple
mented a software-controlled two-level hierarchical regis

ter file. Yung and Wilhelm [30] explored the possibility of
caching part of the register file with an LRU replacement
policy in the context of an in-order processor. Swensen and
Patt [25] proposed a hierarchical non-inclusive register file,
where different banks have different sizes and speeds.

Processor implementations, such as the HP PA-
8000 [13], maintain a logical register file that holds com
mitted values, and the rename registers are maintained in a
separate bank (perhaps in the ROB). Since a functional unit
could source values in either bank, this partitioning into two
banks does not result in a reduction in access time.

The conditions under which a register can be deallocated
have been dealt with in detail by Moudgill et al [18]. Wal
lace and Bagherzadeh [27] and Monreal et al [17] propose
delaying the allocation of registers until the time to actually
write the value, thereby improving its utilization.

Partitioned non-hierarchical register file organizations
have been proposed in the past [1, 4, 5, 8, 12,15, 21]. These
organizations have clusters of functional units, with each
cluster having its own private register file. While these orga
nizations reduce porting requirements per cluster, they still
provide dedicated ports per functional unit, and they incur
additional latency (in extra cycles) when values from other
clusters need to be communicated. In our banked organiza
tion, the banks are adjacent and are treated as one structure.
As a result, we pay a penalty in terms of a slightly longer
access time as an operand could be sourced from any of the
banks, which requires a multiplexor and the added delay of
having to cross multiple banks. However, this choice makes
it possible to have as few as a single read and single write
port per bank. Such an organization was also proposed by
Janssen and Corporaal [11] in the context of a VLIW pro
cessor. Their scheme requires compiler support and incurs
a non-trivial IPC degradation. In comparison, our scheme
does not require compiler support and uses a wider issue
processor. We also quantify the effect of the added circuitry
on access time and energy, and evaluate its impact on the
performance of a dynamic superscalar processor.

7 C onclusions

The register file is a key bottleneck in modern dynamic
superscalar processors. Both a large number of registers and
many ports are necessary to support a large window of in
flight instructions and extract enough ILP. The access time
of the register file is, however, critical in determining cycle
time, requiring that its design be as simple as possible. The
register file may also be a significant contributor to overall
power consumption.

In this paper, we address the latency and energy con
sumption of the register file using two orthogonal ap
proaches that can be combined. The novel contributions
of the paper are: a hierarchical division of registers into
those with active consumers and those waiting for precise

247

conditions (different from earlier partitioning proposals in
being hardware-based and not compiler-based); the use of
minimally-ported register file banks, which has not been
studied in the context of dynamically scheduled processors;
and a thorough evaluation of IPC, access time, and energy.

Our results show that the use of a two-level structure
helps reduce the access time of the first-level register file
in comparison to a single-level register file for roughly the
same IPC. When using the instructions per second met
ric, the two-level organization performs 17% better than the
best single-level organization. Using a banked single-port-
per-bank register file organization reduces access times by a
factor of more than two and energy consumption by a factor
of more than 18 when compared to a conventional organiza
tion. These improvements are obtained without a significant
degradation in IPC. The choice of technique — two level or
banked — is dependent on design goals.

R eferences

[1] A. Baniasadi and A. Moshovos. Instruction Distribution
Heuristics for Quad-Cluster, Dynamically-Scheduled, Su
perscalar Processors. In Proceedings of MICRO-33, pages
337-347, Dec 2000.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Frame
work for Architectural-Level Power Analysis and Optimiza
tions. In Proceedings of ISCA-27, June 2000.

[3] D. Burger and T. Austin. The Simplescalar Toolset, Version
2.0. Technical Report TR-97-1342, University of Wisconsin-
Madison, June 1997.

[4] R. Canal, J. M. Parcerisa, and A. Gonzalez. Dynamic Cluster
Assignment Mechanisms. In Proceedings ofHPCA-6,2000.

[5] A. Capitanio, N. Dutt, and A. Nicolau. Partitioned Register
Files for VLIWs: A Preliminary Analysis of Trade-offs. In
Proceedings of MICRO-25, 1992.

[6] J.-L. Cruz, A. Gonzalez, M. Valero, and N. P. Topham.
Multiple-Banked Register File Architectures. In Proceed
ings of the ISCA-27, pages 316-325, 2000.

[7] D. Bailey, et al. The NAS Parallel Benchmarks. Techni
cal Report TR RNR-94-007, NASA Ames Research Center,
March 1994.

[8] K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic. The Mul
ticluster Architecture: Reducing Cycle Time through Parti
tioning. In Proceedings ofISCA-24,1997.

[9] K. Farkas, N. Jouppi, and P. Chow. Register File Considera
tions in Dynamically Scheduled Processors. In Proceedings
of HPCA, 1996.

[10] L. Gwennap. PA-8500’s 1.5M cache aids performance. Mi
croprocessor Report, 11(15), November 17, 1997.

[11] J. Janssen and H. Corporaal. Partitioned Register File for
TTAs. In Proceedings of MICRO-28, 1995.

[12] R. Kessler. The Alpha 21264 Microprocessor. IEEE Micro,
19(2):24-36, March/April 1999.

[13] A. Kumar. The HP PA-8000 RISC CPU. IEEE Computer,
17(2), March 1997.

[14] C. Lee, M. Potkonjak, and W. Mangione-Smith. Media
bench: A Tool for Evaluating and Synthesizing Multimedia
and Communications Systems. In Proceedings of MICRO-
30, pages 330-335, 1997.

[15] P. Lowney, S. Freudenberger, T. Karzes, W. Lichtenstein,
R. Nix, J. O’Donnell, and J. Ruttenberg. The Multiflow
Trace Scheduling Compiler. Journal o f Supercomputing,
7(1-2):51—142, May 1993.

[16] D. Matzke. Will Physical Scalability Sabotage Performance
Gains? IEEE Computer, 30(9):37-39, Sept 1997.

[17] T. Monreal, A. Gonzalez, M. Valero, J. Gonzalez, and
V. Vinals. Delaying Physical Register Allocation through
Virtual-Physical Registers. In Proceedings of MICRO-32,
pages 186-192, Nov 1999.

[18] M. Moudgill, K. Pingali, and S. Vassiliadis. Register Renam
ing and Dynamic Speculation: an Alternative Approach. In
Proceedings o f MICRO-26, 1993.

[19] S. Palacharla, N. Jouppi, and J. Smith. Complexity-Effective
Superscalar Processors. In Proceedings of ISCA-24, 1997.

[20] J. Rivers, G. Tyson, E. Davidson, and T. Austin. On High-
Bandwidth Data Cache Design for Multi-Issue Processors.
In Proceedings of MICRO-30, pages 46-56, 1997.

[21] S. Rixner, W. Dally, B. Khailany, P. Mattson, U. Kapasi, and
J. Owens. Register Organization for Media Processing. In
Proceedings o f HPCA-6, Jan 2000.

[22] A. Rogers, M. Carlisle, J. Reppy, and L. Hendren. Support
ing Dynamic Data Structures on Distributed Memory Ma
chines. ACM TOPLAS, Mar 1995.

[23] R. Russell. The Cray-1 Computer System. In Readings in
Computer Architecture, 2000.

[24] G. Sohi and M. Franklin. High-Bandwidth Data Memory
Systems for Superscalar Processors. In Proceedings o f ASP-
LOS, pages 53-62, 1991.

[25] J. Swensen and Y. Patt. Hierarchical Registers for Scientific
Computers. In Proceedings of ICS, pages 346-354, 1988.

[26] D. TUllsen, S. Eggers, and H. Levy. Simultaneous Multi
threading: Maximizing On-Chip Parallelism. In Proceedings
o f ISCA-22, pages 392-403, 1995.

[27] S. Wallace and N. Bagherzadeh. A Scalable Register File
Architecture for Dynamically Scheduled Processors. In Pro
ceedings o f PACT, Oct 1996.

[28] S. Wilton and N. Jouppi. An Enhanced Access and Cycle
Time Model for On-Chip Caches. Technical Report TN-
93/5, Compaq Western Research Lab, 1993.

[29] K. Yeager. The MIPS R10000 Superscalar Microprocessor.
IEEE Micro, 16(2):28^1, April 1996.

[30] R. Yung and N. Wilhelm. Caching Processor General Reg
isters. In Proceedings of the International Conference on
Circuits Design, 1995.

[31] J. Zalamea, J. Llosa, E. Ayguade, and M. Valero. Two-Level
Hierarchical Register File Organization for VLIW Proces
sors. In Proceedings o f MICRO-33, Dec 2000.

248

