
T i m e d E v e n t / L e v e l S t r u c t u r e s *

Wendy Belluomini Chris J. Myers
Computer Science Department Electrical Engineering Department

University of Utah
Salt Lake City, UT 84112

University of Utah
Salt Lake City, UT 84112

Abstract

This paper presents timed event/level(TEL) structures, an extension to timed event-rule structures, which allows the general
use of signal levels and timing in the specification of an asynchronous circuit. TEL structures can express true OR causality,
as well as language constructs that are very difficult to describe using purely event based specification methods. This flexibility
makes it possible to easily express VHDL and CSP handshaking specifications as TEL structures. Circuits can be synthesized from
timed event/level structures using a modified version of the geometric timing analysis method without any significant increase in
synthesis time. Therefore, timed event/level structures increase specification flexiblity without impacting synthesis performance.

1 Introduction
Although asynchronous circuits have been a popular research topic in universities for a number of years, they have been slow to
catch on in industry. This is partly due to the fact that until very recently, most of the theoretical advantages of asynchronous
design had not been conclusively demonstrated in practice. However, industry's reluctance to use this design style is largely
due to the lack of asynchronous design tools that are capable of meeting their needs. The existing tool suites for synchronous
design allow a designer to specify circuits in a reasonably high-level language such as Verilog or VHDL. The tools then do all
the low level details of circuit synthesis. Although a number of asynchronous design tools exist, they all have weaknesses that
make them unsuitable for large scale industrial designs and none of them even comes close to the flexibility and power available
in synchronous CAD tools. One of the weaknesses is that nearly all existing asynchronous CAD tools lack support for explicit
timing assumptions. These timing assumptions can often make the difference between an asynchronous circuit that is faster
than the corresponding synchronous circuit and one that is slower. Timing assumptions can be made manually by the designer,
but this is very error prone. Another weakness is that the behaviors that can be specified by the asynchronous tools are often
severely limited. In particular, many asynchronous tools do not provide support for checking the level of a signal. This limits the
usefulness of the tool and makes it difficult to specify any behavior where sampling the value of a signal is necessary. Simple
concepts, such as a loop on a condition, often have complex or imprecise specifications if level information cannot be included.
This makes asynchronous design tools harder to use and less appealing to industrial designers.

There are currently two general approaches to specifying the behavior of asynchronous circuits: language-based approaches
and graph-based approaches. The two specification methods each allow a somewhat different class of circuit to be specified and
require different methods for synthesis. Therefore, the specification method chosen can determine to a large extent the quality
of the resulting circuit. Synthesis methods for language-based specifications directly translate a program into a circuit. One
approach to this is syntax directed translation where language constructs are mapped directly to library blocks[1, 2]. In this
method, signal levels and concurrency are supported, but timing information cannot be specified. Also, the circuits produced can
be redundant and slow since optimizations are not seen when simply mapping program constructs to circuit blocks. In another
language-based method, the specification is translated to a circuit using a series of semantic preserving transformations [3]. This
approach also supports levels, but it requires a large amount of human intervention to be effective and has no support for timing.

Graph-based specification methods require a specification that is lower level than language based methods, but can make
synthesis of efficient circuits easier. In one graph-based method, an interpreted Petri net or STG is used for specification^, 5,
6, 7, 8]. STGs are very good at expressing concurrency. However, the traditional STG synthesis methods restrict the types of
choice allowed in the net, and they have no support for level information or timing assumptions. There is an extension to STGs
that does support levels[9], but it requires a restricted environment and synthesis algorithms for this extended specification are

*This research is supported by a grant from Intel Corporation, NSF CAREER award MIP-9625014, SRC grant 97-DJ-487, a DARPA AASERT fellowship,
and an NSF Traineeship award.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276284743?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

not presented. Additionally, in [10] extensions to STGs that support levels and timing are presented. However, this work, like
[9], does not present algorithms for synthesizing timed STGs with levels. Another graph-based method, change diagrams [11],
is similar to STGs but removes some of the restrictions by adding different types of arcs to the specification. These additional
arcs allow disjunctive behavior to be specified. However, change diagrams do not provide a way to model choice, and have no
provision for timing information. Other graph-based methods specify circuits using asynchronous state-machines, and synthesis
is performed using burst-mode techniques [12, 13, 14, 15]. The burst-mode method allows one purely conjunctive expression
to be specified on each arc of the state machine. However, burst-mode synthesis requires the fundamental-mode assumption
which states that when a state change occurs, all of the changing outputs are allowed to settle before any change in the input
signals. This can sometimes require adding delay between the circuit and its environment so that the inputs to the circuit do not
change before the outputs settle. Also, state-machine based specification is not well-suited to expressing concurrency since state
machines are inherently sequential. Finally, state machines do not express causality between output and input events directly,
making it difficult, if not impossible, to utilize timing assumptions to optimize the circuit.

The specification method used in the a t a c s tool described in [16] is a combination of the graph-based and language-based
approaches. While the tool accepts language-based specifications as input, it does not directly use them for synthesis. Instead,
ATACS compiles the input program written in a timed, event-based handshaking expansion into a graph, which is then used for
synthesis. ATACS uses timed event-rule(ER) structures, a variant of Winskel’s event structures [17] with timing, for synthesis.
Since timed ER structures separate causality from conflict, they are both easier to generate from high-level descriptions, and
easier to analyze. Unlike all of the previously described specification methods, timed ER structures allow the use of explicit
timing assumptions in synthesis. However, like STGs, timed ER structures have no support for levels in the specification. Due to
this limitation, previous versions of ATACS have limited the input languages to exclude conditional loops, true OR causality, and
any other constructs that require sampling the level of a signal.

This paper presents timed event/level(TEL) structures, an extension to timed ER structures which allows the general use of
levels in the specification of an asynchronous circuit. TEL structures allow information about levels to be included in the ER
structure in the form of an arbitrary boolean expression. This makes it possible to extend the specification languages accepted
by ATACS to allow the specification of conditional loops and true OR causality, as well as all other constructs that require
waits on boolean expressions. TEL structures can be synthesized using a modified version of the geometric timing analysis
method presented in [18], without any significant increase in synthesis time. Therefore, TEL structures facilitate more general
specifications without decreasing synthesis performance.

2 Motivating example
One of the important specification constructs that is much easier to express with levels is a loop on a condition. This, or any
construct that requires sampling the value of a signal and then making a decision based on the result, is very difficult to specify
in a purely event-based semantics. One specification where a conditional loop is required is the sbuf-send-pk2 controller from
the HP Post Office [15] benchmark suite. This example is cited in [14] as a motivation for the level extension to burst-mode
circuits and had to be modified to be expressed as an STG for the SIS benchmark suite. It is also an interesting example of the
expressiveness of TEL structures.

The purpose of this controller is to manage the transfer of packets between a sender and a receiver. First, the receiver asserts
req, which requests a line to be sent from the sender. Then the sender sends the line and raises sendline. When the receiver reads
the line, it acknowledges the sender by raising ackline. Then the sender lowers sendline, and the receiver responds by lowering
ackline. This protocol will continue until the receiver chooses to terminate it. To terminate the packet transfer, the receiver asserts
done sometime after the falling transition of sendline but before it raises ackline again. When the sender detects that done has
risen, it lowers sendline and also raises ack, indicating it has detected that the packet transfer is over. The receiver then lowers
req, ackline, and done in parallel and the sender, in response to this, lowers ack.

Figure 1 shows the TEL structures that represent the circuit and environment for the sbuf-send-pk2 controller. These TEL
structures are produced by compilation of the following handshaking level description of the circuit:

process circuit
*[[reg]; sendl inef; [->done A ackl ine —¥ sendl ineJ,; [^ackline]; s e n d l in e f ; *

| done A ackl ine (ackf || sendlineJ,); [->req A ->ackl ine]; aefej,;]]
process environment
*[reqf; [sendline]; acklinef;

[-isendl ine (done f || ackl ineJ,); [sendline]; ack l ine f [^sendl ine A ack]; (req\. || ackl ineJ, || done\); [->ack]
| -isendline —¥ acklineX [sendline]; ac k l i n e f ; *]]

Environment

[2,5]
<req:

Circuit

[2,5]

<done & ackline>

[2,5]
<~done & ackline>

[2,5]
<~req &
~ackline>

[2,5]
<~ackline>

Conflicts:
ack+ # sendline-/1
sendline-/2 # sendline-/1
ack- # sendline-/1 ackline-/3 # done+

ackline-/3 # ackline-/1
req+ # ackline-/3

Figure 1: TEL structure sbuf-send-pk2 controller.

The first thing to notice about the TEL structure representation is that each process in the specification is represented with
a separate TEL structure. In this case, there is one TEL structure for the circuit, and a second for its environment. This makes
TEL structures both easier to compile to and easier to read. When this particular specification is broken up into processes, it is
clear that the circuit itself is fairly simple, while the environment is more complex. TEL structures will be defined formally in
the next section, however, intuitively they can be thought of as graphical representations of timed handshaking expansions. Each
transition in a process corresponds to an event in the TEL structure. In the figure, events are shown as boxes connected by arrows.
If the same transition occurs multiple times in a handshaking expansion it may occur multiple times in the TEL structure, however
an optimizing step can often remove multiple occurrences of events. The arrows that connect events are referred to as rules, and
are annotated with both a boolean expression and a lower and upper timing bound. Rules represent the causality between events
in a process. When two events occur sequentially in the handshaking expansion, a rule connects them. If there is a wait on a
condition between these two events, the rule is annotated with that wait, indicating that the second event cannot occur until both
the first event has occurred and the condition has been satisfied. The timing bound, which distinguishes TEL structures from the
previously described specification methods, allows the designer to specify a range on the delay between the firings of events in
both the circuit and its environment. The compilation of both CSP and VHDL specifications to TEL structures is addressed more
formally in [19].

The behavior of TEL structures can be illustrated by examining how the structure for the sbuf-send-pk2 makes a choice
based on the value of signal done. If done is low when sampled, the handshaking indicates that only the event sendline- can
fire, otherwise events sendline- and ack+ occur in parallel. This choice is represented in the TEL structure by the conflict
relation(defined formally in the next section). If two events ei and e2 conflict, indicated e i# e 2, either ei or e2 can fire, but
not both. In this circuit, there are two sendline- events, sendline-/1 and sendline-/2, both of which cause the signal sendline to
fall. However, the conflict relation states that only one of them can occur. Additionally, ack+ conflicts with sendline-/1. Both
the rules and sendline-/2 are annotated with the expression , indicating
that these rules cannot fire unless both done and ackline are high. This corresponds to the condition done A ackline in the
handshaking expansion. The rule sendline-\— 5- sendline-/1 is annotated with the expression (^d o n eA ackline), corresponding
to the other choice in the handshaking expansion. If done is low when ackline rises, event sendline-/1 will fire. If done is high
when sampled, the TEL structure allows both ack+ and sendline-/2 to occur in parallel, just as specified in the handshaking
expansion. This example shows how choices based on signal levels in handshaking expansions can be directly represented by
TEL structures.

This example shows how TEL structures can be used to represent specifications that are quite difficult to express with purely
event based specification methods. Although they are no more expressive than general Petri nets, they are more expressive than
the free choice Petri nets which are required by most STG synthesis methods. Since they allow processes to be separated, they
significantly simplify compiliation, increase readability and make it possible to compile language constructs that involve levels.
They also allow the designer to make timing assumptions in both the circuit and the environment which are not possible with the
other specification methods.

3 The semantics of TEL structures
Event structures were introduced by Winskel[17] and timing has been added to them in several ways. Subrahmanyam added
timing to event structures using temporal assertions [20]. Burns introduced timing in a deterministic version, the event-rule
system, in which causality is represented using a set of rules, and a single delay value is associated with each rule[21]. Timed
ER structures, introduced by Myers in [16], allow a delay range to be associated with each rule. They can represent a set of
specifications equivalent to those represented by both time and timed Petri nets and can often express specification in a much
more concise way than a Petri net. TEL structures, described formally below, extend timed ER structures by allowing a boolean
expression to be associated with each rule.

з.1 Timed event/level structures
A TEL structure is a 6-tuple where:

1. N is the set o f signals;
2. so — {0,1 } N is the initial state;
3. is the set o f actions;
4. E C A x (M — {0 ,1 ,2 ...}) is the set o f events;
5. is the set ofrules;
6. # C E x E is the conflict relation.

The signal set, , contains the wires in the circuit specification. The state contains the initial value of each signal in .
The action set, , contains for each signal, , in , a rising transition, , and a falling transition, , along with the dummy
event $, which is used to indicate an action that does not cause a signal transition. The event set, E, contains actions paired with
occurrence indices (i.e., (a, i)). Rules represent causality between events. Each rule, r, is of the form (e, f , l , u, b) where:

1. e = enabling event,
2. / = enabled event,
3. = bounded timing constraint, and
4. = a sum-of-products boolean function over the signals in .

A rule is enabled if its enabling event has occurred and its boolean function is true in the current state. There are two possible
semantics concerning the enabling of a rule. In one semantics, referred to as non-disabling semantics, once a rule becomes
enabled, it cannot lose its enabling due to a change in the state. In the other semantics, referred to as disabling semantics, a rule
can become enabled and then lose its enabling. This can occur when another event fires, resulting in a state where the boolean
function is no longer true. In the non-disabling case, a rule is satisfied if it has been at least I time units since it was enabled and
expired if it has been at least w time units since it was enabled. In the disabling case, a rule is satisfied if it has been continuously
enabled for a time greater than or equal to and expired if it has been continuously enabled for a time greater than or equal to
и. The difference here is that in the non-disabling case, a change in the state after the rule is enabled does not effect the time at
which it becomes satisfied or expired. Excluding conflicts, an event cannot occur until every rule enabling it is satisfied, and it
must occur before every rule enabling it has expired.

The conflict relation, , is used to model disjunctive behavior and choice. When two events and are in conflict (denoted
), this specifies that either can occur or can occur, but not both. Taking the conflict relation into account, if two rules

have the same enabled event and conflicting enabling events, then only one of the two mutually exclusive enabling events needs
to occur to cause the enabled event. This models a form of disjunctive causality. Choice is modeled when two rules have the
same enabling event and conflicting enabled events. In this case, only one of the enabled events can occur.

Figure 2(a) shows an example of a specification expressed as a TEL structure with non-disabling semantics. It has one
conflict, , which indicates that either the event or the event can occur, but not both. It also implies that only one
of the signals or is necessary to fire . The rules , and do not have level annotations. These rules
function exactly the same as rules in standard ER structures and are enabled as soon as their enabling event, a+, fires. Since they
have a bounded timing constraint of [2,5], each of them becomes satisfied 2 time units after a+ fires and expired 5 time units
after a+ fires. The rule b-\— 5- a - has a level annotation, (e), and does not become enabled until both b+ has fired and the signal

is true. It becomes satisfied 3 time units after it becomes enabled and expired 6 time units after it becomes enabled. The rule
cH— 5- a - also has a level annotation, { / V g), and becomes enabled after c+ has fired and / V g is true. Since the semantics
is non-disabling, once the expression has become true, the rule will become satisfied after 6 time units, even if the expression
later becomes false. In general, non-disabling semantics are used for CSP or VHDL specifications. Figure 2(b) shows an or gate
represented as a TEL structure with disabling semantics. The rule becomes enabled when has fired and

Conflicts:
b+ # c+

Figure 2: Examples of TEL structures.

is true. It will become satisfied 2 time units later. If both x and j/ become false before z+ fires, the rule is disabled and it is
not satisfied again until 2 time units after x V y becomes true again. Disabling TEL structures are a very intuitive and compact
way to model gates. A combination of the semantics where non-disabling semantics are used for the specification and disabling
semantics are used for the implementation is useful for verification.

3.2 Timed configurations
We define the behaviors specified by TEL structures as timed configurations [16]. Winskel defined the allowed behaviors of
event structures as subsets of events, or configurations [17]. In order to describe the timing behavior of a TEL structure, timed
configurations include the time at which each event occurred. Also, since the concept of current state is necessary for TEL
structures, timed configurations are defined as sequences of events, rather than as sets, so the state that results from firing the
events can be computed.

The first requirement for a sequence of events to be a configuration is that it must be conflict-free. In other words, if two
events are in conflict, they cannot both occur in a configuration. The con set is the set of finite conflict-free sequences in E*, i.e
con is defined as follows:

con

In order to add timing, the Tcon set is derived from the con set by pairing each event with the real-valued time at which it occurred
(i.e., Tcon C (E x SR)*). The function u n tim e : T con con generates an untimed event sequence from a timed event sequence
in the obvious way.

The second requirement is that all events in the subset must be time-secured. Informally, this means that for each event in
the sequence, all the events needed to enable the event precede it in the sequence. It is useful in the following discussion to be
able to determine the set of events that occur in a sequence or . These sets are found using the functions

and :

se t(x 0 . . . x n) — {x : : Xf — x}
T se t(zo . . . z n) — { z -.3,% ■. Zi — z}

In order to determine whether a rule is enabled in a TEL structure, it is necessary to determine if the boolean expression associated
with the rule is satisfied in the current state. Given that a sequence of events X has occurred, the current state is the result of
firing all of the events in the sequence in order starting from the initial state so. The function s : con -5- {1 ,0}^ takes a sequence
of events and computes the final value for each signal in the current state as follows:

{1 if (3xj e s e t(X) : Xj — (u i+ ,m)) A (^ x * e s e t(X) : x* — {Uj — ,m ') A k > j)
0 if (3xj e s e t(X) : Xj — (ui — ,m)) A (^3x* e s e t(X) : x* — (u i+ ,m ') A k > j)

otherwise

This equation simply states that if the last event to occur on a signal is a rising transition, its final value is 1. If the last event is
a falling transition, its final value is 0. And if there have been no events on the signal it has its initial value. The current state
function allows a rule enabling relation to be formally defined. As described before, there are two different semantics concerning
rule enabling: one for the disabling case, and one for the non-disabling case. In order to clarify the differences, two separate rule
enabling relations are defined:

non-disabling
disabling

In the non-disabling case, this means that a rule is enabled by the sequence if there is some prefix of where its enabling
event has fired and its boolean condition is satisfied. A prefix of X is used for the non-disabling case since an event firing after the
rule becomes enabled may cause the boolean expression to become false, and in the non-disabling case, this should not disable
the rule. In the disabling case, the rule is enabled by a sequence if its enabling event is in and its boolean condition is
satisfied by the current state. Therefore, with this definition, events firing after the rule becomes enabled may cause it to become
disabled. The rule enabling relations are used in the definition of the untimed enabling relation for events, (con):

I h / • » [r = (e , f , l ,u ,b) G i?=» [(X |= r) V I r ' - (e ', f , l ' ,u ' ,b ') G i? : X |= r'A (e#e')]

This says that if the events in the sequence have occurred, the event is untimed enabled. This is true when all of the rules
that enable are either enabled or have an enabling event that conflicts with the enabling event of another rule enabling that
is enabled. Either the disabling or non-disabling rule enabled relation can be used when determining if an event is enabled. This
choice can be made on a global basis for the entire TEL structure or can be made on a rule by rule basis by adding an extra
type field to each rule. The untimed relation makes it possible to define the function, which determines, given a
sequence of events, whether each event was enabled when it fired:

secured

The secured relation defined above does not consider timing. In order to get a time-secured relation, a few more functions that
deal with timing and event sequences are needed. The first one, , returns the index of the last event in the
sequence that fired at or before time :

L(zq . . . z n , t) — max{i : Zi — (xi, tj) A ti < t}

The next function, tim e-pref: Tcon x Sft -5- Tcon, uses this index to compute the prefix of the sequence Z that contains all events
that fired at or before time :

t i m e - p r e f (Z, t) = z 0 ■ ■ ■ z L(z<t)

The function Ts:Tcon x 'R —? {0,1 } v , then uses time-pref to determine the state at a given time:

T s(Z ,t) — s(untime(time-pref(Z , t)))

Finally, the relation ConSat Tcon , uses Ts to determine whether a boolean expression is
continuously satisfied in the interval from to :

C o n S a t(b ,Z ,ti,t2) (y t : t \ < t < t2 b (T s (Z ,t)))

These functions make it possible to reason about whether a rule is satisfied. The rule satisfied relation, sat Tcon ,
determines whether a rule is satisfied at time given that its enabling event fired at time :

sat non-disabling
sat(Z, (e ,/ , I, w, &),£,£') ^ [3t" : b (T s(Z , t")) A \t" > t) A \t > t" + I) A ConSat(b, Z , t " , t)] disabling

These equations state that a rule is satisfied if it has been at least I time units since its enabling event fired and its boolean equation
became satisfied. In the disabling case, there is the added requirement that the boolean expression must remain continuously
satisfied until time . The timed enabling relation, (Tcon), uses the sat relation to define whether an event is
enabled at time by a sequence :

untime Tset

This says that the event is timed enabled by a sequence if it is untimed enabled by the untimed version of and all of the
rules that are necessary to make enabled are satisfied. The time-secured Tcon function can now be defined as follows:

time-secured

This says the sequence of event-time pairs in is time secured if and only if each event-time pair in is timed enabled
by the prefix of ending in .

The third requirement for a subset of events to be a configuration is that it is non-expired. An event is expired when for each
of the rules enabling it, the time since the rule was enabled has exceeded the upper bound of the rule's timing constraint. The
relation Rexp C T con x R x U x U, determines whether a rule is expired given that its enabling event fired at time f :

Rexp(Z, (e, f , I, u, b), t, t') ^ [3t" : b{Ts{Z , t")) A (t" > t') A (t > t" + u)] non-disabling
Rexp(Z, (e, f , I, u, b), t, t) [3t” : b (T s(Z , t ')) A (t" > t) A (t> t" + u) A C onSa t(b ,Z ,t”, t)] disabling

These equations state that a rule is expired if it has been at least time units since a time after its enabling event fired and
its boolean equation was satisfied. In the disabling case, there is the added requirement that the boolean expression must have
remained continuously satisfied until time . These equations are used in the relation expired Tcon to determine when
an event is expired:

expired(Z , / , t) [(untime(Z) h /) A V(e,^') e T s e t(Z) : (e , f , l ,u ,b) R exp (Z , (e, f , l ,u ,b) , t , t ') }

The next relation, non-expired C T co n x E , states that a timed configuration Z is non-expired if for every event, either the event
has occurred and was not expired when it occurred, a conflicting event occurred and was not expired when that event occurred,
or the event has not occurred and is not expired at any time before the latest time of any event occurrence in the configuration.

non-expired(Z) [V/ G E : [(3 (/, t) G T s e t(Z) : ->e x p ir e d (t im e -p r e f(Z ,t) ,f , t)) V
3(/',£) G T s e t (Z) (f # f) A -ie x p ir e d (t im e -p r e f(Z ,t) ,f , t) V

G Sft+ < ^max (0 : ~,e x p ir e d (tim e -p r e f(Z ,t) ,f , t)]]

A timed configuration of a TEL structure, , is a sequence of event-time pairs which is:

1. conflict-free: Z G T co n ;
2. time-secured: time-secured(Z);
3. non-expired: non-expired(Z).

4 Geometric timing analysis of TEL structures
Asynchronous circuits are synthesized from TEL structures by using a depth-first search to find all of the states allowed by the
specification. In order to perform this search, the algorithm must be able to determine which rules are enabled to fire in any given
state. A rule is untimed enabled if its enabling event has fired and its boolean expression is satisfied. Therefore, the algorithm
uses a set, , which contains all rules whose enabling event has fired and a state vector , which indicates the current value of
each signal. The pair R m x s c defines an untimed state since it indicates which rules are enabled, but says nothing about timing.
From this state, the algorithm can determine the set of enabled rules, . can be constructed from the untimed state by
including only those members of whose boolean expressions are satisfied by . In order to determine which rules in
are satisfied, timing information is needed. How this set of timing information, TI, is represented depends on the specific timing
analysis algorithm being used. At a minimum, this information must contain how long each rule has been enabled. A timed state
is defined to b e R m x sc x TI. A timed state contains all the information necessary to compute the set of satisfied rules, i?s . Only
rules in are allowed to fire and cause a transition to another state.

Our timing information is represented with geometric regions, first introduced in [22, 23, 24]. This approach has been shown
to be efficient for timed state space exploration [25, 26, 18] and can be easily modified to analyze TEL structures without any
substantial increase in synthesis time. The geometric region based timing analysis method for timed ER structures is based on
keeping track of the relationships between the enabling times of a set of rules. The only change that needs to be made to extend
the method to TEL structures is that the enabling condition now has an added requirement. Before a rule is considered enabled,
its boolean expression must be satisfied by the current state of the signals and if the disabling semantics is used, the expression
must remain satisfied until the enabled event fires. It is necessary to keep track of the signal states in order to use the result of the
state space exploration in synthesis anyway, so this check adds no additional space and requires minimal computation time.

When the geometric region approach is used for timing analysis, part of TI is defined to be a constraint matrix M that specifies
the maximum difference in time between the enabling times of all the rules in . The row and column of the matrix contain
the separations between the enabling times of each rule in and a dummy rule . The enabling time of is defined to be
uniquely 0. Each entry in the matrix M has the value max(t(enabling(j)) — t(enabling(i j)), which is the maximum time
difference between the enabling time of rule and the enabling time of rule . Since the enabling time of is always zero, the
maximum time difference between the enabling of rule and the enabling of rule () is just the maximum time since was

Algorithm 4.1 (Fire a rule)
timed state fire_rul e(rule (e, / , I, u , b), timed state {R m , sc, M , R f) , TEL (N, s q , A , E , R , #) , bool disabling){

M [m Jndex({e , / , I, u, b)][0]=-l;
recanonicalize (M);
project(M, {{e, f , l , u , b)});
R f = R f U { (e j , l , u , b) } ;
R m == R m f i
if(V (e i j , l i , uh bi) £ R : ((r ̂ G R f) V ~ S t l j t ^ j t b i) £ R f : Ci^Cj)))){

i f (/ — {U i+ ,m)) sc[s-index(uj)} — 1;
elsif (/ — s c f s jn d e x ^)] — 0;
if(disabling)

foreach
if (^&i(sc) A ri e i?ra) project(M,{(ei , / i , l i ,u i ,6i)});
elsif

~ — r i-
Rm ~ Rm Ti >

}
project

;
;

;
add_rulesfM,
advancc-timcfMj;
recanonicalize(M);

}
return();

}
Figure 3: Procedure for firing a rule.

enabled. The maximum time difference between the enabling time of and the enabling time of rule () is the negation
of the minimum time since i was enabled. Note that M only needs to contain information on the timing of the rules that are
currently in R en, not on the whole set of rules. This constraint matrix represents a convex |-Ren| dimensional region. Each
dimension corresponds to a rule and the firing times of the enabled events for the rules can be anywhere within the space.

When an event fires and causes new rules to be added to , the matrix needs to be updated to reflect the new timing
information. Information about the newly enabled rules must be added to the constraint matrix and information about rules that
are no longer in R en must be removed. The main operation used to do this is recanonicalization. Recanonicalization takes a
matrix M where some of the ’s are greater than m ax(t(enablm g(j)) - t(enabUng(i))) and produces a matrix where all the
TOf/s have their maximum allowed value. The assignment of the rny’s so that they all have their maximum value is always
unique, so the algorithm can determine when a given region is equivalent to or contained in a region that has been seen before.
Recanonicalization is essentially the all pairs shortest path problem and can be done in 0 (n 3) time with Floyd’s algorithm. When
the algorithm is used for maintaining a region matrix, it can in fact be done incrementally in 0 (n 2) time, since most of the entries
in the matrix already have their canonical value [27].

In our version of the geometric regions algorithm [18], timing information is updated whenever a rule fires, and rules are
allowed to fire independently of events. This approach is a generalization of the geometric regions technique presented in [27],
where timing information only changes when an event fires. Our algorithm eliminates the single behavioral rule restriction,
which requires that each event has only a single rule that controls its firing time. In our algorithm, a rule can always fire when it
is satisfied. The firing of a rule, however, does not always correspond to the firing of an actual event. An event only fires when all
of the rules enabling it have fired. As rules fire, they are projected out of the constraint matrix, and are removed from ,
and R s . They are added to a new set of “fired” rules, i?/, which is part of the timing information. Since they have fired, timing
information about them is no longer needed, but the fact that they have fired must be recorded. When a set of rules sufficient to
enable an event e are in R f , e can fire.

A depth first search is used to find the state space of a TEL structure. From a timed state, R m x sc x M x R f , the search
algorithm calculates the set. It then chooses a rule from to fire, places the rest of the rules in on the stack and calls
the fire-rule function shown in Figure 3 to actually fire the rule. If the timed state returned by fire-rule has been seen before,

the algorithm pops an unexplored timed state off the stack. The fire-rule function takes as input the rule chosen to fire and a
timed state, and returns the timed state that results from firing the rule. The m Jndex function used in the algorithm takes a rule
and returns its index in the constraint matrix. The first step of the function sets the minimum time since the enabling of the
firing rule to be its lower bound, since in order to fire, it must have been enabled as long as its lower bound. The matrix is
then recanonicalized to produce a new region that is constrained by this firing time. The timing information for this rule is then
removed from the matrix by the project operation. Projection simply removes the rows and columns corresponding to a set of
rules from the matrix. This step is what allows the size of the constraint matrix to remain |i?en + 1| instead of growing with
the size of the specification. The rule is also added to R f and removed from R m . Next, the algorithm checks if firing this rule
has caused any events to be fired. An event is fired if all of the rules that enable it are either in or conflict with another rule
that is in R j. If no event can fire, the algorithm is done. Otherwise, the algorithm updates the state vector, using the s-index
function to find the index of the signal in the state vector. If the event is a signal firing, the appropriate bit of the state vector
is updated. If the event is $, the state vector remains unchanged. The next step is only necessary if the semantics is disabling.
In this step, the algorithm checks to see if any rules have become disabled by the firing of the event. This would occur if the
event firing caused the boolean function associated with the rule to become false. Timing information for any disabled rules in

is projected out of the constraint matrix and any disabled rules in are removed and added back to . This is the only
difference in the algorithm between disabling and non-disabling semantics. Next, the algorithm removes any rules that enable an
event that conflicts with the firing event from constraint matrix and sets and . Additionally, it removes from any
rules that enable the firing event. Next, it adds to any rules whose enabling event is the firing event. Timing information on
the newly enabled rules is then added to the matrix. When a rule is initially enabled, no time has passed since its enabling, so the
entries in the matrix for the minimum and maximum times since its enabling are set to zero. The maximum difference between
the enabling time of a newly added rule and any previous rule is just the maximum time since the enabling of the previous rule.
Therefore, the new row of the matrix is set to equal the 0th row. The minimum difference between the enabling times of a new
rule and an old rule is the minimum time since the enabling of the old rule, so the new column is set to the 0th column. Then,
in the advance time step, the maximums in the 0th row are set to their maximum specified value (the upper bounds on the rules)
and the matrix is recanonicalized. We now have a constraint matrix representing the region of possible firing times for the rules
that are enabled in the new timed state.

This variation on the geometric regions approach allows us to analyze specifications containing levels with no increase in
computational complexity. The only additional steps taken to analyze specifications with levels are checks at various points in
the algorithm to see if the level is satisfied. These simple boolean checks take very little time, and the state information that
they require needs to be computed for synthesis anyway. Therefore this algorithm increases the flexibility of the specification
language without impacting synthesis time.

5 Synthesis of sbuf-send-pkt2
We attempted to synthesize this circuit using the new timing analysis algorithm for TEL structures in the ATACS system, but
found that it was initially unsynthesizible due to a complete state coding(CSC) violation [4]. The CSC violation could be resolved
in three ways. The standard method of adding a state variable produced a circuit, but it is somewhat complex and slow. Another
way to eliminate the violation is to use a rule to order the transitions on and so that transitions first.
This produced a faster and more efficient circuit than the state variable solution. The final method is to make a timing assumption
in the specification. If we specify that the maximum time bound on sendline-\— 5- ack+ is 4 while the minimum time bound on

is 5, then will always occur first, eliminating the state that causes the CSC violation. This
timing assumption yields the smallest most efficient circuit, consisting of only one generalized C-element [3] and one three input
and gate. The timing assumption would, of course, need to be verified after synthesis to see if it is valid.

This example demonstrates the flexibility of TEL structures in asynchronous circuit synthesis. The extended burst-mode
approach to specifying level signals does not give the designer flexibility to make timing assumptions or explicitly order output
transitions without intervening input signal transitions. In that approach only the state variable solution to the CSC problem is
possible. TEL structures give designers more choices and allow them to produce better circuits.

6 Conclusions and future work
We have presented an extension to timed ER structures that allows the specification of level signals and a timing analysis algorithm
that allows circuits to be synthesized from them. This extension facilitates the compilation of many new language language
constructs which make asynchronous synthesis from a standard hardware description language such as VHDL possible[19]. This

added flexibility brings asynchronous synthesis tools a step closer to the power of synchronous tools. In the future, we plan on
modifying the partial order techniques presented in [18] to work on TEL structures and applying TEL structures to problems in
timing verification.

7 Acknowlegments
We would like to thank Brandon Bachman and Eric Mercer of the University of Utah and Dr. Steve Burns of Intel Corporation
for their helpful comments and encouragement.

References
[1] C.H. van Berkel and R. Saeijs. Compilation of communicating processes into delay-insensitive circuits. In International Conference on Computer Design,

ICCD-1988. IEEE Computer Society Press, 1988.
[2] E. Brunvand and R. F. Sproull. Translating concurrent programs into delay-insensitive circuits. In International Conference on Computer-Aided Design,

ICCAD-1989. IEEE Computer Society Press, 1989.
[3] Alain J. Martin. Programming in VLSI: From communicating processes to delay-insensitive circuits. In C. A. R. Hoare, editor, Developments in Concur­

rency and Communication, UT Year of Programming Series, pages 1-64. Addison-Wesley, 1990.
[4] Tam-Anh Chu. Synthesis o f Self-Timed VLSI Circuits from Graph-Theoretic Specifications. PhD thesis, MIT Laboratory for Computer Science, June 1987.
[5] Teresa H.-Y. Meng, Robert W. Brodersen, and David G. Messerschmitt. Automatic synthesis of asynchronous circuits from high-level specifications. IEEE

Transactions on Computer-Aided Design, 8(11):1185—1205, November 1989.
[6] K.-J. Lin and C.-S. Lin. Automatic synthesis of asynchronous circuits. In Proc. ACM/IEEE Design Automation Conference, pages 296-301. IEEE Computer

Society Press, 1991.
[7] P. Vanbekbergen, F. Catthoor, G. Goossens, and H. De Man. Optimized synthesis of asynchronous control circuits form graph-theoretic specifications. In

Proc. International Conf. Computer-Aided Design (ICCAD), pages 184—187. IEEE Computer Society Press, 1990.
[8] Luciano Lavagno, Kurt Keutzer, and Alberto Sangiovanni-Vincentelli. Algorithms for synthesis of hazard-free asynchronous circuits. In Proc. ACM/IEEE

Design Automation Conference, pages 302—308. IEEE Computer Society Press, 1991.
[9] Cho W. Moon, Paul R. Stephan, and Robert K. Brayton. Specification, synthesis and verification of hazard-free asynchronous circuits. Journal o f VLSI

Signal Processing, 7(1/2):85—100, February 1994.
[10] Peter Vanbekbergen, Gert Goossens, Francky Catthoor, and Hugo J. De Man. Optimized synthesis of asynchronous control circuits from graph-theoretic

specifications. IEEE Transactions on Computer-Aided Design, 11(11):1426—1438, November 1992.
[11] M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Varshavsky. On self-timed behavior verification. In Proceedings o f ACM TAU 92, March 1992.
[12] Kenneth Y. Yun, David L. Dill, and Steven M. Nowick. Synthesis of 3D asynchronous state machines. In Proc. International Conf. Computer Design

(ICCD), pages 346—350. IEEE Computer Society Press, October 1992.
[13] Steven M. Nowick, Kenneth Y. Yun, and David L. Dill. Practical asynchronous controller design. In Proc. International Conf. Computer Design (ICCD),

pages 341—345. IEEE Computer Society Press, October 1992.
[14] Kenneth Y. Yun, David L. Dill, and Steven M. Nowick. Practical generalizations of asynchronous state machines. In Proc. European Conference on Design

Automation (EDAC), pages 525—530. IEEE Computer Society Press, February 1993.
[15] Bill Coates, Al Davis, and Ken Stevens. The Post Office experience: Designing a large asynchronous chip. Integration, the VLSI journal, 15(3):341—366,

October 1993.
[16] C. J. Myers. Computer-Aided Synthesis and Verification o f Gate-Level Timed Circuits. PhD thesis, Stanford University, 1995.
[17] G. Winskel. An introduction to event structures. In Linear Time, Branching Time and Partial Order in Logics and Models fo r Concurrency. Noordwijkerhout,

Norway, June 1988.
[18] Wendy Belluomini and Chris J. Myers. Efficient timing analysis algorithms for timed state space exploration. In Proc. International Symposium on

Advanced Research in Asynchronous Circuits and Systems. IEEE Computer Society Press, April 1997.
[19] Wendy Belluomini, Hao Zheng, and Chris J. Myers. Synthesis of timed circuits from vhdl specifications using timed event/level structures. forthcoming

paper.
[20] P.A. Subrahmanyam. What’s in a timing discipline? considerations in the specification and synthesis of systems with interacting asynchronous and

synchronous components. In Hardware Specification, Verification and Synthesis: Mathematical Aspects. Springer-Verlag, 1990.
[21] Steven M. Burns. Performance Analysis and Optimization o f Asynchronous Circuits. PhD thesis, California Institute of Technology, 1991.
[22] D. L. Dill. Timing assumptions and verification of finite-state concurrent systems. In Proceedings o f the Workshop on Automatic Verification Methods fo r

Finite-State Systems, June 1989.
[23] H. R. Lewis. Finite-state analysis of asynchronous circuits with bounded temporal uncertainty. Technical report, Harvard University, July 1989.
[24] B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems using time petri nets. IEEE Transactions on Software Engineering,

17(3), March 1991.
[25] T. G. Rokicki and C. J. Myers. Automatic verificaton of timed circuits. In International Conference on Computer-Aided Verification, pages 468—480.

Springer-Verlag, 1994.
[26] C. J. Myers, T. G. Rokicki, and T. H.-Y. Meng. Automatic synthesis of gate-level timed circuits with choice. In Proc. 16th Conf. on Advanced Research in

VLSI, pages 42—58. IEEE Computer Society Press, 1995.
[27] T. G. Rokicki. Representing and Modeling Circuits. PhD thesis, Stanford University, 1993.

