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Stochastic Optimization Model and Solution 
Algorithm for Robust Double-Track 

Train-Timetabling Problem
M uhammad Babar Khan and Xuesong Zhou

Abstract—By considering various stochastic disturbances un­
folding in a real-time dispatching environment, this paper de­
velops a stochastic optimization formulation for incorporating 
segment travel-time uncertainty and dispatching policies into a 
medium-term train-timetabling process that aims to minimize the 
total trip time in a published timetable and reduce the expected 
schedule delay. Based on a heuristic sequential solution frame­
work, this study decomposes the robust timetabling problem into 
a series of subproblems that optimize the slack-time allocation for 
individual trains. A number of illustrative examples are provided 
to demonstrate the proposed model and solution algorithms using 
data collected from a Beijing-Shanghai high-speed rail corridor 
in China.

Index Terms—Slack-time allocation, stochastic optimization, 
train scheduling, train timetabling.

I. In t r o d u c t i o n

A S ONE of the fundamental technical documents in the 
/ m  railroad industry, the train timetable provides a basis for 
synchronizing most of the scheduling activities over physi­
cal rail networks. In real-time railroad operations, published 
timetables are often affected by various random unforeseen 
events (e.g., temporary signal failure, inclement weather con­
ditions, and equipment breakdown and track maintenance). 
As a result, the segment travel times and/or arrival times of 
trains could significantly deviate from the planned timetable. 
At the same time, interdependencies between trains could lead 
to knock-on delays, i.e., a delay from one train propagates to 
the following train(s). In particular, these delays could have 
a snowball effect on the subsequent operations in a rail line 
with heavy traffic. To improve travel time reliability for train 
users (including both passengers and freight shippers), slack 
time needs to be programmed in the planning stage to make 
published timetables robust against stochastic disturbances.

In the last few decades, a wide range of scheduling models 
and efficient solution algorithms have been developed. For a 
broad overview on different aspects of train-scheduling prob­
lems in planning and dispatching stages, see [1],
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Pioneering theoretical work on the robust train timetabling 
problem was carried out by Carey's research group [2]—[4]. 
They proposed analytical models and sequential solution 
procedures for estimating train delay distributions and delay 
propagation for various performance measures in scheduled 
transport systems. Along the direction of analytically cal­
culating expected delays in a train timetable, Huisman and 
Boucherie [5] and Huisman et al. [6] developed a stochastic 
queueing model for delay estimation at a double-track section. 
Hallowell and Harker [7] presented a line delay model for the 
North American railroad to predict the expected delay caused 
by meet/pass conflicts in real-time dispatching. Focusing on 
cyclic timetables, Kroon et al. [8] proposed a stochastic op­
timization model to minimize the average weighted delay of 
all trains by allocating time supplements and buffer times. 
Vansteenwegen and Van Oudheusden [9] integrated a linear 
programming model in a simulation-based framework to evalu­
ate and determine ideal running time allocation.

To integrate the planning and operational stages in a theo­
retically rigorous manner, Section II first formulates the train 
timetabling problem as a two-stage stochastic recourse model, 
which can be decomposed into a series of robust timetabling 
subproblems. In Section III, the subproblem is further reformu­
lated and solved as a stochastic time-dependent shortest path 
problem. The comprehensive solution procedure, along with 
illustrative examples, is presented in Section IV, followed by 
numerical experiments using a high-speed rail corridor test data 
set from China.

II. T w o - S t a g e  R e c o u r s e  M o d e l

A. Conceptual Framework

Tables I and II present the parameters and variables that are 
used in the two-stage stochastic-recourse model. The unit of all 
time-related parameters and variables is 1 min.

As shown in Fig. 1, segments are numbered as 1 , 2 , . . . ,  to, 
and the stations are numbered as 0 , 1 , . . . ,  to. A medium-speed 
train can only yield to a high-speed train at the intermediate 
stations. Without loss of generality, the following discussion 
considers trains traveling from station 0 to to. For each train 
type, the departure time and minimum dwell time at stations are 
determined in the earlier line planning stage, and the segment 
running times are determined by the timetabling process.

The commonly used two-stage decision procedure in railroad 
timetabling can be described as follows: First, the planner
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TABLE I
S u b s c r ip t s  a n d  Pa r a m e t e r s  U s e d  in  

M a t h e m a t ic a l  F o r m u l a t io n s

Symbol Description

I = set o f trains, \ I  \ = n

J = set o f  segments, \J \ = m
u = set o f  stations, |£/| = m+1
T = planning time horizon under consideration

i = train index

j = segment/station index
CO = subscript for random scenario
t = time index, t=  1 ,..., T

d = minimum required station dwell time before train i
h j entering segment j

h = minimum headway between arrival and departure times
j of two consecutive trains at segment j

r = planned departure time (release time) for train i at its
i first station

r = realized departure time for train i at its first station under
1,(0 scenario CO

f i j
= free-flow running time for train i at segment j

f
= fastest possible running time for train i at segment j

Jl,j,(0 under scenario CO

w t
= penalty on total completion time for train i

+ = earliness and lateness, respectively, deviation penalty
from planned timetable for train i

a ; = total slack time o f all the stations for train i

A , = total slack time o f all the segments for train i

TABLE II
Va r ia b l e s  U s e d  in  M a t h e m a t ic a l  F o r m u l a t io n s

^ = departure time (beginning time) for train i at segment j

= 1 i f  train i is planned before train k  on segment j, 0 

= 1 i f  train i is scheduled before train k  on segment j  in

= set o f  decision variables containing (£>. .,  6 i ■) in the

constructs a train timetable x. At that time, he/she knows the 
requirements about planned departure time r^, free segment 
running time f i j ,  minimum dwell time d i j ,  and minimum 
headway hj.  In addition, the planner is assumed to have in­
formation or estimates about the actual departure time and the 
fastest possible segment running time before conducting train 
scheduling, which is denoted as £ =  vector

Time

Fig. 1. Unidirectional double-track timetable at the planning and dispatching 
stages.

At the beginning of daily train dispatching, a realization 
of £ unfolds (i.e., scenario uj) .  The dispatcher adjusts the 

schedule to make a reactive decision (i.e., schedule) yu so 
that the deviation between schedule y u  and timetable x  is 
minimized under scenario u j . A scenario represents an instance 
in a set of real-time circumstances that change the departure 
time and free segment running times of trains. In reality, train 
trajectories are continuously realized, and the fastest possible 
segment running time could be changed even before a train 
reaches a segment. Accordingly, the rail line dispatcher can 
and should iteratively make corrective decisions using up-to- 
date estimates from station dispatchers or locomotive drivers. 
Thus, the real-time dispatching problem itself is essentially a 
multistage stochastic decision-making process. To construct a 
mathematically tractable model that can approximate the com­
plex real-world situations, the real-time dispatching problem 
in our study is simplified to a one-stage decision, where we 
assume that the fastest possible running times on all segments 
at scenario uj are known at the beginning of daily scheduling.

In more detail, the conceptual two-stage recourse model is 
given as

Min Z  =  c (x )  +  E ^ q ^ x ,  cu)

s.t. x  G Q (1)

where

q{x , uj )  =  m i n  g ( y u , x )

s.t. yu e  $u,(x). (2)

The function c(x)  in the first stage represents the total trip 
time of all trains. The second term in (1) is the weighted 
expected delay relative to the desired timetable. The recourse 
function q( x , u j )  allows the model to capture the dispatcher’s 
ability to take rescheduling actions, with g{yUJl x )  as the objec­
tive function. In addition, Q is the set of feasible timetables, and 
&uj(x) is the set of feasible real-time schedules under scenario 
uj for a given x .

B. Medium-Range Planning Model

The medium-range planning model in this study is to mini­
mize the total weighted trip time, where the weight wi depends
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on the priority of train i. The following timetabling formulation 
is adopted from the optimization model proposed by Zhou and 
Zhong [10]:

n
Min c (x )  =  ^ 2 -  n ) .  (3)

i = 1

Departure time constraints:

b - , : \ = r t M i G  I .  (4)

Segment running time constraints:

e.Lj =  b,., +  s.Lj +  f Lj Mi  €  I ,  j  =  1. 2. . . . .  m .  (5)

Station dwell time constraints:

b i . j  >  e- i . j-1  +  +  f i i . j  M i  €  I ,  j  =  1 . 2 . . . . .  m .  ( 6)

Safety headway constraints at segments:

? i . j  h j . k . j  — k. t  13t . k . j  '  M

■>/i /  k . i . k  i  / . ./• ;  ./ (7) 
b i . j  +  h i . k . j  — b k . j  +  (1 13i . k . j ) ^ ^ I

' /; /  k . i . k  •; /../  •; ./ (8) 
k . j  h k . i . j  — : .1 l l i . k . j  '  h  f

V i ^  k, i, k  €  I ,  j  €  J  (9) 
b k . j  h k . i . j  ^  b j . j  (1 H i . k . j )  ^ M

\H /  k . i . k  •; I . j  •; ./ (10)

where M  is a sufficiently large number to model the preceding 
“either-or” type constraints.

Slack time constraints at segments:

Si.j < A,; V i €  I,  j  =  1 , . . . .  m .  (11)
j

Slack time constraints at stations:

^  K  M i €  I , j  = 1 , . . . ,  m.  (12)
3

Departure time constraint (4) ensures that the departure time 
of train i from the origin station should not be earlier than the 
planned departure time. Segment running time constraint (5) 
indicates that the planned running time should be greater than 
the free running time at a segment. Station dwell time constraint
(6) connects the train activities of two consecutive segments 
through the stop time at a station. Constraints (7)-(10) im­
pose the safety headway requirement between two consecutive 
trains running in the same direction at the same segment. The 
“either-or” relation in the segment headway constraints can be 
expressed as the two precedence constraints by introducing a 
binary variable lii.k.j-

To absorb real-time stochastic disturbances, additional time 
supplements are added to the free segment running time and 
dwell times. Such time supplements help the dispatcher in 
two ways: 1) allowing trains to obey the planned segment 
running time or station departure time under minor disturbances 
and 2) making up for earlier delays by running faster than 
the planned segment running time. Constraints (11) and (12)

depict the upper bounds for the total supplements on a trip. 
It is crucial to recognize the tradeoff of adding slack times 
in a train timetable. Additional slack times can improve the 
punctuality of a timetable, and a timetable with less or no slack 
time is prone to frequent delays and delay propagation among 
multiple trains. On the other hand, longer slack time could 
significantly increase the total train trip time, indirectly leading 
to a reduction of the total capacity of a rail line, particularly in 
a busy rail corridor with heavy freight and passenger demand. 
Thus, the essential goal of robust timetabling is to achieve the 
best tradeoffs between punctuality and efficiency of rail service.

C. Daily Dispatching Model

The second-stage formulation aims to minimize the real­
time schedule deviation (under scenario ui) from the planned 
timetable, whereas trains arriving late or early at the final 
destination station are penalized. It should be noted that one 
could also consider the schedule deviations only at major 
stations/terminals and not just the final destination. For an out­
bound train traveling from station 0 to station m , the objective 
function in the second stage is expressed as

Min g( y^ , x )
n

=  5 1  (w t  -  e.,m)+ +  W~ (ci.ni.iu -  et.my )  . (13) 
i=1

Given the planning timetable (bi.j, and the realized 
fastest possible travel times the second-stage problem
needs to determine train travel times and dwell times under 
scenario ui. The set of feasible real-time schedules can
be defined by the following constraints:

Departure time constraints:

bt:\.^ = n . iU Mi G l .  (14)

Segment running time constraints: 

ei.j.ic > bi.j.u: +  fi.j.ic Mi €  I .  j  =  1. 2 . . . . .  m .  (15) 

Station dwell time constraints:

bi.j.ic >  .ic +  fii.j Mi >: I.  .j 1.2 .........m .  (16)

Safety headway constraints at segments:

^i.j.io hi If j  ^  Gk.i.io Hi k.j.10 k  ̂1

•/; /  k . i . k  •; I . j  •; ./ (17) 

bi.j.iu hi.k.j ^  bf-.j. ,̂ { I Ih.k.j.S) k ^ I

’•/i /  k . i . k  •; I . j  •; ./ (18)

k.j .j: hk.i.j — C-i.j.iu lh  .k.j .jj k ^ I
’•/i /  k . i . k  •; I . j  •; ./ (19)

bk.j.iu h k .i .j  — b j.j.u  ( I H i.k .j .u )  /: ^  f

’•/i /  k . i . k  •; I . j  •; ./. (20)

For each scenario u>, it is assumed that the departure time 
of train i at its starting station r . , ; i s  known a priori, and the
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actual segment running time should not be less than the fastest 
possible running time Similar to most of the previous
studies on delay propagation, we impose the restriction that a 
train is not allowed to arrive at a station earlier than the planned 
arrival time.

As the dwell time is typically associated with passenger 
or freight loading/unloading activities, this study assumes that 
each train still needs to satisfy the (same) planned dwell times 
and may not leave a station earlier than the planned departure 
time under all possible scenarios, i.e.,

h , j , u > h , j  V* e  I,  j  = 1, 2, . . . , m  (21) 

e i,j>  >  e i j  V i  € I ,  j  = 1, 2 , . . . ,  m . (22)

As a result, no early arrivals can occur, and the objective 
function (13) reduces to

Min g(yw, x)  =  ^  ( w f  (ei>m,w -  ei>m)+ ) . 
i = 1

(23)

III. S o l u t i o n  S t r a t e g i e s

A. Sequential Decomposition

In the preceding model, safety headway constraints (7)-(10) 
and (17)-(20) become the coupling constraints in this two-stage 
problem. There are a number of strategies (e.g., Lagrangian 
relaxation) that could be applied to decompose the problem 
to a series of subproblems for individual trains. In this study, 
we use a sequential heuristic approach to iteratively determine 
the timetable for each individual train. A subproblem needs to 
handle a single train, and its inputs are the planning timetable 
and real-time schedule from the previously computed trains. In 
other words, a train needs to yield to the previously scheduled 
trains if a conflict exists in both planning and dispatching 
problems.

Regarding the sequence of trains to be scheduled, this study 
first computes high-speed trains and then medium-speed trains. 
For the same type of trains, trains departing earlier from the 
starting station are considered to have higher priority. It should 
be noted that the sequential solution strategy could particularly 
be ineffective in a single-track rail line setting, which requires 
additional future studies that are out of the scope of this paper.

B. Space-Time Network Representation

This section presents a space-time network representation 
to reformulate the optimal slack allocation problem as the 
shortest path problem, which is solvable by a wide range 
of computationally efficient algorithms. Let G  =  (V, A ) be a 
digraph, where V  is the set of nodes, and A  is the set of arcs. 
A node is jointly defined by a station number with a time 
index that represents the possible departure and arrival times 
to and from the stations. The time index ranges from 1 to 
T, where T  represents the length of a day (i.e., 1440 min). 
For illustrative purposes, nodes are shown in Fig. 2 for a 
time interval of 10 min. The traveling activities of a train are 
represented with two types of arcs in set A: 1) segment arcs

Fig. 2. Space-time network representation of a train timetable.

between two consecutive stations, which are associated with a 
cost as the segment running time, and 2) station waiting arcs, 
which indicate the stop time at a station.

In Fig. 2, a train path trajectory with solid lines in an 
expanded network represents a slack time allocation (timetable) 
alternative for a train over different segments. The (schedule) 
scenarios with random travel times are shown by dashed lines. 
In the dispatching stage, the segment running times are given as 
random variables with certain delay probability distributions. 
The actual train trajectory between its origin and destination 
could be one of many different paths.

C. Stochastic Shortest Path Reformulation

Essentially, the subproblem under consideration seeks to 
determine a “reference” path that can minimize the total trip 
time (in the planning timetable) and the expected schedule de­
viations from the planned timetable among all possible random 
scenarios.

The train timetabling problem with stochastic segment run­
ning times is characterized as a special case of the stochastic 
shortest path problem. More precisely, this is the a priori sto­
chastic least expected time path problem with the cost function 
as schedule delay, because the recourse decisions are taken once 
the values of one or more random variables are realized. Note 
that, to realistically model the multistage dispatching problem 
previously mentioned, the adaptive stochastic least-expected 
cost-path algorithm is needed to determine optimal switching 
strategies at each node for en-route decisions in response to ex­
perienced travel times, with updated travel time estimates. For 
congested road traffic networks, Miller-Hooks and Mahmassani
[11] proposed efficient algorithms and procedures to determine 
a path that has the least possible time from all origins to a single 
destination for each departure time.

D. Sample-Based Scenario Representation fo r  
Random Segment Running Time

The proposed solution methodology for the single-train sub­
problem needs to find an optimal slack-allocation plan that 
minimizes a utility function of the total trip time and expected 
delay, as shown in (1), in a space-time network. Without loss of
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generality, the following description assumes no slack time at 
stations. As mentioned earlier, in daily railroad dispatching, the 
number of possible segment-running-time scenarios exponen­
tially increases due to unforeseen events. An efficient sample 
average approximation method is detailed here to choose repre­
sentative samples from the huge number of randomly generated 
segment running times.

Before solving all the train timetabling subproblems, we 
generate a set of random segment running times to be used in 
the second stage. Let be a vector of nonnegative integer 
segment running times [/*.7-.u,] for all trains and all segments, 
where scenario uj =  1 , . . . ,  W , and W  is the total number of 
randomly generated samples. Scenario uj occurs with given 
probability f f , where X]2=i =  1- other words, fi.j.u, 
represents one realization of segment running times for train
i on segment j  under scenario uj.

In many stochastic shortest path algorithms (e.g., Miller- 
Hooks and Mahmassani [11]), a discrete probability distrib­
ution function (pdf) of segment (i.e., link) travel times are 
constructed from historical data samples and further used as the 
input, whereas the segment travel times are typically assumed 
to be independently distributed. For instance, the pdf-based 
representation could assume that there are k  distinctive values 
of segment travel time on a segment for a train. If we consider 
the pdf propagation of stochastic trajectories of a train from one 
segment j  +  1 to the next segment j  + 2 along a corridor, as 
shown in Fig. 2, the combinations of random segment running 
times for a train on segment to  is k m. If there are a total of n 
trains, to describe the interactions (defined by safety headway 
constraints) between trains, the total number of such possible 
combinations could be ( km)n =  k m ' ". Considering segment 
j  + 2 in Fig. 2 with three trains on segment j  +  2, there are 
k-i+2 scenarios for each train, and therefore, we need (fc-?+2)3 
scenarios to fully capture the possible conflicts.

The proposed sample-based approach is to draw W  samples 
from the entire population to reduce the computational efforts 
and also capture the possibly correlated segment travel times, 
where W  is significantly less than k m ' ". For a single train, 
segment travel times in different samples can independently be 
distributed or correlated between different segments. For the 
same segment, the travel time distributions of different trains 
could also be independent and correlated.

E. Stochastic Dominance Rules

The stochastic dominance rule is used to compare two partial 
timetables with different slack-time-allocation strategies and 
prune off dominated train timetables as early as possible. As 
the slack time allocation aims to reduce average train delays 
on final stations, the probability of distribution of train delays 
can be used to indicate which slack time allocation strategy 
could effectively reduce the average delays. Consider train i on 
segment j  at different partial timetables v’ and v" . To ensure 
that the two partial train timetables v' and v" are comparable, 
we require that the planned arrival times of train i on segment 
j, i.e., e' ? and e" 7, in both partial timetables be the same.

Let F ’{$) and F"(S) be the cumulative distribution functions 
(cdfs) of train delay S corresponding to the planned arrival

time e' 7 at partial timetables v '  and v " , respectively. E ' ( 5) and 
E " ( S )  are the expected values of delay S  at partial timetables v '  

and v", respectively.
We have two dominance rules.
1) Timetable v" first-order stochastically dominates 

timetable v \  if F"(8) > F'(8).  Graphically, the cdf of 
delay distribution for timetable v" is above or overlapping 
with the counterpart in timetable v' for any S.

2) Timetable v” second-order stochastically dominates 
timetable v ' ,  if E " ( S )  < E ' ( S ) ,  i.e., the expected delay 
in timetable v" is less than its counterpart in timetable v'.

Generally, it is difficult to simultaneously construct and apply 
stochastic dominance rules for different types of trains (and 
multiple trains). To apply the proposed stochastic dominance 
rule for a single train, we use the aforementioned sequential de­
composition scheme, where the order is determined according 
to the type of trains or a prespecified level o f priority.

IV. S i m u l t a n e o u s  T i m e t a b l e  a n d  S c h e d u l e  

O p t i m i z a t i o n  A l g o r i t h m

The following algorithm details a stepwise procedure to solve 
the proposed two-stage stochastic model.

Notations

X( i , j ,  t ) expected delay label for train i arriving at station j  
at planned arrival time t  in the planning timetable; 

t ,  u j ) schedule delay for train i  arriving at station j  w.r.t. 
planed arrival time t  under scenario u j ;

Tii.j.t arrival time predecessor at station j  — 1 for train i
arriving at station j  at time t ; 

cr,:.7 t departure time predecessor at station j  — 1 for
train i  arriving at station j  at time t .

Note that Tii.j.t < Vi.j.t if train i yields to other trains at 
segment j .

A. Algorithmic Description

Step 0: Generate a random segment travel time sample vector
E  = [/*.7.u>]> * G f, j  = 1,2,..., to, u j = 1,2,..., W ,  with

For train i =  1, 2 , . . . ,  n
Step 1: Feasibility checking for safety headway constraints. 

Step 1.1: Fetch optimal timetable (i.e., 6/,.., and e/,..7j  and re­
lated schedules (i.e., 6/,..,.^ and e-k.j.^) for previously opti­
mized trains k  =  1 , . . . ,  i — 1, Vj € J.

Step 2: Optimize robust timetable for train i.
Step 2.1: Initialize expected delay label A =  oo for 
station j  =  0 ,1 , . . . ,  to  and time t  > r . i.

Initialize A =  0 and S( i , j , t , uj )  =  0 for starting sta­
tion j  =  0, t  =  n ,  and u j =  1 , 2 , . . . ,  W.
Step 2.2: For station j  =  1 , 2 , . . . ,  to

For each arrival time t  at station j  — 1
For each slack time allocation =  0 , 1 , . . . ,  A,
that corresponds to constraint (11)
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Step 2.2.1: Find the earliest feasible departure time 
at station j  — 1 that satisfies b > t  + d and safety 
headway constraints, and find arrival time eL , at station
j  as

ei.j =  bh.j +  s i.j +  fh.j- (24)

Step 2.2.2: Determ ine the resulting daily schedules 
e i.).uO for planned departure time bj, a t  station 

j  — 1 and arrival time e;..,- at station j .
For random scenario index u  =  \ . 2 . . . . .  W

Step 2.2.2.1: To solve constraints (16) and (21), find 
the earliest feasible departure time at station 
j  — 1 that satisfies

> max (bLj, t  +  S (i.j  -  l .t .u j)  +  dLj) (25)

where 5 (i,j  — \ is the schedule delay for train
i arriving at station j  — 1 under scenario uj w.r.t. 
planned arrival time t  so that t + S ( i.j  — \ is 
the actual arrival time at station j  — 1 under scena­
rio uj, and t  +  6 (i.j — 1 .1. uj) +  is the earliest 
possible departure time at station j  — 1 under scena­
rio uj by considering dwell time requirem ent 
Step 2.2.2.2: To solve constraints (15) and (22), find 
arrival time at station j  as

e-i.j.w =  itiax(( i.j■. bi.j.ur +  /i.j.w)• (26)

Step 2.2.2.3: Calculate the schedule delay w.r.t. 
p lanned arrival time e;..,- as

t i(h j:eLj:Uj) =  e ( J .u, -  ( i.j. (27)

EndFor //  random scenario uj
Step 2.2.3: Calculate the average schedule delay o f all 
scenarios

w
ei.j-M) x P“)- (28)

U'=l

Step 2.2.4: I f  A <  A(i. j .  e;..,), apply the second- 
order dominance rule, update the expected delay label 
by \ ( i , j , e Li) =  A, and update predecessors 

and a i.j.i in the planning timetable.
EndFor //  slack tim e s  

EndFor //  arrival tim e t  
EndFor / /  station j  

Step 3: Finalize the optimal tim etable and daily schedules for 
train i.

Step 3.1: Find final arrival time t  at station m  that minimizes 
{t — r,) + fi x X(i. rn, t), where (t — r,) is the total travel 
time, A(i.rri.t) is the expected schedule delay for train i to 
arrive at the final station at time t  in the planning timetable, 
and ,3 is the predeterm ined weight o f expected schedule delay. 
Step 3.2: From segment rn to 0, use predecessors 7 r a n d  
cTi.j.t to backtrack optimal tim etable (i.e., b,..j and < 
and find the resulting schedule (i.e., ande;..,-.u.) for each 
scenario uj =  1 .2 . . . . .  W .

EndFor //  train i

R. Multiple Loops for Finding Feasible Departure and 
Arrival Times for Timetable and Schedules

The outer loop of the preceding algorithm sequentially finds 
a robust timetable for each train. Inside this loop, step 1 fetches 
the timetable and schedules of previously optimized trains 
k =  1 . . . . .  * — 1 from step 3, and step 2 computes the optimal 
timetable and schedules of train i from station 1 to station 
rn that satisfy safety headway constraints between train i and 
trains k =  1 . . . . .  * — 1.

Step 2 includes three nested loops for enumerating planning 
timetable options: For each station, for each feasible arrival 
time, and for each feasible slack time allocation The 
(departure time, slack time) pair can be viewed as a seg­
ment running time arc at a station in the space-time network 
representation for the planning timetable. Moreover, step 2.1 
initializes node labels in the space-time network, and step 2.2.1 
finds feasible planning departure time b,..j and arrival time e;..,- 
associated with segment j .

Step 2.2.2 is the core step for solving the second-stage daily 
scheduling problem. Inside the corresponding inner loop for 
each scenario, steps 2.2.2.1 and 2.2.2.2 sequentially handle 
constraints (15)—(22). Specifically, the random segment running 
time sample ,u, generated from step 0 is used in step 2.2.2.2 
to ensure that the station arrival time in daily schedules 
considers that ,u. and e;,.j.w should be no earlier than the 
planned arrival time e;..,-.

With the average schedule delay statistics, steps 2.2.3 and 
2.3.4 apply the second-order stochastic dominance rule to keep 
the best slack allocation combination up to segment j  for 
different time points.

C. Scenario Representation and Problem Decomposition

In many existing sample-based stochastic optimization stud­
ies, the second-stage problem is considered to be an optimiza­
tion problem as a whole, and a scenario represents realized 
values for all the random variables of the second-stage problem. 
In our problem, a scenario uj corresponds to a 2-D vector of 
segment running time for all trains and all segments, and 
each scenario can be viewed as a single day in daily schedul­
ing. To simultaneously optimize timetables and related daily 
schedules for all the possible scenarios, our proposed algorithm 
focuses on a much smaller set of decomposed constraints (i.e., 
for a single train and a single segment under different random 
running time samples), and it implicitly enumerates feasible 
slack-time-allocation options (i.e., segment running time arc 
in the space-time network) at departure time at each station 
and calculates the corresponding average schedule delays. By 
doing so, we are able to apply the efficient space-time net­
work representation, shortest path algorithm, and stochastic- 
dominance rule to systematically search for better timetable 
solutions.

D. Schedule Delay Representation

Fig. 3 aims to illustrate how to calculate schedule delay 
S (i.j.t.u j)  for train i arriving at the downstream station of
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Fig. 3. Stochastic schedule-delay calculation for the single-train case.

segment j  at scenario uj. For train 1, its planned departure time 
at station 1 is =  5 min, whereas the free-flow running time 
at segment j  = 2 is / i ;2 =  10 min. Consider an unforeseen 
scenario uj unfolding in the second stage, which corresponds 
to a 2-min schedule deviation from the planned timetable at 
station 1 and segment running time / i , 2 ,u> =  13. If no slack 
time is allocated in the planned timetable, as shown in Fig. 3(a), 
then the schedule delay is propagated from 3 min at station
1 to 5 min at station 2. In Fig. 3(b), 5 min of slack time is 
allocated to segment 2 in the planning timetable to reduce the 
delay propagation. By using such a timetable buffering strategy, 
the planned arrival time and the corresponding schedule arrival 
time are equal at 12 =  20 min, leading to no schedule delay 
upon arriving at station 2.

In some cases, the delay of a train could be propagated to 
the following trains. Again, the term “knock-on delay” refers 
to the phenomenon of one train’s delay that is caused by other 
trains in front of it. In Fig. 4(b), the effect of knock-on delay 
is illustrated between high- and medium-speed trains. It is 
more likely to have such delay propagation for high-density 
double-track corridor. If the trains are not allowed to change 
the planned order of trains, then the knock-on may cause the 
following trains to be greatly affected, as shown in Fig. 4(c).

In real-world dispatching situations, the arrival order of trains 
may deviate from the planned order due to many reasons, e.g., a 
train has experienced dramatic delay on the previous segments. 
In our study, we explicitly allow a possible change of order 
between high- and medium-speed trains traveling on the same 
segment. More precisely, in Fig. 4(d), if the high-speed train 
is significantly delayed and the medium-speed train is able to 
leave from station j  + 1 at its planned departure time, then the 
medium-speed train could leave before the high-speed train.

Fig. 4. Delay propagation and scheduling rules between trains, (a) Planning 
timetable, (b) Minor delay to high-speed train, (c) Significant delay to high­
speed train, (d) Change of train order.

That is, the sequence of trains in this schedule is changed from 
the order specified in the planning timetable.

V. Numerical Experiments

In this section, we investigate the solution characteristics 
of the proposed algorithm through a series of numerical ex­
periments. This study considers a train-scheduling problem 
for the double-track high-speed rail corridor between Beijing 
and Shanghai. The following experiments focus on a 615-km 
section, which consists of 17 sections between Shanghai and 
Xuzhou. Two types of passenger trains are planned to oper­
ate on this rail corridor, i.e., high-speed (250-300 km/h) and 
medium-speed (160 km/h) trains. For each train, it is assumed
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Solution quality as a function of optimization sample size

Avg slack time per train (min)

Fig. 5. Impacts of optimization sample size on solution quality.

that the departure time at its origin station, segment running 
time, and minimum time for boarding and alighting at stations 
en route are prespecified by rail planners. In the test set, we 
consider ten high-speed trains and ten medium-speed trains 
running in the morning period (6:00 A.M.-11:00 A.M.), and we 
sequentially schedule high-speed trains according to departure 
times, followed by the medium-speed trains. The maximum 
slack time per segment is set to be 25% of the free-flow segment 
running time.

A. Impact o f Optimization Sample Size on Solution Quality

We first investigate the effect of solution quality with differ­
ent sampling sizes. It should be noted that two types of samples 
are used in our solution procedure: 1) optimization sample 
size and 2) evaluation sample size. The optimization sample 
size considers random segment running time samples taken 
from historical database (realized travel times) to represent the 
segment running time randomness in the daily train dispatching 
stage. A large evaluation sample size (e.g., 200 samples in the 
tests given here) is typically used to evaluate the solution quality 
of selected samples in optimization samples.

Fig. 5 shows the frontiers as results of the optimization sam­
ple size varying between 5 and 120. That is, the solution quality 
tradeoff curves are measured in terms of average schedule delay 
versus average slack time allocation per train. As expected, a 
large optimization sample size produces better tradeoff curves 
than a smaller sample size. In particular, for a 2-min average 
slack time, the optimization sample size of 120 drastically 
reduces the average schedule delay per train by 38%, compared 
with the optimization sample size of 5. As expected, an increase 
in the slack time per train further reduces the average schedule 
delay per train. On the other hand, adding too much slack 
time, e.g., 10 min in our experiments, the marginal reduction 
in average schedule delay becomes insignificant. Among the 
tested sample optimization sizes, overall, the sample size of 
30 achieves the balance between computational efficiency and 
solution quality, and this setting is used for the rest of the 
experiments.

In Fig. 5, we also compare the best solutions found by 
our algorithm with solutions generated by an ad-hoc rule that 
allocates slack time in proportion to the free-flow segment 
running times. The dashed line connects different ad-hoc solu­
tions generated by varying the total slack time budget. Clearly, 
with a large sample size, the robust optimization algorithm

Slack time (min)

Fig. 6. Nondominated solutions for high- and medium-speed trains.

provides solutions that can almost dominate the results from the 
ad hoc rule.

B. Frontier o f Nondominated Solutions (Average Delay 
Versus Slack Time)

In Fig. 6, we generate the frontiers of nondominated solu­
tions for high- and medium-speed trains with different slack 
time allocations using five randomly generated schedules. As 
expected, the high-speed train, having high priority, shows 
less average delay, compared with the medium-speed trains. It 
should be noticed that, if a conflict occurs between two types 
of trains, the medium-speed train has to yield to the high-speed 
train, which accordingly increases the total delay and possible 
segment running time of the medium-speed train.

VI. Concluding Remarks

This study has proposed a two-stage stochastic recourse 
model that incorporates random segment travel time distur­
bances into a medium-term planning timetable. The first stage 
aims to minimize the total planned trip times of all the trains, 
and the second stage intends to reduce the average schedule 
delay under random instances. Focusing on improving the com­
putational efficiency for solving this complex problem, we have 
further adopted a sequential solution procedure to decompose 
the complex two-stage stochastic optimization model into a 
series of subproblems for individual trains.

Our future research will address two main issues: First, the 
current solution algorithm only aims to minimize the expected 
delay at the final destination. It is more desirable and practical 
to also consider the reduction of schedule delays at intermediate 
(important) passenger terminals. Second, the effectiveness of 
the proposed sequential decomposition technique and stochas­
tic dominance rules needs to be evaluated in detail with a variety 
of real-world test data sets.
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