
A W R A PPE R GENERATION TOOL FOR THE

CREATION OF SCRIPTABLE SCIENTIFIC

APPLICATIONS

hy

David M. Beazley

A d isserta tion su b m itted to th e faculty of
T h e U niversity of U tah

in p a rtia l fulfillm ent of the requirem ents for th e degree of

D octor o f Philosophy

D epartm en t of CompuLer Science

T h e U niversity of U tah

A ugust 1998

C opyright © David M. Beazley 1998

All R igh ts Reserved

T H E U N IV E R S IT Y O F U T A H G R A D U A T E S C H O O L

F IN A L R E A D I N G A P P R O V A L

To th e G rad u a te Council of the U niversity of U tah:

I have read th e d isserta tion of D avid M. Beazley in its final form
and have found th a t (1) its fo rm at, c ita tio n s, and bib liographic style are consisten t and
acceptab le ; (2) its Illustrative m ateria ls includ ing figures, tab les, and ch a rts are in place;
and (3) th e final m anuscrip t is sa tisfac to ry to the S upervisory C om m ittee and is ready
for subm ission to T h e G rad u a te School.

2.1 I I S & _____------------------ -------------------- / -- -
Date C h ris to p h er H. Johnson

Chair, Supervisory Committee

A pproved for th e M ajo r D epartm en t

/ ___________________ ^
R o b ert Kessler

Chair/D ean

Approved for the G rad u a te Council

Ann W. Hart
Dean of The Graduate School

ABSTRACT

In recent years, there has been considerable in terest in the use o f scrip tin g languages

as a m echanism for controlling and developing scientific software. S crip ting languages

allow scientific app lica tions to be encapsu lated in an in terp re ted environm ent sim ilar to

th a t found in com m ercial scientific packages such as M A TLA B, M athem atica , and IDL.

T h is im proves the usability o f scientific softw are by providing a pow erful m echanism for

specifying and controlling com plex problem s as well as giving users a n in teractive and

exp lo ra to ry problem solving environm ent. S crip ting languages also provide a fram ew ork

for b u ild in g and in teg ra ting softw are com ponents th a t allows tools be used in a m ore

efficient m anner. T h is stream lines the problem solving process and enables sc ien tists to

b e m ore productive.

O ne of the most, pow erful features o f m odern scrip tin g languages is their ab ility to be

ex tended w ith code w ritten in C, C + + , or F o rtran . T h is allows sc ien tists to in teg ra te

ex isting scientific app lica tions into a scrip tin g language environm ent. U nfo rtunate ly , th is

in teg ra tio n is no t easily accom plished due to the com plexity of com bining scrip tin g lan

guages w ith com piled code. To sim plify the use of scrip tin g languages, a com piler, SW IG

(Sim plified W rapper and Interface G enerato r), has been developed. SW IG au to m ates

th e co n stru c tio n o f scrip ting language extension m odules and allows existing p rogram s

w ritten in C or C + + 1.0 be easily transform ed into scrip tab le app lica tions. T h is , in tu rn ,

im proves th e usability and o rgan ization of those program s.

T h e design an d im plem entation of SW IG are described as well as s tra teg ies for bu ild ing

sc rip tab le scientific applications. A detailed case s tudy is p resen ted in which SW IG has

been used to transfo rm a high perform ance m olecular dynam ics code a t Los Alam os

N atio n al L ab o ra to ry into a highly flexible scrip tab lc app lica tion . T h is tran sfo rm atio n

revolutionized the use of th is app lica tion and allowed scien tists to perfo rm large-scale

m ate ria ls sim ulations on an day-to-day basis. In add ition , a user survey is presen ted in

w hich SW IG is shown to g reatly sim plify the creation o f sc rip tab le app lica tions, im prove

p ro d u c tiv ity , an d enhance the usability of scicntific program s.

paren ts.

CONTENTS

A B S T R A C T .. iv

LIST OF F IG U R E S ... xi

LIST OF T A B L E S .. xii

A C K N O W L E D G E M E N T S ... xiii

C H A P T E R S

1. I N T R O D U C T I O N ... 1
1.1 T h e Problem s Facing C om puta tiona l S c ie n t i s ts .. 1
1.2 Technical and C u ltu ra l C h a lle n g e s .. 3
1.3 T h e Need lor E volu tionary Im p ro v e m e n t... 3
1.4 S crip ting Languages .. 4
1.5 R esearch G o a l s .. 5

1.5.1 M aking S crip ting Languages Sim ple to U s e ... 5
1.5.2 Sim plifying Software D e v e lo p m e n t... 6
1.5.3 Increasing the U sability of Scientific P ro g ra m s .. 6

1.6 M e th o d o lo g y ... Ci
1.7 Results... 7
1.8 O rg a n iz a t io n ... 9

2. SC IE N T IFIC S O F T W A R E .. 10
2.1 T h e C u ltu re o f Scientific C om puting .. 10
2.2 Scientific S o f tw a re ... 12

2.2.1 Piecem eal G ro w th ... 12
2.2.2 User Interfaces .. 13

2.3 T h e Search for B ette r Scientific S o f tw a re ... 15
2.3.1 O b jec t-O rien ted F ra m e w o rk s .. 15
2.3.2 C om puta tiona l S teering .. l(j
2.3.3 H eterogeneous C om puting ... 16
2.3.4 C o m p u ta tio n a l P r o x ie s .. 17
2.3.5 C om ponents and D istrib u ted O b je c ts .. 17

2.4 L im ita tions of O th e r A p p ro a c h e s .. 18
2.4.1 Poor P e r fo rm a n c e ... 18
2.4.2 Closed S y s te m s .. 19
2.4.3 P rogram m ing in the Large 20
2.4.4 Poor A d ap ta tio n to C h a n g e .. 20
2.4.5 C oncep tua l D if f ic u lt ie s .. 20

2.5 S crip ting Languages and SW IG ... 21

3. S C R IP T IN G L A N G U A G E S . . 22

3.1 W h at Ts a S crip ting L a n g u a g e ? ... 22
3.2 C om ponen t G l u i n g .. 23
3.3 High-Level P rogram m ing ... 24
3.4 S crip ting and Scientific C o m p u tin g ... 2G
3.5 S crip ting Language Extension P ro g ra m m in g ... 27

3.5.1 E xtension M o d u le s .. 28
3.5.1.1 W rapper F u n c t io n s .. 29
3.5.1.2 V ariable L in k in g ... 30
3.5.1.3 C rea ting C o n s ta n ts .. 31
3.5.1.4 O b jec t M an ip u la tio n ... 32

3.5.2 C om piling an Extension M o d u le .. 34
3-6 S crip ting Versus Com m ercial P a c k a g e s .. 34
3.7 Scientific C om puting and the Problem s w ith S c rip tin g 35

4. S W I G .. 37

4.1 C om pilation of Scrip ting C om ponents .. 37
4.2 R elated W ork ... 37
4.3 Design G o a ls ... 39

4.3.1 S im p l ic i ty .. 39
4.3.2 A pplicability to E xisting Software ... 40
4.3.3 S u p p o rt for R apid C h a n g e ... 41
4.3.4 S epara tion of Interface and Im p le m e n ta tio n ... 4L
4.3.5 E x te n s ib i l i ty ... 41
4.3.6 S u p p o rt for M ultip le S crip ting L a n g u a g e s .. 42

4.4 Im p le m e n ta tio n .. 42
4.4.1 P a r s i n g ... 42
4.4.2 Code G e n e ra t io n ... 13

4.5 SW IG D ire c tiv e s .. 44
4.6 SW IG In p u t F i l e s ... 45
4.7 A Sim ple SWTG E x a m p le .. 45
4.8 D a ta ty p es and D a ta R e p re s e n ta tio n ... 47

4.8.1 F undam en tal T y p e s .. 47
4.8.2 Poin ters, A rrays, and O b je c ts .. 47

4.8.2.1 T yped P o in te r s ... 47
4.5 .2.2 A rr a y s ... 49
4.8.2.3 S tru c tu res and O b je c ts .. 50

4.8.3 U n su p p o rted D a ta ty p es .. 51
4.9 O bjec ts. Classes, and S tr u c tu r e s ... 51

4.9.1
4.9.2
4.9.3
4.9.4
4.9.5

O b jec ts as T yped P oin ters
A ccessor F u n c t io n s
W rapper C la s s e s

51
53
54

Class E x te n s io n .. 55
... 56T ype Checking and Iu l ic r i ta n c e ..

4.10 T y p e M anagem ent W ith T y p e m a p s ... 57
4.10.1 T y p c io a p s 57
4.10.2 T y p em ap R u le s .. 59
4.10.3 A dvantages o f T y p e m a p s 60

v ii

4.J 1 E xception H a n d lin g 62
4.12 M ixed-Language P rogram m ing Is s u e s 63

4.12.1 N am espace M an a g em en t.. 63
4.12.2 M em ory M a n a g e m e n t... 63

4.12.2.1 G arbage Collection and Pointers .. 63
4.12.2.2 Im plicit M em ory A llo c a t io n .. 64
/1.12.2.3 O b jec ts and W rapper C la s s e s 65

4.12.3 C a llb a c k s ... 60
4.12.4 P rocess and Resource M anagem ent ... 66

4.13 T h e SW IG L i b r a r y 66
4.14 L im ita t io n s .. 67
4.15 S u m m a ry ... 67

5. I N T E R F A C E C O N S T R U C T I O N 69

5.1 F irs t Use of SW IG 69
5.2 E volu tionary Interface D e v e lo p m e n t... 70
5.3 H elper F u n c tio n s .. 71
5.4 T ype M an a g em en t.. 72

5.4.1 T y p e C o n v ers io n73
5.4.2 C o n ta in e rs 74
5.4.3 A lia s in g 75

5.5 O bject-B ased In terfaces 76
5.6 Im proving R e lia b ility .. 77

5.6.1 E xecu tion O rder D e p en d en c ie s ... 77
5.6.2 A rgum ent Checking .. 79

5-7 D a ta M an a g em en t... 80
5.8 Perform ance C o n s id e ra t io n s ...82

5.8.1 T h e Perform ance of Scrip ting L a n g u a g e s82
5.8.2 T h e Perform ance of C om piled E x te n s io n s83
5.8.3 D esigning for P e r fo rm a n c e ... 84

6. S O F T W A R E C O M P O N E N T S 86

6.1 S crip ting Language C o m p o n e n ts 86
6.2 S p littin g A pplications into C o m p o n e n ts 87
6.3 System s In te g ra t io n 88
6.4 C om ponen t Design 90

6.4.1 L ib r a r i e s ...91
6.4.2 A d a p te r s ... 91
6.4.3 B r id g e s 92
6.4.4 F a c a d e s 92
6.4.5 B uilding a C om ponent L ib r a r y93

6.5 SW IG and C om ponent B u i ld in g ...94

7. C A S E S T U D Y : M O L E C U L A R D Y N A M IC S 95

7.1 T he SPaSM C o d e95
7.2 Before S W IG96

7.2.1 D evelopm ent of S P a S M96
7.2.2 U ser In terfaces ..97

v i i i

7.2.3 D ata Analysis and V isualization W o e s ... 98
7.2.4 T he Need for a New A p p ro a c h ... 99

7.3 T h e SW IG P r o t o t y p e ... 100
7.3.1 A Scrip ting Language and C o m p ile r .. 100
7.3.2 B uild ing the In itia l S y s te m ... 101
7.3.3 Usiug th e Scrip ted V e rs io n ... 101
7.3.4 Dead Code E lim in a tio n .. 102
7.3.5 Im proving R eliability ... 103
7.3.6 In teg rated D a ta A nalysis and V is u a liz a tio n ... 105
7.3.7 Lessons L e a r n e d ... 106
7.3 8 L im ita t io n s ... 107

7.4 SW IG and P y th o n ... 108
7.4.1 B uild ing a P y th o n I n te r f a c e .. 108
7.4.2 S p littin g SPaSM into C L ib ra r ie s .. 108
7.4.3 C reation of P y th o n M o d u le s .. 109
7.4.4 O b jec t-O rien ted E x te n s io n s .. HO
7.4.5 E xception H a n d lin g .. 113

7.5 T h e C u rren t Im plem entation .. 114
7.5.1 C o m p o n e n ts ... 114
7.5.2 Using the S y s t e m ... 116
7.5.3 W riting User C o d e .. 117
7.5.4 P y th o n P ro g ra m m in g ... 119

7.5.4.1 Web Based S im ulation M o n ito r in g ... 119
7.5.4.2 C ode B ro w s in g .. 121
7.5.4.3 D istrib u ted O bjec ts ... 122

7.C Perform ance ... 122
7.6.1 S crip ting for C ontrol, C for P e r fo rm a n c e .. 122
7.6.2 A R ecent Perform ance S t u d y .. 123

7.7 R e s u lts .. 124

8. U S E R S T U D Y ... 125

8.1 Survey M e th o d o lo g y .. 125
8.2 User P r o f i l e .. 126
8.3 L a n g u a g e s ... 129
8.4 U sing SW IG ... 129
8.5 E v a lu a tio n 131
8.6 A pplication A r e a s ... 131
8.7 B enefits o f Using SW IG .. 135

8-7.1 Ease of U s e ... 135
8.7.2 P r o d u c t iv i ty ... 137
8.7.3 Softw are Development... 138
8.7.4 U s a b i l i ty ... 139

8.8 L im i ta t io n s .. 140
8.8.1 Survey R esults .. 140
8.8.2 A rray H a n d lin g .. 141
8.8.3 O verloaded F u n c t io n s ... 143
8.8.4 B e tte r C + + S u p p o r t ... 143
8.8.5 C ode O p t im iz a t io n 144

ix

8.8.6 !s SW IG A utom atic?
8.8.7 C oncep tua l B arrie rs .

8.9 S u m m a ry

9. RESULTS A N D C O N C L U S I O N S
9.1 E valua tion of SW IG ..
9.2 T h e Im p ac t of S crip ting E n v iro n m e n ts
9.3 T h e Role of S W IG ...
9.4 Scientific Software D e v e lo p m e n t.......................
9.5 F u tu re C h a lle n g e s ...
9.C Conclusion...

A P P E N D IC E S

A. S C R IP T IN G L A N G U A G E EX T E N SIO N S

B. SW IG D IR E C T IV E S ..

C. U S E R S U R V E Y ...

D. SO FT W A R E A V A IL A B IL IT Y

R E F E R E N C E S

LIST OF FIGURES

3.1 E xtension m odule o rg a n iz a t io n .. 28

4.1 SW IG o rg a n iz a t io n ... 43

4.2 Layered approach to o b j e c t s ... 52

5.1 C rea tion of a scrip tab le a p p lic a tio n .. 70

5.2 E xecu tion order d e p e n d e n c ie s .. 79

6.1 S p littin g an app lica tion into libraries aud c o m p o n e n ts 87

6.2 S tru c tu re o f a scrip ting language com ponent .. 88

6.3 P rov id ing a com m on scrip tin g interface to different p ac k ag es 89

6.4 D ircct in teg ra tion of packages into into a shared e n v iro n m e n t 89

6.5 A poorly designed set of com ponents ... !)0

6.6 A lib rary c o m p o n e n t .. 91

6.7 An a d a p te r com ponent ... 91

6.8 A bridge c o m p o n en t... 92

6.9 A facade com ponent .. 93

6.10 A designed com ponent l ib r a r y ... 94

7.1 SPaSM com ponen t a rc h ite c tu re .. 115

7.2 Sam ple SPaSM se ss io n .. 118

9.1 User interface ease o f use versus im plem eutation difficulty w ith SW IG 150

LIST OF TABLES

4.1 C om m only used SW IG directives ... 45

4.2 F u ndam en tal C d a t a t y p e s .. 48

4.3 S crip ting d a t a t y p e s ... 48

4.4 D a ta ty p e conversion .. 48

4.5 SW7IG type m ap r u l e s .. (j I

5.1 P erfo rm ance penalties of s c r ip t in g ... 84

7.1 SPaSM com ponen t im p le m e n ta tio n .. 115

7.'2 E xecution tim e (seconds) of C versus C w ith s c r ip t in g .. 123

8.1 User program m ing experience and b a c k g ro u n d ... 127

8.2 User program m ing experience (a p p lic a tio n s) .. 128

8.3 SW K i e x p e r ie n c e .. 128

8.4 Languages being used w ith S W IG ... 130

8.5 SW IG u s a g e ... 130

8.6 SW IG featu re u s a g e ... 132

8.7 C om pila tion o f SW IG generated extensions .. 133

8.8 SW IG e v a lu a t io n .. 133

8.9 G eneral uses of S W I G .. 134

8.10 SW IG app lica tion a r e a s 134

8.11 A reas in which SW IG could he im p ro v e d ... 141

8.12 C + + features being used by SW IG C + + users .. 144

ACKNOW LEDGEM ENTS

T h is research would no t be possible w ithou t the co n trib u tio n s and su p p o rt of m any

people. F irs t, I would like to th an k all of th e SW IG users who have provided bug rep o rts ,

feedback, an d suggestions for im provem ent. T here are far too m any people to th an k indi

vidually, b u t yon know who you are. Second, I would like to th an k my co llabo rato rs T im

G erm ann , B rad H olian, Shujia Zhou, R alf M akkula, Niels Jensen , and W anshu H uang in

the T h eo re tica l Physics Division a l Los A lam os N ational L aboratory . P au l D ubois and

B rian Yang a t Law rence L iverm ore N a tio n al L ab o ra to ry also provided m any in teresting

discussions concerning the use of scrip ting languages and scientific app lications. I would

also like to acknowledge C hris Johnson and the Scientific C om puting and Im aging g roup

a t th e U niversity of U tah for th e ir generous su p p o rt of th is work. Finally, I like to offer a

specia l th an k s to P e te r Lom dahl a t Los A lam os N ational L ab o ra to ry who has su p p o rted

m y efforts th ro u g h o u t g rad u a te school and allowed me to p u rsue crazy ideas.

T h is research has been perform ed under the auspices of the D ep artm en t of Energy,

N ational Science F oundation , and a U niversity of U tah G rad u a te R esearch Fellowship.

CH APTER 1

INTRO DUCTIO N

S crip ting languages such as Perl. P y th o n , and Tel are becom ing an increasingly

p o p u la r too l for th e developm ent and use of m odern software. In fact, Jo h n O u ste rh o u t,

crea to r Tel. writes:

For th e p as t 15 years, a fundam ental change has been occurring in the way
peop le w rite com pu ter program s. T h e change is a tran sitio n from system
p rogram m ing languages such as C or C + + to scrip tin g languages such as Perl
or Tel. A lthough m any people are p artic ip a tin g in the change, Few realize th a t
the change is occurring and ever fewer know why it is h appen ing [77. p. 23].

A lthough scrip tin g languages have been used in a variety of com pu ting app lica tions,

th is d isserta tio n p rim arily focuses on the use of scrip tin g languages w ith scientific soft

w are. A tool, SW IG , has been developed to sim plify the in teg ra tion o f sc rip tin g languages

w ith ex isting softw are w ritten in C and C + + . F urtherm ore , the use of SW IG and scrip tin g

languages are shown to have a trem endous im pact on the developm ent, o rgan ization , an d

use o f scientific software.

T rad itionally , scientific co m pu ting has been ignored by m ost of the co m p u ter science

and softw are engineering com m unity. Likewise, co m p u ta tio n al scien tists often give little

a tte n tio n to m odern softw are practice. T h is d isserta tio n illu s tra te s th e p ractical ap p li

ca tion and im pact of m any m odern softw are construc tion techniques including th e use

of scrip tin g languages, softw are com ponents, design p a tte rn s , softw are re-engineering,

and in terface bu ild ing tools on scientific program s. W hile the em phasis is on scientific

app lica tions, m any of the techniques and resu lts presented are applicab le to o th er areas

of softw are developm ent.

1.1 The Problem s Facing Com putational
Scientists

C o m p u ta tio n a l scien tists have recently w itnessed an unpreceden ted change in the

environm ent in w hich scientific sim ulations are perform ed. T h is changc has been fueled by

a num b er of developm ents including huge increases in sim ulation sizes due to increased

com pu ting power, a sh ift in the types of scientific sim ulations being perform ed, and a

varie ty o f new softw are developm ent techniques such as ob ject-o rien ted p rogram m ing

and com ponen t fram eworks.

U nfortunately , these developm ents have g reatly increased the com plexity o f developing

and perfo rm ing scientific com putations. T h is com plexity m anifests itself in a num ber of

ways. For exam ple, th e fact th a t a scientific p rogram might, run on w orksta tions, shared

m em ory m ultiprocessors, d is trib u ted m em ory parallel com puters, and c lusters g reatly

com plicates softw are developm ent and has led som e researchers to call for b e tte r language,

softw are developm ent, debugging, and too l su p p o rt [78]. Large-scale sim ula tions have

resu lted in large am onn ts o f d a ta th a t overw helm existing hardw are and so ftw are -a

problem often referred to as the “d a ta g lu t" [20]. T h e increased in terest in com plex

u n s tru c tu re d three-d im ensional sim ulations has created a need for new d a ta analysis and

v isualization tools. W hen com bined w ith the data^glu t, researchers often talk ab o u t

‘V isual su p erco m p u tin g ” and the construc tion of highly in teractive d a ta analysis system s

[80, 35], Even though each of these problem s is unique, they are all sym ptom s of the

increasingly com plex n a tu re of scientific com puting and the breakdow n of trad itio n a l

approaches.

A lthough th ere are m any facets to the com plexity puzzle, one of the biggest problem s

facing co m p u ta tio n a l scien tists is the process by which scientific softw are is developed,

assem bled, an d controlled. Not only is the developm ent of new softw are m ore com plicated ,

b u t sc ien tists m ust work w ith a wide variety of existing packages, lib raries, and tools.

T hese com ponen ts are often w ritten in different languages, use a variety of p rogram m ing

sty les, and m ake different assum ptions ab o u t d a ta layout, file form ats, and user interfaces.

As a resu lt, m any co m p u ta tio n al scien tists find them selves spend ing a large am o u n t of

tim e fighting w ith a "w itches b rew ” of different program s, tools, and packages.

To address these problem s, there has been considerable in terest in im proving the

developm ent, s tru c tu re , and usability of scientific program s. T h e use of advanced softw are

developm ent techniques such as ob ject-o rien ted program m ing is becom ing increasingly

com m on in scientific p ro jec ts [31, 52, 86j. To provide b e tte r in teg ra tion betw een tools,

developers have been working on the creation of in tegra ted problem solving env ironm ents

an d com ponen t fram ew orks [80, 84]. To im prove usability, a nu m b er of efforts have

focused on user interfaces and the way in which scientific p rogram s are driven [80, 49], If

a sensib le so lution to these problem s can be devised, il will g reatly s tream line th e problem

solving process as well as the way in which scientific p rogram s are developed.

1.2 Technical and Cultural Challenges
A lthough there are m any benefits to bu ild ing b e tte r scientific software, so lu tions need

to overcom e a num ber of cu ltu ra l and technical obstacles. Scientific com puting is largely

p rac ticed by people tra ined in disciplines o ther th an com puter science. In add ition , they

generally pay little a tten tio n to softw are engineering and design- As a resu lt, tools and

techniques designed for large softw are engineering p ro jec ts have largely been ignored by

th e scientific com m unity. To be useful to scien tists, so lutions need to be easy to use an d

well ad a p te d to the scientific com puting cu lture . Furtherm ore, scien tists are unlikely to

ab an d o n years of previous work or rad ically change th e ir program m ing m ethodology in

favor of unproven softw are technology. Therefore, tools m ust not only be sim ple to use,

b u t they m ast work w ith a diverse range of softw are th a t is often id iosyncratic , difficult

to use, and poorly designed.

1.3 The Need for Evolutionary Improvement
W hen faced w ith th e p rospect of im proving scientific softw are, there is a tendency

for softw are engineers to abandon ex isting scientific softw are and developm ent techniques

in favor of seem ingly revolu tionary im provem ents or new softw are technology. U nfor

tu n ate ly , th is practice has th e danger of producing a second-system effect in which a

softw are environm ent is created w ith the goal of elim inating every possible shortcom ing

found in ex isting system s [17]. U nfortunately , users are often fru s tra ted to find th a t such

efforts re su lt in system s th a t are too com plicated and general purpose to effectively solve

any problem .

A lthough im proving the usability and s tru c tu re of scientific program s is beneficial, it

is im p o rta n t for softw are developers to realize th a t it is rarely necessary to throw existing

softw are away and s ta r t over. In fact, m any ex isting system s can be g rea tly im proved

by m aking a series of sm all m odifications. Such an approach is a ttra c tiv e to scien tists

since they often develop a fam iliarity w ith their softw are and are re lu c tan t to abandon

prev ious work. T herefore, tools designed to im prove scientific softw are are m ore likely to

succeed if they em brace ex isting softw are and allow developers to m ake increm ental an d

evo lu tionary im provem ents.

1.4 Scripting Languages
S crip tin g languages are a powerful tool for bu ild ing b e tte r scientific softw are because

they provide sc ien tists w ith an in terp re ted environm ent th a t can be used to specify

problem s, contro l com plex app lica tions, and solve problem s in an exp lo ra to ry m anner. In

ad d itio n , sc rip tin g languages provide a fram ework for bu ild ing and assem bling softw are

com ponen ts. A com ponent-based approach g reatly im proves the o rgan ization of scientific

p rogram s and allows different system s to be in tegrated . Such in teg ra tion allows tools

to work together m ore efficiently and stream lines the problem -solving process. F inally,

sc rip tin g languages can in te rac t w ith code w ritten in com piled languages such as C, C + + ,

an d F ortran . T h is allows existing applica tions, as well as perform ance critica l o pera tions,

to be in co rp o ra ted as extensions to a scrip ting environm ent. T h is, in tu rn , provides an

evo lu tionary p a th for im proving the o rgan ization and use of ex isting softw are as described

in the previous section.

T h e benefits of scrip tin g languages have even led som e researchers to m ake bold claim s

a b o u t the fu ture. P au l D ubois w rites,

M uch o f scientific program m ing is exp lora to ry in n a tu re , and for th a t so rt of
p rog ram m in g the, use of com piled languages will cease. In te rp re te rs will sim ply
be fast enough for m ost such calculations. M ore co m pu ta tionally intensive
p rog ram s will be w ritten as extensions of in te rp re ted environm ents [33, p. 171].

A lthough scrip tin g languages have much to offer com pu ta tional scien tists, it is unlikely

th a t sc ien tis ts will abandon the use of com piled code due to the com p u ta tio n ally intensive

n a tu re of scientific app lica tions and th e relatively slow perform ance of in te rp re te rs (which

is som etim es m ore th a n th ree orders of m agn itude slower th a n com piled C or C + +) .

T herefore, the in tegra tion o f scrip tin g environm ents w ith ex tensions w ritten in com piled

languages such as C, C + + , and F o rtran will be critica l if sc rip ting languages are to

succecd in th e co m p u ta tio n a l science com m unity.

U nfortunately , the incorporation of com piled code into a scrip tin g env ironm ent is a

difficult endeavor. T h is difficulty arises from the fact th a t scrip tin g languages p rovide no

au to m a ted m echanism for accessing com piled code. As a re su lt, sc ien tists are forccd to

w rite w rap p er codc th a t ac ts as a glue-layer betw een their app lica tion and the scrip tin g

language in te rp re ter. C reating th is w rap p er code is com plicated , tedious, and prone to

erro r. T herefore, scrip tin g languages cu rren tly require too much tim e and effort to be

used w ith most, scientific com pu ting projects.

If the process o f in teg ra ting scrip tin g languages and com piled code can be sim plified,

co m p u ta tio n a l scien tists will be able to effectively utilize scrip tin g in a wide range of

app lica tions. Such sim plification has even been discussed in the lite ra tu re . Paul D ubois

also w rites,

T h e specification o f in fo rm ation in order to ru n a significant physics calcu lation
is a com plex task; th e use of scrip tin g languages for m aking such specifications
will becom e universal. We shall have good tools th a t au tom atically connect a
sc rip tin g language to com piled m odules [33, p. 171].

A lthough a num ber of ex isting tools can be used to c rea te scrip tin g language ex ten

sions, these tools are specia l purpose, lim ited in their capabilities, and som ew hat difficult

to use. As a re su lt, these tools have rem ained of lim ited use to the co m p u ta tio n a l science

com m unity.

1.5 Research Goals
T h e goal of th e research is to develop a general purpose scrip tin g language ex tension

b u ild in g tool an d to dem o n stra te the im pact of such a tool on the developm ent, o rganiza

tion , and use o f scientific software. In p a rticu la r, the research will show how such a tool

m akes it easier for scien tists to use scrip ting languages and how the use of a scrip tin g

env ironm en t fundam en tally im proves th e way in which scientific softw are can be used to

solve scientific problem s.

1 .5 .1 M a k i n g S c r i p t i n g L a n g u a g e s S im p l e t o U s e

T h e research will show how an au to m ated extension build ing tool can sim plify th e way

in w hich scien tists cu rren tly u tilize scrip ting languages. F irs t, such a too l would allow

sc ien tis ts to easily re tro fit ex isting app lica tions w ith a scrip tin g language interface. T h is

would im prove the usability of those app lications and allow them to be used in a m uch

m ore flexible m anner th a n previously possible. Second, by au to m atin g the c rea tion of

sc rip tin g interfaces, scrip tab le app lica tions would be largely insensitive to changes in the

underly ing im p lem en ta tio n -m ak in g such app lica tions m ore ad ap tab le to change. F inally,

by a u to m a tin g th e process of ex tension build ing , sc ien tists will b e ab le to utilize sc rip tin g

languages in situ a tio n s w here they m ight o therw ise n o t b e considered.

1 .5 .2 S im p l i f y i n g S o f t w a r e D e v e l o p m e n t

S crip ting languages provide a highly flexible environm ent for contro lling app lica tions

as well as in teg ra ting softw are com ponents. If the construc tion of scrip tin g in terfaces can

be sufficiently sim plified; it will possible for sc ien tists to easily inco rporate softw are into

a sc rip tin g environm ent. T h is, in tu rn , can have a d ram a tic im pact on the continued

developm ent and o rgan ization of th a t software. In p a rticu la r, the research will show how

sc rip tin g languages lead to g rea ter flexibility, b e tte r reliability, an d im proved m odularity .

F u rth erm o re , it will be shown th a t such an approach allows different softw are system s

to be packaged as collections of com ponents and com bined w ith o ther system s. T h is

in teg ra tio n allows different p rogram s to work together m ore efficiently th an previously

possible.

1 .5 .3 I n c r e a s i n g t h e U s a b i l i t y o f S c i e n t i f i c P r o g r a m s

F inally , the p rim ary purpose of using scrip ting languages is to im prove the usabilit}r

of scientific program s. S crip ting languages are p articu la rly ap p ro p ria te for scientific

ap p lica tio n s because they provide a flexible in te rp re ted environm ent th a t can be used to

specify com plex problem s, ru n sim ulations, and in te rac t w ith p rogram s in an exp lo ra to ry

m an n er. C urren tly , these qualities are usually only found in large com m ercial system s

such as M A TLA B, M ath em a tica : M aple, and IDL [53, 108, 22, 83]. However, the research

will show th a t the use of extension build ing tools and scrip tin g languages m akes it easy

for scien tists to construc t their own app lica tions of com parab le power and flexibility.

1.6 M ethodology
A general purpose scrip tin g language ex tension tool will be developed and freely

d is tr ib u te d to the softw are developm ent com m unity. T h is purpose of th is tool will be

to au to m atica lly co n stru c t scrip tin g language interfaces to ex isting p rogram s w ritten in

C and C + + . A lthough a large num ber o f scientific program s arc cu rren tly im plem ented

in F o rtran , th e vise of F o rtran will not be considered. F irst, an increasing num ber of

scientific p rogram s are now being w ritten in C or C + + . Second, scrip tin g languages

requ ire com piled ex tensions to be accessed th rough a C interface. At, this tim e, the C

in terface to F o rtran varies by com piler and is highly n o n stan d a rd (m aking au to m atic

ex tension build ing difficult). Finally, since scrip ting language access to F o rtran already

requ ires a C interface, th is interface can be used w ith tools designed for C and C + + code.

Iii ad d itio n to developing an extension build ing tool, a num ber of interface co nstruc tion

and design techniques for m igrating ex isting app lica tions to a scrip tin g environm ent will

be developed. Som e o f these techniques include m ethods for d a ta m anagem ent, error

hand ling , type m anagem ent, and the creation of scrip ting language com ponents.

To d em o n stra te the im pact of the tool and interface build ing techniques, a detailed

case s tu d y will he conducted . T he case study will describe the process of transfo rm ing an

ex isting scientific p rogram in to a scrip tab le app lica tion and how th a t ap p lica tio n im proves

as a resu lt o f o p era tin g in a scrip ting environm ent.

F inally , a user survey will be used to determ ine the effectiveness of the extension

b u ild in g tool w ith o ther applications. T h e survey will also help identify s tren g th s and

w eaknesses of th is approach as well as the im pact on the app lica tion build in process.

R esu lts will be validated th rough the use of the case stu d y and user survey. In

p a rticu la r, success will be based on the following crite ria

E a s e o f u se . U nless an extension bu ild ing tool is easy to use, it is unlikely to be of m uch

use to the scientific com m unity.

A p p l ic a b i l i ty to r e a l s o f tw a re . To be succcssful, an ex tension bu ild ing tool m ust be

able to o p era te w ith the software developed and used by scientists.

P r o d u c t i v i ty . Tools m ust m ake scien tists m ore p roductive by sim plify ing the develop

m en t of scientific softw are and stream lin ing the way in w hich th a t softw are is used

to solve scientific p roblem s (i.e., im proving th e “usab ility ” of scientific softw are).

P e r f o r m a n c e . G iven th a t m ost scientific p rogram s are co m pu tationally intensive, so lu

tions m ust n o t in troduce large perform ance penalties.

1.7 Results
A freely available scrip tin g tool, SW IG (Sim plified W rap p er an d In terface G enerato r),

has been developed and d is trib u ted [8, 5], SWTG allows developers to create scrip tin g

in terfaces to p rogram s w ritten in C, C + + , and O bjective-C . To sim plify use, SW IG

co n stru c ts scrip tin g interfaces d ircctly from ANSI C /C + + declara tions as opposed to

using a form al in terface defin ition language. T hus, using only C header files, a scientist,

can often co n stru c t a sim ple scrip ting in terface to an app lica tion in only a m a tte r of

m inutes. In ad d itio n , SW IG has an ex tensib le design th a t allows it to su p p o rt m u ltip le

sc rip tin g languages and to be custom ized. C urren tly , SW IG is being used by several

th o u san d users to construc t ex tensions to Perl, P y th o n , Tel, and Guile on Unix, W indow s,

In add ition , a detailed case s tu d y is presented in which SW IG has been used to

tran sfo rm the SPaSM m olecular dynam ics code a t Los Alam os N ational L ab o ra to ry into

a h ighly flexible an d efficient sc rip tab le app lica tion [10]. In th e process, th e case s tu d y

exam ines the use of SW IG and scrip ting languages w ith a real app lica tion over a 3-year

period. As a result,, the s tu d y provides a descrip tion o f how an ex isting app lica tion can

be in co rp o ra ted in to a scrip ting environm ent and how th a t app lica tion has im proved over

In th e case study , it will b e shown th a t SW IG enabled sc ien tists to build a scrip ting

in terface to the SPaSM code in a relatively sh o rt am oun t of tim e and how the re su ltin g

sc rip tin g in terface indirectly led to a series o f increm ental changes resu ltin g in im proved

reliability , o rgan ization , and m odularity . F urtherm ore , th e use of SW IG and scrip tin g

languages eventually resu lted in a h igh-perform ance highly flexible com ponent-based

system capab le of in teg ra ted sim ulation , d a ta analysis, and v isualization . In ad d itio n , the

sc rip tin g environm ent created w ith SW IG revolutionized th e use of the code and m ade

it possib le for scien tists to perform large-scale sim ulations of m ateria ls on a day-to-day

Finally, a user survey consisting of 119 responses from cu rren t SW IG users is p re

sented. T h e survey shows th a t SW IG is being used w ith a wide variety of scientific and

nonscientific app lications. F urtherm ore , survey responses ind icate th a t SW IG greatly

sim plifies the creation of scrip ting language interfaces, im proves p roductiv ity , and has a

B ased on the resu lts of the case stu d y and user survey, SW IG is show n to have

positive im pact on the developm ent and use of scientific app lications. F irst, SW IG greatly

sim plifies the in teg ra tion of scrip tin g languages and com piled code. T h is m akes it possible

to easily inco rp o ra te ex isting app lica tions in to a scrip ting environm ent as well as allowing

sc ien tists to use scrip tin g languages in situ a tio n s w here they m ight o therw ise have not

been considered. Second, the use of SW IG and scrip ting languages sim plifies the devel

opm en t and organ ization o f scientific so ftw are-resu lting in g reater reliability, flexibility,

and m odularity . Finally, the use of scrip tin g environm ents su b stan tia lly im proves the

E ven though th is d isserta tio n p rim arily focuscs on th e developm ent of scientific soft

ware, SW IG is also applicab le to o ther areas of softw are developm ent. In p a rticu la r, the

user survey reveals th a t nearly 40% of SW IG users are working on nonscientific p ro jects

including in d u stria l and com m ercial softw are developm ent.

1.8 Organization
T h is d isse rta tio n p rim arily describes SW IG and th e process of c rea tin g sc rip tab le

scientific app lications. C h ap te r 2 describes som e of the softw are problem s faced by

co m p u ta tio n a l sc ien tists and re la ted research on scientific softw are environm ents. C h ap te r

3 describes scrip tin g languages and the m echanism s by which they are ex tended w ith

com piled code. T h e design and im plem entation of SW IG are described in C h ap te r 4.

C h ap te rs 5 and 6 describe stra teg ies for m igrating ex isting app lica tions to a sc rip tin g

env ironm ent as well as aspects of com ponent-based scrip tin g app lications. C h ap te r 7

p resen ts a deta iled case study describ ing the use of SW IG and scrip tin g languages w ith

th e SPaSM m olecular dynam ics code a t Los A lam os N ational L aboratory . Finally, a user

survey is presented in C h ap te r 8. T h is survey provides s ta tis tica l d a ta ab o u t who is

using SW IG as well as an ted o ta l evidence describ ing how SW IG sim plifies the creation

o f sc rip tab le applications, im proves p roduc tiv ity , and im proves th e developm ent an d

o rgan iza tio n o f scientific applica tions.

CH APTER 2

SCIENTIFIC SOFTW ARE

2.1 The Culture of Scientific Computing
Scientific com puting has a unique cu ltu re th a t is q u ite different th an th a t found in a

com m ercial or in d u stria l setting . In a nonscientific se tting , the p rim ary goal of a softw are

p ro jec t is usually th e construc tion of a well-defined p ro d u c t such as a billing system ,

a CAD system , or a database . T here arc a variety of softw are engineering techniques

th a t can be used to design, specify, and im plem ent such pro jects. F urtherm ore , there

a rc varie ty o f m etrics for m easuring the success or fa ilu re of these efforts. T h e p rim ary

goal of m ost scientific p ro jec ts, however, is not to build a specific p ro d u c t b u t to gain

u n d ers tan d in g and knowledge ab o u t a scientific problem of in terest. U n d e rs tan d in g th is

difference is im p o rtan t if successful tools are to be developed.

M ost scientific co m pu ting p ro jec ts are s ta rted by a sm all g roup of sc ien tists (physicists,

chem ists, m ath em atic ian s, etc.) who are in terested in s tu d y in g a p a rtic u la r problem .

M ore often th a n no t, p rogram s s ta r t sm all and are w ritten to address a p a r tic u la r class

of problem s. Few co m p u ta tio n al scien tists s ta r t w ith the goal of w riting a large general

pu rp o se softw are package. However, program s th a t prove to be useful m ay evolve into

larger system s over tim e.

W h en creating a scientific p rogram , scien tists arc unlikely to use m any (if any) of the

softw are engineering m ethodologies th a t m ight be found in a large p rog ram m ing effort

[109, 16, 17, 37], T h e use of “requ irem ents” docum ents, program analysis, C A SE tools,

and so fo rth is v irtually unheard of. One reason for th is is th a t scientific p rogram s are

alm ost always ex perim en tal and unproven. M ore often th an not, the scien tists m ay n o t

know exactly how to solve the problem in advance. In fact, th e en tire “design” phase of

a p ro jec t m ay ju s t be a discussion of the scientific problem (in itia l cond itions, num erical

m ethods, physical m odels, etc.). As a result, it is extrem ely difficult, if no t im possible,

to form ally describe th e s tru c tu re th a t a scientific p rogram will take in advance. P au l

D ubois, w rites:

A scientific program is usually th e p ro d u c t o f one or two people, who w rite
it in itia lly to solve a class of problem s faced by them selves and p erh ap s a
few friends. It is much ra re r for a decision to be m ade early to w rite a large
program ; ra th e r, the p rogram s th a t prove to be useful are added to, and evolve
in to , large p rogram s over tim e. Such program s have n o t been su itab le su b jec ts
for a m assive analysis and design effort. In fact, scien tists would no t d ream of
doing such a th in g even if they were to have the skill. Usually, it is no t even
know n if th e approach being taken will ac tua lly work. A nyth ing rem otely like a
“R eq u irem en ts’* docum ent is of questionable value to the scien tist. G enerally,
th e au th o r has a class of problem s in m ind and an a lgorithm ic idea th a t he
or she believes will do the m odeling joh. T h e en tire R equ irem ents P h ase
usually involves a little m u tte rin g to oneself ab o u t w hat kinds of geom etry
and b o u n d ary conditions to allow for [29, p. 4].

E ven though trad itio n a l softw are engineering techniques arguab ly m ight re su lt in

“b e t te r” scientific softw are, the inherently unp red ic tab le n a tu re of scicntific p roblem s

m akes the app lica tion of such techniques difficult. Genevieve Dazzo w rites,

Scientific p rogram s tend to undergo m ore revision th an th e ir business coun
te rp a rts because the needs o f their users change m ore d rastica lly over a sh o rt
p e rio d o f tim e. Users of scientific program s are anxious to explore new areas
an d ex p an d ex isting know ledge [‘26, p. 52].

Finally, perform ance is an im p o rtan t p a r t of th e scientific co m pu ting cu ltu re and

o ften one of the top p rio rities when developing scientific app lications. Scientific problem s

ro u tin e ly push the lim its o f available hardw are and software. T h e need for perform ance

is p rim arily m otiva ted by the need for scien tists to have an ad eq u a te tu rn -a ro u n d tim e

while s till p roviding useful inform ation about, a problem . S im ulations th a t take too long to

com plete are of lim ited value because they do no t provide enough of a sam ple size to draw

conclusions (sim ulations often need to be run dozens to h u ndreds of tim es w ith d ifferent

p a ram ete rs to be useful). Likewise, sim ulations th a t are of insufficient size m ay not

have enough accuracy to yield in teresting results. In teresting ly enough, faste r com puting

hard w are does n o t seem to have had a large effect on sim ulation tim e. R a th er, scien tists

have used increased com pu ting power to im prove th e accuracy or size o f their s im ulations.

In fact, som e au th o rs have even observed th a t sim ulation tim es have rem ained relatively

co n stan t over th e last 20 years desp ite huge gains in com puting perform ance [29],

T h e perform ance focus of m ost p ro jec ts does not necessarily m ean th a t sc ien tists ignore

o th er softw are developm ent issues. P o rtab ility is also a concern b u t is often not addressed

until a m achine is ab o u t to d isappear. M aking p rogram s easier to use is also of in terest,

b u t no t always a high priority. W hen these issues are considered, it is often w ith in

th e con tex t of perform ance. Solutions w ith severe perform ance pena lties will usually be

dism issed. However, scien tists m ight also w ant to consider a quote a ttr ib u te d to Jo h n

O u ste rh o u t, “T h e best perform ance im provem ent is the tran sitio n from th e nonw orking

s ta te to th e working s ta te ” [104, p. 447],

2.2 Scientific Software
T h e lack of form al design and piecem eal grow th o f scientific p rogram s p resen ts a

nu m b er of technical challenges to fram ew ork and tool designers. Even th o u g h it is

com m on for sc ien tists to w rite software, they ten d to do so by following the “p rincip le of

least a c tio n .” In o th e r words, scien tists tend to favor techniques th a t are conceptually

sim ple and require the least am oun t of effort on their p a r t (a lthough th is phenom enon

does n o t ap p ear to be isolated to co m p u ta tio n a l science). As a resu lt, m ost scientific

system s ten d to b e sim ple and m inim alistic in natu re .

U nfortunate ly , approaches th a t make a p rogram easy to w rite can com e back to h au n t

users and developers. For exam ple, a program th a t s ta r ts sm all and is grown in an ad hoc

m an n er can becom e a n igh tm are to m ain ta in . Likewise, a p rogram th a t is easy to w rite

m ight no t be easy to use due to th e difficulty of w riting a user interface. T h is section

describes som e of the com m on problem s associated w ith working w ith scientific software.

2 .2 .1 P i e c e m e a l G r o w t h

W hen a scientific p rogram is first w ritten , it usually addresses a specific scientific

problem . For exam ple, a program m ight be w ritten to perform a th ree-d im ensional

m olecular dynam ics sim ulation of an ellip tical crack in a periodic face-centered-cubic

(fee) c ry sta l using a L cnnard-Jones in tera tom ic p o ten tia l [3]. However, m ost p rogram s

can be generalised to look a t o th er re la ted cases so a scien tist m ay s ta r t m odifying the

code w itli new b o u n d ary conditions, new in tera tom ic po ten tia ls , a variety of num erical

in teg ra tio n a lgorithm s, and features for d a ta m anagem ent. W hen new features are added ,

cond itional s ta tem en ts are often added to the p rogram as follows:

i f (b o u n d a ry == FREE) {
Use f r e e b o u n d ary c o n d i t io n s

} e l s e i f (b o u n d a ry == PERIODIC) {
Use p e r io d i c b o u n d ary c o n d i t io n s

}- e l s e i f (b o u n d a ry == DAMPED) {
Use damped b o u n d ary c o n d i t io n s

>

Even though add ing new features to sm all p rogram s is relatively sim ple, it becom es

increasingly difficult as p rogram s grow in size. In fact., after several years of th is kind of

developm ent, scien tists m ay find th a t a su b s tan tia l portion of th e ir p rogram has becom e

a tang led web of control logic, special cases, and obscure functions. Worse still, changing

any p a r t of the code may have far-reaching consequences and unforeseen side effects.

2 .2 .2 U s e r I n t e r f a c e s

Closely re la ted to the grow th and developm ent of scientific softw are are th e user

in terface m echanism s used to control such software. T h e m ost sim ple user in terface is none

a t all. For sm all p rogram s, p a ram eters can be hard-coded into the p rogram itself. T h is

approach works fine for very sim ple problem s, b u t scientific com puting is an inheren tly

exp lo ra to ry activity . S cien tists w ant to change param eters and see w hat happens. T h is

becom es tedious if th e code is recom piled a lte r every change. An a lte rn a tiv e approach is

to m odify th e p rogram to in teractively p ro m p t th e user for various p rogram p aram eters .

T h is allows a user to change p aram ete rs a t ru n tim e, b u t m any scientific p rob lem s are

solved by ju s t changing one or two in teresting param ete rs and observ ing th e outcom e

of rep ea ted sim ulations. Since answ ering the sam e series of questions quickly becom es

rep e titiv e , scien tists eventually ju s t w rite an in p u t file con tain ing th e answ ers to all of

th e questions an d ru n p rogram s as b a tch processing jobs. Finally, scientific program s

are som etim es contro lled th ro u g h a collection of com m and line options. However, users

quickly becom e annoyed if they have to specify several dozen com m and line op tions each

tim e a p rog ram is rim .

A lthough all of these user interface schemes are easy to im plem ent, they break down

as p rogram s grow in size and capabilities. As m ore features are added, th e developm ent

o f the user in terface and the control of the p rogram becom es increasing com plex. At

som e po in t, it becom es unreasonable to explicitly ask the user hundreds of questions

o r to provide a hundred different options on the com m and line. T h e problem is f'uther

com pounded by the desire to in tegra te different packages and provide a m ore in teractive

problem solving environm ent. For exam ple, none of the user in terface techniques de

scribed so far would be ap p ro p ria te for driv ing an in teg ra ted and in teractive sim ulation ,

d a ta analysis, and v isualization environm ent.

T h e sim plicity of ex isting user interfaces raises the question of why sc ien tists d o n ’t use

m ore soph istica ted user in terface strateg ies. One such stra tegy , often seen in scientific

system s, is to utilize a sim ple com m and in te rp re te r sim ilar to w h a t m ight be found ju a

com m ercial package such as M ATLAB or M ath em a tic s [53, 108]. Using an in te rp re te r, a

scientist, would contro l an app lica tion by w riting a sim ple scrip t or typ ing com m ands th a t

the app lica tion would in te rp re t a t ru n tim e. T h is provides a g rea t deal of flexibility and

ap p ears rem arkab ly sim ilar to o th e r techniques (especially since sc ien tists are a lready

accustom ed to w riting scrip ts and in p u t files). However, m aking scientific program s

in te rp re t com m ands requires an in terp re ter. W riting a new in te rp re te r from scratch is a.

tim e-consum ing and difficult endeaver for scientists. O n the o th e r hand , using an ex isting

in te rp re te r can be equally difficult since a scien tist m ay no t know how to in tegra te it into

th e ir ex isting p rogram s and nse it effectively.

F inally , scien tists m ight consider the use of a graphical user interface (GUT). T h is is

often a “p o p u la r” no tion until scien tists discover the difficulty of creating a GUI. T he

developm ent o f a G U I is su b stan tia lly m ore difficult th an any of th e schem es described

so fa r-req u irin g deta iled knowledge o f graphical user interface libraries, event driven

p rog ram m ing , wiclget libraries, and so forth . Furtherm ore, the im p lem en tation of a usable

G U I is a non triv ia l task . One would certain ly no t w ant to present the user w ith a d ialogue

box con tain ing h u ndreds of b u tto n s and en try fields because th a t would not be m uch

different th a n ju s t asking the user a series of questions. To fu rth e r com plicate m a tte rs

G U I interfaces are often highly n o n p o rtab le and difficult to m anage on ex p erim en ta l

p la tfo rm s. In ex trem e cases, a m achine m ight only su p p o rt batch-processing jo b s an d

have no su p p o rt for g raph ical display. Finally, p rom oters of g raph ical user interfaces

often assum e th a t the user w ants to constan tly in te rac t w ith th e ir program s. A lthough

in te rac tio n is clearly im p o rtan t, som e scientific program s can rn n for tens to hundreds o f

hours. T herefore a scrip ting and batch processing capab ility is alm ost alw ays necessary.

As a re su lt, a g raph ical user in terface is m ost useful w hen com bined w ith a com m and

in te rp re te r or o th er batch-orien ted interface.

O verall, scien tists ten d to prefer user in terface schem es th a t are sim ple to im plem ent

even though m ore soph istica ted techniques are available. Since scientific p rogram s s ta r t

sm all, th e re is in itia lly little need to utilize a highly soph isticated user interface. F ur

th erm o re , usability is only a m inor concern since th e in itia l developers of a system tend

to be its p rim ary users (also, th e goal of m ost scientific p ro jec ts is n o t to deliver a

po lished p ro d u c t). As a result, user interface problem s tend to “sneak u p ” on developers

as p rogram s grow in size. In Fact, it is not unusual for scientific p rogram s to ad o p t a

2.3 The Search for B etter Scientific
Software

In la te r sections, the use of scrip tin g languages and au to m ated ex tension bu ild ing

tools will be described as a m eans for im proving th e usability and o rgan ization o f sci

entific software. However, this is not the only approach being pu rsued in the scientific

com m unity. T h is section briefly describes a num ber of o th er developm ent efforts. T he

p rim ary goal o f th is section is to call a tten tio n to related work th a t is aim ed a t changing

th e way in which scientific softw are is developed and used.

2 .3 .1 O b j e c t - O r i e n t e d F r a m e w o r k s

Som e scien tists have been adop ting th e techniques of ob ject-o rien ted p rogram m ing

to p rov ide an app lica tion developm ent environm ent for solving science and engineering

problem s. Som e efforts include PO O M A . A + + /P + + , P E T S c , and Diffpack [84, 81, 4, 18|.

T h e idea beh ind these system s is to provide scien tists w ith a useful collection o f ob jects

and an env ironm ent in which the ob jects can be used to solve problem s. For exam ple, a

system m ight provide basic ob jects for m atrices, u n stru c tu red meshes, vectors, com plex

num bers, partic les, vector fields, and so on. A num ber of opera tio n s and m ethods such

as basic arithm etic., linear solvers, p reconditioners, v isualization, and erro r analysis could

th en be app lied to the ob jects as needed. To solve a problem w ith one of these system s, a

sc ien tis t assem bles an ap p ro p ria te collection o f ob jects and applies a series of “in teresting"

o p era tio n s to them .

T h is approach is a ttra c tiv e for a num ber o f reasons. F irst, it provides a tigh tly

in teg ra ted environm ent th a t allows objects to in te rac t w ith each o ther. Second, it allows

softw are designers to h ide m uch of th e com plexity from users. For exam ple, on a parallel

m achine, the parallelism could be b idden away in a b s tra c t base classes and lower levels

o f th e fram ework. A t the highest level, users m ight no t even be aw are of such parallelism

or the technical d e ta ils involving its im plem entation . In add ition , th is app ro ach can

re su lt in very com pact and “sim ple” form ulations of scientific problem s. For exam ple, a

sc ien tis t m ight be able to solve a problem by sim ply crea ting a few ob jects and w ritin g a

few m ath em atica l equations. O p era to r overloading and o ther advanced language featu res

can often hide much of the underly ing com plexity w hile g reatly reducing the am oun t of

code th a t m ust be w ritten by the user. Finally, such approaches a tte m p t to cap ita lize

num ber o f in c reas ing ly com p lex in terface schemes over th e ir life tim e .

on th e general benefits of ob ject oriented program m ing including m anagem ent of large

softw are system s, controlling complexity, code reuse, and encapsulation .

2 .3 .2 C o m p u t a t i o n a l S t e e r i n g

C o m p u ta tio n a l steering is an em erging field th a t a tte m p ts to provide in teg ra tio n

betw een sim ulation , d a ta analysis, and visualization [49, 79], U ser in te rac tio n is a key

featu re because steering system s provide scien tists w ith a h ighly flexible and in terac tive

d a ta exp lo ra tion and sim ulation environm ent. T h a t is, they allow sc ien tists t,o in te rac t

w ith th e ir d a ta in real tim e, guide sim ulations, and play o u t d ifferent scenarios.

S teering system s are p rim arily focused on the way in which a scien tis t perform s and

in terac ts w ith sim ulations. M uch o f the work is focused on issues of d a ta locality, m oving

d a ta betw een m achines, v isualization techniques, and m echanism s for p resen tin g th e d a ta

to th e user. Som e recent steering efforts include the S C IR un system developed a t U tah ,

p rogram in s tru m en ta tio n tools a t G eorgia Tech. and in teg ra tion of v isualization system s

such as AVS w ith sim ulation codes [80, 100, 99, 98, 97, 21, 59, 44].

T h e in teresting aspect of steering system s, is th a t in providing in teg ra ted sim ula tion

and v isualization to the user, they also address com plex softw are co n stru c tio n issues. In

o rd e r to m ake a steering system work, th e different subsystem s need to be com bined

and controlled in an effective m anner. In m any cases, the com ponents are th ird -p a rty

packages and libraries. T herefore, developers need to worry ab o u t the interfaces betw een

m odules, fram ew orks for com bining and using m odules, and th e difficulties of using

ex isting software. Since these issues also arise in scrip tin g environm ents, m any of the

techniques u tilized by steering system s also apply to scrip tabfe applica tions.

2 .3 .3 H e t e r o g e n e o u s C o m p u t i n g

A num ber o f researchers have been in terested in th e problem of providing softw are and

in fra s tru c tu re for heterogeneous com puting. Some efforts include the I-WAY, G lobus, the

G rid , and Legion [27, 40, 92, 47]. Significant portions o f these p ro jec ts are devo ted to

in fra s tru c tu re issues such as faster netw orks, high perform ance com puting p latfo rm s, and

high-end v isualization system s, b u t there is also a fundam ental softw are p rob lem th a t

needs to be addressed. In p articu la r, how are scien tists going to go ab o u t hooking all

o f these pieces together? How will they w rite softw are to ru n in such a heterogeneous

env ironm ent? How can ex isting system s b e inco rpora ted into such an environm ent?

Like efforts in co m p u ta tio n al steering and scrip tin g environm ents, success depends upon

finding schem es for build ing , controlling, and using scientific softw are com ponents.

2 .3 ,4 C o m p u t a t i o n a l P r o x i e s

T h e in teg ra tio n and control of scientific softw are com ponents have also been accom

plished using ob jcct-o rien ted da tabases and co m p u ta tio n al proxies [24], W ith a proxy

system , th e orig inal scientific app lica tions rem ain unm odified while a proxy system is

used to provide a generalized in terface to users. T h e proxy system m anages th e execution

and tran sfer of d a ta betw een different com ponents while h iding deta ils from the users. In

o rder to do this, th e proxy server knows how each p rog ram is controlled as well as the

d a ta fo rm ats used for in p u t and o u tp u t.

T h e proxy approach is p rim arily used to encapsu la te a variety of legacy app lica tions

in to a unified environm ent. I t does not change the way in which each ind iv idual app lica

tion is s tru c tu re d or used nor does it address th e problem s o f moving m assive am oun ts

o f d a ta a round betw een subsystem s (a lthough it m ay hide the process from users).

An app ro ach sim ilar to com pu tational proxies can som etim es be accom plished using

scrip tin g languages. For exam ple, E xpect is a Tc.1-based ex tension th a t is often used

to drive ex isting app lica tions by m im icking th e in p u t of users [63]. Likewise, Perl and

P y th o n can be used to drive legacy app lications from a scrip tin g environm ent [101, 66].

2 .3 .5 C o m p o n e n t s a n d D i s t r i b u t e d O b j e c t s

T h e creation and in tegra tion of softw are com ponents are also of g rea t in te re st to

com m ercial and in d u stria l softw are developm ent efforts. T h e p rim ary difficulty in th is

case is th a t p rog ram m ing p ro jec ts are often undertaken by large team s of p rogram m ers

who are working on very large and com plex system s. Since ind iv idual com ponents

m ay be developed by different groups o f p rogram m ers, fram ew orks for in teg ra tin g these

com ponen ts arc of critica l im portance. Two of th e m ost com m on com ponent arch itec tu res

include C O IIB A (the C om m on O bjec t R equest B roker A rch itectu re) and M icrosoft CO M

(C om m on O bjec t M odel) [74, 87].

C O R B A is a specification created by the O b jec t M anagem ent G roup (O M G), a con

so rtiu m of co m p u ter com panies including Sun, HP, DEC. and IBM . CO M is a com peting

com ponen t a rch itec tu re developed by M icrosoft and is the hasis for m ost app lica tions

developed in the W indow s environm ent.

W hen using COM or C O R B A , app lica tions are b u ilt by assem bling com ponents. E ach

com ponen t can be though t of as providing a specific service such as access to a da tabase ,

perfo rm ing co m p u ta tio n a l intensive operations, or p resen ting the user w ith an interface.

A lthough these services may all ex ist on a single m achine, they m ay also be d is tr ib u te d

across a netw ork o f m achines. T hus, a d a tab ase server could provide d a tab ase access to

o th er m achines on the netw ork and be nsed as a com ponent in various o th e r softw are

packages.

C om ponen t arch itectu res allow com ponents to be com pletely decoupled, w ritten in

d ifferent languages, or to ex ist on different m achines. However, the key to using C O R B A

and C O M is th a t th e interfaces between com ponents are precisely defined. In terfaces

a re specified using an interface definition language (IDL) such as C O R B A IDL. T h e

1DL specification provides a language an d p la tfo rm independen t descrip tion of all of the

available ob jects, d a ta ty p es , and operations su p p o rted by a com ponent. W ith an ID L

com piler, the in terface descrip tion is tu rned into client an d server s tu b s th a t m ust be

w ritte n by the developer. After a developer fills in these s tu b s, the com ponen t cau be

m ade available for general use by o th er softw are clients.

Even th o u g h C O R B A and COM are being used in an increasing num ber of com m ercial

app lica tions, these system s are unlikely to have a large ap p eal to co m p u ta tio n a l scien tists

since they are viewed as being too cum bersom e and difficult to use in a scientific se tting .

T h e p rim ary benefit th a t scien tists w ould receive from a com ponent a rch itec tu re is a

well-defined m echanism for glu ing softw are com ponents together. However, given the

n a tu re of scientific softw are and the cu ltu re of scientific com puting p ro jec ts, th is task

can often b e accom plished th rough o th er m eans such as ob ject-o rien ted fram ew orks or

sc rip tin g languages.

2.4 Limitations of Other Approaches
A lthough m any of the approaches described im prove scientific softw are, they also suffer

from a num ber of draw backs th a t has prevented their w idespread use in the scientific

co m pu ting com m unity. T h is section briefly describes som e of these problem s.

2 .4 .1 P o o r P e r f o r m a n c e

Scientific app lica tions routinely push the lim its of the m achines th a t they ru n on. Yet.

ob jec t-o rien ted fram ew orks and com ponent a rch itectu res have a num ber o f well-known

p erfo rm ance problem s. In C + + , if ob jects are created th rough inheritance, there is a p e r

form ance pena lty due to v irtu a l function calls. O p era to r overloading an d o th er advanced

featu res often resu lt in th e creation and d estru c tio n of large num bers of tem p o ra ry ob jects

[28]. T h e creation of tem poraries is also p rob lem atic for very large o b jec ts such as m illion

elem ent arrays (especially w hen m em ory u tiliza tion is critica l). C om ponent arch itec tu res

such as C O R B A suffer ad d itio n a l perform ance penalties since they are often b u ilt a round

RPC -like m echanism s for invoking procedures and m ethods.

A widely cited artic le in 1994 rep o rted resu lts in which C + + was as m uch as 700%

slower th an F o rtran [50]. As a result, there has been considerable in te rest in techniques

designed for im proving C + + perform ance. O ne highly publicized technique involves

the use of expression tem plates [51, 86, 95, 96]. Using expression tem plates, ru n tim e

perfo rm ance com parable w ith C and F o rtran can be achieved for ce rta in o p era tio n s [95].

However this perform ance im provem ent is achieved by expand ing a r ith m etic expressions

in to nested tem p la te definitions. T h is grossly inflates com pilation tim e and m akes debug

ging ex trem ely difficult since m ost debuggers do n o t fully su p p o rt tem plates. G iven the

rap id ly changing and experim en tal n a tu re of scientific app lica tions, th is is an unaccep tab le

so lu tion to m any co m p u ta tio n a l scientists.

In criticizing ob ject-o rien ted of fram ew orks, it is im p o rtan t to po in t ou t th a t differences

in design have a large im pact on perform ance and th a t not all fram ew orks suffer from

perfo rm ance problem s. T h e s ta te of C + + com pilers also ap p ea ls to be im proving [86],

2 ,4 .2 C l o s e d S y s t e m s

M ost fram ew orks enforce a rigid set of rules th a t m ust be followed by softw are devel

opers. For exam ple, an ob ject-o rien ted fram ework typically provides an extensive inher

itance hierarchy th a t m ust be used by developers w hen developing new code. Likewise,

com ponen t a rch itec tu res such as C O R B A and C O M precisely define the m echanism s by

which softw are com ponents are construc ted and in terac t w ith each other.

A lthough th e form ality provided by these approaches m ay be ap p ro p ria te for large

p rog ram m in g efforts, it also resu lts in closed system s th a t com plicate the use of existing

software. For exam ple, if a scien tist w anted Lo inco rporate an ex isting ap p lica tio n in to

such an environm ent, th ey would be forced to encapsu la te the ap p lica tio n inside an

a d a p te r class th a t was com patib le w ith th e ta rg e t fram ework [43]. D epending on the

n a tu re of the original app lica tion , th is process could be qu ite com plicated . Closed

system s also discourage reuse since the com ponents of one system are generally not usable

w ith in o th er system s. For exam ple, C O M and C O R B A com ponents canno t be easily used

together. Likewise, C + + system s based on im plem entation inheritance m ake it alm ost

im possible for com ponents to be ex trac ted and used in o th e r system s.

2 .4 .3 P r o g r a m m i n g in t h e L a r g e

M any fram ew orks are designed for large-scale', p rogram m ing efforts and th e develop

m ent of packages. For exam ple, a t Los A lam os N ational L aboratory , a recenL artic le a b o u t

th e A SC I (A ccelerated S trateg ic C om puting In itia tive) p ro jec t s ta ted “W e will b e form ing

code developm ent team s larger th an any we have ever a ttem p ted to m anage, w ith as m any

as 20 to 30 s ta ff m em bers each. A nd these team s will be developing ex trem ely com plex

softw are th a t m ust ru n on th e w orld’s largest m assively parallel co m p u te rs” [82, p. 3].

R a th e r th a n a tte m p tin g to investigate new scientific problem s, these efforts are p rim arily

orien ted tow ards developing p roduc tion softw are for solving engineering problem s. T he

form ality provided by fram ew orks is likely to be a su itab le m echanism for m anaging

such p ro jec ts. However, m ost com pu tational scien tists rarely set o u t to create m assive

softw are packages. As a resu lt, the form alism and m ethodology used to m anage large

softw are p ro jec ts often becomes an obstacle in sm all p rojects.

2 .4 .4 P o o r A d a p t a t i o n t o C h a n g e

Fram ew orks tend to enforce a p a rticu la r design m odel on users. Scientific p rogram s,

on the o th er hand , are usually grow n in a piecem eal and adhoc m anner. T h is difference

creates two fundam en tal problem s. F irst, a system th a t is too rigid m ay be too difficult

to m odify and ex tend w ith new features (or so difficult to u n d ers tan d th a t sc ien tists

do n o t know w here to s ta r t) . Likewise, when changes are m ade, th ey m ay be difficult

to inco rpo ra te . For exam ple, in a com ponent arch itec tu re , th e ad d itio n o f new featu res

w ould require m odifications to in terface definition files, regeneration o f s tubs, and so forth .

In a scientific se tting w here softw are changes rapidly, th is clearly presents a problem .

2 .4 .5 C o n c e p t u a l D i f f ic u l t i e s

Finally, for a scien tist who has only w ritten F ortran or C program s, ju m p in g in to a

large ob jec t-o rien ted fram ew ork can be overw helm ing. Not only m ust sc ien tists learn

a new language to use these system s, they need to learn a w hole new vocabulary an d

m in d se t for th ink ing ab o u t problem s. To fu rth e r com plicate m a tte rs , general purpose

system s such as CO RBA and CO M are often b loated w ith features such as security,

quality of service, garbage collection, version control, and fau lt tolerance. Few scien tists

have m uch in terest (or need) to use such features and are easily overw helm ed by the

com plexity th a t they in troduce.

2.5 Scripting Languages and SW IG
In the following chap ters, th e use o f scrip ting languages and SW IG will be presen ted

as a new approach for build ing, m anaging, and using scientific software. T h is approach

is a ttra c tiv e because it solves m any of the p ractical softw are problem s encoun tered by

co m p u ta tio n a l scien tists while addressing all of the above lim itations. In p articu la r.

P e r f o r m a n c e . S crip ting languages can in te rac t w ith code w ritten in com piled languages.

T h is allows perform ance critica l operations to be easily w ritten in C, C + + , or

F ortran .

O p e n s y s te m s . R a th e r th an enforcing a rigid s tru c tu re , sc rip ting languages m ake it easy

to work w ith a wide variety of software com ponents. Furtherm ore , SW IG sim plifies

the process o f inco rporating ex isting packages in to a scrip tin g environm ent regardless

o f th e ir underly ing im p lem en tation or design.

P r o g r a m m i n g in t h e la rg e a n d s m a ll . A lthough scrip ting languages have been used

in large-scale program m ing pro jects, they enforcc very few rules and can be easily

used in sm all p ro jec ts. T h is m akes them ap p ro p ria te for a wide variety of scientific

program s.

A d a p ta t i o n t o c h a n g e . U sing ex tension bu ild ing tools such as SW IG , scrip tin g lan

guages can easily respond to rap id changes in the underly ing im p lem en ta tio n of

scientific program s. F urtherm ore , scrip ting languages can be easily used w ith pro

gram s th a t are under developm ent or in an unfinished s ta te .

C o n c e p tu a l s im p lic i ty . S crip ting languages are sim ple to learn and use. F u rtherm ore ,

they can be added to the softw are already being used by scien tists. T hus, scrip ting

is m ore of an evo lu tionary im provem ent ra th e r th an an revo lu tionary change.

In ad d itio n , it will be shown th a t scrip tin g languages and SW IG enable scien tists

to achieve m any of the sam e benefits associated w ith o th er approaches. T h is includes

im proved m o d u la rity and encapsulation , system s in teg ra tion , developm ent of com ponen t

arch itec tu res, and in teractive exp lo ra to ry problem solving.

CH APTER 3

SCRIPTING LANGUAGES

S crip ting languages have m uch to offer scien tists because they provide a powerful

m echanism for specifying scientific p roblem s, in teg ra ting softw are com ponents, con tro l

ling scientific system s. F urtherm ore , scien tists already use sim ple sc rip ts and scrip ting

languages for a num ber of o ther tasks. T h is section discusses scrip tin g languages, the

benefits they b ring to scientific com puting applications, and the m ethods by w hich

sc rip tin g languages are extended.

3.1 W hat Is a Scripting Language?
I t is su rprising ly difficult to give precise definition o f a scrip tin g language. However,

sc rip tin g languages share a num ber of qualities.

C o m p o n e n t g lu in g . R a th er th an build ing program s from scratch , scrip ting languages

are p rim arily designed to glue com ponents together. For exam ple, the U nix shell

provides an environm ent for executing and contro lling p rogram s as well as m oving

d a ta betw een p rogram s using files and pipes, in a s im ilar sp irit, sc rip tin g languages

also can be used in a m ore fine-grained m anner by gluing softw are libraries together,

passing d a ta betw een individual functions, creating collections of w idgets for user

interfaces, and so forth .

I n t e r p r e t e d . U nlike com piled languages such as C, C + + , or F o rtran , scrip tin g language

p rogram s are in terp re ted . T h is elim inates the need for a sep a ra te com pilation s tep

an d allows scrip tin g languages to be run interactively.

H ig h - le v e l . S crip ting languages provide a variety of useful d a ta s tru c tu re s along w ith

techniques such as dynam ic typing. T h is resu lts in p rogram s th a t are sm aller and

easier to develop th a n in com piled languages.

T raditionally , sc rip tin g languages have been dism issed as being to o sim plistic to solve

real problem s, in (act., alm ost any th ing th a t can be done in a com piled language can

also be accom plished in a scrip ting language. M any m odern scrip tin g languages also

su p p o rt ob ject-o rien ted program m ing as well as aspects of functional p rog ram m ing found

in languages such as Lisp and Scheme [94, 42]. In add ition , m ost scrip tin g languages also

provide high-level access to op era tin g system services such as the file system , sockets, an d

th read s.

M uch o f th e confusion regard ing scrip ting languages is due to a m isu n d ers tan d in g of

th e role sc rip tin g languages play in re la tionsh ip to system s program m ing languages such

as C and C + + . Jo h n O usterhou t w rites,

System program m ing languages were designed for bu ild ing d a ta s tru c tu re s and
a lgorithm s from scratch , s ta rtin g from the m ost p rim itive com pu ter elem ents
such as words of m em ory. In con trast, sc rip ting languages are designed for
gluing: T hey assum e the existence of a set of powerful com ponents and are
in tended p rim arily for connccting com ponents [77, p. 23].

3.2 Component Gluing
O ne of t,he m ost pow erful features o f scrip ting languages is th e ir ab ility to glue softw are

com ponen ts together. .John O u sterh o u t w rites,

I concluded th a t th e only hope for us was a com ponent approach . R a th e r
th a n bu ild ing a new app lica tion as a self-contained m onolith w ith h u ndreds of
th o u san d s of lines of code, we needed to find a way to divide ap p lica tio n s into
m any sm aller reusable com ponents. Ideally, each com ponent would be sm all
enough to be im plem ented by a sm all g roup , an d in teresting app lica tions could
be crea ted by assem bling com ponents. In th is environm ent it should be possible
to c rea te an exciting new app lica tion by developing one new com ponent and
th en com bining it w ith ex isting com ponents.

T h e com ponent based approach requires a powerful and flexible “glue” for
assem bling th e com ponents, and it occurred to me th a t p erh ap s a shared
scrip tin g language could provide th a t glue [76, p. xviii].

T h e n a tu re of scrip ting language “com ponents’’ can vary widely. A t a m in im al level, a

com ponen t m ight be a s tand -a lone program and a scrip ting language used for job control

as found in a Unix shell. Packages such as E xpect can also be used to sc rip t executab les

an d m im ic the in p u t o f users [63], However, m ost scrip ting languages can also be ex tended

w ith functions w ritten in com piled languages sucJi as C, C + + , and F ortran . In th is role,

sc rip tin g languages can be used to in te rac t w ith com piled lib raries an d p rogram s a t a

functional level. T h is m akes it possible to use scrip ting languages as a fram ew ork for

in te rac tin g will) com piled code and build ing softw are com ponents.

3.3 High-Level Programming
An im p o rtan t aspect of using scrip ting languages is their su p p o rt for high-level p ro

gram m ing. To u n d e rs ta n d this, it is helpful to co n tras t scrip ting languages w ith low-level

system s program m ing languages like C, C + + , and F ortran . In com piled languages there

a re a few basic d a ta ty p es , a set of basic operations, and program m ing co n stru c ts such as

loops, contro l flow, etc. P rogram s and d a ta s tru c tu re s are generally b u ilt from scra tch

using these p rim itiv e features. S crip ting languages, on the o th er hand , supply a rich vari

ety of o b jec ts such as lists, associative arrays (i.e., hash tab les), arrays, infin ite precision

in tegers, and so forth . T hey also assum e the existence of a large set of com ponents. T hus,

ra th e r th an build ing app lica tions from scratch , scrip ting languages allow ap p lica tio n s to

be b u ilt by glu ing d ifferent com ponents together and m anaging d a ta w ith pow erful d a ta

s tru c tu re s .

A second a rea w here scrip tin g languages differ is in their trea tm e n t of d a ta ty p es .

L anguages such as C and C + + have s tric t a type-checking m echanism th a t checks the

valid ity of code du rin g com pilation . V iolations of the type system resu lt in com pile-tim e

errors. S crip ting languages, on the o th er hand , defer type-checking u n til ru n tim e. T hus,

the P y th o n function

d e f a d d (a , b) :
r e t u r n a+b

can be used for any two o b jec ts th a t can be legally added. For exam ple,

> » a d d (3 ,4) # I n t e g e r s
7
» > a d d (" H e llo " ."W o rld '1) # S t r i n g s
H e llo U o r ld
>>> a d d ([3 , 4 , 5] , [6]) # L i s t s
C 3 ,4 ,5 ,6]
> »

D ynam ic typ ing also benefits com ponent gluing because it m akes it possib le to com binc

an d u tilize com ponen ts an d o b jec ts in a way th a t is sim ply not be possible (or easily

im plem ented) in a com piled language. To illu s tra te th is, consider th e following P y th o n

function:

d e f p l o t _ d a t a (x , y , n p o i n t s , c o l o r , im g) :
f o r i i n r a n g e (0 , n p o i n t s) ;

im g .p l o t (x [i] , y [i] , c o lo r)

T h is function w ould work p roperly w ith any kind ob ject th a t defined a “p lo t” m ethod.

T h is would be checked a t run tim e and th e use of an ob ject w ithou t th is m eth o d would

sim ply resu lt in a ru n -tim e erro r. In co n trast, the strongly typed n a tu re of C + + w ould

g reatly re s tr ic t the use of a sim ilar function by forcing it to only o p era te on a specific types

of ob jects or ob jects derived from a com m on base class. As a resu lt, system s p rogam m ing

languages tend to be m uch m ore rigid and form al w ith respect to the use of o b jec ts and

th e m echanism s used to glue com ponents together. T h is often m akes it m ore difficult to

glue com ponen ts together and reuse softw are com ponents.

C ritics are quick to po int ou t th a t ru n -tim e checking can lead to h idden errors because

erro rs are n o t detected u n til code is ac tua lly executed. A lthough th is claim has som e

m erit, ru n -tim e typing often resu lts in code th a t is easier to w rite, m ore flexible, and highly

reusable. R u n -tim e checking has also been used successfully in o th er ob ject-o rien ted

languages such as O bjective-C or Sm alltalk [23, 46].

F inally , sc rip tin g languages excel a t sim plifying com plicated program m ing tasks. For

exam ple, consider the process of w riting a g raph ical user interface. If w ritten in C or

C + + , it can take hundreds of lines of code to open a w indow and place a b u tto n on the

screen. In co n trast, th is is easily accom plished w ith a sim ple two line T c l/T k sc rip t [77].

T h e high-level n a tu re of scrip ting languages m ake it easier to develop significant

ap p lica tio n s in a sh o rt am ount of tim e. In fact, recent repo rts confirm th is fact by c iting

huge reductions in code size and developm ent tim e [77]. T he effectiveness of high-level

languages has also been described by Frederick B rooks in the M y th ic a l M a n - M o n th :

Surely the m ost powerful stroke for software p roductiv ity , reliability , and sim
plicity has been the progressive use of high-level languages for p rogram m ing.
M ost observers cred it th a t developm ent w ith a t least a factor of five in p ro d u c
tivity , an d w ith concom itan t gains iri reliability, sim plicity, and com prehensi
b ility [17, p. 186].

T h ese benefits apply to th e use of scrip ting languages in general b u t w ould clearly

app ly to scientific com puting applications. In fact, the problem s o f trad itio n a l softw are

developm ent have already appeared in the scientific lite ra tu re .

F rankly, the lim iting factor for fu tu re [scientific] system s m ay well be w riting
the softw are itself. Few h ard , reliable d a ta po in ts ex ist for tren d s in softw are
p roduc tiv ity , b u t the percep tion persis ts th a t p ro d u c tiv ity increases have been

glacially slow for program s w ritten in conventional languages such as F o rtran ,
C, A da, or Java [85, p. 45].

S crip ting languages m ay provide scien tists w ith an a lte rn a tiv e approach.

3.4 Scripting and Scientific Computing
S crip ting techniques have already been used in a variety of scientific app lica tions.

C om m ercial system s such as M ATLAB, M athcm atica , M aple, an d IDL provide in teractive

com m and-driven interfaces th a t are rem arkab ly sim ilar to scrip tin g languages [53, 108,

22, 83]. A num ber of specialized languages such as Yorick and Basis have also been

developed for bu ild ing scientific app lica tions [71, 32], M ore recently, th e P y th o n sc rip tin g

language has seen increased use in a varie ty of scientific app lica tions [fifi, 30, 55, 13].

S crip tin g languages are also widely used in the tools used by scientists. For exam ple, the

V isualiza tion Toolkit includes a T c l/T k in terface [89], P lo ttin g packages, perform ance

ana lysis tools, an d co m p u ta tio n al steering system s such as S C IR un also m ake extensive

use of sc rip tin g languages a lth o u g h th is m ay not be ap p a ren t to th e user [2, 48, 80]. In

m any cases, scien tists m ay not be aw are th a t their tools are using scrip tin g languages in

a su b s ta n tia l way.

To u n d ers tan d the benefits th a t scrip ting brings to these system s, consider the fact th a t

m any scientific app lica tions are m onolith ic packages w ith lim ited flexibility. M ore often

th a n not, they are controlled by a series of com m and line sw itches or a sim ple com m and

processor. F u rtherm ore , p rogram s are typically used in a ba tch processing m ode w ith

l i tt le if any user involvem ent. S crip ting changes th is by encapsu la ting app lica tions in a

highly flexible in te rp re ted environm ent. T his provides a b e tte r m echanism for controlling

scientific softw are and allows users to in teract w ith p rogram s and d a ta . Not only th a t,

sc rip tin g has a positive im pact on the developm ent of scientific softw are [32]. In p articu la r,

F a s t e r d e v e lo p m e n t . A su rp ris ing portion of m any scientific app lica tions is devoted

to the han d lin g o f in p u t p aram eters and control flow. S crip ting languages already

provide th is kind of in fras tru c tu re . As a resu lt, developm ent can focus on the

creation of m odules, not the m echanism by which those m odules are controlled.

System s in which scrip ting is applied m ay experience a reduction in code size [32],

R e d u c e d d e b u g g in g t im e . Scrip ting provides an in terp re ted and in teractive environ

m ent for in terac tin g w ith scientific program s. Scientists can query values, execute

functions, and perform operations in a m anner sim ilar to th a t found in a debugger.

If d a ta analysis and visualization com ponents are available, these can also be used

in the search for bugs. Since th is capability is always available, m uch Less tim e is

sp en t using debuggers.

R a p id p r o to ty p in g . New features can often be im plem ented in the scrip tin g language

in terface first, and moved to com piled code later. G iven the long com pile tim es

assoc ia ted w ith m any system s, having an in te rp re ted developm ent environm ent

tends to reduce developm ent tim e (since new features can be im plem ented and

tes ted w ith o u t recom pila tion).

P o r t a b i l i t y . Most, sc rip ting languages can o p era te on a variety of a rch itec tu res including

U nix, W indow s; and M acintosh system s. By im plem enting an app lica tion w ith in

a scrip tin g environm ent, cross p latform su p p o rt can be achieved w ith much less

effort th an before. T h is is because the scrip tin g environm ent provides generalized

su p p o rt for p la tfo rm -dependen t operations such as I /O , g raph ical user interfaces,

an d process m anagem ent.

R e u s e . S crip ting encourages th e developm ent of m o d u lar and reusable code. Tf a su itab le

collection of m odules can be created , they can be reused in o th e r applica tions.

V irtu a lly every co m p u ta tio n al scien tist has u tilized packages th a t m ake use of in te r

p re te d interfaces. F u rth erm o re such interfaces have proven to be highly successful in a

varie ty of com m ercial system s. Therefore, it is su rprising th a t scrip tin g techniques are

n o t used m ore frequently in scientific applications.

3.5 Scripting Language Extension
Programming

A lthough scrip tin g languages have a num ber of p rac tica l benefits, it is unlikely th a t

sc ien tis ts will abandon com piled languages any tim e in the foreseeable fu tu re . T h is is

p rim arily because the perform ance of scrip tin g languages is som etim es m ore th an th ree

orders of m ag n itu d e slower th a n a com piled language [88]. D espite the o th er benefits of

sc rip tin g languages, they are no t enough to ofTset the perform ance penalty th a t w ould be

in cu rred by en tire ly giving up a com piled language like F o rtran or C.

However., scrip ting languages can in te rac t w ith com piled extensions w ritten in C , C + t ,

or F o rtran . T h is largely elim inates the perform ance pena lty by allowing perfo rm ance

critica l code to be w ritten in a com piled language and m erely controlled th rough scripting-

In such system s, th e underly ing app lica tion m ay rely u p o n h igh-perform ance num erical

lib raries while sc rip tin g languages would be used a t the h ighest level o f th e system for

control, problem se tu p , and user in teraction . Jn th is role, sc rip tin g languages only account

for a tiny p o rtio n of th e overall execution tim e while com p u ta tio n ally intensive op era tio n s

a re still executed in com piled code an d d o m in ate the overall execution tim e. T herefore,

th e fact th a t a scrip tin g language runs much tim es slower th an com piled code m ay be of

m in im al conc.orn.

3 .5 .1 E x t e n s i o n M o d u l e s

To ex tend a scrip tin g language w ith com piled code, it is necessary to c rea te an

“ex tension m odule.” A n extension m odule consists of th ree p a rts as shown in F igure 3.1.

F irs t, th ere is the C /C + + code th a t im plem ents the functionality of th e m odule or

w hich corresponds to an existing app lica tion th a t is to be inco rpora ted in to a scrip ting

environm ent. Second, there is w rapper code th a t is used to provide th e glue connecting the

sc rip tin g in te rp re te r and the underly ing C code. Finally, there is a m odule in itia liza tion

function. T h is function is used to register the conten ts of an ex tension m odule w ith the

sc rip tin g language in te rp re te r w hen th e m odule is loaded.

W hen creating an ex tension m odule, it is necessary to w rite the w rap p er code an d

m odu le in itia liza tion function. To do this, scrip tin g languages provide a C level A P I

th a t developers can use to access the scrip ting in terp re ter, convert d a ta to and frorn a C

rep resen ta tio n , rep o rt errors, reg ister new com m ands, create variables, and so forth .

In itia liza tion
W rappers

C /C + +

F ig u r e 3 .1 . E x tens ion m odu le o rg an iza tio n

3 .5 .1 .1 W r a p p e r F u n c t i o n s

To execute functions and procedures in a com piled language, it is necessary to w rite

w rap p er Functions. T h e role of a w rapper function is to convert d a ta ty p e s betw een

languages, provide th e logic needed to m ake the function call, and to handle errors. To

illu s tra te the process, consider a sim ple C function such as follows:

/ * Compute n - f a c t o r i a l * /
i n t f a c t (i n t n) {

i f (n <= 1) r e t u r n 1;
e l s e r e t u r n n * f a c t (n - l) ;

>

A w rap p er fu n c tio n used to access th is function from Tc) is shown below [76].

/* A T e l W rapper F u n c t io n * /
i n t
w r a p _ f a c t (C l ie n tD a ta c l i e n t D a ta , T c l_ I n t e r p * i n t e r p ,

i n t a r g c , chair * a rg v [])
{

i n t r e s u l t ;
i n t argO ;
i f (a rg c != 2) {

T c l _ S e t R e s u l t (i n t e r p , "Wrong # a r g s . f a c t -[i n t } " ,TCL_STATIC);
r e t u r n TCL^ERROR;

>
argO = (i n t) a t o l (a r g v [1]) ;
r e s u l t = f a c t (a r g O) ;
s p r i n t f (i n t e r p - > r e s u l t , "‘/el d " , (lo n g) r e s u l t) ;
r e t u r n TCL_0K;

>

For Tc5 to access the w rapper function, it m ust first be registered w ith the T el

in te rp re te r. T h is is done in the m odule in itia liza tion function as follows:

/ * A s im p le T e l m odule i n i t i a l i z a t i o n f u n c t i o n * /
i n t E x a m p le _ I n i t (T c l_ In te rp * i n t e r p) {

i f (i n t e r p == 0)
r e t u r n TCL_ERR0R;

/* C re a te a new command ’f a c t ’ * /
T c l_ C re a te C o m m a n d (in te rp , " f a c t " , w ra p _ fa c t , (C l ie n tD a ta) NULL,

(T c l_C m dD ele teP roc *) NULL);

>
r e t u r n TCL_0K;

W hen the ex tension m odule is loaded, the m odule in itia liza tion function is executed .

T h is function registers a new com m and “fact" w ith the T el in terp re ter. W hen th is

com m and subsequen tly ap p ears in a scrip t, execution is passed to the w rap p er function.

T h e w rap p er function collects a rgum ents passed to the function and converts th em to a C

rep resen ta tion . Since T el passes all argum ents as strings, th e w rapper function converts

a rg u m en ts from strings to the ap p ro p ria te C rep resen ta tion . A fter conversion, th e real

C fu n c tio n is executed. Finally, the re tu rn value of the the function is converted back

in to a s trin g and re tu rn ed to Tel. A lthough the process has been illu s tra ted for T el, a

s im ilar p rocedure is used for all sc rip tin g languages and deta iled exam ples are show n in

A ppend ix A.

3 .5 .1 .2 V a r i a b l e L i n k in g

V ariable linking is th e process o f accessing global variables in a com piled p rog ram

from a sc rip tin g language. Even though the use of global variables is highly d iscouraged

in softw are engineering circlcs, they arc used q u ite frequently in scicntific ap p lica tio n s to

sto re th e values of various sim ulation param eters.

T h e sim plest way to su p p o rt global variables is th rough the use o f functions such as

th e following:

/ / A g lo b a l v a r i a b l e
d o u b le D t ;

/ / G et and s e t t h e v a lu e
d o u b le D t_ g e t () {

r e t u r n D t ;
>
v o id D t_ s e t (d o u b le d) {

Dt = d;
>

T h ese functions can th en be added to the scrip ting in terface as o rd in ary w rap p er func

tions.

Som e scrip tin g languages, such as T el, provide an a lte rn a tiv e m echanism th a t can

be used to m ake global variables ap p ear as o rd inary scrip tin g language variables. For

exam ple, execu ting th e following C code in the m odule in itia liza tion function

T c l_ L in k V a r (in te r p ,“D t" , (ch ar *) &Dt, TCL_LINK_DOUBLE);

turns Dt into a Tel variable that is mapped directly onto a C global variable. W hen this

variable is accessed or modified from the scripting interpreter, the underlying C variable

is then accessed directly.

Other scripting languages can create special variables where read and write operations

are mapped onto functions written in C. For example, in Perl, the following functions can

be written.

in t
wrap_set_DtCSV* sv , MAGIC *mg) {

Dt = (double) SvNV(sv);
retu rn 1;

>
in t
wrap_get_Dt(SV * sv , MAGIC *mg) {

s v _ se tn v (sv , (double) D t) ;
return 1;

>

When a new value is assigned to Dt, the set method is used to change the value. When

the value of Dt is read, the get method is used to retrieve the value. Thus, in a Perl script,

Dt would appear, for all practical purposes, like an ordinary variable.1

Change Dt
$Dt = 0 .0001; # C a lls wrap_set_Dt

P r in t out the value
p r in t $D t," \n"; # C a lls wrap_get_Dt

Support for variable linking varies widely between scripting languages. Global vari

ables can always be accessed through a functional interface. However, if a scripting

language offers an alternative mechanism, it can be used to make the scriptiug interface

more convenient to the user.

3.5.1.3 Creating Constants
Most interesting programs, especially scientific ones, define a variety of constants for

setting modes, physical constants, and so forth. In a C program, these might be defined

as follows:

d e fin e PI 3.14159265359
con st double E = 2.71828182846;

1 In Per) these are known as magic variables.

Making constants available to a scripting language interpreter can be accomplished by

creating scripting variables that contain the corresponding value. This is done by placing

special function calls in the module initialization function that create constants when an

extension module is loaded. For example, in Python, placing the following function calls

in the initialization function would create two constants

P yD ict_S etItem S tr in g(d ," P I" , PyFloat_From Double(PI));
P yD ict_S etItem S trin g(d ," E " , PyFloat_FromDouble(E));

3.5.1.4 O bject M anipulation
Although the interfaces to functions, variables, and constants are relatively straight

forward. C structures, unions, and classes presents a more difficult problem. When

working with objects, there are three fundamental problems. First, there is the issue of

representation. Second, there is the problem of object creation and destruction. Finally,

one must devise a mechanism for executing methods and operations on objects.

A common approach to the representation problem is to generate object, handles. A

handle is simply a name that is assigned to an object and used in the scripting language

interface. Internally, a hash table is used to map handle names into pointers of the

appropriate object type. When wrapper functions cxpect an object or pointer to an

object, a handle name is used as a key in a hash table lookup. If a match is found,

a pointer tn an object is extracted and passed to the C function. If not, an error is

generated.

To create and destroy objects, it is necessary to create and destroy handles. This is

accomplished using special constructor and destructor functions that are added to the

scripting language interface. For example, functions to create and destroy V ector objects

might look like the following:

char * crea te_V ector() {
Vector *v = new V ectorO ;
char *narne = create_handle_narae();
add_handle(nam e, v) ;
retu rn name;

>

void d e le te_ V ecto r (ch a r *name) {
Vector *v = (V ector) lookup_handle(nam e);
i f (!v) error("N ot a v a lid o b je c t!");
d e le te v;

rem ove_handle(nam e);
return;

>

Although handles allow objects to be created, destroyed, and passed between different

C /C + + functions, they do not allow a program to examine the internals of an object.

Therefore, to invoke methods and extract internal information, accessor functions can

be written. An accessor function provides a functional interface that can be used to

manipulate objects given a handle. For example, if the definition of a V ector is

s tr u c t Vector ■{
double x ,y ,z ;
void n orm alize() ;

>;

the following accessor functions could be used to examine and modify member data.

double V ector_x_get(V ector *v) {
retu rn v->x;

>
vo id V ector_x_set(V ector *v, double x) {

v->x = x;
>

Likewise, the following accessor function could be used to invoke a member function.

vo id V ector.n orm alize(V ector *v) {
v -> n o r m a liz e ();

>

Using accessor functions, access to objects is controlled entirely through function calls.

As a result, a scripting interface can be built by simply creating wrappers around these

function calls using earlier techniques.

Most modern scripting languages also provide support for object-oriented program

ming. An alternative approach to wrapping C and C + + objects is to encapsulate them

with a scripting wrapper or adapter class. When a wrapper class is used, C and C + +

objects are encapsulated inside a scripting language class. This class provides a natural

object-oriented interface to the underlying objects and hides implementation details from

users. For example, the following Python code illustrates the use of V ector objects when

incorporated into a wrapper class.

v l = V ectorO
v l .x = 2

v l , y = 3
v l . z = 4
v2 = V ectorO
v 2 . x = - 1 .5
v 2 .y = 4
v 2 . z = 5
v 2 .n o r m a liz e ()
d = d o t .p r o d u c t(v l ,v 2)

The process of writing scripting language wrapper classes varies widely and is ommit-

ted here for the sake of clarity. One approach, based on accessor functions, is discusscd

in Chapter 4. A variety of other objcct-oricntcd wrapping techniques can be found in

[76, 66, 101, 106, 67, 39],

3.5.2 Compiling an Extension M odule
To use a module it must be compiled in a form that the scripting language understands.

Most modern scripting languages support dynamic linking of extensions [41]. With

dynamic linking, extension modules are compiled into shared libraries or dynamic link

libraries (DLLs). These libraries can then be loaded by the scripting language at run

time. To load a module, a user simply starts the scripting language interpreter and issues

a command such as “import foo.:’ This command loads the module into memory as a

shared library. Immediately after loading, the module initialization function is executed

and control returned to the scripting interpreter. At this point, the contents of the module

can be used.

Although supported on most machines, dynamic linking may not work in all eases. If

building modules as shared libraries is not an option (or undesirable) it is also possible

to integrate an extension module directly into the scripting language interpreter. To do

this, the extension module and the scripting language interpreter are linked together to

form a new executable. In the proccss, a new main program is written. This program

initializes the scripting language interpreter and initializes the extension module upon

startup. Thus, when the user runs the new version of the interpreter, the extension

module will automatically be available for use.

3 . 6 S c r i p t i n g V e r s u s C o m m e r c i a l P a c k a g e s

Many commercial packages such as MATLAB and IDL can be used as a framework

for solving scientific problems [53, 83]. Not only do these systems have significant

functionality, but they also have a foreign function interface. This allows a scientist

to extend the package with new functionality and to utilize the functionality already

provided by the system. For example, MATLAB can be extended with new functions

by writing .special wrapper functions in C (68). In reality, the process of writing these

wrappers is identical to that found with scripting language extensions.

In many respects, these packages can be viewed as domain-specific scripting languages.

The system is controlled by an interpreted and interactive language that glues components

together and can be extended by writing special wrappers (the same technique used by

scripting languages). The main limitation of using commercial packages is their lack of

generality and the fact that they are closed systems. For example, the only datatype

supported in MATLAB is a matrix. This limited representation makes it difficult to

represent nonmatrix objects and apply MATLAB to other domains.

Despite the limited generality of such systems, packages like MATLAB are examples

of what a scriptable scientific application might look like-a collection of compiled modules

controlled by an interactive and interactive language. Since such systems are so similar

to scripting languages in both use and design, they will be included in further discussion.

Thus, techniques described for extending Perl, Python, or Tel could also be applied to a

number of commercial scientific computing packages.

3 . 7 S c i e n t i f i c C o m p u t i n g a n d t h e

P r o b l e m s w i t h S c r i p t i n g

Despite the potential benefits that scripting languages offer scientists, they are not

widely used in the scientific computing community. Although much of this may be due to

a perception of poor performance, it is most likely due to the difficulty of integrating

scripting languages with existing applications. It particular, there are the following

problems.

T h e c o m p le x ity o f ex te n s io n build ing. Building a scripting language extension is an

extremely tedious and complex chore that requires an intimate knowledge of the

target scripting language. Most scientists arc simply not interested in this task-

T h e ch oice o f scr ip tin g language. Given the complexity of building a scripting in

terface, the logical next step is to pick the “best” scripting language and use it for

everything. Unfortunately, there is no such thing since all scripting languages have

strengths and weaknesses depending on the application. For example, Tcl/T k is pri

marily used in the construction of graphical user interfaces, Perl is used extensively

for text, processing, and Python for object-oriented programming. In many eases

the choice of language may be a matter of personal preference. In any case, it is not

inconceivable that one would want to use different scripting interfaces for different

tasks. Unfortunately, the heavyweight extension mechanism all but prohibits this.

R ap id change. Scientific applications often change to address new problems. Unfortu

nately, the extension building process is not well-adapted to this environment since

new features and changes to interfaces require changes to the underlying wrapper

code.

Unless these problems can be addressed, it is unlikely that scripting languages will be

of much use to scientists. Scientists must be convinced that scripting is simple to use and

results in few performance penalties.

C H A P T E R 4

S W I G

4 . 1 C o m p i l a t i o n o f S c r i p t i n g C o m p o n e n t s

In this chapter, SWIG (Simplified Wrapper and Interface Generator) is described

[5, 6, 8]. SWIG is a compiler that has been developed to automatically construct scripting

language interfaces to compiled code written in C, C+ + , and Objective-C [61, 31, 23].

Versions of SWIG have been available for public use since February, 1996 and development

has been ongoing. SWIG currently supports Perl, Python. Tel, and Guile extension

building on Unix, Windows-NT, and Macintosh systems [101, 66, 76, 65]. Experimental

modules are also available for Java and MATLAB [38, 53].

This chapter is not intended to serve as a detailed description covering all of SWIG’s

features. Detailed information about using SWIG can be found in the SWIG Users

Manual [9], This chapter primarily focuses on the design, implementation, and operation

of the SWIG compiler as well as a variety of associated language issues.

4 . 2 R e l a t e d W o r k

Given the difficulty of building scripting extensions, there has been considerable in

terest in the creation of tools that simplify the task. Rather than writing glue code by

hand, an extension building tool allows a user to specify the contents of scripting language

component using an interface definition language (IDL). Interface descriptions axe written

in this language and compiled into scripting language components. Most scripting-related

extension tools fall into the following categories :

S tu b gen erators. A stub-generator compiles an IDL file into a file containing a collec

tion of empty function definitions known as “stubs.” The stubs contain all of the

pieces needed to build a module, but it is up to the user to fill in the stub bodies

with the appropriate glue code. Such a technique is most commonly found with

distributed applications involving RPC, 1LU, and CORBA, but can also found in

scripting generators such as the Modulator tool used lor building Python extensions

[93. 25, 74, 66],

L an gu age-sp ecific m od u le b u ild ers. Most scripting languages have specialized tools

for building extensions. For example, h2xs and xsubpp are tools for building Perl

extensions, Modulator can be used for building Python extensions, and Tel has a

number of tools such as Itcl+H- and ObjectTcl [91, 66, 54, 106],

A p p lica tio n -sp ec ific gen erators. Large applications with scripting interfaces may in

clude specialized interface construction tools. For example, the Visualization Toolkit

(VTK) includes a YACC-based parser that compiles VTK C-5--I- class definitions into

Tel, Python, and Java intcrfaccs [67, 89].

E m b ed d in g to o ls . Embedding tools, such as Embedded Tk (ET) for Tel, provide a

mechanism for embedding scripting languages in compiled code [56]. This is a

fundamentally different problem than controlling C /C + + code with a scripting

language. Rather, these tools address the problem of accessing scripting languages

from a compiled language.

Although extension building tools can simplify the interface generation process, they

vary widely in capabilities and support. Most tools use their own interface definition

format, making it nearly impossible to change tools or languages. In some cases, the use

of a tool may even be nearly as difficult as writing an extension by hand. Finally, most

extension building tools offer little in the way of documentation and support-often being

labeled as obscure and magical tools for hackers and gurus. In fact, if one surveys popular

scripting language books, almost no mention is made of such tools [76. 105, 101, 66]. This

is unfortunate since the use of extension building tools greatly enhances the usefulness of

most scripting languages.

Very little work appears to have been done in the development of general purpose

scripting language extension tools that support both multiple scripting languages and a

wide range of C /C + + code. The closest approximation is the interface builder packaged

with the Visualization Toolkit, which is able to build to intcrfaccs to Tel, Java, and

Python [89]. The ILU system also provides support for multiple languages, but is

primarily used for distributed computing applications [25].

4 . 3 D e s i g n G o a l s

SWIG shares many of the features found in other interface generation tools, hut

attempts to address many of the limitations that make those tools difficult to use. Simply

stated, the primary design goals of SWIG are as follows:

• Simplicity.

• Applicability to existing software.

• Support for rapid change.

• Separation of interface and implementation.

• Extensibility.

• Support for multiple scripting languages.

Meeting these goals involves a number of tradeoffs and considerations. For example, a

tool that is simple to use might not provide the formality required in a very large software

project. Likewise a tool that is too general purpose might not be able to produce quality

interfaces to each scripting language. For a better understanding of the design, each goal

is now described in some detail.

4.3.1 S im plicity
To computational scientists, a tool is simple to use if it requires a minimal effort to

use effectively. In an ideal setting, tools designed to help scientists should not interfere

with the problem solving process. In other words, the use of a software tool should not

become the primary focus of a project. For scripting extension building tools, this can

be achieved by fully automating the extension building process, making it as easy as

possible for users to specify scripting interfaces, and to produce scripting interfaces that

are closely mapped to the underlying compiled code.

To automate extension building, a compiler should produce a fully functional scripting

language module, not a collection of stubs. Ideally, the user should not have to write any

of the scripting wrapper code as described in Chapter 3 nor should they be required to

modify the output of the compiler.

To simplify the specification of interfaces, a compiler should make it as easy as

possible for users to seamlessly integrate scripting with their programs. One problem

with many interface generation tools is their reliance upon special interface definition

languages (IDLs) that require the user to precisely specify almost all aspects of their

application. Although such an approach provides more formality aud precision, it also

makes such tools hard to use in the experimental and exploratory environment associated

with scientific projects. In such cases, the development of the interface specification may

be only slightly less cumbersome than writing wrapper functions by hand. Furthermore,

the rapidly changing nature of scientific software complicates the maintenance of interface

specifications and may result in situations in which interfaces are inconsistent with the

actual implementation.

To simplify the specification of interfaces, the ANSI C /C + + declarations found in

header files and source files could be used. By specifying interfaces in this manner,

scientists would not have to learn a special interface definition language and would be

able to quickly build scripting interfaces to existing programs. Such an approach also

works well in a rapidly changing software environment since changes to the underlying C

implementation arc easily propagated to the scripting interface.

Finally, the scripting interfaces produced by the compiler should closely match the

underlying C and C+ + code. For example, a C function should be mapped to a scripting

language command of the same name, variables mapped to scripting variables, and so

forth. In other words, the scripting interface should merely be an extension of the

compiled code. This is an important feature because computational scientists are most

likely to work with both C /C + + code and scripts. Therefore, the scripting interface

should merely expose the underlying functionality to the user in a straightforward manner

as opposed to hiding or obscuring it.

4.3.2 A pplicability to Existing Software
Scientific programs vary widely both in implementation and design. Furthermore,

the implementation of such programs may be quite complex-utilizing sophisticated data

structures and algorithms. To successfully build scripting interfaces, tools must support

a wide range of programming styles and techniques. To accomplish this, the compiler

must support a large subset of the programming features found in scientific programs

including functions, global variables, constants, and classes. The compiler also needs to

support a wide range of datatypes including fundamental types (integers, floating point,

strings), structures and objects, arrays, aud pointers. Finally, the compiler needs to be

highly adaptable. Rather than requiring users to structure interfaces and components in

a precise manner, it should be possible for users to add scripting intcrfaccs to existing

software without having to make substantial modifications to that software.

4.3.3 Support for Rapid Change
Scientific applications change more rapidly than their commercial counterparts. Inter

face generation tools must keep pace with this change without becoming a burden. The

best way to support rapid change is to automate the interface generation process while

making it nearly invisible to the user. By fully automating the compilation of scripting

modules and using the same language syntax as the original application, interface gen

eration can be hidden away in the compilation of a program. Thus, when changes are

made to that program, they can automatically be reflected in the scripting interface.

4.3.4 Separation of Interface and Im plem entation
One problem with modifying existing applications to operate in a new environment is

that those applications may be modified in a way that prevents their use in other settings.

For example, if a scientist builds a Tel interface to a scientific application by hand, there

is a lendency for Tel specific C code Lo creep inLo the uriginal application. As a result,

the program eventually becomes inseparable from its Tel interface.

To prevent this, a compiler should strive to maintain a strict separation of the compiled

code and its scripting interface. By doing so, the original application will remain general

purpose and be usable in other settings (including those that do not involve scripting

languages).

4.3.5 E xtensib ility
Just as scientific programs and problems change, the compiler should be extensible

in order to handle new situations. There are two cases that need to be considered.

First, a user may want to extend or alter the behavior of the compiler to provide a

“better” interface to their program. Ideally, there should provide special directives or

commands that can be placed directly in interface description files for this purpose. A

second important area of extensibility is support for new scripting languages. A variety

of scripting languages are currently available and new ones may appear in the future.

Thus, the compiler should be general purpose and easily extended to support different

languages as appropriate.

4.3.6 Support for M ultiple Scripting Languages
When it comes to C extension building, scripting languages are surprisingly similar.

They are all extended with wrapper code and the techniques for writing this wrapper code,

building modules, and using extensions are essentially the same. A compiler that exploits

this similarity and supports multiple languages has many interesting aspccts. First, it

largely eliminates the problem of choosing the l:best” scripting language. Rather, different

languages can easily be used and evaluated for the job at hand (or personal preference).

Second, it allows applications to simultaneously support a variety of different interfaces.

This generally improves the usefulness of an application and allows it to be used in a wide

variety of different settings. Finally, a compiler supporting multiple scripting languages

would unify a number of extension building efforts and provide a general purpose tool for

building scriptable applications regardless of the scripting language being used. This, in

turn, allows developers to focus their attention on the creation of scriptable applications,

not the specific scripting language that will be used.

4 . 4 I m p l e m e n t a t i o n

SWIG is implemented in C + + and consists of three primary components: an ANSI

C /C + + parser, a scripting language wrapper code, generator, and a documentation

generator as shown in Figure 4.1. The input to SWIG is a subset of the ANSI C /C + +

language that is extended with special directives. The output of SWIG is a C or C+ +

source file that is compiled and linked with the rest of an application to create a scripting

language module. The code generator and documentation generator are extensible to

support different scripting languages and documentation formats respectively. Currently,

scripting language modules are available for Perl. Python, Tel, and Guile whereas doc

umentation can be generated in HTML, plain text, and LaTeX. Further discussion will

focus exclusively on the code generation process while details about the documentation

system can be found in the SWIG Users Manual [9].

4.4.1 Parsing
The SWIG parser accepts a subset of ANSI C, C + + , and Objective-C and is im

plemented using YACC [62]. Before parsing, all input files are passed through a C

preprocessor chat handles conditional compilation and macro expansion. In addition

to normal C code, SWIG understands a number of special directives that are used to

To generate code, au instantiation of a particular language class is created (Tel, Perl,

Python, ct,c...) and given to the parser. The setjm odule method is used to set the name

of the scripting language extension module. Afterwards, the parser executes methods

such as crea te_ fu n ction , lin k _ v a ria b le . and d eclare_con st to generate wrappers.

To illustrate, suppose that the following C declarations were to be encapsulated in a

module “Poo."

in t f a c t (in t) ;
vo id p lot(Im age *img, double x , double y , in t c o lo r) ;
double D t;
Hdefine PI 3.14159265359

To construct the scripting language module, SWIG performs the following operations:

1. Create a new language object,

lang = new LANGO;

2. Set the module name.

lang->set_m odu le("F oo");

3. Create wrappers.

la n g -> c r e a te _ fu n c tio n (" fa c t" , i n t , (in t)) ;

la n g -> c r e a te _ fu n c tio n (llp lo t" , v o id , (Image *, doub le, doub le, i n t)) ;

la n g -> lin k _ v a r ia b le (" D t" , d o u b le);

la n g -> d ec la re_ co n st(" P I" , dou b le , 3 .14159265359);

4 . 5 S W I G D i r e c t i v e s

Although the input to SWIG primarily consists of ANSI C /C + + declarations, a

number of special directives are also available as shown in Table 4.1. These directives are

used to guide the compilation process, provide hints, and customize SWIG’s behavior.

A full description of the directives can be found in the SWIG Users Manual although a

brief description of the most commonly used directives can also be found lu Appendix B

[9]. A number of the more interesting directives will also be described in later sections.

45

Table 4.1. Commonly used SWIG directives
7.{ ... •/.} ‘/.addmethods

'/.apply 7. checkout

'/.clear 7.disabledoc
‘/.echo 7.enabledoc
“/,except 7.extern

7, import ^include

7, in it 7.{ . . . ’/.} 7«inline 7.{ ... 7.}
V.module 7.native
7, name 7.new

7,pragma ^readonly

y.readwrite 7«rename
”/,typedef 7«typemap
7.wrapper */,{ ... '/*}

4 . 6 S W I G I n p u t F i l e s

Since SWIG interfaces are built using a mix of ANSI C / C + + declarations and special

directives, there are several approaches for constructing an input file. The most common

approach is to use a separate “interface file.” This file contains a selective list of the

C / C + + declarations to be wrapped along with spccial directives. Another common

approach is to insert SWIG directives directly into a C header file and to utilize conditional

compilation. SWIG defines a symbol SWIG that can be used by the preprocessor for this

purpose. Finally, SWIG can extract declarations directly from C source Pdes.

4 . 7 A S i m p l e S W I G E x a m p l e

To use SWIG., the user specifies an interface using ANSI C declarations such as follows:

/ / f i l e : exam ple. i
‘/♦module example
*/.{
^include "example.h"
7 .)

in t f a c t (in t n) ;
double D t;
d e fin e PI 3.14159265359

To build the module, the user runs SWIG and compiles the wrapper code into a shared

library as follows:1

'The compilation process varies according the compiler and operating system being used

’/. swig - t e l exam p le .i
Making wrappers for Tel
'/. gcc -c - f p ic exam ple.vrap . c exam ple.c
°/» gcc -sh ared example_wrap. o exam ple.o -o exam ple.so

To use the new module, the user starts the scripting language interpreter and loads the

module as follows:

*/. t c l s h
‘/. load . /exam p le . so
*/o f a c t 4
24
'/. s e t Dt 0.0001
'/. p u ts $PI
3.14159265359
*/.

To switch scripting languages, SWIG is given a different, target language option. For

example, a Python module could be built as follows:

*/, sw ig -python example . i
Making wrappers fo r Python
‘/t gcc -c - f p ic - I /u s r / lo c a l/ in c lu d e /p y t h o n l .5 \

example_wrap. c exam ple.c
‘I, gcc -sh ared example_wrap. o exam ple.o -o examplemodule. so
*/, python
Python 1 .5 (#1 , Jan 1 1998, 11:26:26) [GCC 2 .7 .2 .1] on lin u x2
Copyright 1991-1995 S t ic h t in g Mathematisch Centrum, Amsterdam
>>> import example
>>> exam ple. f a c t (4)
24
» > example . c v a r . Dt = 0 .0001
>>> p r in t exam ple.PI
3.14159265359
> »

This simple example illustrates the use of SWIG and contains most of what users need

to know to get started. First, interfaces are specified using ANSI C declarations. Second,

a module name must, be given using the ’/.module directive. Header files and support

code are then included using the ‘/.{, ‘/.} directive. Finally, the SWIG compiler is used to

generate the wrapper code. This wrapper code is compiled and linked with the original

application to create a module.

4 . 8 D a t a t y p e s a n d D a t a R e p r e s e n t a t i o n

Although the processing of simple C declarations such as functions and variables is

straightforward, the most difficult aspect of interface generation is the handling of C

datatypes. In order to work with a wide variety of C code, the SWIG compiler must

support most of the C built-in datatypes such as integers and floating point numbers as

well as derived types such as pointers, arrays, structures, unions, and classes. Further

more, methods for converting these types to and from a scripting representation must be

devised. This section describes SWIG’s treatment of datatypes.

4.8.1 Fundamental Types
ANSI C defines the fundamental datatypes shown in Table 4.2. The size of each type

is implementation specific, but typical values for 32 bit architectures are shown. Scripting

languages provide the datatypes shown in Table 4.3. When building the scriptiug language

interface, SWIG maps the fundamental C datatypes into the closest appropriate scripting

language datatype. This mapping is shown in Table 4.4. When datatypes are converted

between C and scripting, truncation effects may occur. In particular, large integer values

in a scripting language may be truncated when converted to a C datatype with less

precision. Likewise, 64 bit C integers may be truncated when passed to a scripting

language. In addition, single precision floating point numbers arc usually cast to and

from double precision values. Finally, two datatypes of notable interest are char and

char *. In C, char is commonly used to hold a single character of text while char * is

used to hold character strings. Therefore, both of these types are mapped into scripting

language strings.

4.8.2 Pointers, Arrays, and O bjects

Most C programs make extensive use of pointers, arrays, and data structures. To build

useful scripting interfaces, a mechanism for handling these datatypes must be developed.

4.8.2.1 Typed Pointers
SWIG encodes C pointers as typed pointers in the scripting language interface. A

typed pointer is simply a representation that contains both the value of the pointer and

its corresponding type. For example, in Tel, a C pointer of type "Vector *" might be

encoded as the string “_100fea8_Vector_p.” When typed pointer values are passed to C

Table 4.2. Fundamental C datatypes
Name Description Typical size (bits)
in t Integer 32
long Long integer 32 or 64
short Sliort integer 16
f lo a t Single precision floating point 32
double Double precision floating point 64
char Single byte character 8
void No value -

T able 4.3. Scripting c afcatypes
Name Equivalent C Datatype Typical size (bits)
Integer long 32 or 64
Float double 64
String char * variable
None void -

Table 4.4. 'Datatype conversion
C Datatype Scripting Datatype
in t
unsigned in t
long
unsigned long
short
unsigned sh ort
s ign ed char
unsigned char

Integer (long)

f lo a t
double

Floating point (double)

char
char *

String (char *)

vo id None

functions from scripting, the pointer value is extracted and the type compared against

an expected value. If a type mismatch occurs, a run-time error is generated.

One of the primary differences between scripting and compiled languages is that

scripting language defer type-checking until run-time. This differs from G and C+ +

where type checking occurs during compilation. With typed pointers, the type checking

normally performed by a C compiler is performed at run-time using the type-signature

information attached to each pointer value. When a violation of the C type system is

detected, a run-time type error is generated.

Typed pointers provide a flexible mechanism for working with complex C datatypes.

Essentially any C pointer value can be represented in the scripting language and used in

a manner that is similar to C. The only major difference is that scripting languages are

unable to dereference pointer values. In other words, scripting languages can represent

and use C pointers but cannot peer inside or manipulate the objects that are being pointed

4.8.2.2 Arrays
Pointers and arrays are often used interchangeably in C programs since the “value”

of an array in C is simply a pointer to the first element of the array [61]. Due to the

close relationship between arrays and pointers, SWIG manages all arrays as pointers. By

doing so, all of the techniques for manipulating typed pointers can be easily utilized.

Although the treatment of arrays as pointers is simple enough, there tire a number of

subtle problems with arrays. First, pointers contain no size information that can be used

by scripting wrapper functions. Thus, a function such as

vo id foo (d ou b le a [1 0]) ;

would accept any argument of type double * regardless of whether or not that argument

was an array or an array of the proper size. Second, no special treatment is given

to multidimensional arrays. When multidimensional arrays are wrapped by SWIG, a

pointer to the first element of the array (stored in row-major order) is expected. Again,

any argument of type double * may be used. Finally, there is no relationship between

arrays in C and arrays in a scripting language. Although most scripting languages contain

an array or list datatype, the representation of this data is different than that used in C.

As a result, it is not possible to substitute a scripting language array for a C /C + + array

(although SWIG can be customized to perform this conversion).

4.S.2.3 Structures and Objects
SWIG represents all structures and objects by reference using typed pointers. This

avoids the problem of data representation because it is not necessary for SWIG or scripting

languages to understand the internal implementation of a C /C + + object for it to be

used. For example, the following SWIG interface could be used to provide access to a

few functions in the standard C library,

’/jnodule s td io
u
in c lu d e < std io .h >
7o>

/ / Some I/O fu n c tio n s
FILE *fopen(char ^ filenam e, char *roode);
in t fc lo se(F IL E *);
unsigned freadC void *p tr , unsigned s i z e , unsigned n o b j, FILE *) ;
unsigned fw r ite (v o id *p tr , unsigned s i z e , unsigned n ob j, FILE *);

/ / Now a few memory a l lo c a t io n fu n c tio n s
void *roalloc(unsigned n b y te s) ;
vo id fr e e (v o id *);

From the scripting language interpreter, these function could be used in a completely

natural manner. For example, the following Perl function copies a file using the above

functions.

use s td io ;
sub f i le c o p y {

my (S so u r c e ,$ ta r g e t) = ;
my $ f l = s t d i o : :fo p en ($ so u rce , " r");
my $f2 = s t d i o : : fo p e n ($ ta r g e t , "w");
my $b u ffer = s t d i o : :m a llo c (8 1 9 2);
my $nbytes = s t d i o : : fr e a d ($ b u ffe r ,1 ,8 1 9 2 , $ f l) ;
w h ile ($nbytes > 0) {

s t d io : : f w r i t e ($ b u f f e r ,1 ,8 1 9 2 >$ f 2) ;
Snbytes = s t d i o : :fr e a d ($ b u ffe r ,1 ,8 1 9 2 , $ f l) ;

>
S t d io : : f r e e ($ b u f f e r) ;
s t d i o : : f c l o s e ($ f l) ;
s t d i o : : f c l o s e ($ f 2);

In this example, the definition of FILE was not required to build the scripting interface,

nor was it required to manipulate such objects from the scripting language interpreter.

Thus, SWIG allows scripting languages to manipulate a wide variety of C /C + + objects

even when minimal information is available about the nature of those objects.

4.8.3 Unsupported D atatypes
SWIG supports most common C datatypes, but there are a few exceptions. The types

of lon g lon g and long double are not supported because scripting languages do not

provide enough precision to represent values of these types. Pointers to functions and

pointers to arrays are not fully supported due to a limitation in the SWIG parser. Finally,

pointers to C + + member functions are not supported since they have a different internal

representation than other types of C and C + + pointers [34j.

4 . 9 O b j e c t s , C l a s s e s , a n d S t r u c t u r e s

As just described, SWIG represents all objects as typed pointers. Typed pointers

contain no information about objects themselves so it is not possible to peer inside the.

object pointed to or to execute an object’s methods. However, in Chapter 3, several

methods for acccssing objects were described. SWIG uses these techniques and provides

a layered approach as shown in Figure 4.2.

At the lowest level, typed pointers are used to represent objects. These pointers can

be passed around between different C functions, but no further information is available.

At the next level, accessor functions are used to look inside objects and execute methods.

Finally, at the highest level, accessor functions are used to build wrapper classes that

provide the user with a very natural object-oriented interface.

4.9.1 O bjects as T yped P oin ters

The representation of objects as typed pointers allows objects to be freely passed

around between different C functions without regard for their internal representation.

For example, the following functions could easily be turned into a scripting interface

S in clu d e "vector.h"
V ector *new _vector(double x , double y , double z) ;
vo id d e le te _ v ec to r (V ec to r * v) ;
double dot_product(V ector * v l , V ector * v 2) ;
vo id cross_produ ct(V ector * v l , Vector *v2, V ector * r e s u l t) ;

From the scripting language, these functions could then be used as shown in the

following interactive session:

Python 1 .5 (#1 , Jan 1 1998, 11:26:26) [GCC 2 .7 .2 .1] on lin u x 2
C opyright 1991-1995 S t ic h t in g M athematisch Centrum, Amsterdam
>>> import v e c to r
>>> a = new _vector(1 ,2 ,3)
>>> b = new _vector(4 ,5 ,6)
>>> p r in t d ot_p rod u ct(a ,b)
32
>>> r e s u lt = new _vector(0 ,0 ,0)
>>> c r o ss _ p r o d u c t(a ,b ,r e s u lt)
>>> p r in t r e s u lt
_100fe8aO_Vector_p
>>> d e le te _ v e c to r (a)
>>> d e le te _ v e c to r (b)
> » d e le te _ v e c to r (r e s u lt)

In this example, vectors are created and used in several functions, However, it is

not possible to look inside a Vector. For example, when printing the result of the cross

product operation above, only the typed-pointer value is returned.

4.9 .2 A ccessor Functions
To provide access to the internals of an object, SWIG automatically generates accessor

functions when it is given the definition of a structure, class, or union. For example, the

structure

s tr u c t V ector {
V ector(doub le x , double y , double z) ;

"VectorO ;
double x ,y ,z ;
void n orm alizeO ;

is expanded into the following collection of accessor functions:

V ector *neu_V ector(double x , double y , double z) {
retu rn new V e c t o r (x ,y ,z) ;

>
vo id d e le te_ V ecto r(V ecto r *v) {

d e le te v;
>
double V ector_x_get(V ector *v) {

retu rn v->x;
>
double V ector_x_set(V ector *v, double x) {

retu rn (v->x = x) ;
>
double V ector_y_get(V ector *v) {

>
double V ector_y_set(V ector *v, double y) {.

retu rn (v->y = y);
>
double V ector_z_get (V ector *v) {

retu rn v->z;
>
double V ector_z_set(V ector *v, double z) {

retu rn (v->z = z) ;
>
vo id V ector_norm alize(V ector *v) {

v -> n o r m a liz e ();
>

Since accessor functions are ordinary C functions, they can be wrapped into a scripting

language interface using techniques described previously. When used in a scripting

language, the user explicitly passes a typed-pointer to the accessor functions to extract

information from the object or invoke methods.

Virtually any kind of C /C + + object can be manipulated through function calls in this

manner. In fact, early C + + compilers used similar techniques to transform C + + classes

into C code for compilation [34], Because of the generality of this approach, fclie use of

accessor functions forms a foundation for building scripting interfaces to most types of

objects. Not only can accessor functions be used to interface with objects, they can be

used from any scripting language (including those with no support for object-oriented

programming). Jn scripting languages with object-oriented capabilities, the accessor

functions can be used to build more sophisticated interfaces as described next.

4.9 .3 W rapper C lasses

Using the accessor functions generated for objects. SWIG can optionally generate

wrapper classes (also known as shadow classes). Wrapper classes provide a natural object-

oriented interface around C /C + + objects using the object-oriented capabilities of the

target scripting language. For example, in Python, a wrapper class might appear as

follows:

A Python wrapper c la s s
c la s s Vector:

d ef _ _ in i t __(s e l f , x , y , z) :
s e l f . t h i s = n e w _ V e c to r (x ,y ,z);
s e lf .th is o w n = 1

return v->y;

def __d e l_ _ (s e l f) :
i f s e lf .th is o w n == 1:

d e le t e _ V e c to r (s e l f . t h is)
def __g e titem __(s e lf .n a m e) :

i f name == ’x 1 :
retu rn V e c to r _ x _ g e t (s e lf . t h i s)

e l i f name == ’y ’ :
return V e c to r _ y _ g e t (s e lf . t h is)

e l i f name == ’z ’ :
retu rn V e c to r _ z _ g e t (s e lf - th is)

e l s e :
retu rn s e l f . __d i e t __[name]

def __s e t ite m __(s e lf .n a m e ,v a lu e) :
i f name == J x J:

retu rn V e c t o r _ x _ s e t (s e lf . t h is ,v a lu e)
e l i f name == Jy ‘ :

retu rn V e c to r _ y _ s e t (s e lf .t h is ,v a lu e)
e l i f name == ’z 1 :

retu rn V e c t o r _ z _ s e t (s e lf . th is .v a lu e)
e l s e :

s e l f ._ _ d i c t __[name] = value
def n o r m a liz e (s e lf):

V e c to r _ n o r r a a liz e (se lf .th is)

Using wrapper classes, objects can then be created and used as if they were objects

created in the target scripting language. For example,

import v ec to r
C reate some v e c to r s
a = V e c t o r (l ,2 ,3)
b = V ector(4 ,5 ,6)
r e s u lt = V e c to r (0 ,0 ,0)

U Compute some va lu es
p r in t d ot_p rod u ct(a ,b)
c r o ss _ p r o d u c t(a ,b .r e s u lt)

P rin t the r e s u lt
p r in t r e s u l t .x , r e s u l t .y , r e s u l t .z

Invoke a method
r e s u lt .n o r m a liz e ()

4.9 .4 C lass E xtension

When generating scripting interfaces to C /C + + objects, the interface does not need to

exactly match that of the original object. In fact, object definitions can even be expanded

with new methods and capabilities. For example, .suppose that a user wanted to add a

method for printing out the value of an object for debugging and diagnostics. This could

be specified with SWIG as follows:

y.addmethods V ector {
vo id o u tp u t() {

p r in t f (" [‘/.g, ‘/.g, ‘/ .g] \n " , s e l f - > x , s e l f - > y , s e l f - z) ;
>

>

When the scripting interface is built, SWIG will attach this new method to the original

definition of Vector. As a result, it will be possible to use this method from scripting

exactty as if it were part of the original object definition. For example,

>>> a = V ectorC l,2 ,3)
>>> a .o u tp u t()
[1 .0 , 2 .0 , 3 .0]
> »

The class extension mechanism only affects the scripting language interface and does

not involve modifications to the original code or special C compiler tricks. Class extension

turns out to be an extremely useful tool for building interfaces because C structures can

be extended into classes, C + + classes can be extended with new methods, and programs

can be made to appear object-oriented even if they are not.

It is important to note that class extension only affects the scripting language interface.

Added methods are not visible to the original C or C + + program nor do they become

part of the definition of an object. In fact, the primary purpose of class extension is to

improve the scripting interface to objects. A further example of class extension will be

given in Chapter 5.

4.9.5 T yp e C hecking and Inheritance
When checking the type of a pointer, a comi>arison is made against an expected

value. However, this presents a problem when working with inheritance hierarchies. To

illustrate, suppose that a Shape class defined an abstract method for drawing as follows:

c la s s Shape {
p u b lic :

v ir t u a l vo id drau() = 0;

>;

When SWIG generates the wrappers for this class, the following accessor function is

created.

vo id Shape_drau(Shape *s) {
s -> d r a u () ;

>

The accessor function expects a Shape object, but to operate correctly the function

should allow any object derived from Shape to be used. To correctly capture this behavior,

the SWIG run-time type checker is encoded with the C + + inheritance hierarchy. Thus,

when extracting and checking pointer values, SWIG checks the type against the expected

value as well as all derived types. In addition, proper type casting is performed to avoid

slicing problems and to properly support multiple inheritance.

4 . 1 0 T y p e M a n a g e m e n t W i t h T y p e m a p s

The most critical aspcct of extension building tools is the process by which different C

datatypes are processed when generating wrapper code. In previous sections, general pur

pose rules for handling fundamental C datatypes and pointers were presented. However,

SWIG also allows users to customize the way in which specific datatypes are processed.

Such customization dramatically changes the nature of the generated scripting interface

and allows users to tailor SWIG to the needs of their applications. This section provides

a high-level introduction to typemaps and their use.

4.10.1 T ypem aps

Simply stated, typemaps are special processing rules that are attached to specific

C /C + + datatypes in order to customize the way iri which SWIG generates wrapper

code. The name “typemap” and general idea, has been derived from the xsubpp compiler

packaged with Perl although the SWIG implementation expands upon the idea [91].

To illustrate how typemaps work at a high level, consider the following SWIG interface

’/.module example
‘/.in clu d e c o n s tr a in t s . i
‘/.in clu d e typem aps. i

‘/.apply double NONNEGATIVE { double px
'/.apply in t ’•'OUTPUT { in t *u id th , in t *height >;

58

/+ Compute a square root * /
double sq rt(d o u b le px) ;

/* Return the width and h e igh t o f an image */

vo id im agesize(Im age *img, in t *w idth, in t * h e ig h t) ;

Now, consider the use of the resulting scripting interface as shown for an interactive.

Pyt.hon session.

>>> s q r t (- l)
Traceback (innerm ost l a s t) ;

F i le "<std in>", l in e 1, in ?
ValueError: Expected a n on -n egative v a lu e .
>>> sz = im agesize(irag)
>>> p r in t sz
(400 ,3 0 0)
» >

In this case, the sq rt function generates a Python exception when passed a negative

value. Furthermore, the im agesize function takes the returned width and height and

returns them as a two-element Python tuple.

To better understand what is happening, SWIG splits all C declarations into a collec

tion of (type,name) pairs as follows:

(d o u b le , "sqrt")
(d o u b le , "px")
(v o id ," im a g esize")
(Image * , ,'img'')
(in t * , "width")
(in t * , "height")

s q r t : retu rn type
s q r t : Argument 1
im agesize: return type
im agesize: Argument 1
im agesize: Argument 2
im agesize: Argument 3

The ‘/.apply directive in the interface file attaches special processing rules, known as

typemaps. to specific (type, name) pairs. Thus, (d oub le, "px") has been forced to

be a nonnegative value whereas (in t *, "width") and (in t *, "height") have been

marked as output values. During processing, SWIG checks each (type, name) pair to

see if it matches any of the typemaps that have been specified. If a match is found, the

special processing associated with the typemap is used when generating wrapper code.

Once defined, typemaps apply to all future occurrences of a particular (type, name) pair.

Thus, all occurences of in t *u idth and in t *h eigh t would be processed as output

values in the above example.

4.10.2 T ypem ap R ules
So far, the general idea behind typemaps has been presented, but how are typemaps

actually created? Consider the Tel wrapper function for the factorial function given in

Chapter 3.

/* A Tel Wrapper Function * /
s t a t i c in t
w rap _fact(C lien tD ata c lie n tD a ta , T cl_In terp * in te r p ,

in t argc , char * argv [])

in t r e s u lt ;
in t argO;
i f (argc != 2) {

T cl_SetR esu lt(in terp ,"W ron g # a r g s . fa c t { in t } ",TCL_STATIC);
retu rn TCL_ERR0R;

>
axgO = (in t) a t o l (a r g v [l]);
r e s u lt = fa c t (a r g O);
s p r in t f (in t e r p -> r e s u lt , '“/.ld" , (lo n g) r e s u l t) ;
retu rn TCL_0K;

>

The wrapper function performs several distinct operations. First, the function argu

ment is converted from Tel to C. Then, the C function is callcd. Finally, the result of the

C function is converted back into Tel. In SWIG, each of these operations is given a unique

name such as “in” for input parameter processing, “nut" for output value processing, and

so forth. To define a new typemap, the 7,typemap directive is used as follows:

/ / R edefine th e method fo r con vertin g in te g e r s
7ityperaap(tcl, in) in t n {

$ ta rg e t = (in t) a to l(S s o u r c e) ;
p r in t f ("R eceived n = */4d\n" , $ ta rg e t) ;

>

in t f a c t (in t n) ;

When SWIG generates wrapper code, the C code supplied in the typemap will be

inserted into the wrapper function whenever a function argument of “'in t n” is encoun

tered. In the proccss. the $source and $ ta rg e t tokens are replaced with the names of

real G variables in the wrapper function. Thus, the wrapper function for f a c t O with

the above typemap appears as follows:

/* A Tel Wrapper Function w ith a typemap * /
s t a t i c in t

w rap _fact(C lien tD ata c lie n tD a ta , T cl_In terp * in te r p ,
in t argc , char *argv [])

{
in t r e s u lt ;
in t argO;
i f (argc != 2) {

T c l_ S e tR e su lt(in te r p , "Wrong # args. fa c t { in t } " ,TCL_STATIC);
retu rn TCL_ERROR;

>
/* Typemap code * /
i

argO = (in t) a t o l(a r g v [1]) ;
p r in t f ("R eceived n = */,d" , argO);

>
r e s u lt = fact(argO);
s p r in t f (in t e r p -> r e s u lt , "‘/.Id11, (lon g) r e s u l t) ;
retu rn TCL_0K;

>

In this example, new C code (from the typemap) has been inserted into t.he wrapper

function, replacing the original code that was used to convert integers from Tel to C. The

Ssource token has been replaced with a r g v [l] which contains the string Tel passed as

an argument. The Star ge t token was replaced with argO which is the integer value that

will be passed to the real C function.

Although a simple example has been presented, SWIG defines approximately a dozen

different typemap operations. These include input and output operations, default argu

ments, value checking, output arguments, and so forth as shown in Table 4.5. A full

discussion of typemaps is not possible here and interested readers are advised to consult

the SWIG Users Manual for more information [9].

4.10.3 Advantages of Typem aps
More formal interface generation tools often force users to explicitly state the nature

of the interface being constructed. Therefore, functions might be declared as follows:

double foo('/4input double *a, ‘/ou tp u t double *b, in t n) ;

Unfortunately, annotating interfaces in such a manner is problematic. First, if users

are required to annotate a large number of functions, it makes SWIG difficult to use.

Second, such annotation breaks from ANSI C /C + + syntax. This would make it difficult

to mix SWIG interfaces with C header files and would severely limit SW IG’s ability

to operate as rapid development tool. Finally, this approach would require the SWIG

61

Table 4.5. SWIG typemap rules
Name Description
arginit
argout
check
const
default
except
freearg
ignore
in
member in
membcrout
new free
out
ret
varin
varont

Initializes function arguments
Returns values through function arguments
Checks the value of function arguments
Creates scripting language constants
Sets a default value to function arguments
Exception handling
Fiees resources used in argument conversion
Forces an argument to be ignored
Converts values from scripting to C
Sets member data of C /C + + objects
Returns member data of C /C + + objects
Used to free memory
Converts data from C /C + + to scripting
Cleans up return results of functions
Sets global variables
Gets the value of global variables

compiler to support a large collection of built-in processing rules. This would complicate

the implementation of SWIG and limit its flexibility-especially if users did not like the

behavior of the built in rules.

The typemap approach solves all of these problems. First, if programs uses consistent

naming schemes for function parameters, typemaps can be used to quickly attach special

processing rules to large collections of functions. In other words, once defined, a typemap

applies to all future occurrences of a parameter avoiding the need to explicitly annotate

every single function. Even if a program does not use a consistent naming scheme for

parameters, it is unlikely that, a developer would have picked names at random. Therefore,

a SWIG interface file is often easily modified to fit into the typemap model. Second, the

use of typemaps preserves ANSI C /C + + syntax. This allows users to customize interfaces

while still being able to work with C header and source files. Finally, typemaps provide

users with an almost unlimited number of customization options. Rather than rigidly

defining a few special processing rules in the compiler, typemaps can be written to add

almost any kind of special purpose processing. This makes SWIG more flexible and easily

adapted to a wide variety of software.

4 . 1 1 E x c e p t i o n H a n d l i n g

All scripting languages provide a mechanism for wrapper functions to report errors.

Ideally, SWIG should exploit this to convert, run time errors in the C /C + + code into

scripting language errors. That is, if an error occurs someplace inside the C code, it

.should be reported to the user in the form of a scripting language error. SWIG allows

users to specify exception handling code using the '/.except directive. For example, the

following exception handler can be used to convert errors in the standard C library into

Perl exceptions.

/ / A SWIG ex cep tio n handler fo r the standard C lib r a r y
'/.except (p e r l5) {

errno = 0;
$ fu n ctio n
i f (errno) {

c r o a k (s tr e r r o r (e r n io)) ;
}

}

During compilation, SWIG inserts the exception handling code directly into all of the

wrapper functions. In the process, the $ fu n ctio n token is replaced with the real C /C + +

function call. As a result, a wrapper function might appeal- as follows:

XS(_wrap_fopen) {
FILE * r e su lt ;
char *argO;
char * a r g l;

/* E xception hand ling code * /

errno = 0;
r e s u lt = fo p e n (a r g O ,a r g l);
i f (errno) {

c r o a k (s tr e r r o r (e r r n o));
>

>
/* Return the r e s u lt * /

>

Should an error occur, an appropriate error message will now be extracted from the

C library and reported back to the user as a Perl error.

4 . 1 2 M i x e d - L a n g u a g e P r o g r a m m i n g I s s u e s

The use of SWIG results in mixed-language applications in which scripting languages

provide high-level control and compiled code is used to implement much of the underlying

functionality. This section briefly describes some of the language issues that arise when

working in such an environment.

4.12.1 Nam espace M anagem ent
When incorporating existing applications into a scripting environment, it is sometimes

possible to generate, namespace clashes. First, the name of a C function or variable

may conflict with the name of a keyword or function defined in the scripting language

interpreter. Tb fix this problem, SWIG provides the ‘/.name directive that changes the

name assigned to a declaration. For example, the declaration

‘/.name(output) vo id p r in t(c h a r *s) ;

creates a new scripting language command “output” that is really mapped onto a C

function “print.” The second type of namespace clash occurs in the underlying C wrapper

code created by SWIG. In rare instances, the C implementation of the scripting language

may define symbols that are used by the application being wrapped. SWIG is unable to

resolve these conflicts becausc they arc due to linking problems (and outside the scopc

of SWIG’s capabilities). However, these conflicts can usually be resolved by making

minor modifications to the original application or with clever use of the C preprocessor.

Fortunately, most scripting languages use a naming scheme that avoids these problems.

4.12.2 M em ory M anagem ent
The use of scripting language extension modules involves the management of objects

created by the scripting language interpreter as well as those created in C /C + + . Given

that scripting languages implement various forms of memory management and garbage

collection, the use of C /C + + extensions raises a number of issues.

4.12.2.1 Garbage C ollection and Pointers
SWIG manages all objects and complex data structures through the use of typed

pointers. Although these pointers refer to some underlying C /C + + data structure, the

data cannot, be examined or directly manipulated by the scripting language interpreter.

Tb further complicate matters, the scripting language interpreter has no way to know

where the data, being pointed to actually came from. Therefore, it would be a mistake

for the scripting language interpreter to deallocate memory that was still in use in the

underlying C /C + + application.

To prevent these problems, SWIG maintains a strict separation between the ma

nipulation of typed pointers in the scripting interpreter and the underlying C /C + +

data. Although scripting languages often implement garbage collection using reference

counting, this is only applied to the pointer value itself—not the underlying data. In

other words, when a pointer goes out of scope, only the pointer itself is deleted. To

delete the underlying data, the user must explicitly destroy it by either invoking a C + +

destructor or calling a deallocation function.

The explicit destruction of objects closely matches the memory management schemes

used in C and C + + programs. For example, in C, objects are typically created and

destroyed using m alloc and fr e e . In the scripting interface generated by SWIG, a

program manipulating C /C + + data would be required to use an identical approach.

Furthermore, just as in C, a program written in a scripting language would be subject to

the same potential problems found in C programs such as memory leaks, accidental use

of deallocated memory, dangling pointers, and so forth. That is, the use of C /C + + data

from scripting is not much different than the use of that data from C or C+ + .

4 .12 .2 .2 Im plic it M em ory A llocation

Certain C functions implicitly perform a memory allocation when executed. SWIG

has 110 way to know if this occurs or not. Therefore, it is often up the user to know which

functions allocate memory and to clean up that memory when it is no longer in use. In

addition, SWIG provides a special directive, ‘/.new that can be used to provide a hint to

the code generator that a function is returning newly allocated memory. For example,

‘/.new char *get_messageO ;

tells SWIG that this function is returning newly allocated character string. If the user

chooses, they can define a typemap that cleans up this memory upon exit from a wrapper

function. For example,

‘/.typemap (new free) char * {
f r e e (S s o u r c e) ;

>

In this ease, the C function returns a newly allocated string that is copied into a scripting

language string. Afterwards, the codc supplied in the typemap is used to deallocate the

returned memory before passing control back to the interpreter.

SWIG sometimes generates implicit memory allocation when returning objects by

value. For example, the function

V ector cross_p rod u ct(V ector * v l , V ector * v 2) ;

returns a new object by value. Since SWIG only knows how to manipulate pointers, this

fuuction gets translated into the following wrapper codc:

V ector *w rap_cross_product(V ector * v l , Vector *v2) {
Vector ^ r e su lt = (Vector *) m a llo c (s iz e o f (V e c to r));
♦ r e su lt = c r o ss_ p r o d u c t(v l, v 2) ;
retu rn r e s u lt ;

>

In this case, every use of the function would result in an implicit memory allocation. It

is up to the user to explicitly deallocate the result of the function by invoking f r e e .2

4 . 1 2 . 2 . 3 O b j e c t s a n d W r a p p e r C l a s s e s

In Section 4.9.3, scripting wrapper classes were described. Wrapper classes provide

high-level management of C and C + + objects. As a result, it is possible to support a

limited form of garbage collcction and data management. When SWIG creates scripting

wrapper classes, it adds a special ownership attribute to the wrapper class. This attribute

determines if the scripting language interpreter or C /C + + owns a particular object.

When the interpreter cleans up a wrapper class object, it invokes the class destructor.

This destructor examines the ownership attribute to see if the interpreter owns an object.

If so, the underlying C /C + + destructor is invoked. If not, the wrapper class is destroyed,

but the underlying object is preserved.

To determine ownership, SWIG applies a simple rule: if an object is created from the

scripting language interpreter, it is owned by the interpreter. As a result, wrapper objects

that are created from scripting are automatically managed by the interpreter while all

other objects are managed by C /C + + . In addition, the ownership of objects can be

explicitly changed by the user if needed-

2In C + + , the default copy constructor is used co copy the returned object.

4.12.3 Callbacks
Some C /C + + applications use callback functions to implement certain functionality.

When working in a scripting environment, it may he desirable to implement callback

functions in the scripting language interpreter itself. SWIG does not provide any built-in

support for this type of programming. However, such a capability can often be imple

mented through the use of special wrapper functions and typemaps [9].

A closely related problem is that of overriding C + + virtual (unctions with methods

written in scripting languages. Again, SWIG provides no builtin support for supporting

this style of programming. However, handwritten wrappers can often be written to

accomplish this.

4.12.4 Process and R esource M anagem ent
Scripting languages provide extensive support for managing operating system re

sources and processes. However, scripting languages do not have the ability to know

what resources are utilized by an underlying C /C + + extension nor arc extensions able

to peer inside the interpreter. As a result, there is a separation between the resources

used by the interpreter and its compiled extensions. Although this is rarely a serious

situation, it can lead to problems in complex applications. For example, an extension

that is multithreaded may cause the scripting interpreter to crash if it is not thread safe.

4 . 1 3 T h e S W I G L i b r a r y

To encourage reuse and to make interface generation easier, SWIG is packaged with

a standard library. The library consists of modules that provide scripting interfaces to

common libraries (memory management for instance) as well as common customization

options. Library files are included in an interface using the ‘/.include directive as follows:

'/module example
’/.in clu d e p o in t e r , i
‘/.in clu d e ex c ep tio n , i
'/.include typem aps. i

The most powerful feature of the library is that it is designed to be independent of the

target scripting language. Thus, many library files are written to work correctly with any

of the target scripting languages. Finally, the library mechanism is a useful mechanism

for working with large packages since interface files can be created and put in a shared

repository. All of the users working on a system can then build interfaces to different

components using files in the repository as needed.

4 . 1 4 L i m i t a t i o n s

Even though SWIG attempts to simplify the construction of scripting interfaces to

existing applications, it has a number of limitations. First, not all C /C + + datatypes are

supported as described in Section 4.8.3. Second, the following C + + features are currently

unsupported:

• Operator overloading.

• Overloaded functions.

• Namespaces.

• Templates.

• Nested classes.

Finally, some applications may be poorly suited for use in a scripting environment. For

example, C + + programs making extensive use of advanced features may be difficult to

incorporate in a scripting environment. Likewise, packages involving complex APIs may

make scripted use and wrapper generation difficult.

Although limitations exist, most “typical” applications can be incorporated into a

scripting environment with a little work. Even where limitations exist, a number of

workarounds are available. Some of these workarounds are described in Chapter 5.

4 . 1 5 S u m m a r y

Although it is impossible to cover all of SWIG's features and implementation details,

there are a number of important points. First, SWIG is designed to build scripting

interfaces to existing applications written in ANSI C /C + + . To simplify this process,

interfaces axe constructed using the header and source files of those applications. Second,

SWIG provides mechanisms for interfacing with most of the datatypes and constructs that

would be found in a typical C /C + + program. In addition, SWIG is highly adaptable

and allows users to customize interfaces with exception handlers and typemaps. Finally,

SWIG provides a library mechanism that can be used to simplify the construction of

interfaces and encourage reuse.

C H A P T E R 5

I N T E R F A C E C O N S T R U C T I O N

The effective use of SWIG generally requires more than simply grabbing a C header

file and turning it into a scripting interface. Therefore, the construction of useful scripting

intcrfaccs may require the introduction of helper functions, changes to the way in which

SWIG generates wrapper code, and minor modifications to the application itself. Fur

thermore, a user may decide to change the entire appearance of an application in order

to promote usability and flexibility. This chapter describes the process and techniques

used to build scripting interfaces to existing applications.

5 . 1 F i r s t U s e o f S W I G

A typical C /C + + application consists of functions, variables, and objects that form

its implementation. In addition, there is a main function and control code that is used

to start and drive the program. When first building a scripting interface, applications

are transformed as shown in Figure 5.1. In this transformation, the underlying imple

mentation remains largely unaffected while the control code is replaced with a scripting

language interpreter. In general, the transformation process involves the following steps:

• Locate header files containing C /C + + declarations.

• Copy the headers to a separate interface file.

• Edit the interface file (if necessary).

• Remove the application’s main() function and control code.

• Run SWIG to create a scripting language module.

Since commonly used datatypes and functions usually appear in header files, these files

provide a good starting point for building the scripting interface. Although SWIG can

sometimes work directly with header files, the contents of these files arc usually copied

70

main()

Control Code

\i ii i \> \i \i

Functions

Variables

Objects SWIG

Functions

Variables

Objects

Scripts

Scripting Language

F igure 5.1. Creation of a scriptable application

to a separate interface file. This allows the user to remove problematic declarations and

add SWIG directives as needed. Thus, the process of building a quick and dirty scripting

interface really involves little more than copying a few files and making a few small

adjustments.

After SWIG has been used to create a scripting interface, much of the underlying

functionality of an application is exposed to the scripting language interpreter. When

using the scripted version, users can interactively execute functions, set and query vari

ables, and perform almost all of the tasks that might have been previously written in C.

In fact, the application almost behaves as if it is running inside a debugger or some other

development tool.

In many cases, the first use of SWIG can be a rapid process. In fact, one early user,

who was new to SWIG, managed to create a Tel interface to the OpenGL graphics library

in approximately 10 minutes [75], Such results are encouraging, but a word of caution

is order. Even though it can be easy to create a scripting interface, that interface may

be awkward to use or partially broken. Therefore, effective interface building generally

requires a little more work.

5 . 2 E v o l u t i o n a r y I n t e r f a c e D e v e l o p m e n t

SWIG promotes the evolutionary development of scriptable applications. Rather than

requiring a scientist to precisely specify a complete interface in advance, header files can

be used to quickly put a scripting interface on an existing package. By using the scripted

version, limitations and problems can be identified. These problems, in turn, can be

fixed by either modifying the SWIG interface description or the underlying application

in an appropriate manner. This process then repeats itself as additional problems are

discovered.

This approach is particularly well suited for scientific applications because it. allows

the underlying application to be used even if there are minor problems in the scripting

interface. Thus, the application and its interface can be improved as the application is

being used for practical work. In addition, the evolutionary approach closely matches

the piecemeal manner in which scientific applications are typically developed and main

tained. Finally, the evolutionary approach ultimately results in better interfaces because

changes arc motivated almost entirely by the use of the application. In other words, by

using the application, techniques for improving the interface can be easily be found and

implemented. This, in turn, results in an interface that is well suited to the needs of users

and the problems at hand.

5 . 3 H e l p e r F u n c t i o n s

To supply missing functionality or to provide a scripting interface with new features,

“helper functions” can be added to a SWIG interface. A helper function is simply a new

function, written in C, that is added to the scripting interface (and “helps" to improve

the intcrfacc in a manner of speaking). A simple helper function is as follows:

’/.inline '/.{
void
p rin t_V ector(V ector *v) {

p r in tf (" [‘/.g , “/,g , */,g] \n " , v-> x , v -> y , v - > z) ;
}
’/.}

The "/.inline directive is used by SWIG to add new C functions to the scripting

interface (the term “inline” is used because the given C code is inlincd into the output

wrapper code). In this case, a simple debugging function has been added to the interface

to output the value of V ector objects.

Limitations in the SWIG parser can also be addressed using helper functions. For

example, SWIG and most scripting languages do not support C + + operator overloading.

However, an overloaded operator can be encapsulated in a helper function as follows:

’/ . in l in e ’/.{
V ector
vector_add(V ector &a, Vector &b) {

>
*/.}

Helper functions can also be used Lo change the interface to certain parts of a package.

For example, a scientific application might require the user to set the values of global

variables before calling a function as follows:

Min_x = 0 .0 ;
Min_y = 0 .0 ;
Min_z = 0 .0 ;
Max_x - 283.1;
Max_y = 283 .1;
Max_z = 500 .0;

in it ia l iz e _ g e o m e t r y O ; # I m p lic it ly depends on above param eters

Such an approach is somewhat awkward to use from scripting because there are implicit

dependencies between Hie variables and the behavior of the function call. Therefore, a

helper function could be used to provide an alternative interface as follows:

‘/ . in l in e '/,-{
v o id geom etry(double xmin, double ymin, double zmin,

double xmax, double ymax, double zmax) {
Min_x = xmin;
Min_y = ymin;
Min_z = zmin;
Max_x = xmax;
Max_y = ymax;
Max_z = zmax;
in it ia l iz e _ g e o m e t r y () ;

>
*/.}

Helper functions are an integral part of using SWIG because they supplement and

enhance the scripting interface without affecting the underlying application. Even though

the creation of helpers may appear tedious, they can almost always be written in ordinary

C or C + + without regard for scripting language internals. As a result, helpers are

relatively easy to write and are usable from all scripting languages.

5 . 4 T y p e M a n a g e m e n t

In Chapter 4 methods for representing various datatypes were described along with

the SWIG pointer model. This section describes the manipulation of C datatypes within

return a+b;

a scripting environment along with some of the techniques used to make bettor interfaces.

5.4.1 Type Conversion
By default, SWIG manages all types other than than the simple built-in C datatypes

as pointers. Although simple, this approach can lead to usability problems by making

the scripting interface awkward to use. As a result, it may be useful to override SW IG’s

default behavior and to process certain datatypes differently. For example, the OpenGL

library contains a large number of functions that expect small arrays passed as arguments

(params) such as

vo id glLightfvCGLenum l ig h t , Glenum pname, G Lfloat *param s);

By default, SWIG will generate an interface that requires the params argument to be

passed as a pointer. To generate this pointer, helper functions can be written to create

an array, populale it with values, and deallocate it when finished. However, a more

elegant approach is to use a typemap to map scripting language lists and arrays into an

appropriate params object. An example typemap for Python is as follows:

‘/.typem ap(python,in) G Lfloat *params(GLfloat tem p[10]) {
in t i , sz;
i f (!PyL ist_C heck($source) {

PyErr_SetString(PyExc_TypeError, "Expected a l i s t ! ") ;
retu rn NULL;

}
sz = P y L is t_ S iz e ($ so u r c e);
i f (sz > 10) sz = 10;
fo r (i = 0; i < sz ; i++) {

PyDbject *0 = P y L ist_ G e tIte m ($ so u r c e ,i);
i f (PyF loat_C heck(o)) {

tem p[i] = (G Lfloat *) P yF loat_A sD ouble(o);
> e l s e {

PyErr_SetString(PyExc_TypeError, "Expected a f lo a t ! ") ;
retu rn NULL;

>
>
S ta rg et = temp;

}

The precise implementation of the typemap is not so important for this discussion.

However, the use of the typemap changes the scripting interface so that Python lists can

be used wherever a parameter of G Lfloat *params occurs in an interface. For example

glLightfv(GL_LIGHT0, GL.AMBIENT, [0 .0 , 0 .0 , 0 .0 , 1 .0])

5.4.2 C ontainers

Sometimes it is useful to keep track of additional information about, various C objects

in a scripted application. For example, it might be useful to manage C arrays as both

a pointer value and size to improve reliability. To illustrate, consider the following C

function:

double
dot_product(double *a, double *b, in t le n) {

in t i ;
double r e s u lt = 0 .0 ;
fo r (i = 0; i < len ; i++,a++,b++) {

r e s u lt += (* a)* (* b);
>
retu rn r e s u lt ;

>

In this function, two arrays are passed as pointers, but no guarantee is made about the

size of those arrays. In fact, a size mismatch could result in a program crash or erroneous

result. Unfortunately, there is no way for the function to know the real sizes of the array

arguments.

One trick for working around this problem is to use a container structure. For example,

a C array might be described by the following structure:

s tr u c t DoubleArray {

double * p tr ;
in t s iz e ;

>

Using the container, a simple helper function can be written to override the original

C function as follows:

/ / C reate a h e lp er fo r dot„product
U
double new_dot_product(DoubleArray *a, DoubleArray *b) {

i f (a -> s iz e != b -> s iz e) {
error("A rray s iz e m ism atch!");
retu rn 0 .0 ;

>
retu rn d o t_ p r o d u c t (a -> p tr ,b -> p tr ,a -> s iz e) ;

g lL igh tfv (G L _ L IG H T l, GL_SPOT_DIRECTION, [- 1 . 0 , 0 . 0 , 0 . 0])

•/.}

/ / Wrap the h e lp er fu n c tio n (but use the o r ig in a l name)
*/,nanie(dot_product)
double new_dot_product(DoubleArray *a, DoubleArray * b) ;

In the scripting interface, the dot .product command will now expect two array objects

as arguments. If any other kind of object is passed, or if the sizes mismatch, an error

will be generated. Thus, in effect, the scripting interface is shielding the underlying C

application from a potential error.

5.4.3 A liasing
SWIG provides minimal support for certain C /C + + datatypes such as pointers to

functions and templates. Some of these difficulties arc due to parsing limitations (very

complex datatypes) and others are semantic (what is a template in a scripting language?).

However, some of these problems can be eliminated by hiding problematic datatypes

behind new names. To illustrate, consider the definition of a simple C + + template class.

tem p la te< c la ss T> c la s s L is t {
p r iv a t e :

p u b li c :
L is t ();

“L is t ();
void append(T o b j);
T g e t (in t n) ;
T rem ove(int n) ;
in t len g th 0 ;

} ;

If this class were given to SWIG, it would be ignored since there is no way to

build a scripting interface to a raw template definition (since no real type-information is

available). However, an aliasing trick can be used to produce an interface to a specific

instantiation of the template class as follows:

/ / SWIG in te r fa c e to a C++ tem plate in s ta n t ia t io n
*/.{
/ / In se r t a typ ed ef in to the wrapper code (SWIG ig n o res t h i s)
typ ed ef L ist<double> D oubleL ist;
*/.}

/ / Wrap i t as a normal c la s s

c la s s D oubleL ist {
p u b lic :

D ou b leL ist() ;
"D oubleL ist() ;

vo id append(double o b j);
double g e t (in t n) ;
double rem ove(int n) ;
in t l e n g th Q ;

>;

In this case. the template instantiation has been aliased to a new name of D oubleL ist.

This name is then used to define a class in the interface file. When compiling, SWIG

converts the class definition into wrapper functions and produces a scripting interface

capable of creating and manipulating objects of type L is t< d o u b le> .

5 . 5 O b j e c t - B a s e d I n t e r f a c e s

Although the use of objects is supported (to varying degrees) by most scripting

languages, existing applications written in C may make limited use of such techniques.

However. SWIG can be used to retrofit an objcct-based scripting interface onto such

applications.

Building object-oriented interfaces to non-object-oriented programs can be accom

plished using the SWIG class extension mechanism. To illustrate, suppose that a object-

oriented scripting interface to the ANSI C file I/O operations were to be constructed.

This could be done using class extension as follows:

•/.{
^ in clu d e < std io .h >

typ ed ef s tr u c t { } FILE;
‘/,addniethods FILE {

FILE(char * filen am e, char *mode) {
retu rn fo p e n (file n a m e , m ode);

>
in t c lo s e O {

i c l o s e (s e l f);
>
in t f lu s h O {

return f f l u s h (s e l f);
>
in t g e tc () {

retu rn f g e t c (s e l f) ;
>

in t p u tc (in t c) {
retu rn f p u t c (c , s e l f);

>
in t p u ts (c o n st char *s) {

retu rn f p u t s (s , s e l f) ;
>
s iz e _ t read {vo id *p tr , s iz e _ t s i z e , s iz e _ t nobj) {

retu rn f r e a d (p tr , s i z e , n o b j . s e l f) ;
>

>

Using this interface, files could be created and manipulated exactly as if they were

objects. For example,

Python s c r ip t m anipulating f i l e s
f = F i le O 't e s t '1, "w") # Open a f i l e
f .p u ts (" H e llo world\n") # P rin t a message

f .c l o s e O # C lose the f i l e

The process of building object-based interfaces does not require modifications to the

underlying C code nor does it rely on C + + - For example, the construction of an object-

based interface to the file I/O operations required no changes to the C library nor did it,

even require the definition of the FILE structure.

5 . 6 I m p r o v i n g R e l i a b i l i t y

Existing programs may experience problems when operating in a scripting environment

due to its highly flexible and event driven nature. Although exception handlers can be

defined to catch run-time errors, a number of other modifications can be made to improve

the stability of scriptable applications.

5.6.1 Execution Order Dependencies
Within a software package, execution order dependencies may implicitly exist between

certain functions. That is, assumptions may be made about the order in which functions

are to be executed. In addition, certain functions may only be legally executed once while

other functions may be used repeatedly. Scripting can cause such applications to fail since

functions can now be executed al: any time and in any order. Furthermore, when users

are unaware of such dependencies and limitations, they can easily write scripts that crash

78

the program or cause erroneous execution.

In Figure 5.2, execution order dependencies between different functions are shown. In

the figure, function A must be executed prior to executing functions B or C. Likewise,

function D requires the prior execution of B and function E requires the execution of

functions B and C. To capture the relationship between these functions, additional state

variables can be added to the application and used as a safety check. For example, the

original code might be modified as follows:

/ / S ta te v a r ia b le s
A _ in it = 0;
B _ in it = 0;
C _ in it = 0;
/ / Functions
A() {

A _ in it = 1;
>
B () {

i f (!A _ in it) return;

B _ in it = 1;
>
CO {

i f (!A _ in it) return;

C _ in it = 1;
>
DO {

i f (!B _ in it) return;

>
EO {

i f (O B ^ in it) II (!C _ in it)) return;

>

State variables can also be used to handle cases of reentrancy. For example, if a

function can only be executed once, it can be modified as follows:

AO {
i f (A _ in it) return; / / Already executed

A _ in it = 1;
>

Figure 5.2. Execution order dependencies

SWIG currently provides no mechanism for explicitly specifying the dependencies

between functions. As a result, such modifications are generally made to the original

application. Although this requires slight modifications to the original code, it has the

benefit of improving the reliability of the original applicatiou independently o fits scripting

interface.

5 .6 .2 A r g u m e n t C h ec k in g

Other reliability problems can occur if invalid values are passed to certain functions.

For example, functions might only work on positive values, non-NULL pointers, and so

forth. Although the functions can be modified directly, SWIG typemaps can also be used

to impose constraints on function argument values. For example,

/ / SWIG in te r fa c e w ith argument checks
’/.typemap(check) double P o s it iv e {

i f (S ta rg e t <= 0)
SWIG_exception(SWIG_ValueError,"Expected a p o s i t iv e v a lu e");

>

/ / Make sure a l l FILE * va lu es are non-NULL
*/,typemap (check) FILE * {

i f (S ta rg e t == NULL)
SWIG_exception(SWIG_ValueError, "Received a NULL p o in ter ");

>
>

double log (d ou b le P o s i t i v e) ; / / Works on ly on p o s i t iv e v a lu es
in t fc lo se (F IL E *); / / FILE * must be non-NULL

In this case, the value checking code is used wherever arguments of double P o s it iv e

and FILE * appear. If an improper value is passed to such fuactions, a scripting language

error will be generated.

5 . 7 D a t a M a n a g e m e n t

Most scicntific applications are data intensive. Managing data is important and there

arc several approaches that are commonly used. First, an application may store data in

global variables. With this approach, functions implicitly examine and modify the state

of the system. A second approach is to use object-oiientcd techniques in which various

types of objects are used to hold data.

The choice of data model has a surprisingly large impact on the nature of the scripting

language interface presented to the user. In some cases, the use of global data may simplify

a scripting interface by reducing the number of program parameters that are passed to

various functions. For example, a simulation code might maintain a large pool of data

corresponding to the current state of a simulation and assume that all functions operate

on that data. Likewise, object oriented techniques are most useful when working with

large collections of objects. For example, a visualization system might allow a user to

manipulate different images and viewpoints. In this case, an object-oriented scripting

interface would most closely match the intended use of such a system.

Although existing programs may utilize one or both of these data management models,

it is sometimes useful to change the data model when building a scripting interface. Such

a change can improve the usability and flexibility of an application without requiring any

modifications to its underlying implementation. Furthermore, such changes might allow

an old application to be used in new and interesting ways.

To change an application relying on global parameters to an object-oriented model, a

container class can be used. This class mirrors the global variables used in the original

application. Methods for setting and saving the state of the system are then implemented

to copy the values of global variables. Finally, wrappers are created around the original

functions so that the state of the system is property managed. For example,

/ / G lobal v a r ia b le s in o r ig in a l a p p lic a t io n
extern double Minx;
ex tern double Miny;

/ / C lass fo r b u ild in g an 00 in te r fa c e

c la s s Data {
p r iv a t e :

/ / Mirror th e g lo b a l v a r ia b le s here
double minx, miny, minz;
double maxx, maxy, maxz;

p u b lic :
D ata ();

"DataO ;
/ / Set th e g lo b a l v a r ia b le s
void s e t _ s t a t e () {

Minx = minx;
Miny = rainy;
Minz = minz;

>
/ / Save th e g lo b a l v a r ia b le s
void s a v e _ s ta te () {

minx = Minx;
miny = Miny;
minz = Minz;

>
// Now object-oriented implementations of functions
vo id memory(int s iz e) {

s e t _ s t a t e () ;
: : m em ory(size);
s a v e _ s t a t e () ;

>
void in te g r a t e (in t n s tep s) {

s e t _ s t a t e () ;
: : in te g r a t e (n s t e p s) ;
s a v e _ s t a t e () ;

}

Likewise, an object oriented interface can be transformed using similar techniques.

For example,

/ / G lobal v a r ia b le ho ld ing current s ta t e
Vieu *gLobal_view = 0;

/ / Set the current s ta te
void set_v ieu (V iew *v) {

g lob a l_v iew = v;

/ / Methods op era tin g on th e g lo b a l view
void r o ta te _ r ig h t(d o u b le deg) {

g lo b a l_ v ie w -> r o ta te _ r ig h t(d e g);
>

void r o ta te _ le f t (d o u b le deg) {
g lo b a l_ v ie w -> r o ta te _ le f t (d e g) ;

>

It is important to note that these transformations do not affect the original application.

Rather, they can be used to change the “appearance” of an application when building

its scripting interface. As a result, this allows old applications to be used in new and

interesting ways.

5 . 8 P e r f o r m a n c e C o n s i d e r a t i o n s

The performance characteristics of scripting languages is a major concern for most

application developers. The poor performance of interpreters is generally well known

although not often quantified. The failure of software projects in which the performance

of high-level languages was ignored has also been occasionally described in the literature

The performance of scripting languages has a major impact on the design and im

plementation of scripting interfaces to scientific systems. This section describes the

performance properties of scripting languages and associated design considerations.

5.8.1 T he P erform ance of Scrip ting Languages

Although scripting languages and interpreters have been gaining in popularity, sur

prisingly little information is available about their performance characteristics. Users are

well-aware that that scripting languages are slower than C, but just how much slower are

they?

In a recent paper providing a clock cycle analysis of interpreter performance (including

Java, Perl, and Tel), scripting languages were shown to have a performance approximately

400 to 3700 times slower than C on a simple benchmark [88]. Much of this slowdown is

due to the overhead of decoding and dispatching scripting language commands. However,

the authors also point out that the performance of interpreters is not easily characterized

by any single factor:

The performance of an interpreter cannot be attributed solely to the frequently
executed command dispatch loop. Performance is also linked to (1) the expres
siveness of the virtual command set and how effectively these virtual commands
are used, (2) the use of native runtime libraries, and (3) the way that the
virtual machine names and accesses memory. The “architectural footprint” of
an interpreted program is primarily a function of the interpreter itself and not
of the programs being interpreted, and that the high-level interpreters behave
similarly to large SPECint()2 applications such as gcc [88, p. 158].

The performance of scripting languages is largely impacted by the use of compiled

code. Thus, even though a simple benchmark application written entirely in the scripting

language may run 1000 times slower than C, a script making heavy use of a compiled

extension may run much faster. For example, the same article showed that for certain

operations such as string splitting, concatenation, and file I/O , scripting languages were

only 1.2 to 80 times slower than C [88].

5.8 .2 T he P erform ance of C om piled E xten sion s

When SWIG is used to build a scripting interface, the performance of the underlying

C code is largely unaffected. Where performance becomes critical is in the use of the

scripting interface. Whenever a function is issued from the interpreter, it must be decoded

and dispatched to the appropriate wrapper function. The wrapper function must then

convert the function arguments into an appropriate representation before calling the

C function. Afterwards, the result must be converted back into scripting and control

returned to the interpreter.

The dispatch and decoding process may require several thousand machine instruc

tions [88]. Furthermore, the performance is largely affected by the number of function

arguments being passed as well as their type (decoding pointers is more expensive than

decoding integers for instance). Therefore, users should assume that the execution of a

function issued from a scripting language may require several thousand more machine

instructions than would have been required in C.

The overall performance degradation of a compiled function due to a scripting interface

is entirely dependent upon the amount of work performed by that function and the

performance penalty imposed by the scripting language (which varies widely). Table 5.1

shows the performance penalties that would be incurred for a variety of function execution

times and scripting language performance penalties. In the table, the number of native

instructions represents the number of machine instructions executed by the C function

84

Table 5.1. Performance penalties of scripting

Native Instructions
Scripting Instructions

100 1000 10000
10 11.0 101.0 1001.0
100 2.0 11.0 101.0
10000 1.01 1.10 2.0
1000000 1.0001 1.001 1.01

while the number scripting instructions represents the number of machine instructions

required to decode and dispatch a command as well as execute the codc contained in the

wrapper function.

As a rule of thumb. C functions should perform an order of magnitude more work than

the scripting language in order to achieve a performance penalty less than 10%. Thus,

if a scripting language requires 1000 instructions to issue a function call, a C function

should cxccutc approximately 10000 instructions to achieve less than a 10% performance

penalty. To put this in concrete terms, the function would have to perform approximately

the same amount of work as required for a matrix multiplication of two 20 x 20 matrices.

Clearly, the performance penalty skyrockets when functions perform very little work. For

example, if a function only performed 10 instructions, the performance penalty incurred

in the scripted version could easily be more than a factor of 100.

5.8.3 D esign ing for Perform ance

The introduction of scripting to an application will always result in a performance

penalty. However, the size of the penalty is largely determined by the design and use of the

scripting interface. Generally speaking, the following situations result in few performance

penalties when used in a scripting environment.

• Functions involving a significant amount of computation.

• Outer loops of computationally intensive operations.

• Infrequently executed functions.

On the other hand, the following situations tend to result in substantial performance

penalties when performed from scripting language.

• Repeated use of functions performing little work.

• Inner loops of computationally intensive operations.

• Fine-grained manipulation of large amounts of data.

Although scientific applications vary widely, computational kernels and numerically

intensive operations should be written in C /C + + . Meanwhile, most high-level opera

tions and control can be implemented with scripts. This arrangement also reflects the

complementary nature of systems and scripting languages where systems languages are

used for performance critical operations while scripting languages are used for control

and component gluing.

C H A P T E R 6

S O F T W A R E C O M P O N E N T S

Given an existing application, SWIG can be used to construct a scripting interface.

In doing so, the application become more usable and flexible. However, one of the most

powerful features of scripting languages is their ability to manage software components.

Rather than building a huge monolithic package, applications can he decomposed into

collection of scriptable modules. These modules can then be assembled as needed to solve

particular problems.

The component approach is attractive for a number of reasons. First, it largely

eliminates the tangled control logic found in many scientific programs and allows the sub

systems forming a large monolithic package to repackaged as a collection ofloosely coupled

components. Second, it gives applications a well-organized modular structure that allows

new features to be added in a sensible manner (since new features can usually be added

new modules). In addition, components simplify development and maintenance sincc

each module is self-contained and more easily managed than a huge monolithic package.

Finally, the component approach makes it easier to combine and use different components

in an integrated environment. For example, a simulation program and visualization tool

could lie turned into components and combined to form an integrated simulation and

data analysis system. Such integration would streamline the, problem-solving process and

could allow scientists to be more productive.

This chapter describes the use of scripting language components, decomposition of

large applications into modules, integration of components, and design patterns for as

sembling component based software.

6 . 1 S c r i p t i n g L a n g u a g e C o m p o n e n t s

Scripting languages support two distinct forms of components. First, a component

can be written entirely as a script. When the user wants to use the component, it is

simply loaded and interpreted. The sccond type of component is a compiled extension

87

module. These are the types of modules that are created by SWIG. When creating a

compiled extension, the original C /C + + code and wrapper functions are compiled in a

shared library. The scripting interpreter can then load shared libraries as needed and

execute the wrapper functions they contain.

When SWIG is used to create a scripting interface to an application, that application is

effectively transformed into a component. As a component, it can be used and combined

with other components to create new applications. As a result, the application really

becomes a piece of a much larger programming framework. Although it is impossible to

cover all aspects of software frameworks here, articles describing the benefits of frame

works and component-based approaches frequently appear in the literature [36, 1, 69].

Detailed information about using popular component frameworks such as CORBA and

COM can be found in a variety of books such as [74, 87], More formal descriptions of

frameworks and software architecture can be found in [90].

6 . 2 S p l i t t i n g A p p l i c a t i o n s i n t o C o m p o n e n t s

Large applications usually contain a variety of subsystems that are interconnected

with control code. When SWIG is used to add a scripting interface, much of this control

code can be eliminated as described in Chapter 5. As a result, the major subsystems of an

application can be exposed and split into libraries as shown in Figure 6.1. The libraries,

in turn, can be encapsulated in a collection of scripting language extension modules using

SWIG.

When using the component-based application, a user only uses the modules that are

main()

Control Code

Subsystems

Scripting L anguage

T

C D

a SWTG
S5H

Libraries Components

Figure 6.1. Splitting an application into libraries and components

needed to solve the problem at hand. Thus, instead of using a single package containing

all of the functionality, problems are solved by assembling an appropriate set of smaller

and self-contained modules.

If constructed properly, components can be used from both C /C + + programs and a

scripting language environment. Figure 6.2 shows the structure of such a component. In

the figure, components are split into two parts: a library and a scripting language wrapper

module. SWIG is userl to build the wrapper module, but the wrappers are decoupled so

that the component can be used as an ordinary link library from other C /C + + programs

in addition to being accessible from a scripting interpreter. This arrangement is useful

because it provides a strict separation between the implementation of an application and

its scripting interface. This allows the components to be used in a wide variety of other

settings. For example, a user might use the components, without modification, to crcatc

an application entirely in C or C + + .

6 . 3 S y s t e m s I n t e g r a t i o n

One of the biggest problems faced by computational scientists is the decoupled nature

of different tools and packages used in the problem solving process. If these tools can be

integrated and used together in a more efficient manner, problem solving will be greatly

simplified and scientists will be able to use scientific software in a more productive manner.

One way to simplify the use of different tools and packages is to provide a consistent

and common interface- Using SWIG, scripting interfaces can constructed for various

packages ax shown in Figure 6.3. This places different tools under the control of a common

scripting language interpreter and makes different systems appear similar. As a result,

this tends to simplify the use of these, tools and hide implementation differences.

Component

C/C++
Programs

C/C++ Wrapper
Library SWIG Code Scripting

Figure 6.2. Structure of a scripting language component

89

SW IG

Scripting Scripting Scripting

Simulation Analysis Graphics

F igu re 6.3. Providing a common scripting interface to different, packages

Although scripting languages can be used to unify different packages imdcr a common

interface, they do not eliminate the decoupled execution of each package. For example,

each tool may run independently and exchange data in the form of files and pipes.

However, the ability of scripting languages to dynamically load and utilize different

software components allows different packages to be integrated directly into a shared

process and address space as shown in Figure 6.4. When integrated in this manner,

packages can be modified to share data directly and interoperate with each other. Tliis

not only improves the efficiency with which different tools can be used, it allows entirely

new applications to be developed. For example, the integration of a simulation code aud a

visualization package could allow a scientist to interactively visualize and steer a running

sim ulation-a process not possible in a decoupled environment.

Scripting

Simulation Analysis Graphics

Shared Data

Figure 6.4. Direct integration of packages into into a shared environment

6 . 4 C o m p o n e n t D e s i g n

The maimer in which components are structured and used is of critical importance.

Without spccial attention, it is possible to create an unmanageable set of components as

shown in Figure 6.5. Id the figure, there is no discernible structure and each component

implicitly depends on the existence of other components. Maintaining such a component

framework is difficult since changes to any one component could break large numbers

of other components. Likewise, a component may depend on a large number of other

components-making such a component extremely sensitive to such changes.

To make a components work effectively, developers need to think about the overall

structure of their applications and the creation of components. Ideally, each component

should be designed to perform a well-defined set of operations and depend minimally on

the use of other modules.

Since software components are similar to objects, many of the object-oriented design

patterns and component based software design techniques can be applied to scripted

applications built with SWIG [43, 70]. Although an in-depth discussion of object-oriented

design techniques is not presented here, there are a few particularly useful types of

components that can be used in the construction of a component framework. This section

describes these components and the situations in which they can be used.

Figure 6.5. A poorly designed set of components

6.4.1 Libraries

The raw functionality of an application or C library can be packaged into a library

component. The purpose of a library is to expose functionality to both the scripting

language interpreter anti other modules written in C- The structure of a library component

is shown in Figure 6.6, but was also shown in Figure 6.2. Most of the modules created

from an existing application will be libraries.

6.4 .2 A dapters

An adapter component (also known as a wrapper) is used to change the interface of

an existing component. The primary application of an adapter is to make two previously

incompatible components work together. Figure 6.7 shows the structure of an adapter.

Adapters are generally used to add new software components to an existing system

without changing any of the existing ini,effaces. For example, a system might be coded to

use OpenGL for graphical display. However, a user might want to port the application to

a Windows platform and use Direct3D instead. Rather than changing the application to

Scripting

C/C++

A()

B()

F igure 6.6. A library component

Adapter

Figure 6.7, An adapter component.

use a new interface, an adapter component can be written to give an OpenGL interface

tn the Direct,3D library. Using the adapter, the original application can continue to use

the original OpenGL interface even though an entirely different graphics display library

is really being used.

The important feature of adapters is that they are used to make a component mimic

the behavior of another component in the system. This allows the two components to be

used in a more-or-less interchangeable manner.

6.4 .3 B ridges

A bridge component is used to provide functionality involving two or more library

components in a manner that allows those libraries to remain independent. The structure

of a bridge in shown in Figure 6.8.

The purpose of a bridge is to implement functions that require the use of more than one

library component, but in a way that preserves the generality of the library components.

For example, a system may have general purpose library modules for simulation and

graphical display. Using these two libraries, functions for performing integrated data

visualization could be implemented. These functions involve both the simulation and

graphics libraries; but where should the visualization functions be placed? If they are

placed in the simulation library, that library will now depend on the graphics library.

Likewise, a similar situation occurs if the functions arc placed in the graphics library.

The solution to this problem is to place the visualization functions in a separate bridge

component. This component provides functionality linking the simulation and graphics

libraries together, but in a manner that preserves the independence of those libraries.

6.4 .4 Facades

A facade component is used to provide a unified interface to a collection of different

components or subsystems. The structure of a facade is shown in Figure 6.9.

Bridge

AO K> G()

B() GO IX)

Figure 6.8. A bridge component

93

Figure 6.9. A Facade component

The purpose of a facade component is to simplify the interface to a variety of subsys
tems and modules. A facade can also reduce interface, complexity and decrease the mi in her
of dependencies between components. For example, suppose that a scientific system was
to support a collection of different components for making data plots. Further suppose
that a variety of different plotting libraries were to be used and that each library had a
different interface. Rather than writing code that interfaced to every possible plotting
library, a plotting facade component could be developed. Tbe facade would provide a
generalized plotting interface that clients could use to make plots using any of the plotting
components available in the system.

The benefits of facades are that they shield clients from the subsystem components
and make these components easier to use. Facades also allow the individual subsystem
components to be changed find updated independently without affecting any of the clients
(i.e., weak-coupling).

Facades are similar to adapters but are used in a slightly different way. An adapter is
typically used to make the interface of a component mimic that of another component.
A facade, on the other hand, is used to create a generalized interface to a collection of
different components.

6.4.5 Building a C o m p o n e n t Library
W h e n creating component libraries, the use of library, adapter, bridge, and facade

components can greatly simplify the organization and maintainability of the library by

reducing the number of dependencies between components and providing structure. Fig
ure 6.10 shows a. well-structured library of components in which the types of components
previously described have been utilized. Iu this case, the number of dependencies has been
greatly reduced. As a result, this collection of components would be easier to develop,
maintain, and use thau those shown in Figure 6.5.

6.5 SWIG and Component Building

S W I G only plays an indirect role in the construction of components and couiponent-
based applications. By simplifying the construction of scripting interfaces, S W I G allows
existing applications to be easily incorporated into a scripting environment. The strong
component flavor of scripting languages then encourages developers to think, about break
ing applications into components and combining different systems within a component
framework.

W h e n building scripting components, S W I G enforces no particular design philosophy
ou users. As a result, it is largely up to the user to create a sensible mechanism for
building and hooking different components together.

Adapter

F ig u r e 6 .1 0 . A des igned c o m p o n e n t l ib ra r y

CHAPTER 7

CASE STUDY : MOLECULAR DYNAMICS

S W I G was originally developed for use with the S P a S M molecular dynamics code at
Los Alamos National Laboratory. This chapter describes the use of S W I G and scripting
languages with this application over a 3-year period from 1995 to 1998. Particular
attention is given to evolutionary changes made to improve the usability and structure of
this application. The goal of this chapter is to present, a case study describing how S W I G
has been applied to an existing application, how that application has improved over time,
and what the impacts of such improvements are on the problem-solving process.

7.1 The SPaSM Code

S P a S M (Scalable Parallel Short-range Molecular dynamics) is a simulation code de
veloped at Los Alamos National Laboratory for performing large scale three-dimensional
simulations of materials using the method of molecular dynamics [10, 3]. Applications in
clude crack propagation, dislocation dynamics, friction, and shock waves [110. Ill, 57, 58].

S P a S M was originally developed in 1992 for the Connection Machine 5 massively
parallel supercomputer [10]. It has since been ported to a variety of parallel machines
including the Cray T3D, I B M SP-2, SGI Origin 2000, and Sun Enterprise servers. It also
operates on single processor workstations and clusters. In 1993, S P a S M was one of the
winners in the 1993 Gordon Bell Prize competition for achieving 50 Gflops performance on
the 1024 processor CM-5 at Los Alamos National Laboratory [64]. S P a S M is implemented
entirely in ANSI C with explicit message passing used for interprocessor communication.
A multithreaded version of the code for running on shared memory systems is also
available.

Prior to 1992. most molecular dynamics simulations were limited to a few hundred
thousand atoms and mostly performed in two dimensions [14]. S P a S M was the first
molecular dynamics code to perforin a simulation with more than 100 million atoms in

three dimensions and has since been used to perform a variety of production simulations
involving millions to tens of millions of atoms.

Development of S P a S M lias been an ongoing process. Much of the development has
involved the introduction of new physical models and the creation of code used to study
different physical problems. A scripting language was added to S P a S M code in 1995 and
is being used as a foundation for making further improvements today.

7.2 Before SWIG

In Chapter 2, problems related to scientific software such as piecemeal growth and user
interfaces were discussed. This section describes these issues with respect to SPaSM.

7.2.1 D e v e l o p m e n t of S P a S M
The first version of S P a S M was written to perform simple three-dimensional molecular

dynamics simulations using a short-range Lennard Jones interatomic potential [10], The
primary goal was to develop and test parallel algorithms for short-range molecular dy
namics and to investigate the scalability and performance of these algorithms. The initial
implementation, consisted of approximately 3000 lines of ANSI C and could perform
simulations with as many as 67 million atoms.

In 1993, development primarily focused on achieving better performance. Although
good scalability was observed, S P a S M achieved only 1.5% of the peak performance of the
CM-5. To improve performance, assembly codc was written to drive the CM-5 vector
units which resulted in a factor ten performance improvement. A few additional features
including new boundary conditions and table lookup methods were also added to the
code at this time. By the end of 1993, the code had doubled in size to approximately
6000 lines and could perform simulations with as many as 180 million atoms [15].

By late 1994, S P a S M had been ported to a variety of other parallel machines. In
addition, development had focused on making the code better suited to production
computing. Capabilities for I/O, checkpointing, and restarting were improved and new
physical models were introduced. A memory optimization also allowed for simulations
with as many as 300 million atoms. At this time, a number of other scientists had started
using and expanding the code which had now more than doubled in size to 17000 lines.

B y mid 1995, S P a S M had grown to nearly ‘25,000 lines. The number of users had also
inc.rea.sed., making software maintenance problematic. Not only were there many different
configurations, modules, and extensions, users would often copy the source and make

changes to Uleir local copy. Incorporating these changes back into the master version was
extremely difficult since it was common for each user to have slightly modified versions of
the code that was incompatible with all of the other versions for one reason or another.
By now, it was clear that an alternative approach for organizing and using the system
would be useful.

7.2.2 User Interfaces
S P a S M was originally controlled through the use of command line options and inter

active input. A sample session appears as follows:

7. SPaSM -il -p8:8:8 -mlOOOOO -c4:4:8 -rO:0:0:80:80:160 -tO.OOl \
-elO -olOO

Starting Run 17.
Initializing Node Processors...
Setting up initial conditions...
Number of Particles : 1024000
Nsteps : 1000
Integrating 1000 timesteps...
Nsteps : 1000
Integrating 1000 timesteps...
Nsteps : 0
Writing data to Savel7

To run the code, all of the simulation parameters were specified as command line options.
The user was then queried for the number of integration timesteps. Entering a positive
number would result in that many numerical integration steps. Entering zero or a negative
number would force the program to exit.

As more features were added, the use of command line options became difficult to
manage. Not only was it difficult for users to remember all of the command line options,
iL was clear that a more flexible user interface would be needed for continued development.

A rudimentary command interpreter was added in 1994. This interpreter allowed the
user to interactively enter a keyword followed by a value. The keywords corresponded to C
global variables that could be queried or modified. In addition, ccrtain keywords would
trigger internal functions. With this interface, the code was controlled through both
command line options and the interpreter. Although this approach made it somewhat
easier to change parameters and execute simple functions, the interpreter was quite
limited in functionality. To complicate matters, adding new parameters to the interpreter
required users to write C code such as the following:

void
initcond_command(char **tokens)
{

char ^Commands[NC], *Format[NC3, *Carg[NC];
PFI Cptr [NC];
char **cp, **fp, **ap;
PFI *pp;

cp = Commands; fp = Format; ap = Carg; pp = Cptr;
*(cp++) = "aspectx"; *(fp++) = "‘/.d11;
*(ap++) = (char *) feaspectx; *(pp++) = NULL;
*(cp++) = "aspecty"; *(fp++) = '"/,d";
*(ap++) = (char *) feaspecty; *(pp++) = NULL;
*(cp++) = "aspectz" ; *(fp++) = '"/.d";
*(ap++) = (char *) feaspectz; *(pp++) = NULL;

*(cp) = NULL;
/* Parse commands * /

parse_commands(tokens, Commands, Format, Carg, Cptr);

>

>

By 1995, it was clear that this user interface scheme was not going to scale as the.
application continued to grow. Furthermore, there was a growing interest in adding
data analysis and visualization capabilities to the system. These additions would be
significantly more complicated than anything that had previously been written. Thus, a
better scheme for controlling the application needed to be devised.

7.2.3 D a t a Analysis a n d Visualization W o e s

The primary goal of S P a S M was to investigate molecular dynamics simulations on a
scale not previously possible. Even though such simulations could be performed, they
would typically take tens to hundreds of hours of C P U time to complete and were always
submitted as batch processing jobs after a suitable set. of simulation parameters were
determined. It was not uncommon to have tens of gigabytes of output data to analyze
after each simulation. To analyze data, each datafile would be transferred over the
network to a local workstation. Using a standard 10 Mbps network connection, the
transfer of a 1.6 Gbyte datafile would take between 30 minutes to an hour depending
on network load. Once available locally, the datafile would be fed into a visualization
tool. Most visualization was performed vising a customized visualization tool written for
a high-end SGI Onyx workstation. Although this tool theoretically allowed the user to

interact with the data, it often required several hours to render a single image and was
usuable for large datasets.

Although large simulations could be performed with SPaSM, analysis and visualization
of those simulations proved to be a painful process involving days and even weeks of effort.
Even for small simulations, the process was far from easy. For example, one simulation
involving 1.2 million particles resulted in 1000 datafiles each about 20 Mbytes in size (20
Gbytes of data). Although the entire simulation required less than 6 hours of C P U time
to run, visualizing the data to produce an animated movie of the time evolution required
more than a week of continuous processing on two high-end raphics workstations.

From a usability standpoint; this situation was unacceptable. Scientific computing is
an inherently exploratory activity. Yet, the vast amounts of data made such exploration
virtually impossible. In fact, the process was so difficult, the first 3 years of the S P a S M
project saw only a handful of “real” simulations.

7.2.4 T h e N e e d for a N e w A p p r o a c h
After three years of frustration, a new approach had to be developed to make large-

scale molecular dynamics modeling practical. The data analysis and visualization prob
lems were the greatest concern, but better approaches for controlling and managing the
simulation code were also needed.

The primary obstacle to effective data analysis was the decoupled nature of simulation,
analysis, and visualization. W h e n these tasks are decoupled, analysis is performed by
taking the output files of a simulation and feeding them into an analysis package (often
located on a different machine). This package might generate additional data files that
could be used for visualization and so forth. Unfortunately, for large scale molecular
dynamics, the amount of data easily overwhelms existing tools and makes this approach
highly ineffective (for example, loading a large M D dataset into A V S would cause the
system to crash).

A n obvious solution to the data analysis problem is to provide better integration
between simulation, analysis, and visualization tools. Rather than performing these
tasks separately on different machines, perhaps everything could be performed on the
high performance supercornpnting system. Furthermore, research efforts in computa
tional steering had demonstrated that the integration of these tasks greatly improved the
usability of scientific systems [80, 49]. Given the data analysis problems with SPaSM, it
was decided that a steering approach might provide the greatest benefit to users. With

such an approach, tasks that were decoupled would be integrated. This integration would
eliminate the need (,o transfer huge amounts of data between tools and systems. This, in
turn, would allow users to perform m o m simulations and to be more productive.

Although this idea is highly attractive, it is also problematic. H o w would such a
system be assembled? H o w would a user control it? H o w would it be extended with
new functionality? At the time, S P a S M was structured in a relatively ad-hoc manner
and controlled through a weak user interface. Adding such a sophisticated data analysis
capability would certainly require a more powerful approach for controlling and building
scientific software.

7.3 The SWIG Prototype

In 1995, a prototype scripting system was constructed for the S P a S M code [11]. This
system consisted of a simple scripting language and an automatic code generator for
building extensions. This section describes the implementation, use, and results of using
the prototype. Many of the lessons learned in this stage went into the development of
the S W I G compiler and future versions of SPaSM.

7.3.1 A Scripting L a n g u a g e a n d C o m p i l e r
Due to the special purpose nature of parallel machines and difficulty of using existing

software, a simple parallel scripting language was implemented using Lex and Yacc [G2).
This scripting language supported a few useful datatypes, provided all of the constructs
found in a normal computer language (procedures, loops, conditionals, variables, etc...),
and could operate properly on parallel machines (mainly an issue of proper I/O handling).
This language could also be interfaced to C functions. Thus, the idea was that ali of the
C functions in S P a S M could be exposed to the user as “commands” in this language. In
addition, the command driven interface, could be used to interactively drive data analysis
and visualization features when they were eventually added to the system.

To provide acccss to C functions, the scripting language required wrapper functions like
other scripting languages. To generate these functions automatically, a simple compiler
was developed to turn simple ANSI C declarations into wrapper code. This compiler only
supported global variables and functions. In addition, it only supported four C datatypes
(int, double, char *, and void). Although limited, this was enough to support most of
the S P a S M code.

7.3.2 Building the Initial S y s t e m
With Dio scripting language and wrapper code compiler in place, a scripting inter

face to S P a S M was constructed by copying C header files and editing them slightly to
create, an interface file for the wrapper generator. Most C functions in the system were
already defined in header files so this process effectively exposed most of the underlying
functionality to the scripting interface. The wrapper code compiler made the process of
building the scripting interface surprisingly easy. In fact, the initial interface description
was created in approximately 15 minutes.

Since the scripting language replaced the old command interpreter and command line
options, the S P a S M m a i n O function was modified to initialize and pass control to the
scripting language interpreter upon startup. Other than modifying mainO and adding
the scripting interpreter, no other parts of the S P a S M code were modified. Given that
the system had grown to approximately 25,000 lines of code, modifying the system in a
drastic manner was not an option sincc it was unclear whether the scripting approach
would actually work. Therefore, changes were initially kept to a minimum.

7.3.3 Using the Scripted Version
W h e n running the scripted version of SPaSM, the user was presented with a command

prompt. At the command prompt, the user could execute various C functions, set
variables, query parameters, and execute scripts such as the following:

! Script for strain-rate experiment
! Run parameters
exdot = 0.0;
eydot * 0.001;
ezdot = 0.0;
lx =80;
ly = 40;
lz =10;
lc =20;
gapx = 5.0;
gapy = 25.0;
gapz =5.0;

! Set up a morse potential
alpha = 7;
cutoff = 1.7;
source("Examples/morse.script");
makemorse(alpha,cutoff,1000); ! Create a morse table
init_table_pair(); ! Use a tabulated pair-potential

102

! If restarting from a file, the variable Restart is set to 1
! We'll only create the initial condition if not restarting
if (Restart == 0)

ic^crackdx.ly.lz.lc, gapx, gapy, gapz, alpha, cutoff);
set_initial_strain(0.0.017,0);

endif;

! Now set up the boundary conditions
set_strainrate(exdot,eydot,ezdot);
set.boundary.expand();

Benchmarks; ! Report timing information
MovieMode=l; ! Output frame numbers for visualization
FilePath="/sda/sda2/beazley/test";
output_addtype("pe"); ! Output potential energy

! Run it
timesteps(1000,10,50,500)

In the script, most of the function calls correspond to C functions in the original
application. Capitalized variables such as Benchmark are mapped directly onto C global
variables used to hold various run-time parameters (by convention, global variables were
capitalized in SPaSM). Most other variables are local to the scripting interpreter and not
visible to the underlying C implementation.

Although this approach was somewhat similar to earlier interface schemes, it was also
significantly more powerful. Rather than creating simple input files, users could write
sophisticated simulation scripts. These scripts could contain control logic and even define
new functions. As a result, the scripting language interface was mucli more than a simple
user interface-in fact, it effectively became an interpreted extension of the underlying C
code.

7.3.4 D e a d C o d e Elimination
By adding a scripting interface, the old user interface scheme was rendered obsolete.

However, significant portions of codc related to the old user interface were still in place
despite being inoperative (or dead). With scripting successfully in place, this code
(corresponding to about a thousand lines of source) was gradually eliminated. As a
result, S P a S M was transformed primarily into a large library of functions and variables.
Even though much of the control logic linking various functions together remained in
place, the code was gradually simplified as it was freed from its original user interface.

7.3.5 I m p r o v i n g Reliability
Prior to the use of scripting, S P a S M required a prccisc sequence of operations when

running a simulation.

1. Specify problem parameters.

2. Initialize particle memory.

3. Initialize the problem geometry.

4. Initialize the force calculation.

5. Set up an initial condition.

6. R u n the simulation.

The sequence in which these operations were performed was hard-coded into the
original implementation and many of the steps assumed the successful completion of
earlier steps. For example, in order to create an initial condition; it was assumed that
particlc memory and local geometry had been initialized.

To properly handle these execution order dependencies, S P a S M was modified with
state variables using the same process described in Chapter 5. For example

int Memory_Init = 0;
int Geometry_Init = 0;

void memory() {

Memory_Init = 1;
return;

>

void geometry0 {
if (!Meraory_Init) {

printf("Memory not initialized!\n");
return;

>

Geometry_Init = 1;
return;

>

void initcondO {
if (!Geometry_Init) {

printfC’No geometry initialized!\n");
return;

}

>

Although the required modifications were minor and simple to implement, such changes
greatly improved the reliability of the code and made it difficult for the user to crash the
system by issuing commands in the wrong order.

A related problem was that of function “rcentrancy.” Previously, certain functions
could only be used once during a simulation. However, with scripting, it, became possible
for the user to repeatedly call functions with new parameters. Many functions in S P a S M
were unprepared for this possibility and would cause a crash if this occurred. To fix this
problem, many functions were modified to check for prior use as follows:

int Memory_Init = 0;

void memory () ■[

if (Memory_Init) -[
// Memory already initialized.
// Reallocate memory

} else {
// Initialize new memory

>

Meraory_Init = 1;
return

>

In the months following the introduction of a scripting interface, most of the criti
cal C functions in S P a S M were modified slightly to check for proper initialization and
reentrancy. These changes, although minor, greatly improved the stability of the system
and made it difficult for users to inadvertently crash the code. It. also allowed S P a S M
to be used in new ways. By making functions reentrant, it was possible to completely
reconfigure a simulation on the fiy. For example, a user could dynamically change the
partitioning of data across processors or change the simulation geometry by simply issuing
appropriate commands. Previously, such changes would have required checkpointing and

7.3.6 Integrated D a t a Analysis a n d Visualization
To add a data analysis and visualization capability, a simple parallel graphics library

was implemented [11]. In addition, a number of application specific visualization functions
were written. Previously, these functions were contained in a separate package for use on
an SG[workstation. However, in the new implementation, the functions were written to
directly examine the molecular dynamics data in memory and use the graphics library to

create various types of plots.
As output, the graphics system produced GIF images [72]. These images were sent

across a socket connection to a server running on the user’s workstation [93], W h e n the
server received an image, it was displayed using an image display tool such as xv.

To control the analysis and visualization system, the C functions forming the sys
tem were wrapped and included in the scripting language interface. By typing various
commands interactively, the user could then create and manipulate images as follows:

SPaSM [1] > open_socket("sol.c s .utah.edu",32487)
Opened connection with sol.cs.utah.edu
SPaSM [1] > imagesize(500,500);
SPaSM [1] > colormap("cml5");
SPaSM [1] > range O'ke",0,10);
SPaSM [1] > image 0 ;
SPaSM [1] > rotr(45);
SPaSM [1] > rotd(10);
SPaSM [1] > zoom(200);
SPaSM [1] > down(25);
SPaSM [1] > clipx(45,55);

The introduction of an integrated visualization capability revolutionized the use of
SPaSM. Since visualization and analysis were now part of the simulation package, they
could be performed at any time during a simulation. Furthermore, these tasks could
be accomplished without using a separate tool or transferring large datafiles between
machines. Using the visualization capability, datasets as large as 100 million atoms could
be visualized and displayed on an ordinary workstation in as little as 15 seconds over a
standard T1 internet conncction. By comparison, similar tasks using the older tools used
to require tens of hours.

re s ta r t in g t,he e n tire s im u la t io n .

7.3.7 Lessons Learned
The prototype scripting system was used with S P a S M for approximately one year and

revolutionized the manner in which simulations were performed. The use of scripting also
had an impact on the implementation and underlying structure of the software.

Scripting languages. The prototype demonstrated that scripting languages could be
used to drive high performance scientific applications. In fact, scripting proved to
be superior to any of the interlace techniques that had previously been used.

Automatic wrapper code generation. A n automatic wrapper code generation tool
proved to a highly effective method for building scripting language interfaces. This
tool allowed the original application to be scripted in a relatively short amount of
time. It also allowed developers to focus on other aspccts of the system and the
addition of new functionality. In fact, in the year that the prototype was used, no
wrapper functions were written by hand, nor were any errors attributed to the use
of an automated tool.

Impro v e d software. The introduction of scripting resulted in improved software.
Since scripting replaced the original user interface, that code could be stripped from
the application and thrown away. In addition, the event-driven nature of scripting
resulted in a number of minor modifications to make S P a S M more robust and usable.

Benefits of integration. The integration of simulation, data analysis, and visualization
revolutionized the use of the code. Tasks that used to take hours could now be
performed in seconds, while tasks taking days could be performed in a matter
of minutes. This not only made the code more usable, hut made it practical for
scientists to perform and analyze large-scale molecular dynamics simulations on an
everyday basis.

Evolutionary improvement. At no time during its transformation was the S P a S M
code inoperable. The wrapper code compiler could be used to add scripting to
S P a S M with few modifications. As minor changes were made and the code improved,
the scripting interface was easily evolved and maintained.

7.3.8 Limitations
Even though the prototype was Highly successful, it also sufFered from a number of

drawbacks.

Choice of scripting language The prototype utilized a custom scripting language.
Although this language was functional, it was severely limited. There were 110

high-level data structures such as lists and associative arrays, no error handling
mechanism, nor any support for objcct oriented programming. To further complicate
matters, there was no documentation and support for users. Compared to other
scripting languages, it was clear that bringing the custom scripting language up to a
comparable standard would involve a substantial and long-term development effort
and that such an effort would be of questionable value.

Limitations in wrapper generation The automatic wrapper generator provided only
four C datatypes and only supported functions and global variables. Although this
proved to be sufficient for building a working prototype, better results might be
achieved though a more sophisticated compiler capable of supporting a larger subset
of the C language.

System organization Although scripting had proven to be an effective means for
controlling simulations and visualization, little attention was given to the overall
structure of the application. In fact, S P a S M was still a large monolithic package
where all of the different pieces of the system were linked together and combined
to create a large executable. In addition, much of the control logic found in earlier
implementations remained in effect despite the improved interface.

Usability The new system was significantly more usable than prior versions, but was
by no means perfect. The relatively unstructured nature of the original application
resulted in a scripting interface with minor inconsistencies and quirks. Most of the
usability problems were due to inexperience with scripting language interfaces and
limitations in the design of the original S P a S M implementation. Thus, even though
it was relatively easy to add a scripting interface, that interface was not without
problems.

7.4 SWIG and Python

Many of the lessons learned in the prototype went into the development of SWIG. In
1996, the prototype was replaced with a new scripting interface based on Python and
S W I G [7], This section describes that transition and additional improvements made to
the code.

7,4.1 Building a P y t h o n Interface
Python was selected as a replacement for the prototype scripting language [66]. Python

is a freely available object-oriented scripting language that has been used increasingly
in scientific applications. Since the scripting language interface in the prototype was
generated automatically with a precursor to SWIG, changing S P a S M to use Python was
a simple process. Interface files from the prototype were modified slightly and fed into
the S W I G compiler to generate Python wrappers. In addition, the raain() function was
modified to initialize and start the Python interpreter. No other changes were made to
the source code.

The conversion process required a few hours of work, but most of this time was spent
modifying Makefiles and other parts of the build process to use Python instead of the
older scripting interface. After the conversion, S P a S M operated in an identical manner
as before except that the scripting interface was now a Python interpreter. Aside from
a few minor syntax changes, scripts developed for the older scripting language could be
easily adapted to Python and used exactly as before.

7.4.2 Splitting S P a S M into C Libraries
Since Python supports dynamic loading of modules, S P a S M was restructured as a

collection of components. To do this, major parts of the system were identified, isolated,
and turned into the following collection of C libraries:

S P a S M library. All molecular dynamics simulations rely upon a core set of algorithms
and functions. This library contains general purpose functions for memory m a n
agement, parallel M D algorithms, data distribution routines, I/O functions, and so
forth. The contents of this library almost exactly match the first version of code
developed in 1992 (although almost all of the algorithms have been refined and
improved).

System library. To achieve portability across a wide range of platforms, S P a S M is im
plemented over a machine-independent collect ion of message passing and threading
wrappers. This library provides the implementation of these wrappers and is used
as a facade component by most other modules.

Graphics library. The parallel graphics library used for the visualization system
consists primarily of functions for creating images and primitives for two-dimensional
and three-dimensional graphics. The graphics library is entirely general purpose and
does not rely upon any of the data structures or functions contained within other
modules.

Analysis and visualization library. The analysis and visualization library acts as
a bridge between the S P a S M code and the graphics library. Although the graphics
library is generic, this library directly accesses particle data to create and display
images.

Simulation libraries. Specific scientific problems involve a certain amount of cus
tomized code such as physical models, boundary conditions, numerical integrators,
and so forth. The implementation of these features may be different for each
problem that is solved. Therefore, each problem is encapsulated into a separate
library. For example, functions used to solve shock wave problems are packaged
into a separate library than functions used to study dislocation crossings. These
libraries generally live in user directories as opposed to being part of the generic
S P a S M implementation.

By creating these libraries, S P a S M was split into logically distinct pieces. In the
process, much of the control logic holding the system together was removed or rewritten.
Even though few changes were made to the underlying algorithms, significant changes
were made to the overall structure of the application. Most of these changes were made
to the interfaces between libraries in order to make each library self-contained and generic.

7.4.3 Creation of P y t h o n M o d u l e s
With S P a S M split into C libraries, Python modules were created to provide access to

these libraries. The C header files describing each library were modified slightly to serve
as S W I G interface files. The headers could then be given to S W I G to create Python

wrappers. These wrappers were compiled and linked against the C libraries to form a
collection of dynamically loadable Python extension modules.

Although there is a one-to-one mapping between Python modules and C libraries, there
is a strict separation between the C implementation and Python interface as described in
Chapter 6. The C libraries do not contain any Python specific codc and can be used to
create stand-alone C executables. Likewise, the Python extension libraries only contain
the wrapper code needed to build the Python interface, but these are merely linked
against the C libraries to create the full extension module.

Finally, to simplify the maintenance and use of the components, they were placed
in a common repository accessible to all users. One of the biggest problems with the
prototype was that users made copies of the source code and started working with a local
copy. This made maintenance and development difficult since each user always ended up
with a different copy of the code. With a component repository, a common collection of
components could be given to all of the users though access to a centralized component
library. W h e n changes were made to each component, those clianges would automatically
be propagated to all of the other users.

7.4.4 Object-Oriented Extensions
Unlike the prototype wrapper generator, S W I G allows scripting interfaces to C data

structures to be built. To exploit this, the scripting interface was modified to include
various data structures within the S P a S M code. For example, particles are described by
the following data structures:

typedef struct {
double x,y,z;

} Vector;

typedef struct {
int type;
int tag;
Vector r;
Vector s;
Vector f ;
double p e ;

} Particle;

W h e n given to SWIG, these structures are converted into methods for accessing and
manipulating Particle objects from the Python interface. Thus, if p is a particle object,

SPaSM [39] > print p.type
2

SPaSM [39] > print p.r.x, p.r.y, p.r.z
0.870868933099 0.1 11.5630339965
SPaSM [39] > p.tag = 1
SPaSM [39] >

To improve the interface to data structures, the S W I G class extension mechanism was
used to attach “methods” to C data structures. For example, the following interface file
attaches methods for extracting particles, output, and array indexing.

// Have SWIG attach the following methods to Particles
V,addmethods Particle {

/* Return a pointer to the nth particle */
Particle(int n) {

return ((Particle *) Particles) + n;
>

/* Array indexing method */
Particle *__getitem_(int n) ■[

return self+n;
>

/* Create a string representation of a particle * /

char *_str__() {
static char s[1024];
sprintf (s, "type : 7,d\n\

tag : 7,d\n\
r : [‘/.0.17g, 7.0.17g, ‘/.0.17g] \n\
s : [%0.17g, 7.0.17g, 7.0 . 17g] \n\
f : [%0.17g, 7.0.17g, 7.0.17g] \n\
pe : y.0.17f\n",

self->type, self->tag,
self->r.x ,self->r.y,self->r.z,
self->s.x,self->s.y ,self->s.z,
self->f.x ,self->f.y ,self->f.z,
self->pe);

return s;
>

>

The added methods do not change the internal C implementation of particlcs, but
they make it possible for the user to manipulate and view particles as follows:

SPaSM [39] > p = Particle(10) # Get the 10th particle
SPaSM [39] > print p
type : 0

a user can issues c o m m a n d s such as th e fo llo w in g :

112

tag
r
s
f
pe

[0.10000000000000, 1.6417378661970, 12.333902929576]
[0.02565919519959, 0.1543604111549, 8.4869030486381]
[0, 0 , 0]

-5.972883777266366

SPaSM [39] > # Find the particle with the highest pe
SPaSM [39] > p = Particle(0)
SPaSM [39] > max = -9999999
SPaSM [39] > for i in xrange(0,SPaSM_count_particles()):
... if p[i].pe > max:
. . . pmax = p[i]
... max = p[i].pe

SPaSM [39] > print pmax
type
rag
r
s
f
pe

[0.87086893309851, 21.684330126758, 127.19337396125]
[0.04636369788149, -0.0421596288401, 0.08774536227903]
[0 , 0 , 0]

-4.29142941533476296

SPaSM [39] >

The ability of S W I G to extend structures into classes also proved to be useful in the
graphics system. To hold image information, a C data structure Image was used. Various
graphics operations then required a pointer to an Image structure as follows:

Image *create_image(int width, int height);
void destroy_image(Image *img);
void plot(Image *img, int x, int y, int color);
void line(Image *img, int xl, int yl, int x2, int y2, int color);

With SWIG, this functionality could be repackaged and attached directly to the Image
data structure as follows:

“/.addmethods Image {
Image(int w, int h) {

return create_image(w,h);
}

"Image() {
destroy_iroage(self);

>

void plot(int x, int y, int color) {
plot(self,x ,y ,color);

>

void line(int xl, int yl, int x2, int y2, int color) {
line(self,xl,y1,x2,y2,color);

>

}

Within the Python interface, images now operate as if they were defined by a C + +

class. For example,

SPaSM [39] > i = Image(400,400)
SPaSM [39] > i.plot(200,200,1)
SPaSM [39] > i.lineUO, 10,395,150,2)
SPaSM [39] > del i

7.4.5 Exception Handling
To further improve the reliability of the code, an exception handling mechanism was

added to many of the libraries. C macros for “Try” and “Except” were implemented using
the C <set jmp ,h> Library. Various C functions were then modified to throw exceptions
such as follows:

/ ♦ A C function that throws an exception */
void *SPaSM_malloc(size_t nbytes) {

void *ptr = (void *) malloc(nbytes);
if (!ptr) Throw("SPaSM_nialloc : Out of memory!’1);
return ptr;

>

If an uncaught exception occurs, the C program prints a message and exits. However,
other C functions were modified to catch exceptions and recover if possible. For example,

/ ♦ A C function catching an exception */
int foo() {

void *p;
Try {

p = SPaSM_malloc(NBYTES);
> Except {

printf("Unable to allocate memory. Returning!\n");
return -1;

>

>

The exception handling mechanism was also hooked into the Python exception handler
using SWIG. This was done by defining an exception handler as follows:

/ / A u s e r d e f in e d e x c e p t io n h a n d le r

/texcept (python) {

Try {

$function
> Except {

PyErr_SetString(PyExc_RuntimeError,SPaSM_error_msg());
>

>

// C declarations

The handler code gets placed into all of the Python wrapper functions and effectively
translates C exceptions into Python exceptions. Now, when S P a S M is used from Python,
exceptions in the C code simply result in Python errors as follows:

SPaSM [39] > SPaSM_roemory(50000000)
RuntimeError: SPaSM_malloc(505032704). Out of memory!
(Line 52 in memory.c)
SPaSM [39] >

7.5 The Current Implementation

The current version of S P a S M makes extensive use of S W I G and its Python interface.
This section briefly describes the organization and use of the system.

7.5.1 C o m p o n e n t s
As described previously, S P a S M was split into a collection of C libraries that form the

core set of components of the system. Associated with each library is a Python wrapper
extension module that exposes the functionality of each library to the user. In addition
to the core libraries, a number of modules are enhanced through additional code written
entirely in Python. For example, the visualization system is now implemented partially
in C and Python. Figure 7.1 shows the overall organization of the system and Table 7.1

shows the implementation details of each component.
Unlike the monolithic nature of earlier versions, S P a S M is now maintained entirely as

a collection of components. Attempts to minimize the dependencies between components
has also allowed most modules to be maintained separately. A number of components also
function as facades and bridges as described in Chapter 6. For example, the analysis and
visualization library serves as a bridge connecting the simulation and graphics subsystems.
A general purpose system library acts as a facade for a variety of low-level system calls
and allows the other modules to seamless operate with a threads library, MPI, or on

115

Figure 7.1. S P a S M component arcliitecture

Table 7.1. S P a S M component implementation
Component ANSI C (lines) Python (lines)
S P a S M Library 7300 -

System Library 2400 -
Graphics 11000 -
Analysis & Visualization 2700 -

Remote Graphics 550 -
Interactive Visualization - 2000
Real-time Visualization - 1000
Datafile Visualization - 650

a single processor workstation. An interactive data analysis and visualization module
is implemented entirely in Python and provides a common interface to two different
visualization components one for analyzing running simulations in real time, and one
for post-processing data files. Finally, a few special purpose libraries such as a remote
graphics module provide additional functionality to allow the graphics subsystem to send
images over a socket connection.

7.5.2 U s i n g the S y s t e m
W h e n a user runs SPaSM, the Python interpreter is started and a number of the core

modules are loaded. Afterwards, the user is presented with a command prompt. For
example,

Python 1.4 (Jan 3 1998) [GCC 2.7.2.1]
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam

SPaSM ===== Run 41 on guinness ==== Sun Apr 26 16:08:46 1998

Copyright (C) 1992-1997
Regents of the University of California

Loading ’startup.py’
SPaSM [41] >

Al, the prompt, the user can issue commands, execute scripts, and execute any valid
Python program. Specific simulations are packaged as Python modules and can be loaded
and run interactively. However, common operations are likely to be placed in a script as
follows:

Shock wave problem

from Shock import *
nx = 1 5
ny = 15
nz = 75
sh.ock_velocity = 8.5
temp = 0.01
width = 0 . 3 3 3 3 # Width is percent of total z length
rO = 1 .0 901 733 # Lattice spacing
gap = 0 . 1 0 # Gap (7, of z length)
cutoff = 2 . 0 # Interaction cutoff

ic_shock(nx,ny,nz,shock_velocity,width,gap,temp,r0,cutoff)
init_lj(1,1,cutoff)

set.boundary_periodic()
set_path("/rO/beazley")
SPaSM_set_output([X,Y ,Z ,KE,PE])
timesteps(100,10,50,100)

W h e n S P a S M is used interactively, the user can perform both simulation and analysis
as needed. For example, after running the 100 timesteps in the previous example, the
user could load the visualization system and take a look at Die data. For example,

SPaSM [41] > from vis import *
Colormap set to ’cm_zhouJ
Image size set to (400,400)
SPaSM [41] > set_server("slack",1033)
Setting image server to slack port 1033
SPaSM [41] > ke = Spheres(KE,0,20)
SPaSM [41] > rotr(90)
SPaSM [41] > rotd(10)
SPaSM [41] > zoom(200)
SPaSM [41] > vz = Profilez(VZ,40,-2,10)

After issuing these commands, images will appear on the user’s screen as shown in
Figure 7.2. These images represent the current state of the simulation loaded in memory
and can be used to watch the progress of the simulation and for diagnostics. In fact, it is
even possible to run the simulation and update images simultaneously.

Although the system may appear disorganized and unstructured, this is precisely the
desired mode of operation. Rather than having a huge inflexible monolithic application,
the code is broken up into small modules that can be used as needed. Furthermore, the
Python interface allows users to experiment with the code. Functions can be executed,
variables queried, scripts executed, and simulations performed in an interactive and
exploratory fashion.

7.5.3 Writing U s e r C o d e
S P a S M is now controlled through Python, but most users still write code in C.

This code includes force functions, boundary conditions, initial conditions and numerical
integrators. Even though many of these functions could be written in Python, they are
written in C because they are numerically intensive and performance critical.

Problem specific code is maintained separately by each user of the system. Thus,
one user may be studying shock waves while another is studying dislocation dynamics.
For each simulation, the user simply compiles their problem specific code into a Python

118

Figure 7.2. Sample S P a S M session

extension module. This module is then linked against the core S P a S M libraries aud used
like other modules in the system. In principle, an infinite number of user modules can
be created. These modules can be maintained independently and two users can be using
S P a S M simultaneously with entirely different problems.

In the previous section, an example involving shock waves was described. This problem
consists of approximately 4000 liues of ANSI C code that define all of the physical
properties of the problem. To create a Python module, the functions specific to this
problem are placed in a S W I G interface file that is converted to Python wrappers during
compilation.

Since each problem is defined by a relatively small amount of self-contained C code,
the development of modules is considerably easier than working with a large monolithic
package. Another important point is that by working with small modules, these modules
can be quickly compiled and modified. For example, the entire shock wave problem
mentioned above can be recompiled and linked with full optimization in less than a
minute on a Sun Ultra-1 workstation. Although the compilation time of modules may

seem like a minor point, scientists spend a tremendous amount of time making minor
modifications, recompiling their applications, and testing the outcome. For example, a
single user of the current S P a S M system was recently observed t;o have recompiled their
simulation module 340 times in a month. Had the compilation and linking process taken
15 minutes, this user would have wasted 85 hours stal ing at their screen (a startling figure
considering that there are only 40 hours in a work week).1

7.5.4 P y t h o n P r o g r a m m i n g
One of the most surprising aspects of the system is that significant functionality can

be implemented entirely in Python. Since Python is packaged with a large collection
of modules and extensions, these can be utilized to create interesting extensions to the
molecular dynamics system. A few of these extensions are now described.

7.5.4.1 W e b B a s e d Simulation Monitoring
Even with the scripting interface, production simulations may run for tens to hundreds

of hours. During this time, it is generally impossible for the user to monitor the progress
of a simulation or to view preliminary results (although the visualization system can be
set up to generate image files on a periodic basis). To provide this capability, a simple
web-server has been implemented entirely in Python. The web-server utilizes the S P a S M
visualization module, a variety of Python network modules, and is implemented in fewer
than 200 lines of code.

Using the web-server extension, the scientist registers images and files with the server
before starting a simulation. A simple numerical integration loop is then written in
Python. Inside this loop, a polling operation is performed lo see if any users have
connected to the code with a web-browser. If so, these requests are serviced before
continuing on with the simulation. A simple example is as follows:

Load the shock wave problem
execf ile(11 shock .py11)

M Load the visualization module
from vis import *

1 Unfortunately, r.hc developers of sophisticated object-oriented frameworks do not seem to appreciate

compilation speed sincc 30 minute (or even 10 hour) compilation times seem to becoming increasingly

common [84].

Create some images
images!ze(450,450)
ke = Spheres(KE,0,20)
ke.rotr(90)
ke.rotd(20)
ke-zoom(160)
ke.title = "Kinetic Energy"

vz = Profilez(VZ,60,-l,10)
vz.title = "Velocity Profile"

shear = PlotCells(SHEAR,-10,10)
shear.title = "Shear Stress"
shear.smooth=l
shear.copyview(ke)

Create a link to the web-server on my web-page
spasmweb.linkfile("/home/grad/beazley/.public_html/spasm.html")

Add the images to the web server
ke.web("kinetic.gif")
vz.web("velocity.gif")
shear.web("shear.gif")

Now run the simulation and periodically poll
for i in range(0,5000):

timesteps(1,10,50,100) # Integrate
spasmweb.poll() # Check for a connection

W h e n this script is executed, the user can point a web-browser directly to the running
simulation code. Through the browser interface, the user can examine output files of the
simulation as well as generate images. W h e n an image request is made, the visualization
module produces a plot and sends it directly to the client. No temporary files are
created nor does the server feed previously generated images to the user. Furthermore,
no conventional web-server is running on the simulation maclhne-the user connects to
the physics code directly.

Although simple to use and implement, this extension provides a feature not available
in other versions of the code. Even more surprising is the fact that it is implemented
entirely in the scripting language interface. In other words, the web-browsing feature
required no modifications to the underlying C code or other parts of the system. Currently
the web-monitoring feature is being used to remotely monitor large-scale simulations
running on the ASCI SGI Origin 2000 machines at Los Alamos National Laboratory.

7.5.4.2 C o d e B r o w s i n g
One problem with breaking S P a S M into libraries and modules is the problem of finding

functions. For example, a user might want to look at a C function to see what it does
or make a modification. Unfortunately, this is difficult if the user does not know, or
remember, where the function is defined.

To solve this problem, a simple code browser was implemented entirely in Python.
The browser uses Python regular expressions to scan files and directories for function
declarations. Thus, using this module, a user can search for files and examine their
contents as follows:

SPaSM [47] > import browse
SPaSM [47] > browse.find("timesteps")
I *

****** ./timesteps»c ******
* *

extern void
extern void
extern void
extern void
extern void

set_boundary_periodic(void);
init_lj(double.double.double);
integrate_first_velocity(void);
integrate_adv_coord(void);
integrate_adv_velocity(void);

#define TIMESTEP_TIMER 20

int
timesteps(int nsteps, int energy_n, int output_n, int checkp_n) {

int laststep;
static int print_log = 0;

/* Check to make sure it’s okay to proceed */

if (!InitGeom) {
SPaSM_fprintf(stdout,"No geometry initialized.\n") ;
return -1;

— More— (14'/.)

A similar capability is also available for file editing as well. In this case, when a function
is found, an editor process (such as emacs or vi) is spawned with the appropriate source

7.5.4.3 Distributed Objects
In Chapter 3 distributed object systems such as C O R B A and C O M were described as

alternative approaches to scripting. As it turns out, many scripting languages can also be
used in a distributed object framework. For example, the ILU system provides bindings
to Python and allows distributed object servers and clients to be implemented entirely in
Python [60].

As an experiment, ILU was used to build a distributed object binding to the S P a S M
visualization system. This was done by creating a Python wrapper class around fclie image
objects defined in the visualization module. This class was then published on the network
using the ILU extension to Python. Once published on the network, remote clients could
conncct to the visualization system to create and manipulate images.

One such client is a simple Tcl/Tk graphical user interface tool that allows users to
interactively drive the visualization system. The client side of the ILU interface was
implemented in ANSI C. The functions in this interface were then interfaced to Tcl/TK
using SWIG. In Tcl/Tk, a simple G U I was written to allow the user to manipulate images
using the mouse in a manner similar to that found in a more conventional visualization
package. I

Although this is a more complicated example, it illustrates the power of the scripting
interface. The ILU network interface is implemented in less than 100 lines of Python and
requires no modifications to any other parts of the S P a S M system. Yet, by using such an
interface it became possible to drive S P a S M remotely using other languages such as C,
C + + , Java, Tcl/Tk, and so forth.

7.6 Performance

Prior to adding the scripting interface. S P a S M was a highly tuned application designed
to achieve optimal performance on a variety of platforms [64, 15]. In Section 5.8.1, the
performance of scripting interpreters was described. In this section, the performance
impact of scripting languages on the S P a S M code are described. In addition, the entry
of S P a S M in the 1998 Gordon Bell Prize competition is briefly discussed.

7.6.1 Scripting for Control, C for P e r f o r m a n c e
In SPaSM, scripting languages arc primarily used as a control median ism while com

putationally intensive operations are written in C. W h e n running a simulation, most
C P U is spent calculating interatomic forces-a task that typically requires billions to

hundreds of billions of floating point operations. Even less computationally intensive
tasks such as numerical integration require hundreds of thousands to millions of floating
point operations. The fact that such operations might have been initiated by a slow
scripting language interpreter is of little consequence.

To illustrate the inconsequential performance impact of scripting* the outer loop of a
simulation was written entirely in Python and compared to an equivalent implementation
written in C. The performance impact was then measured for a small simulation as shown
in Table 7.2. Even for a small number of atoms, the performance impact is observed to
be less than 0.2%.

7.6.2 A Recent P e r f o r m a n c e S t u d y
S P a S M was recently entered into the 1998 Gordon Bell Prize competition for achieving

a price performance of $15/Mflop on a 70 processor D E C Alpha Linux cluster at Los
Alamos National Laboratory [102], This represents a factor 3 improvement in price
performance over the 1997 Gordon Bell Prize winner in this category [103].

To achieve this result, the scripted version of S P a S M was used to perform a 60.8
million atom molecular dynamics simulation of shock-induced plasticity in an fcc-crystal
structure. This simulation ran on 68 nodes for 2000 timesteps and required approximately
44 hours of simulation time. The simulation also included periodic computation of
energies, used the visualization module to create GIF images, and saved 68 Gbytes of
check-pointed simulation data to disk. For the entire simulation, S P a S M performed
1.56 x 1015 floating point operations over a wall clock time of 1.58 x 105 seconds. This
corresponds to a sustained throughput of 9.9 Gflops over 44 hours.

Each processor in this system is a 533 Mh z D E C Alpha 21164A with a peak perfor
mance of 1.066 Gflops, The entire production simulation (including visualization and I/O)
sustains a performance of approximately 146 Mflops whereas the raw force computation
runs at 189 Mflops. These performance numbers compare favorably with prior results on
a Cray T 3 D in which an unscripted version of S P a S M achieved a performance of 27-41

Table 7.2. Execution time (seconds) of C versus C with scripting
Atoms per processor C C with Python
13950 98.7 98.9
45000 314.1 314.8
180000 1317.1 1319.0

7.7 Results

Scripting languages and S W I G have revolutionized the use S P a S M and made it pos
sible to perform large-scale molecular dynamics simulations on an everyday basis. By
improving usability and integrating tasks that were traditionally decoupled, scientists
have been able to run simulations and interpret results in a more efficient manner. In
fact, it is now common for scientists to perform more simulations in a month than were
performed in the first 3 years of the project combined! More importantly, the new system
has had a direct impact on scientific results reported in peer-review journals including
Physical Review Letters and Science f 1.10, 111, 58],

O n the software side, S P a S M has been transformed from an inflexible monolithic
package to a highly modular and flexible component-based system. Along the way, the
structure and reliability of the code improved greatly. This has simplified maintenance
and allowed the code to be easily expanded in new directions. Finally, the power of
scripting languages has even allowed S P a S M to be used in ways not previously imagined.

S W I G played an integral, but, unusual, role in the transformation process by greatly
simplifying the creation of scripting language modules. S W I G allowed the original ap
plication to be easily incorporated into a scripting environment and enabled users and
developers to focus on the use and structure of the application, not the gory details
of component construction. S W I G also allowed incremental changes and improvements
to be easily incorporated into the scripting interface. Even today S W I G remains a
simple mechanism that can be used to extend S P a S M ’s scripting environment with new
capabilities.

M flops o n a 150 M h z D E C A lp h a (12).

CHAPTER 8

USER STUDY

Versions of S W I G have been available for public use since February 1996. Feed
back from users ha.s been instrumental in the development of SWIG, and many of its
features have been implemented in direct response to user requests. As of Ma y 1998,
approximately 360 users subscribed to a S W I G mailing list (swig@cs.utah.edu). To
find out more about how S W I G is being used, two user surveys have been conducted. A u
informal survey, conducted in August 1997, asked mailing list subscribers to describe the
applications in which they were using SWIG. A formal survey, conducted over a 7-week
period from February to April 1998, asked users a series of questions regarding their use
of S W I G and background. This chapter describes the results of these surveys and hopes
to provide a picture of how S W I G is being used, who is using it. the benefits il: provides,
and limitations.

8.1 Survey Methodology

A n initial survey asked mailing list subscribers to describe the applications in which
they were using SWIG. Approximately 25 responses were received via e-mail, but no
statistical data were generated. However, responses to this survey provided some insight
into how S W I G is being used. A second survey was conducted over a seven week period
to collect statistical data and additional feedback. This survey was conducted through
the use of a web-page and CGI script for data tabulation. Respondents were asked a
series of questions regarding their use of S W I G as well as their background so that a
user-profile could be generated. A full version of the survey can be found in Appendix C.
Given the personal nature of many questions and to encourage participation, users were
allowed to submit survey responses anonymously although Internet domain names were
recorded so that duplicate submissions could be checked and eliminated from the survey
if necessary. In addition, most questions were optional-allowing users to skip questions
for which they had no opinion (or felt unqualified to offer a valid response). One hundred

mailto:swig@cs.utah.edu

nineteen responses were received from 114 unique Internet, domains. Responses were
solicited from the S W I G mailiug list and the web-page containing the S W I G mailing list
archives. 82% of the respondents subscribed to the mailing list, representing a response
rate of approximately 30% for the number of subscribers at the time of the survey.

8.2 User Profile

Since S W I G was originally developed for scientific applications, respondents were
asked if they worked on scientific applications. Seventy-two respondents (60%) answered
“yes,” 46 (39%) answered “no," and one offered no response. For the purposes of further
discussion, survey results are divided into the categories of “all users,” “scientific users.”
and “other users.”

To get a better idea of who is using SWIG, users were asked questions about their
programming experience and background as shown in Table 8.1. A m o n g ali users, more
than 90% indicated five or more years of programming experience and that number vises
to 98% for scientific users. Sixty-six percent of the users classified themselves as software
engineers although a majority (57%) do not have a formal degree in computer science.
In addition, nearly 70% of the users have, at one time, been a system administrator.

As an additional measure of programming experience, users were also asked about
certain types of applications and tools as shown in Table 8,'2. The purpose of this table is
to find out what kind of tools users might be using in the software development process
and application building. From this table, we sec that a significant number of users
are utilizing makefiles, revision control, configuration management, and other aspects
of maintaining complex software packages. There is also a clear distinction between
scientific and nonscientific users in a number of categories-especially those associated
with distributed object systems and software development on the Windows platform.

Finally, users were asked a few questions about their background with S W I G as shown
in Table 8.3. Approximately 60% of respondents have been using S W I G for more than 6
months. Furthermore, nearly all users indicated that they were using scripting languages
before using SWIG.

Based on the profile data, the current users of S W I G could probably be categorized
as experienced programmers or possibly “early adopters.” Most respondents have had
.significant, prior programming experience and nearly all have used scripting languages
prior to using SWIG. The fact that a majority of users have been s}rstem administrators

T a b le 8 .1 . U se r p ro g ra m m in g e xp e rie n ce a n d b a c k g ro u n d

Question All Users
(n=119)

Scientific
(n=72)

Other
(n=46)

H o w long have you been programming?
0-5 years
5-10 years
10-15 years
15-20 years
> 20 years

10 (8%)
39 (32%)
35 (29%)
18 (15%)
16 (13%)

2 (2%)
27 (37%)
25 (35%)
8 (11%)
9 (12%)

8 (17%)
12 (26%)
10 (21%)
10 (21%)
6 (13%)

H o w would you characterize your work?
Commercial software development
Acadcmic
Government
Industrial research and development
Self employed

40 (33%)
45 (37%)

7 (5%)
24 (20%)

2 (1%)

9 (12%)
40 (55%)

5 (6%)
17 (23%)

1 (1%)

31 (67%)
5 (10%)
2 (4%)

6 (13%)
1 (1%)

Arc you a software engineer?
Yes
No

79 (66%)
40 (33%)

38 (52%)
34 (47%)

40 (86%)
6 (13%)

Do you have a computer science degree?
Yes
No

50 (42%)
68 (57%)

27 (37%)
44 (61%)

23 (50%)
23 (50%)

Have you ever been a system administrator?
Yes
No

83 (69%)
36 (30%)

47 (65%)
25 (34%)

35 (76%)
11 (23%)

T a b le 8 .2 . U se r p ro g ra m m in g e xp e rie n ce (a p p lic a t io n s)

Question All Users
(n— 119)

Scientific
(n— 72) (

Other
i— 46)

Have you ever written ,1 graphical user interface?
Yes 103 86%) 66 (91%) 36 78%)
No 14 11%) 5 (6%) 9 19%)
Have you ever written a network application?
Yes 79 66%) 40 (55%) 38 82%)
No 38 31%) 30 (41%) 8 17%)
W h a t other packages/tools do you use?
Make 107 89%) 62 (86%) 44 95%)
Revision control (e.g. RCS) 91 76%) 52 (72%) 38 82%)
Configuration tools (e.g. autoconf) 39 32%) 25 (34%) 13 28%)
Purify 43 36%) 24 (33%) 19 41%)
C O R B A 16 13%) 6 (8%) 10 21%)
C O M 19 15%) 5 (6%) 14 30%)
ILU 17 14%) 9 (12%) 8 17%)
Visual Basic 23 19%) 6 (8%) 17 36%)
Other scripting tools 16 13%) 10 (13%) 5 10%)
M A T L A B , Ma(.hematica; etc... 49 41%) 42 (58%) 7 15%)
Database packages 48 40%) 21 (29%) 26 56%)
M P I 10 (8%) 8 (11%) (4%)
Threads 44 36%) 23 (31%) 20 43%)
O p e n G L 34 28%) 29 (40%) 5 10%)
Java 52 43%) 31 (43%) 21 45%)

Table 8.3. S W I G experience
Question All Users

(n=119)
Scientific
(n=72)

Other
(n=46)

H o w long have you been using S W I G ?
0-6 months
6-12 months
12-18 months
18-24 months
> 24 months

43 (36%)
40 (33%)
24 (20%)

8 (6%)
4 (3%)

21 (29%)
22 (30%)
17 (23%)
8 (11%)
4 (5%)

21 (45%)
18 (39%)
7 (15%)
0 (0%)
0 (0%)

Did you use scripting languages before S W I G ?
Yes
No

U 5 (96%)
4 (3%)

70 (97%)
2 (2%)

44 (95%)
2 (4%)

also suggests that users are reasonably familiar with the. installation, maintenance, and
use of various tools and packages.

It is questionable as to whether S W I G is being used by “typical” computational
scientists as described in Chapter 2. Generally speaking, scientists are reluctant to adopt
unprovcn software technology and S W I G is no exception. Thus, although 60% of S W I G
users work on scientific applications, these users appeal' to be fairly experienced with
rcspcct to programming tools and techniques.

8.3 Languages

Users were asked to indicate which compiled languages as well as scripting languages
they were using with S W I G as shown in Table 8.4. For these questions, users were allowed
to select all languages that applied. Thus, the data suggest that many users arc working
with both C and C + + code. Ten percent of users are also working with Fortran even
though S W I G currently provides no native support for ForLran. Use of Perl, Python, and
Tel is evenly split among users. The 5 % of users using an "other” scripting language are
using versions of S W I G that have been extended with additional language modules.

8.4 Using SWIG

To find out how S W I G is being used, users were asked the questions in Table 8.5.
Approximately 80% of users are using S W I G to work with C programs containing fewer
than 250 functions. This indicates that most users are working with small to moderately
sized systems (as a point of reference, the S P a S M code described in Chapter 7 contains
approximately 250 C functions). In addition, 50% of users report using S W I G frequently
(daily or weekly) and 50% appear to use S W I G only occasionally (monthly or rarely).
This split may represent two common ways in which S W I G can be used. One common use
is to provide a scripting interface to software that is under development. In this case, the
scripting interface is a useful mechanism for debugging, prototyping, and working with the
codc. Sincc the interface to such applications would be likely to change frequently, S W I G
would be used on a regular basis. A second application of S W I G is the construction
of scripting interfaces to existing software packages. For example, a user might build
a scripting interface to O p e n G L to have an interactive graphics tool. Since O p e n G L
wouldn’t change much at all (if ever), there is little need to run S W I G frequently.
Therefore, S W I G might only be used once in awhile to build interfaces to existing packages

T a b le 8 .4 . Languages b e in g used w ith S W IG

Question All Users
(n— 119)

Scientific
(n=72)

Other
(n=46)

What compiled languages do you use with S W I G ?
C
C + +
Objective C
Fortran

05 (79%)
76 (63%)

2 (1%)
13 (10%)

58 (80%)
53 (73%)

1 (1%)
12 (16%)

36 (78%)
22 (47%)

1 (2%)
1 (2%)

W h a t scripting languages do you use with S W I G ?
Perl
Python
Tel
Guile
Other

45 (37%)
50 (42%)
54 (45%)

4 (3%)
6 (5%)

22 (30%)
35 (48%)
36 (50%)

3 (4%)
5 (6%)

22 (47%,)
15 (32%)
17 (36%)

1 (2%)
1 (2%)

Table 8.5. S W I G usage
Question All Users

(ii=119)
Scientific
(n=72)

Other
(n=46)

Approximately how large arc your interfaces?
0-49 functions
50-99 functions
100-249 functions
250-499 functions
500-999 functions
More than 1000 functions

52 (43%)
24 (20%)
18 (35%)
14 (11%)
7 (5%)
3 (2%)

32 (44%)
11 (15%)
15 (20%)
9 (12%)
4 (5%)
1 (1%)

20 (43%)
13 (28%)

3 (6%)
4 (8%)
3 (6%)
2 (4%)

W h a t input do you give to S W I G ?
Separate interface files
Header files only
A mix of interface and header files

72 (60%)
1 (0%)

46 (38%)

41 (56%)
1 (1%)

30 (41%)

30 (65%)
0 (0%)

16 (35%)
H o w do you run S W I G ?
Prom the command line
From a makefile
Development environment

22 (18%)
89 (74%)

7 (5%)

11 (15%)
57 (70%)

4 (5%)

11 (23%)
31 (67%)

3 (6%)
H o w often do you use S W I G ?
Daily
Weekly
Monthly
Rarely

24 (20%)
36 (30%)
27 (22%)
32 (26%)

12 (16%)
26 (36%)
17 (23%)
17 (23%)

11 (23%)
10 (21%)
10 (21%)
15 (32%)

as necessary.
Table 8.6 shows the usage of various S W I G features. Although the use of various

features is not particularly relevant for the purposes of this discussion, the data provides
some information about the parts of S W I G that are actually being used.

Finally, users were asked about the process of compiling S W I G generated modules
as shown in Table 8.7. A n increasingly common problem with many modern software
systems is that of long compilation times. Sixty-five percent of users report that it takes
less than a minute to run S W I G and compile the wrapper code into a module. However,
a small percentage of users report times longer than 10 minutes and some of these users
report cases in which S W I G has produced wrapper modules that were too large to be
compiled by the C or C + + compiler. In addition, 43% of users reported that they have
had to modify the output of S W I G at some time. This statistic will be discussed later in
this chapter.

8.5 Evaluation

The statistical survey also included an evaluation section. In this section, users were
asked to evaluate various statements and assign points on a scale of 1 (disagree) to 5
(agree). The results of the evaluation section are shown in Table 8.8. Although it is
difficult to read much into the evaluation results since the survey is biased (users who
hate S W I G were unlikely to spend time filling out a survey), the evaluation section does
indicate relative weaknesses and strengths of the current implementation. In particular,
users generally feel that S W I G is easy to use and install. However, the documentation
generation system and the claim that S W I G requires no modification to underlying code
receive relatively low marks. O n the positive side, users strongly agree that S W I G and
scripting have had a positive impact on their programming projects and have given this
statement the highest average score.

8.6 Application Areas

To find out what S W I G is being used for, users were risked about a number of general
software development activities shown in Table 8.9. In addition, users were asked for a
short description of their application area. Table 8.10 provides a short summary of the
application areas received in the survey.

A majority of S W I G users are involved in research and development projects. Further
more, there seem to be three primary areas of applicability. First there are applications

T a b le 8 .6 . S W IG fe a tu re usage

Question All Users
(n=119)

Scientific
(n=72)

Other
(n=46)

What S W I G features do you regularly use?
File inclusion
Typemaps
Wrapper classes
Documentation generation
Class extension
Renaming
Runtime libraries
Exception handling

80 (67%)
76 (63%)
56 (47%)
46 (38%)
43 (36%)
43 (36%)
30 (25%)
20 (16%)

54 (75%)
42 (58%)
34 (47%)
30 (41%)
28 (38%)
29 (40%)
18 (25%)
11 (15%)

26 (56%)
33 (71%)
22 (47%)
16 (34%)
15 (32%)
14 (30%)
12 (26%)
9 (19%)

W h a t S W I G library files do you regularly use?
Typemaps
Pointers
Exception
Constraint

60 (50%)
37 (31%)
14 (11%)

4 (3%)

37 (51%)
27 (37%)
8 (11%)
4 (5%)

22 (47%)
10 (21%)
6 (13%)
0 (0%)

W h a t S W I G documentation formats do you use?
H T M L
ASCII
LaTeX
None

48 (40%)
22 (18%)
10 (8%)

38 (31%)

29 (40%)
10 (13%)
9 (12%)

23 (31%)

19 (41%)
12 (26%)

1 (2%)
14 (30%)

Have you used S W I G with more than one
scripting language?
Yes
No

30 (25%)
88 (73%)

21 (29%)
50 (69%)

8 (17%)
38 (82%)

Have you ever created a new language module
or modified the S W I G source code?
Yes
No

18 (15%)
99 (83%)

8 (11%)
63 (87%)

10 (21%)
35 (76%)

T a b le 8 .7 . C o m p ila t io n o f S W IG g e n e ra te d e x te n s io n s

Question All Users
(n=119)

Scientific
(n=72)

Other
(n— 46)

Approximately how long does if; take to build
a S W I G extension on your machine?
0-30 seconds
30-60 seconds
1-2 minutes
2-5 minutes
5-10 minutes
More than 10 minutes

53 (44%)
26 (21%)
22 (18%)

9 (7%)
1 (0%)
5 (4%)

32 (44%)
19 (26%)
11 (15%)
5 (6%)
1 (1%)
1 (1%)

20 (43%)
7 (15%)
11 (23%)
4 (8%)
0 (0%)
4 (8%)

Have you ever generated an extension module
that was too large to be compiled?
Yes
N o

G (5%)
111 (93%)

2 (2%)
68 (94%)

4 (8%)
42 (91%)

H o w do you typically link modules?
Shared libraries and dynamic loading
Static linking

92 (77%)
27 (22%)

56 (77%)
16 (22%)

35 (76%)
11 (23%)

Have you ever modified the wrapper code
generated by S W I G ?
Yes
No

52 (43%)
67 (56%)

29 (40%)
43 (59%)

22 (47%)
24 (52%)

Table 8.8. S W I G evaluation
Question All Users

(n— 119)
Scientific
(n=72)

Other
(n=46)

S W I G is easy to install 4.42 (,7=0.84) 4.51 (a=0.77) 4.30 (<7=0.93)

It was easy to build your first
S W I G example

3.97 (<7=1.09) 4.08 (ct=0.97) 3.83 (<7=1.20)

In practice, S W I G is easy to use 4.11 ((7— 0.90) 4.19 (<7=0.84) 4.00 (<7=0.96)

The scripting interfaces creatcd by
S W I G are easy to use

4.30 (<7— 0.73) 4.43 (<7=0.70) 4.11 (<7=0.73)

S W I G generated modules can be
quickly compiled

4.04 (a=1.02) 4.09 (a=0.92) 3.96 (cr=l. 16)

S W I G requires no modifications to
the underlying C / C + + code

3.72 ((7=1.06) 3.74 (a=0.97) 3.74 (<7=1.17)

Parsing ANSI C / C + + declarations
makes S W I G easier to use

4.26 (<7=1.04) 4.36 (a=0.97) 4.11 (<7=1.13)

S W I G allows you to build interlaces
without worrying about the details

4.28 (a=0.89) 4.32 ((7=0.89) 4.22 ((7=0.89)

The documentation files created by
S W I G are useful

3.55 (<7=1.07) 3.59 (a=1.04) 3.51 (< 7 = 1 .11)

SWIG/Scripting has had a positive
impact on your projects

4.63 ((7=0.64) 4.67 (cr=0.58) 4.60 (<t=0.68)

134

T a b le 8 .9 . G e n e ra l uses o f S W IG
Question All Users

(n=119)
Scientific
(n=72)

Other
(n— 46)

Personal use
In-house application development,
Software testing and debugging
Research and development projects
Rapid prototyping
Commercial software development
Other

63 (52%)
53 (44%)
27 (22%)
62 (52%)
42 (35%)
31 (26%)

2 (1%)

42 (58%)
31 (43%)
15 (20%)
49 (68%)
31 (43%)
14 (19%)

1 (2%)

21 (45%)
22 (47%)
11 (23%)
13 (28%)
11 (23%)
17 (36%)

1 (2%)

Table 8.10. S W I G application areas
Animation Astrophysics
Automotive R & D C A D tools
C A S E tools C O M
C O R B A Chemical information systems
Climate modeling Computational chemistry
Database Defibrillation modeling
Document management Drawing
Economics Education
Electronic Design Automation Electronic commerce
Financial Fortran
Games Groupware
I lard ware control/monitoring Image processing
Integrated Development Environments Lotus Notes
Materials modeling Medical imaging
Meteorological imaging Microprocessor design
Military visualization Molecular dynamics
Natural language processing Network management
Neural nets Oil exploration
Palm Pilot Polarization microscopy
Protein sequence analysis Ray tracing
Realtime automation Robotics
Software testing Spectrographic analysis
Speech recognition Testing of telecom software
Virtual reality Vision
Visual simulation Weather forecasting
X-ray astrophysics analysis

of an inherently exploratory nature. In this ease, S W I G is being used to add a scripting
interface to improve Llie flexibility and usability of these applications. A second area
is in the area of systems integration and the use of scripting languages as a means for
integrating existing software components into a common framework. Finally, a number
of users indicated that they are using S W I G for testing and diagnostic applications. In
this case, scripting languages are added to systems for the purposes of in-house testing
and debugging but arc not delivered with the final product.

8.7 Benefits of Using SWIG

Unfortunately, it is difficult to quantitatively measure the success of S W I G using
traditional software engineering metrics. Given that the primary users of S W I G are
scientists and that most applications are of a research and experimental variety, users are
unlikely to record quantitative information about the development process. Furthermore.
S W I G is largely concerned with improving the usability of applications— an important
task, but one that is not easily measured. Although the user survey provides some insight
into how S W I G is being used and who is using it. it provides little insight into why a user
might use SWIG.

This section provides antedotal evidence about why users are using S W I G and the ad
vantages that ir. offers. This information was collected from the user surveys, messages on
the S W I G mailing list, and through personal communications with users. The following
testimonials should be viewed with a degree of caution as there is no way to measure if the
opinions expressed are representative of everyone who has tried to use S W I G (especially
since people who have tried and failed are unlikely to provide any feedback).

To protect the identity of respondents, each respondent has been assigned two letter
code. A mapping of codes to respondent names exists, but is not included in the
dissertation.

8.7.1 Ease of U s e
A number of users are using S W I G because it simplifies the process of building scripting

language interfaces. The following quotes are typical.
D M writes,

S W I G has helped us minimize the hassle of writing manual wrappers. Since
S W I G has proven to be rather easy to use, I find I can carry out the types

of wrapping activities which would otherwise have been the responsibility of a
computer scientist.

M M writes,

I really love the fact that the learning curve is short and flat. I don’t need to
use this facility very often, hut when I absolutely have to link in external C
routines, or when I have to get the last drop of speed from something previously
written in Perl, I can count on S W I G to be there. W h e n I do use SWIG, I
don’t need to spend hours learning and debugging the system. This is the
closest thing to cut-and-pasle I’ve ever seen in inter-language library creation.

A A writes,

W e are a research group that develops medical imaging software. W e are
interested in image processing/visualization research, and for our software,
we want a simple and portable tool to generate user interfaces. For this, we
currently use Tcl/Tk, and S W I G which provides a nice way to connect our
software (in C + +) to the tcl-scripts.

M E writes,

Very quick first results.

JS writes,

Easy to use, no need to worry about, language internals. It is a boon for
application developers, like me.

IIR writes,

I like the fact that it automates much of the tedious work in building an
interface C / C + + functions. This makes development easier.

A B writes,

S W I G is by far the easiest way I have found to generate scripting interfaces for
scientific software. S W I G makes it practical to use a single, powerful scripting
language for all projects rather than writing a custom interface to each. It also
encourages a consistent and modular form for a program, and makes it easier
to add contributions to m y programs from other users/programmers.

H H writes,

I like the ease with which scripting languages can be extended. The fact that
we could so easily interface with Lotus Notes 011 N T using Python was just
amazing.

JH writes,

S W I G makes linking my application to a scripting language easy enough that
it is worthwhile.

.IK writes,

I came, I saw, I wrapped. And it ran. W o o hoo!

8.7.2 Productivity
By automating the generation of wrappers, S W I G allows developers to focus on the

problems at hand. The following quotes address the improved productivity of using
SWIG.

M R writes,

Without S W I G it would have taken much, much longer for our group to use
Python as an extension language. Our whole application was written mostly
in C + + . W e wanted to look into using Python for portions of it in order to
make it easier to extend. Python has a fairly nice interface for doing this sort
of thing. The, trouble was that we needed to make hundreds of C + + classes
available to Python. This would have taken a very long time (to write the
wrapper code). S W I G allowed us to spend a minimal amount of time with the
wrapper codc and most of our time moving stuff to Python (which was the big
point in the first place).

R D writes,

S W I G is a huge t.ime-saver. I have approximately 30,000 lines of C and
Python code that have been generated by S W I G that 1 didn’t have to write
by hand, don't have to fix syntax and fumble-finger errors in, and don’t have
to aggressively test.

H S writes,

S W I G helps us in taking away part of the error-prone task of making the C
routines accessible from Python and has considerably improved our efficiency.

A C writes,

I like all the time I have saved by not writing the interfaces myself.

B H writes,

S W I G saves a lot of m y energy in interfacing with many free C / C + + libraries
in m y project.

A D writes,

S W I G handles the gory details and allows m e to concentrate on the important
things.

G M writes,

Using S W I G is really fun, because it saves yon from a lot of mechanical work
and it takes care of all the details you don’t want to bother with letting you
concentrate on the real problem.

R B writes,

Thanks again for SWIG... It’s fun and allows great productivity while avoiding
much tedium.

A D writes,

[I like] the ability to write extensions basically without having to think too
hard about what I’m doing.

P D writes,

S W I G allows me to get on with scripting and writing C + + code without
having to worry about the (usually considerable) issues involved in extending
the scripting language with my custom components.

8.7.3 Software D e v e l o p m e n t
The use of scripting and S W T G can have a dramatic impact on the software de

velopment process by encouraging modularity and providing a powerful debugging and
diagnostic capability. The following quotes address some of the software development
benefits of using SWIG.
J W writes,

[SWIG has impacted m y software development process as follows.1

• Increased productivity. I no longer do edit, compile, link, and debug but
I build a S W I G interface and compile and then use an interpreter. This
change of work styles lets me be much more productive when I a m doing
exploratory programming. If the code that uses the interpreter is too slow,
I rewrite a very small portion.

• More bugs are found. Since I can quickly assemble new programs in
different ways. I find bugs sooner. At [company], I found a critical bug that
had existed in the software for over 5 years. (The bug was that if a single
process opened the same file twice for reading, the file was corrupted.)

• I was a happier programmer. I don’t have to deal with lots of the low
level data structures when I a m prototyping. If I need a list of widgets,
just, wrap m y widget with S W I G and use Python’s list.

P D writes,

Using a scripting language as glue between C + + components is a powerful
paradigm for combining flexibility with robustness and efficicncy. S W I G en
ables this model by providing a solid bridge between the C + + component and
the scripting language.

A F writes,

The ability to “follow” the development of the core application without con
stantly rebuilding the interface is very effective. The developments of the kernel
and its interface are mutually protected to a large degree.

C W writes,

S W I G allows us to rccycle a lot of ugly old C code and put it into a reasonable
module structure and snazzy new user interfaces.

K L writes,

It allows us to leverage the advantages of the scripting language, especially
when so many other scripts are already being written to glue programs together
and some of our other tools have their own scripting language interface. Using
S W I G will allow us to properly integrate each of the parts directly into the
language instead of a collection of system() calls.

K R writes,

Before I had to use C + + for m y “rapid” prototyping. N o w I can script it!

A F writes,

M y code is cleaner and more compact which makes it easier to read and un
derstand. S W I G also encourages modularize code-allowing one to test/debug
modules independently. This makes connecting everything together a breeze.

J M writes,

The very idea of scripting programming on the one hand and systems pro
gramming on the other is quite nice, the most important feature of S W I G is
to make this approach practical on a day-by-day basis.

A G writes,

O n the whole, S W I G is m y most important development tool after gcc!

8.7.4 Usability
Finally, by using S W I G to build scripted applications, those applications can become

more flexible and usable.
M W writes,

S W I G has enabled our customers to interact with our toolkits in fundamentally
new ways.

B T writes,

W e are using Tel scripts as the data files driving our simulations. Once the data
is defined using a program (which is pretty cool in itself), we can actually run

the simulation from script commands. In our experimental environment, that
saves rewriting a lot of ’’main” programs that exercise the same basic objects.
This isn’t exactly computational steering, but it does give our engineers a lot
of Hexibility.

M B writes,

All (well most) of my C + + code (M C simulations of proteins and sequence
analysis) is now driven by a Python interface thanks to SWIG. Once I have
decided on an interface, the process of building it is usually trivial.

L B writes,

S W I G is an integral part of a user environment I a m creating for a Molecular
Dynamics company. They have F O R T R A N modules that require a steering
language (Python) to enable flexible computational research.

Y Z writes,

S W I G plays a critical role to automate the generation of Perl client interfaces
from the O M G IDLs for a C O R B A ORB. The Perl clicnt. interface is essential
in script driven testing.

f_,S writes,

1 a m enjoying rapidly developing complex projects using 0 0 and Python,
but coming from a numerical background, I like that I can get fast number
crunching performance when I need it from C modules wrapped up by SWIG.

8.8 Limitations

Even though S W I G is being successfully used in a wide variety of applications, it
still has a number of limitations. This section describes some of these limitations and
workarounds.

8.8.1 Survey Results
The user survey asked respondents to pick one area for future S W I G improvement

from a list of possibilities shown in Table 8.11. Respondents could also provide written
comments to elaborate on S W I G limitations. The most significant limitations of S W I G
appear to fall into a number of categories. P’irst, there are problems handling certain
datatypes such its arrays, pointers to functions, and so forth. Second, there are parsing
difficulties because S W I G is not a full C / C + + compiler. Additionally, there are seman
tic difficulties due to differences between what is possible in C / C + + and what S W I G
supports. Finally, there are conceptual difficulties with using certain parts of the S W I G
compiler. Several of the more common limitations are now described.

141

Table 8.11. Areas in which S W I G cou d be improved
Category All Users

(m — 119)
Scientific
(n=72)

Other
(n=4G)

Better support for arrays
Support for overloaded functions
Better C / C + + parsing
Support for Java
Optimized output
A n extension mechanism
Support for Fortran
More S W I G library files

26 (21%)
26 (21%)
16 (13%)
14 (11%)
11 (9%)

8 (6%)
7 (5%)
4 (3%)

18 (25%)
17 (23%)
9 (12%)
6 (8%)
7 (9%)
2 (2%)
7 (9%)
3 (4%)

8 (17%)
9 (19%)
7 (15%)
7 (15%)
4 (8%)

6 (13%)
0 (0%)
1 (2%)

8.8.2 A r r a y Handling
By default, S W I G treats all arrays as simple pointers. Since there is a close re

lationship between arrays and pointers in C, this is a generally effective management
technique. Where many difficulties arise is in the interface between arrays and lists in
a scripting language and arrays in C. For example, lists of objects can be easily defined
and manipulated in Python as follows:

Python 1.5 (#1, Jan 1 1998, 11:26:26) [GCC 2.7.2.1] on linux2
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
» > a = [1,2,3,4,5,6]
>>> print a [3]
4
>>> print a [0:3]
[1, 2, 3]
>>> ... etc ...

Thus, a natural inclination of users is to use a Python list us input to a C function
expecting an array. Unfortunately this is not possible because C arrays and Python lists
are represented in an entirely different manner and are not interchangeable. Because of
this, users often have to manufacture a C array, fill it with values, and pass it to a C
function as follows:

a = ptrcreate("double",0.0,4)
value = [1,2,3,4]
for i in range(0,4):

ptrset(a,value[i],i)
foo(a)
ptrfree(a)

Create a double[4]

a[i] = value[i]
Call a C function
Destroy the array

Sincc this can be somewhat awkward, many users prefer to write a typemap for
converting scripting arrays to C. Although the typemap approach solves some of the

problems using scripting language arrays, additional problems arise especially when func
tions expect size arguments. For example, some C functions operating on array data are
structured as follows:

void foo(double *array, int size);

Although a typemap rule can be given for the first argument, there is no way for
S W I G to expand a single object (such as a Python list) into a pair of function argument
values. Thus, the function has to be used as follows:

Call foo, but explicitly specify the array length
foo([l,2,3,4],4)

An alternative approach
a = [10,11,12,13,14,15,16]
foo(a,len(a))

An error, no length specified
foo([1,2,3])

To automatically fill in size parameters, users can recast functions using a containers
and helper function as described in Chapter 5. Unfortunately, doing so can require
a substantial amount of extra work if many functions need to be transformed in this
manner.

Finally, there seems to be no one representation of arrays that will be sufficient for use
with all applications. In scientific applications, users often work with huge amounts of
data and arrays involving millions of data points. In these cases, it would be impractical
to convert this data to and from a scripting representation in the same manner as might
be done for small arrays. Not only would this conversion process be computationally
expensive, it would also incur a serious memory penalty since scripting languages require
more memory to represent basic objects than C (for example, a double precision floating
point number in C requires 8 bytes of storage compared to 1C bytes for Python).

Most of the problems with arrays arc due to the huge variety of ways in which arrays
can be defined, used, and represented in both C and the target scripting language. It
appears to be impossible to devise one single approach that will serve all situations.
Therefore, the S W I G approach is to minimally represent arrays as pointers (which is
always possible) and to allow the user the ability to customize S W I G as appropriate for
an application. Unfortunately, this minimalistic approach leaves array processing largely

8.8.3 Overloaded Functions
S W I G currently provides no support for overloaded functions, but such functions

appear frequently in C + + applications. For example,

void foo(double);
void foo(int);
void foo(char *);

To access all of these functions from scripting, it is necessary to rename them witli unique
names as follows:

// SWIG interface to overloaded functions
'/.name(foo_double) void foo(double);
‘/.name(foo_int) void foo(int);
‘/.name(foo_char) void footchar *);

Even though this approach works, it makes S W I G awkward to use with some C + +

programs. Support for overloading also presents a number of challenges. The most
difficult, challenge is that of developing a type disambiguation scheme that selects and
executes the appropriate C + + function based on Llie arguments passed to a wrapper
function. In C + + , type-signatures are used to resolve overloaded functions, but most
scripting languages utilize types in an entirely different manner. In fact, languages
such as Tel might represent all data as strings. Therefore, the Tel function call “foo
4:’ could legally invoke all three versions of the underlying C + + function since “4” is
simultaneously a string, a float, and integer in the Tel. As a result, overloading can be
difficult to support in full generality. However, a number of specialized extension building
tools such as the interface builder for V T K have shown that overloading can be supported
for certain applications [89].

8.8.4 Better C + + Support
Although S W I G supports a simple subset of C + + and can build interfaces to C + +

programs, it has trouble with more advanced C + + features. Templates are only sup
ported in a limited manner, operator overloading is entirely unsupported as are C + +

namespaces. As a result, the process of building S W I G interfaces to C + + programs can
be considerably more time consuming than for C programs.

u p to th e user (w h e re c o n fu s io n can re s u lt) .

The survey asked C + + users fco indicate winch C + + features they were using. These
results are shown in Table 8.12. Based on these results, it is clear that improving S W I G ’s
C + + support will be beneficial. However, doing so is no easy task. Not only will better
C + + parsing be required, many C + + features are not easily integrated in a scripting
environment. For example, templates make no sense to a scripting interface, but a
scripting interface to a specific template instantiation might prove useful. The variations
between C + + compilers also complicate matters {however this situation appears to be
improving now that an ANSI C + + standard has been approved).

8.8.5 C o d e Optimization
Although S W I G is relatively easy to use, it can sometimes produce a substantial

amount of wrapper code. In the case of the S P a S M codc described in Chapter 7,
approximately 30000 lines of wrapper code are generated to build the Python interface.
For large applications, the amount of wrapper code can he staggering (hundreds of
thousands of lines of code). Compiling this code cam be problematic and can even push
the limits of existing compilers. A few users reported compile times of greater than 10
minutes when creating a S W I G module. A few other users reported that the S W I G
generated wrappers were too largo to be compiled (and resulted in an internal compiler
error).

Given that most users are building small to moderately sized interfaces, the size of
the wrapper code does not yet appear to be a widespread problem. However, there is
significant interest in improving S W I G to make it produce less wrapper code. If the
amount of wrapper code can be reduced, it will decrease compile times and increase
S W I G ’s applicability to larger applications.

Table 8.12. C + + features being used by S W I G C + + users
Category All Users

(n=76)
Scientific
(n=53)

Other
(n=22)

Templates
Namespaces
Exceptions
Operator overloading
Standard template library (STL)
"Smart1’ pointers
Expression templates

58 (76%)
14 (18%)
32 (42%)
53 (70%)
40 (53%)
14 (18%)
4 (5%)

40 (75%)
7 (13%)
19 (36%)
38 (72%)
29 (38%)
10 (19%)
4 (8%)

18 (82%)
7 (32%)

13 (59%)
15 (68%)
11 (50%)
4 (18%)
0 (0%)

8.8.6 Is S W I G A u t o m a t i c ?

In the survey, 43% of users indicated that they have modified the wrapper code
generated by SWIG. This is a rather surprising result considering that one of S W I G ’s
goals is to completely automate the interface construction process. Based on mailing
list discussions, it appears that users often attempt to customize S W I G ’s behavior by
hand editing the resulting wrapper code. However, these users are often surprised to
find out that the exact same modifications can be implemented using typemaps or
some other S W I G customization option. Therefore, the high number of users making
modifications may be due to confusion and conceptual difficulties regarding S W I G ’s
current customization options and internal operation (it may also just be an issue of
documentation).

8.8.7 Conceptual Barriers
Certain aspects of SWIG, especially those pertaining to customization, have created

a considerable amount of confusion among certain S W I G users. One such area is the
implementation and use of typemaps. Using typemaps, a user can customize S W I G ’s
processing in any almost any imaginable manner. However, doing so requires an intimate
knowledge of C, the original application, SWIG, and the target scripting language. To
further complicate matters, errors in typemap definitions can result in bizarre errors and
scripting interfaces that are impossible to use. Thus, user sentiment seems to range from
“I hate typemaps, but I like their functionality” to “typemaps are wonderful!”

The other conceptual problem is related to the use of SWIG, scripting, and C in
general. Many users have not used C / C + + code in this manner before. As a result, there
is a learning process involving in figuring out how to compile and link modules, how the
scripting interface works, and how all of the pieces of the system interact with each other.
This is not necessarily a limitation of SWIG, but indicative of the fact that building
scripted applications is quite different than building simple stand-alone programs.

8.9 Summary

The survey indicates that a majority of S W I G users are fairly experienced and sophis
ticated programmers. In fact, it is quite likely that many of the users could be considered
to be “early adopters” and not necessarily representative of the scientific computing
community as a whole. The survey also indicates that S W I G is generally easy to use
and that it has had a positive impact on productivity, software development, and the

usability of applications. However, the survey also points out a number of limitations in
S W l G ’s implementation and design. Although these limitations do not appeal' to be a
serious impediment to vising S W I G (since workarounds are available), they offer many
opportunities for future improvements and development.

CHAPTER 9

RESULTS AND CONCLUSIONS

9.1 Evaluation of SWIG

The case-study and user survey provide strong evidence that S W I G is being success
fully used in a variety of applications. Although it is difficult to quantify the reasons why
a scientist might use S W I G over other tools and techniques, the following success criteria
may hold much of the answer.

Ease of use. Traditionally, the process of creating scripting interfaces has required the
development of wrapper code or the use of quirky extension building tools (many
of which use special interface definition formats or are limited in capabilities).
SWIG, on the other hand, can quickly build scripting interfaces to existing C / C + +
programs with very little work. As a result, users are often able to utilize the power
of scripting languages almost immediately. This is perhaps best said by one of
SWIG's users who writes, “S W I G really helped me get the system off the ground
in the shortest amount of time. I never would have believed how easy it was until
I wrapped Sun's rpe.cmsd daemon (at least 50 thousand lines of C) with about 20
lines of interface code. Mind-blowing.”

Applicability to real software. To be useful, tools need to work with real software
packages. Furthermore, they need to be highly adaptable in order to accommodate
different programming styles and software designs. In the case-study, S W I G was
effectively used with a high-performance application consisting of approximately
25000 lines of code and developed for massively parallel supercomputing systems.
In the survey, users indicated that they were using S W I G with a wide variety of
scicntific packages and commercial systems. Furthermore, several users indicated
that they were using S W I G to develop commercial software products. Finally, a
number of applications where S W I G has been utilized arc starting to appear in the
literature [19, 107, 73, 91].

Productivity. S W I G improves productivity by eliminating the need to write scripting
extensions by hand and allowing developers to focus on the problem at hand. In fact,
a number nf survey respondents indicated that S W I G was a tremendous productivity
and time-saving tool. One user even wrote, “Without SWIG, it would be almost
impossible for m e to keep up with m y projects."

Performance. Performance is often a deciding factor in the choice to use various tools
in the scientific computing community. In the case of SWIG, it has been shown that
the use of scripting languages can have a minimal impact on the performance of
compiled applications. In the case-study, the performance of the S P a S M code was
minimally affected by the addition of a scripting interface. In fact, S P a S M was even
recently entered in the 1998 Gordon Bell prize competition for sustaining 10 Gfiops
performance 011 Linux cluster [102]. In addition, no survey respondents reported
that the use of S W I G and scripting languages had a serious performance impact 011

their projects.

9.2 The Impact of Scripting Environments

Scripting languages have a huge impact 011 improving the usability of scientific software
because they provide an interpreted high-level environment that simplifies the control and
specification of complex problems. This environment allows scientists to use applications
in an interactive and exploratory manner. Furthermore, the ability of scripting languages
to manage and combine software components allows different packages and tools to be
integrated in a shared environment. This integration streamlines the problem-solving
process and makes scientists more productive.

In Chapter 7, the dramatic changes and improvements to the S P a S M molecular
dynamics code were described. Before the addition of scripting languages, this application
was extremely difficult to use and had only been utilized in a small handful of test
simulations. Scripting languages made this application usable and enabled scientists to
explore large-scale molecular dynamics problems on a daily basis. Today, the S P a S M
code is in almost constant use. Furthermore, simulations performed with S P a S M have
directly led to a number of results published in peer-review scientific journals. Without
S P a S M ’s scripting language environment and its exploratory capabilities, it is unlikely
that these results would have been obtained.

Scripting languages had a tremendous impact on the S P a S M code and the user survey

in Chapter 8 suggests that scripting has had a large impact on other applications. In
particular, scripting improves the way in which applications arc controlled; provides a
mechanism for gluing different software components together, and simplifies application
development.

9.3 The Role of SWIG

Although scriptable applications can be built by hand, S W I G greatly simplifies the
construction of such applications and makes the use of scripting languages practical on
a daily basis. In fact, S W I G allows scripting languages to be used in situations where
they might otherwise have not been considered. This is possible because S W I G almost
completely automates the process integrating scripting languages with compiled code.
As a result, users can exploit scripting languages while concentrating their efforts on the
problem at hand (not the nasty coding issues associated with creating scripting language
extensions).

9.4 Scientific Software Development
Finally, S W I G and scripting languages have a dramatic impact on the development

and organization of scientific software. First, S W I G makes it trivial to add a very powerful
user interface to most programs as shown in Figure 9.1. In fact, even for simple programs,
S W I G allows a scripting interface to be built with less effort than hacking an interface
together with input files or command line options. As a result, S W r G can be used
effectively with programs large and small as well as with programs at all stages of their
development.

The second major area of improvement is in the structure and reliability of scien
tific software. Since S W I G automatically encapsulates applications in a highly flexible
environment, developers can focus their attention to the overall structure and use of an
application. W h e n working with existing applications, those applications may undergo an
evolutionary process of improvement. In fact, scientists may even implement exceptions,
assertions, and other aspects of more advanced software packages. Furthermore, when
S W I G is used to develop new applications, scientists can often avoid the pitfalls associated
with traditional scientific software development.

Finally, scripting languages encourage the development, of modules and software com
ponents. Rather than creating huge monolithic applications, packages can be broken up
into independent modules. This simplifies application development by dividing appli-

150

Easy Ease o f Implementation

Figure 9.1. User interface ease of use versus implementation difficulty with S W I G

cations into smaller units of functionality that are easier to write and maintain. Fur
thermore, the component approach also allows different, packages to be combined and
utilized in a manner not previously possible. For example, the combination of simulation
and visualization modules in the S P a S M code allowed scientists to explore data in a
substantially more flexible and efficient manner than previously possible.

9.5 Future Challenges

S W I G has proven to be highly effective at building scriptablc software. However, there
are many areas for future improvement.

Improved Language Support. Given the use of Fortran in the scientific community,
adding Fortran support to S W I G would likely be a boon to scientific software
developers looking to breathe new life into legacy systems (in fact, some users are
using S W I G with Fortran codes even though no native Fortran support currently
exists). There are also many opportunities to improve S W I G ’s support for C + +
systems. Unfortunately, many aspects of C + + are particularly difficult to integrate
into a scripting environment. However, with improvements to the S W I G parser and
code generator, it may be possible to greatly improve C + + in the future.

Component-based Scientific Software. Scripting languages and S W I G allow scien
tists to create component-based systems. However, the use of software component,
architectures represents an entirely different methodology of constructing scientific
programs. As a result, there are a number of open questions. For example, how do
scientists guarantee reproducibility of results in an environment of constantly chang
ing software modules? Likewise, what are the scaling properties of component-based
systems? Would the informality and flexibility of S W I G break down as the number
of software components increases?

User Studies. S W I G and scripting languages clearly affect the way in which scientific
software is developed and used. However, it has proven to be extraordinarily
difficult to quantify and measure the overall impact of these techniques. Therefore,
there is a considerable need for more case-studies and more detailed usei-studies.
Unfortunately, this is a difficult task since scientific projects rarely lend themselves
to the same analysis techniques that might be used to measure success of a large
software engineering effort.

Education. S W I G and scripting languages allow scientific software to be constructed
and used in an entirely different manner than that traditionally found in most
scientific programs. As a result, there is a considerable need for education among
the scientific community. Although the creation of scriptable applications is rarely
difficult, it requires a different set of tools and mindset for thinking about the nature
of scientific programs.

9.6 Conclusion

Scripting languages offer a flexible environment that can be used to manage complexity
and greatly improve the usability of scientific software. S W I G enables scientists f;o
effectively use scripting languages by simplifying the integration of existing code written
in compiled languages. This makes it practical for scientists to utilize scripting languages
with a wide range of scientific projects on an everyday basis. This, in turn, results in
botli beHer scientific software and an a greatly improved environment for solving scientific
problems.

APPENDIX A

SCRIPTING LANGUAGE EXTENSIONS

This section shows three scripting-language extension modules for the following C
declarations

/* A C function */
int foo(int a, double b, char *c);

/* A global variable */
double A ;

/* A constant */

ftdefine PI 3.141592654

The purpose of this section is to show what scripting languages modules look like and to
give a better idea of the codc produced by SWIG.

A .l A Perl Extension Module
/ *

* A Perl5 extension module * /

* /

#include "EXTERN.h"
#include "perl.h"
#include "XSUE.h"

/* Application specific headers */
^include "example.h"

/* Wrapper function for foo(int a, double b, char *c) */

XS(urap_foo) {
int result;
int argO;
double argl;
char * arg2;
dXSARGS ;

if (items != 3)
croak("Usage: foo(a,b,c);");

argO = (int)SvIV(ST(0));
argl = (double) SvNV(ST(l));
arg2 = (char *) SvPV(ST(2),na);
result = (int)foo(argO,argl,arg2);
ST(O) = sv_newmortal();
sv_setiv(ST(0),(IV) result);
XSRETURN(l);

>

/* Wrapper functions for variable linking */
static int wrap_set_A(SV* sv, MAGIC *mg) {

A = (double) SvNV(sv);
return 1;

static int wrap_get_A(SV *sv, MAGIC *mg) {
sv_setnv(sv, (double) A);
return 1;

>

/* Module initialization function */
XS(boot_example) {

dXSARGS;
char *file = _FILE__;
MAGIC *mg;
SV *sv;
newXS("example::foo" , wrap_foo, file);

/* Create a link to the variable A */
sv = perl_get_sv("example::A".TRUE);
sv_setnv(sv,A);
sv_magic(8v,sv,’U ’,"A",1);
mg = mg_find(sv,’U ’);
mg->mg_virtual = (MGVTBL *) malloc(sizeof(MGVTBL));
mg->mg_virtual->svt_get = urap_get_A;
mg->mg_virtual->svt_set = urap_set_A;
mg->mg_virtual->svt_len = 0;
rag->mg_virtual->svt_clear = 0;
mg->mg_virtual->svt_free = 0;

/* Create a constant */
sv = perl_get_sv("PI''.TRUE);
sv_setuv(sv,PI);
SvREADONLY_on(sv);
ST(0) = £sv_yes;
XSRETURN(1);

>

A.2 A Python Extension Module

* A simple Python extension module
* /

^include "Python.h"

/* Application specific headers */

tfinclude "example.h"

/* Wrapper for int foo(int a, double b, char *c) */
static
PyObject *wrap_foo(PyObject *self, PyObject +args) {

PyObject * resultobj;
int result;
int argO;
double argl;
char * arg2;

if(!PyArg_ParseTuple(args,"ids:foo",&argO.fcargl,&arg2))
return NULL;

result = foo(argO,argl,arg2);
resultobj = Py_BuildValue("i",result);
return resultobj;

>

/ * Wrappers for setting and getting A */
static
PyObject *wrap_A_get(PyObject *self, PyObject *args) {

if(!PyArg_ParseTuple(args,":A_get"))
return NULL;

return Py_BuildValue("d",A);
>

static
PyObject *urap_A_set(PyObject *self, PyObject *args) {

double value;

if(IPyArg_ParseTuple(args,"d:A_set",&value));
return NULL;

A = value;
return Py_BuildValueC’d " ,A);

>

/* Methods table */
static PyMethodDef exampleMethodsQ = {
{ "foo", wrap_foo, 1 >,

{ "A_get", wrap_A_get, 1>,
{ "A_set", wrap_A_set, 1},

/ *

/+ I n i t i a l i z a t i o n fu n c tio n * /
vo id in itex am p leO {

PyObject *m, *d;
m = Py_InitM odule(“exam ple", exam pleM ethods);
d = PyModule_GetDict(ro);

/* C reate a co n s tan t * /
P y D ic t_ S e tI te m S trin g (d ,"P I" , PyFloat_From D ouble(PI);

>

{ NULL, NULL >

A .3 A Tel Extension Module
/ *

* A sim ple Tel ex ten sio n module
*/

in c lu d e < tc l.h >
in c lu d e < s trin g .h >

/* Header f i l e s from th e o r ig in a l a p p l ic a t io n * /
in c lu d e "example .h."

/* Wrapper f o r fooC int a , double c , char *) * /

w rap_foo(C lien tD ata c lie n tD a ta , T c l_ In te rp * in te rp ,
in t a rg c , char * a rg v [])

in t r e s u l t ;
in t argO ;
double a rg l ;
char * a rg 2 ;

i f (argc != 4) {
T c l_ S e tR e s u l t(in te rp , "Wrong # a rg s . foo a b c " ,TCL_STATIC);
r e tu rn TCL_ERROR;

>
argO = (in t) a to l (a r g v [1]) ;
a rg l = (double) a to f (a rg v [2]);
arg2 = a rg v [3];
r e s u l t = fo o (a rg O ,a rg l ,a rg 2) ;
s p r in t f (i n t e r p - > r e s u l t , "4/,d", r e s u l t) ;
r e tu rn TCL_0K;

i n t E xam p le_ In it(T c l_ In te rp * in te rp) {
i f (! in te rp)

re tu rn TCL_ERR0R;
Tcl_CreateCom m and(interp, "foo", wrap_foo, (C lien tD ata) MULL,

(Tcl_CmdDeleteProc *) NULL);

/* Link to th e g lo b a l v a r ia b le * /
T cl_ L in k V ar(in te rp , "A", (char *) &A, TCL_LINK_DQUBLE);

/* C reate a co n s tan t as a read only v a r ia b le */

s t a t i c double wrap_PI = P I;
T c l_ L in k V ar(in te rp , ‘'P I" , (char *) &urap_PI,

TCL_LINK_DOUBLE I TCL_LINK_READ_ONLY);
>
re tu rn TCL_QK;

/* Module i n i t i a l i z a t i o n fu n ctio n * /

A PPEN D IX B

SWIG DIRECTIVES

SWIG has a number of special directives that are used to guide the interface generation

process. This section briefly describes a number of the most common directives.

B .l Code Insertion
The output files of SWIG are divided into three sections. A header section section

contains header files and other support code, a wrapper section contains the wrapper

code generated by SWIG, a, the initialization section contains the module initialization

function. The following directives can be used to insert supporting C /C + + code into the

output file generated by SWIG.

*/.{ ... 7.}
All of the code enclosed in the braces is copied verbatim into the header section of

the output file. This is typically used to includc header files and other support code.

The SWIG parser ignores all of the included code.

"/.{ . . . */.}

Copies the code, enclosed in the braces into the module initialization function. The

included code is ignored by the SWIG parser.

‘/ . in l in e */,{ . . . ’/.}

Copies the code enclosed in the braces into the header section of the output file,

but also passes the enclosed code to the SWIG parser. This directive is described

in more detail in Section 5.3.

'/,w rapper “/,{ . . . '/.}

Copies the code enclosed in the braces into the the wrapper section of the output

file. The parser ignores the contents of the included code.

B.2 File Inclusion
SWIG interfaces can be broken up into multiple files and assembled to form an

interface. The following directives are used to include files and gather iuterface building

information.

'/.include filenam e

Inserts the contents of a file into the current interface specification. The included

file may be a special SWIG interface file, a C /C + + header file, or a C /C + + source

file.

‘/.ex te rn filenam e

Loads a file and extracts type information (including structure and class definitions).

However, uo scripting language wrappers are generated. This directive is primarily

use to provide SWIG with information about the underlying C /C + + program

without generating any wrapper code.

7,im port filenam e

Loads information about the contents of another SWIG generated module without,

generating any wrapper code. This directive is used when working with collection

of modules and in cases where one module may depend on the contents of another

module.

B.3 Renaming
Sometimes the name of a C function conflicts with a keyword or built-in function

in the target scripting language. To resolve these conflicts, the name of functions and

variables used in the scripting interface can be changed using the following directives.

*/»name(nevmame) d ec l

This directive can be placed in front of any C /C + + declaration to change the name

used in the scripting language interface.

'/.rename oldname newname

This directive performs a global renaming operation. It operates like the */,name

directive except that it applies to all occurrences of the old name.

B.4 Access Control
The following directives cau be used to control the access to global variables and

structure members. Using these directives, a user can be prevented from modifying data

from the scripting interface.

’/.readonly

This enables read-only mode. All global variables and data members of classes

will be processed so that they can not be modified from the scripting language

interpreter. This mode stays in effect until it is explicitly disabled.

'/.read v rite

This directive disables the read-only mode.

B.5 Customization
The following directives are used to customize SWIG’s processing. More detailed

descriptions about these directives are provided later in this chapter.

‘/.excep t(lan g) { . . . }

This directive defines a new exception handler as described in section 4.11.

‘/.typemap (la n g , met hod) d a ta ty p e { - • - }

Defines a new typemap as described in section 4.L0.

’/,apply d a ta ty p e { type l i s t };

Applies a typemap to a list of new datatypes as described in section 4.10.1.

B.6 Documentation
The following directives are used to control the documentation generation capability

of SWIG.

‘/ . t i t l e " te x t"

Sets the title of the documentation file.

‘/.se c tio n " te x t"

Starts a new documentation section.

'/.subsec tion " te x t"

Starts a new documentation subsection.

'/.subsubsection " te x t"

Starts a new documentation subsubsection.

'/.d isabledoc

Disables the documentation system.

*/,enabledoc

Enables the documentation system.

B.7 Miscellaneous Directives
'/module name

Sets the name of the SWIG extension module. Usually this directive appears once

at the beginning of an interface description.

V.native(name) fu n c tio n ;

This directive can be used to add au existing scripting language wrapper function

to a SWIG interface, name is the name of the scripting language command to be

created and fu n c tio n is the name of the wrapper function.

‘/.new d ec l

This directive gives a hint to the compiler that a function is returning newly allocated

memory. SWIG can sometimes use this to eliminate memory leaks.

*/«addmethods classnam e { . . . }

Adds new methods to C + + classes and C structures as described in section 4.9.4.

A PPEN D IX C

USER SURVEY

C .l Languages and Operating Systems
1. W hat script,ing languages do you use with SWIG? (check all that apply)

• Guile, Perl, Python, Tel, Other

2. W hat compiled languages do you use with SWIG? (check all that apply)

• ANSI C, C + + , Objective-C, Fortran, Other

3. W hat operating systems are you using with SWIG? (check all that apply)

• Linux. Solaris, SunOS, Irix, HPUX. AIX, Digital Unix, BSD, Macintosh, Windows

NT, Windows-95, Windows-3.1, Other

C.2 SWIG Usage
4. W hat Version of SWIG are you using?

5. Approximately how many functions do you typically include in your SWIG interfaces

(This includes C functions, C + + member functions, etc...)

• 0-49, 50-99, 100-249, 250-499, 500-999, 1000 up

6. W hat kind of input do you usually give to SWIG?

• Separate interface files, Header files, Both

7. W hat SWIG features do you use regularly? (check all that apply)

• File inclusion (%include). Exception handling (%except), Shadow classes, Typemaps,

Class extension (%addmethods), Documentation generation, The %import directive,

The %apply directive, The %uame directive. Runtime libraries

8. Do you use any of the following SWIG library files?

• pointer.i, typemaps.i, exception.i, constraint.!

9. W hat SWIG documentation format do you use?

• ASCII, HTML, LaTeX, None

10. How is SWIG installed on your system?

• In your own directory, In a system directory

11. How do yon run SWIG?

• Directly from the command line, Using a Makefile, From a development environment

12. How often do you use SWIG?

• Daily, Weekly, Monthly, Rarely

13. Have you ever used SWIG with more than one scripting language?

14. Have you ever modified I,he wrapper code generated by SWIG?

15. Have you ever modified the SWIG source code or written a new language module?

16. How you do typically build scripting extensions?

• Dynamic Loading, Static linking

17. Have you ever generated an extension module that was too large to be compiled by

your C /C + + compiler?

18. Approximately how long does it take to build a SWIG extension on your machine

(running SWIG and compiling the wrapper codc with the C /C + + compiler)?

• 0 - 30 seconds, 30 - 60 seconds, 1 - 2 minutes, 2 - 5 minutes, 5 - 1 0 minutes, More

than 10 minutes

C.3 Evaluation
These questions ask you to evaluate various aspects of SWIG and statements about

its use. Score each question on a scale of 1-5 with (1 — Disagree) and (5 — Agree).

19. SWIG is easy to install.

20. It was easy to build your first SWIG example.

21. In practice, SWIG is easy to use.

22. The scripting interfaces created by SWIG are easy to use.

23. How would you rate the quality and accuracy of the SWIG documentation?

24. (Question withdrawn).

25. SWIG geuerated modules can be quickly compiled.

26. SWIG requires no modifications to the underlying C /C + + code.

27. Parsing ANSI C /C + + declarations makes SWIG easier to use (as opposed to using

a special interface definition language).

28. SWIG allows you to build scripting interfaces without having to know all of the gory

underlying details.

29. The documentation files created by SWIG are useful.

30. Typemaps are an effective customization mechanism.

31. SW IG/Scripting has had a positive impact on your programming projects.

32. Using SWIG is fun.

C.4 Future Features
33. Which one of the following features would you most like l,o see? (check only one)

• Support for Fortran, Better C /C + + parsing, Support for overloaded functions,

Optimized output. An extension mechanism, Support for Java, More library files,

Better support for arrays

34. If you use C+ + , do you use any of the following features

• Templates, Namespaces, Exceptions, Operator overloading, Standard template li

brary (STL), Smart pointers, Expression templates, Other (please specify)

C.5 User Profile
35. How long have you been using SWIG?

• 0-6 months, 6-12 months, 12-18 months, 18-24 months, > 24 months

36. How long have you been programming?

• 0-5 years, 5-10 years, 10-15 years, 15-20 years, > 20 years

37. How would you characterize your work environment?

• Commercial software development, Academic, Government, Industrial Research and

Development, Self employed

38. How do you or your organization use SWIG?

• Personal use, In-house application development, Software testing and debugging,

Research and development projects, Rapid prototyping, Commercial software de

velopment

39. How did you hear about SWIG?

• Prom an article, At a conference, USENET. From a search engine, From a colleague,

From Dave

40. Do you subscribe to the SWIG mailing list?

41. W hat other software packages, libraries, and tools have you used?

• Java, CORBA, COM, ILU, Visual Basic, Other scripting tools, Purify, Make, Revi

sion control, Configuration tools, MATLAB, Mathematica, etc., Database packages,

MPI, Threads, OpenGL

42. Did you use any scripting languages before using SWIG?

43. Do you work on scientific applications?

44. Have you ever written a graphical user interface?

45. Have you ever written a network application? (sockets, RPC, CGI scripts, etc...)

46. Have you ever been a system administrator?

47. Do you consider yourself to be a professional software engineer (i.e. your primary job

is software development).

48. Do you have a degree in computer sciencc?

C.6 Comments
49. W hat do you like about SWIG?

00. W hat limitations have you encountered?

51. Can I quote you?

52. How would you improve SWIG?

53. W hat kiuds of applications are you developing with SWIG?

54. Do you have any comments about this survey?

A PPEN D IX D

SOFTW ARE AVAILABILITY

SWIG is freely available and can be downloaded at

f t p . c s .U tah . edu/pub/beazley/SW IG .

SWfG can also be found on a variety of software distributions including FreeBSD and

certain Linux distributions- A SWIG weh-site is also available at V7uw.swig.org.

The following web-pages contain information about the Perl, Python, and Tel scripting

languages.

• w w w .perl.org

• www.python.org

• w w w .scrip tics.com

Information about the SPaSM molecular dynamics code described in chapter 7 is

available at b i f r o s t . l a n l . gov/MD/MD .html.

ftp://ftp.cs.Utah.edu/pub/beazley/SWIG
http://www.perl.org
http://www.python.org
http://www.scriptics.com

REFEREN CES

[1] A d l e r , R. M . Emerging standards for component software. IEEE Computer 28,
3 (Mar. 1095), 68-77.

[2] A l e x a n d e r , P . , AND G l a d d e n , L. How to create all X-window interface to
Gnuplot and Fortran programs using the T c l /T k toolkit. Computers in Physics 9,
1 (Jan. 1995), 57-64.

[3] A l l e n , M., a n d T i l d e s l e y , D. Computer Simulations of Liquids. Clarendon
Press, Oxford, 1987.

[4] B a l a y , S . , G r o p p , W . D . , M c I n n e s , L. C ., a n d S m it h , B . F. PETSc 2.0 users
manual. Tech. Rep. ANL-95/11 - Revision 2.0.22, Argonne National Laboratory,
1998.

[5] BEAZLEY, D . SW IG : An easy to use tool for integrating scripting languages with
C and C+ + . In Proceedings of the 4th Annual T cl/T k Workshop ’96, July 10 -13,
1996. Monterey, CA (Berkeley, CA. July 1996), USENIX, pp. 129-139.

[6] BEAZLEY, D . Using SWIG to control, prototype, and debug c programs with
Python. In Proceedings of the. 4th International Python Conference, June 4-6,
1996, L ivermore , CA (Reston, VA, June 1996), CNRI/PSA.

[7] BEAZLEY, D . Feeding a large-scale physics applicationto python. In Proceedings of
the 6th International Python Conference, Oct. 21-28, 1997, San Jose, CA (R.eston,
VA, Oct. 1997), CNRI/USENIX, pp. 21-28.

[8] B e a z l e y , D. SWIG and automated C /C + + scripting extensions. Dr. D obb’s
Journal, 282 (Feb. 1998), 30-36.

[9] B e a z l e y , D. SWIG users manual. Tech. Rep. UUCS-98-012. University of Utah,
1998.

[10] B e a z l e y , D., a n d L o m d a h l , P. Message-passing multi-cell molecular dynamics
on the Connection Machine 5. Parallel Computing 20 (1994), 173-195.

[11] B e a z l e y , D., a n d L o m d a h l , P. Lightweight computational steering of very
large scale molecular dynamics simulations. Tn Proceedings of Supercomputing ’96,
Nov. 17-22, 1996, Pittsburgh, PA (Los Alamitos, CA, Nov. 1996), IEEE Computer
Society. Published on CD-ROM.

[12] B e a z l e y , D., a n d L o m d a h l , P. A practical approach to portability and
performance problems on massively parallel supercomputers. In Debugging and
Performance Tuning for Parallel Computing Systems (Los Alamitos, CA, 1996),

168

[14

[13

[16

[17

[18

[19

[20

|21

[22

[23

[24

B e a z l e y , D . , a n d L o m d a h l , P . Controlling the data glut in large-scale molecular
dynamics simulations. Computers in Physics l i , 3 (June 1997), 230-238.

B e a z l e y , D., L o m d a h l , P ., J e n s e n , N., G i l e s , R ., a n d T a m a y o , P. Parallel
algorithms for short-range molecular dynamics. In Annual Reviews in Computa
tional Physics (1995), vol. 3, World Scientific, pp. 119-175.

B e a z l e y , D., L o m d a h l , P ., T a m a y o , P., a n d J e n s e n , N. A high performance
communications and memory caching scheme for molecular dynamics on the CM-5.
In Proceedings of IP P S ’9Jh Apr. 26-29, 1994, Cancun, Mexico (Los Alamitos, CA,
1994), IEEE Computer Society, pp. 800-809.

B OO CH, G . Object-Oriented Analysis and Design, 2nd ed. Ben ham in/Cummings
Publishing Company, Inc., Redwood City, CA, 1994.

B r o o k s , F. P . The Mythical Man-Month , anniversary ed. Addison-Wesley,
Reading, MA, 1995.

B r u a s e t , A. M .; a n d L a n g t a n g e n , H. P. Object-oriented design of precondi
tioned iterative methods in DifTpack. A C M Transactions on Mathematical Software-
23, 1 (Mar. 1997), 50-80.

BRY DON , D . The Method of Patches for Solving Stiff Nonlinear Differential
Equations. PhD thesis, University of Texas at Austin, 1998.

BRYSON, S. The data glut revisted. Computers in Physics 9, 5 (Sept. 1995),
525-530.

B u r n e t t , M ., H o s s l i , R ., P u l l i a m , T . , V a n V o o r s t , B . , a n d Y a n g , X .
Toward visual programming languages for steering scientific com putations. IEEE
Computational Science and Engineering 1. 4 (1994), 44-62.

C h a r , B . W . , G e d d e s , K. O ., G o n n e t , G . H ., L e o n g , B . , M o n a g a n , M . B . ,
AND WATT, S. M. Maple Library V R eferc 71.ce Manual. Springer-Verlag, New York,
1991.

Cox, B. J. Object-Oriented Programming - an Evolutionary Approach. Addison-
Wesley, Reading, MA, 1986.

C u s h i n g , J ., M a i e r , D., F e l l e r , D . , a n d D e V a n e y . M. Computational
proxies: Modeling scientific applications in object databases. In Seventh Interna
tional Working Conference on Scientific and Statistical Database Management (Los
Alamitos, CA, Sept. 1994), IEEE Computer Society, pp. 196-206.

IEEE Computer Society, pp. 337-351.

[25] C u t t i n g , D., J a n s s e n , B . , S p r e i t z e r , M ., a n d W y m o r e , F. ILU Reference
Manual. Xerox Palo Alto Research Center, Dec. 1993. Accessible at f t p : / / -
f t p .p a r e .x e ro x . c o m /p u b /i lu / i lu .h tm l.

ftp://-
ftp://ftp.pare.xerox.com/pub/ilu/ilu.html

169

[26] Dazzo, G. How to maintain large scientific programs. Computers in Physics 2. 1

Overview of the I-WAY : Wide-area visual supcrcomputing. Int. Journal of

[28] D i n g l e , A., AND H i l d e b r a n d t , T. Improving C + + performance using tempo-

[29] D u b o i s , P. Object Technology for Scientific Computing. Prentice Hall PTR, Upper

[30] D u b o i s , P ., H in s e n , K . , a n d H u g u n in , J. Numerical python. Computers in

[31] D u b o i s , P. F. Object-oriented programming creates a software, revolution. C om -

[32] D ubois, P. F. Making applications programmable. Computers in Physics 8 , 1

[33] D u b o i s , P. F. The future of scientific programming. Computers in Physics I f 2

[34] ELLIS. M. A-, AND S t r o u s t r u p , B. The Annotated C + + Reference Manual.

[35] F a n t i , T. D., AND ET. AL. Special issue on visualization iri scientific computing.

[36] FAYAD. M., AND SCHMIDT, D. C. Object-oriented application frameworks.

[37] F e r g u s o n , P ., H u m p h r e y , W ., K h a j e n o o r i , S., M a c k e , S., a n d M a t v y a ,
A. Results of applying the personal software process. IEEE Computer 30 , 5 (May

|38] F l a n a g a n , D. Java in a Nutshell: a desktop quick reference, 2nd cd. A Nutshell

[39] F l y , C. Grammar-based rapid application development (GRAD). In 5th In ter
national Python Conference, Nov. lr 5, 1997, Washington, D C (Reston, VA, Nov.

[40] F o s t e r , I., a n d K e s s e l m a n , C. Globus: A metacomputing infrastructure
toolkit. The International Journal of Supercomputer Applications and High Per-

[41] F r a n z , M. Dynamic Unking of software components. IEEE Computer 30 , 3 (Mar.

170

[42] F r i e d m a n , D. P., W a n d , M ., a n d H a y n e s , C. T. Essentials of Programming
Languages. McGraw Hill, New York, 1992.

[43] G a m m a , E., H e lm , R ., J o h n s o n , R., a n d V l i s s i d e s , J. Design Patterns.
Addison-Wesley, Reading, MA, 1995. -

[44] G e ist , II, G. A., K o h l , J . A., a n d P a p a d o p o u l o s , P . M. CUMULVS:
Providing fault tolerance, visualization, and steering of parallel applications. The
International Journal oj Supercomputer Applications and High Performance Com
puting 11, 3 (Fall 1997), 224-235.

[45] G la s s , R. Software Runaways : Lessons Learned from Massive Software Project
Failures. PT R Prentice Hall, Upper Saddle River, NJ, 1998.

[46] GOLDBERG, A., AND R o b s o n , D. SmalUalk-80 : the language and its implemen
tation. Addison-Wesley, 1983.

[47] G r im s a w , A. S . , AND WULP, W. A. The Legion vision of a wohdwide virtual
computer. Communications of the A C M J,0S 1 (Jan. 1997), 39-45.

[48] G rO PP. W ., L u sk , E., AND SkjELLLTM, A. Using MP1 : Portable Parallel
Programming with, the Message-Passing Interface. The MIT Press, Cambridge,
MA, 1996.

[49] G u, W ., VETTER, J ., AND Schw A N , K. An annotated bibliography o f interactive
program steering. A C M S IG P L A N Notices 29, 9 (Sept. 1994), 140-148.

[50] H a n e y , S. W. Is C + + fast enough for scientific computing? Computers in Physics
8, G (Nov. 1994), 690-G94.

[51] Haney , S. W. Beating the abstraction penalty in C + + using expression templates.
Computers in Physics 10, 6 (Nov. 1996), 552-557.

[52] H a n e y , S. W ., AND C r o t i n g e r , J. C + + proves useful iu writing a tokamak
systems code. Computers in Physics 6", 5 (Sept.. 1992), 450-455.

[53] H a n s e l m a n , D ., a n d L i t t l e f i e l d , B. M A T L A B Version 5 Users Guide.
Prentice Hall, Upper Saddle River, N.I, 1996.

[54] H e i d r i c h , W ., a n d S l u s a l l e k , P. Automatic generation of Tel bindings for
C and C + + libraries. In Proceedings of the T c l /T k Workshop, July 6-8, 1995,
Toronto, ON (Berkeley, CA, July 1995), USENIX, pp. 85-94.

[55] H in s e n , K. The molecular modeling toolkit: A case study of a large scientific
application in python. In Proceedings of the 6th International Python Conference,
Oct. 14-17, 1997, San Jose, CA. (Reston, VA, Oct. 1997), USEN1X/CNRI, pp. 29
35.

[56] H ipp, R. T cl/T k Tools. O'Reilly & Associates, Sebastopol, CA, 1997, ch. 14.
pp. 511-534.

[57] H o l i a n , B., H a m m e r b e r g , J ., a n d L o m d a h l , P. The birth of dislocations in

171

shock waves and high-speed friction. Journal of Computer-Aided Materials Design
(1998). To appear.

[58] H o l i a n , B., a n d L om dah l, P. Plasticity induced by shock waves in nonequi
librium molecular-dynamics simulations. Tech. Rep. LA-UR. 98-702, Los Alamos
National Laboratory, 1998. Ib appear in Science.

[59] J a b l o n o w s k i . D . , B r u n e r , J . , B l i s s , B . , a n d H a b e r , R. VASE: The visu
alization aud application steering environment. In Proceedings of Supercomputing
‘93, Nov. 15-19. 1993. Portland. OR (1993), IEEE Computer Society Press, pp. 5G0
- 569.

[60] JA NSSEN, B., AND SPRETTZER, M. ILU : Inter-language unification via object
modules. In Proceedings of OOPSLA 94 Workshop on Multi-Language Object
Models (1994). ACM.

[61] K e r n i g h a n , B. W ., a n d RttCHIE, D. M. The C Programming Language, 2nd ed.
Prentice-Hall, Englewood Cliffs, NJ, 1988.

[62] LEVINE, J ., M a s o n , T ., AND B r o w n , D. Le:r. and yacc. O ’Reilly and Associates,
Sebastopol, CA, 1992.

[63] LrBES, D. Exploring Expect. O’Reilly and Associates, Sebastopol, CA, 1995.

[64] L o m d a h l , P., T a m a y o , P., J e n s e n , N., a n d B e a z l e y , D. 50 gflops molecular
dynamics on the CM-5. In Proceedings of Supercomputing 93, Nov. 15-19, 1993,
Portland, OR (Los Alamitos. CA, 1993), IEEE Computer Society, pp. 520 -527.

[65] LORD, T. An anatomy of guile: The interface to Tcl/Tk. In Proceedings of the T e l /
Tk Workshop, July 6-8, 1995, Toronto, ON (Berkeley. CA, July 1995), USENIX
Association, pp. 95-114.

[66] LUTZ, M. Programming Python. O'Reilly and Associates, Sebastopol, CA, 1996.

[67] M a r t i n , K. Automated wrapping of a C + + class library into Tel. In 4th Annual
T cl/T k Workshop ’96, July 10-13, 1996. Monterey, CA (Berkeley, CA, July 1996),
USENIX, pp. 141-148.

[68] T h e M ath W o r k s , In c . M A T L A B : External Interface Guide, 1993.

[69] M o s e r , S., AND N i e r s t r a s z , 0 . The effect of object-oriented frameworks on
developer productivity. IEEE Computer (Sept. 1996), 45-51.

[70] M o w b r a y , T . , AND M a l v e a u , R. CORBA Design Patterns. John Wiley & Sons,
Inc., New York, 1997.

[71] M u n r o , D. H. Using the Yorick interpreted language. Computers in Physics 9, 6
(Nov. 1995), 609-615.

[72] M u r r a y , J. D ., AND v a n R y p e r , W . En.cyclope.dia of Graphics File Formats.
O’Reilly &; Associates, Inc., Sebastopol, CA, 1994.

172

[73] M y e r s , C. The dynamics of Localized coherent, structures and the role of adaptive
software in multiscale modeling. In Proceedings of the. IMA Workshop on Structured
Adaptive Mesh Refinement Grid Methods (1997), Springer-Veriag. In press.

[74] O b j e c t M a n a g e m e n t G r o u p . The Common Object Request Broker: Architec
ture and specification. Accessiblc a t ftp://om g.org/pub/CORBA , Dec. 1993.

[75] O p e n G L A r c h i t e c t u r e R e v i e w B o a r d . OpenGL Reference Manual: The
Official Reference Document, for OpenGL, Release 1. Addison-Wesley, Reading,
M A, 1993.

[76] OUSTERHOUT, .J. Tr.l and the Tk Toolkit. Addison-Wesley, Reading, MA, 1994.

[77] OUSTERHOUT, J. Scripting: Higher level programming for the 21st, century. IEEE
Computer SI, 3 (Mar. 1998), 23-30.

[78] P a n c a k e , c . , a n d C o o k , C . What users need in parallel tool support : Survey
results and analysis. In Proc. Scalable Hinh Performance Compuiinq Conference
(1994), pp. 40-47.

[79] P a r k e r , S., B e a z l e y , D., a n d J o h n s o n , C. Computational steering software
systems and strategies. IEEE Computational Science and Engineering 4, 4 (1997).
50-59.

[80] P a r k e r , S., W e i n s t e i n , D.. a n d J o h n s o n , C. The SCIRun computational
steering software system. In Modern Software Tools m Scientific Computing,
E. Arge, A. Bruaset, and H. Langtangen, Eds. Birkhauser Press, 1997, pp. 1-44.

[81] Q u i n l a n , D. A + + /P + + user manual. Tech. Rep. LA-UR 95-3273, Los Alamos
National Laboratory, 1995.

[82] R e e d , B . View from X-DO-the challenge of ASCI. X windows 5, 4 (Winter 1996),
3. X-division newsletter at Los Alamos National Laboratory.

[83] R e s e a r c h S y s t e m s . I n c . Using IDL, Version 5.0 , 1997.

[84] R e y n d e r s , .)., H i n k e r , P . . C u m m in g s , J . , A t l a s , S . , B a n e r j e e , S . ,
H u m p h r e y , W ., K a r m e s in . S . , K e a h e y , K., S r i k a n t , M., a n d T h o l b u r n ,
M. POOMA. In Parallel Programming Using C + + , G. Wilson and P. Lu, Eds.,
Scientific and Engineering Computation Series. MIT Press, Cambridge, MA, 1996,
pp. 547-588.

[85] R i c e , J. Future scientific software systems. IEEE Computational Science and
Engineering (Apr. 1997), 44-48.

[86] R o b i s o n , A. D. C + + gets faster for scientific computing. Computers in Physics
10, 5 (Sept. 1996), 458 462.

[87] R o g e r s o n . D. Inside COM : M icrosoft’s Component Object Model. Microsoft
Press, Redmond, WA, 1997.

[88] R o m e r , T. II., L e e , D., V o e l k e r , G. M., W o l m a n , A., W o n g , W . A.,

ftp://omg.org/pub/CORBA

173

B a e r , J . -L . , B e r s h a d , B . N., a n d L e v y , H. M . The structure and performance
of interpreters. In Seventh International Conference on Architectural Support for
Programming Languages and Operating Systems (Cambridge, MA, Oct. 1D9G);
ACM Press, pp. 150-159.

[89] S c h r o e d e r , W . , MARTIN, K .t AND L o r e n s e n , B . The Visualization Toolkit.
Prentice Hall PTR, Upper Saddle River. NJ, 1996.

[90] SHAW, M., and GARLAN, D. Software Architecture. Perspectives on an Emerging
Discipline. Prentice Hall, Upper Saddle River, NJ, 1996.

[91] S r i n i v a s a n , S . Advanced Perl Programming. O’Reilly and Associates, Sebastopol,
CA, 1997.

[92] S t e v e n s , R . , W o o d w a r d , P . , D e F a n t i , T . , a n d C a t l e t t , C. From the
I-WAY to the national technology grid. Communications of the A C M 40, 11 (Nov.
1997), 51-60.

[93] STEVENS, W. R. UNIX Network Programming. PTR Prentice Hall, Englewood
Cliffs, NJ, 1990.

[94] SU SSM AN , G. J. LISP, Programming and Implementation. Cambridge University
Press. London, 1982.

[95] VELDIIUIZEN, T. Expression templates. C + + Report 7, 5 (June 1995), 26-31.

[96] V e l d h u i z e n , T. Scientific computing: C + + versus Fortran: C + + has more than
caught up. Dr. D obb’s Journal of Software Tools 22, 11 (Nov. 1997), 34, 36-38, 91.

[97] V e t t e r , J . , E i s e n h a u e r , G., Gu , W ., K i n d l e r , T . , S c i i w a n , K ., and
S i lv a , D . O pportunities and tools for highly interactive distributed and parallel
com puting. In Proceedings of the Workshop On Debugging and 'Tuning fo r Parallel
Computing System s (Oct. 1994), pp. 139-142.

[98] V e t t e r , J ., AND S c h w a n , K. Progress: A toolkit for interactive program
steering. In Proceedings of the 24th Annual Conference of International Conference
on Parallel Processing (1995), pp. 139 - 142.

[99] V e t t e r , J ., AND S c h w a n , K. Models for computational steering. In Proceedings
of the Third International Conference on Configurable Distributed System s (1996).

[100] V e t t e r , J ., a n d S c h w a n , K. High performance computational steering of
physical simulations. In Proceedings of the 11th International Parallel Processing
Symposium, Apr. 1-5, 1997. Geneva, Switzerland (Los Alamitos, CA, Apr. 1997),
IEEE Computer Society.

[101] W a l l , L., C h r i s t i a n s e n , T ., a n d S c h w a r t z , R. Programming Perl , 2nd ed.
O ’Reilly and Associates, Sebastopol, CA, 1996.

[102] W a r r e n , M . , G e r m a n n , T ., L o m d a h l , P., B e a z l e y , D., a n d S a l m o n , J.
Avalon: An Alpha/Linux cluster achieves 10 gflops for Si50k. In Proceedings of

Supercomputing 98 (Los Alamitos, CA, 1998), IEEE Computer Society. To appear.

[103] W a r r e n , M., S a l m o n , J ., B e c k e r , D., G o d a , M., S t e r l i n g , T . ; a n d
W lNCKELMANS, G . Pentium Pro inside: I. a treecode at 430 gigaflops on ASCI
red, II. price/performance of $50/rnflop on Loki and Hyglac. In Proceedings of
Supercomputing 97, Nov. 15-21, 1997 , San Jose. CA (Los Alamitos, CA, 1997),
IEEE Computer Society.

[J04] W A T T E R S , A., VAN ROSSL’M, G., a n d A h l s t r o m , . I . e . Internet Programming
with Python. MT Books, New York, 1996.

[105] W e l c h , B . Practical Programming in Tel and Tk,, 2nd ed. Prentice Hall PTR,
Upper Saddle River, N.l, 1997.

[106] W e t h e r a l l , D . , a n d L i n d b l a d , C. J. Extending Tel for dynamic object-
oriented programming. In Proceedings of the T c l /T k Workshop, July 6 -8 , 1995,
Toronto, ON (Berkeley, CA, July 1995), USENIX, pp. 173-182.

[107] W i n f i e l d , A. J. A virtual laboratory notebook for simulation models. In Pacific
Symposium on Biocomputing ’98 (Jan. 1998), R. B. Altman, D. K. Keith, and
L. Hunter, Eds., vol. 3, World Scientific Pub Co., pp. 177-188. PSB’98 electronic
proceedings aval liable at http://w w w .cgl.ucsf.edu/psb/psb98/.

[108] WOLFRAM, S. Mathematica: A System, for Doing Mathematics By Computer ,
2nd ed. Addison-Wesley. Reading, MA, 1991.

[109] Y o u r d o n , E. Decline and Fall of the American Programmer. PT R Prentice Hall,
Englewood Cliffs, NJ, 1993.

[110] Z h o u , S., B e a z l e y , D., a n d L o m d a h l , P . Large-scale molecular dynamics
simulations of three-dimensional fracture. Physical Review Letters 78, 3 (1997),
479-482.

[111] Z nou, S., P r e s t o n , D., L o m d a h l , P . , a n d B e a z l e y , D. Large-scale molecular
dynamics simulations of dislocation intersection in copper. Science 279 (Mar. 1998),
1525-1527.

http://www.cgl.ucsf.edu/psb/psb98/

