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ABSTRACT

In  recent years, there  has been considerable in terest in the use o f scrip tin g  languages 

as a m echanism  for controlling and developing scientific software. S crip ting  languages 

allow  scientific app lica tions to  be encapsu lated  in an  in terp re ted  environm ent sim ilar to 

th a t  found in com m ercial scientific packages such as M A TLA B, M athem atica , and  IDL. 

T h is  im proves the usability  o f scientific softw are by providing a pow erful m echanism  for 

specifying and  controlling  com plex problem s as well as giving users a n  in teractive and  

exp lo ra to ry  problem  solving environm ent. S crip ting  languages also provide a  fram ew ork 

for b u ild in g  and  in teg ra ting  softw are com ponents th a t  allows tools be used in a  m ore 

efficient m anner. T h is stream lines the problem  solving process and enables sc ien tists to 

b e  m ore productive.

O ne of the  most, pow erful features o f m odern  scrip tin g  languages is their ab ility  to  be 

ex tended  w ith  code w ritten  in C, C +  +  , or F o rtran . T h is allows sc ien tists to  in teg ra te  

ex isting  scientific app lica tions into a scrip tin g  language environm ent. U nfo rtunate ly , th is 

in teg ra tio n  is no t easily accom plished due  to the  com plexity  of com bining scrip tin g  lan 

guages w ith  com piled code. To sim plify the  use of scrip tin g  languages, a  com piler, SW IG  

(Sim plified W rapper and  Interface G enerato r), has been developed. SW IG  au to m ates  

th e  co n stru c tio n  o f scrip ting  language extension m odules and  allows existing p rogram s 

w ritten  in C or C + +  1.0 be easily transform ed into scrip tab le  app lica tions. T h is , in tu rn , 

im proves th e  usability  and  o rgan ization  of those program s.

T h e  design an d  im plem entation  of SW IG are described  as well as s tra teg ies  for bu ild ing  

sc rip tab le  scientific applications. A detailed  case s tudy  is p resen ted  in which SW IG  has 

been  used to  transfo rm  a high perform ance m olecular dynam ics code a t Los Alam os 

N atio n al L ab o ra to ry  into a highly flexible scrip tab lc  app lica tion . T h is tran sfo rm atio n  

revolutionized the use of th is  app lica tion  and  allowed scien tists to perfo rm  large-scale 

m ate ria ls  sim ulations on an  day-to-day  basis. In add ition , a user survey is presen ted  in 

w hich SW IG  is shown to g reatly  sim plify the creation o f sc rip tab le  app lica tions, im prove 

p ro d u c tiv ity , an d  enhance the  usability  of scicntific program s.



paren ts.
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CH APTER 1 

INTRO DUCTIO N

S crip ting  languages such as Perl. P y th o n , and  Tel are becom ing an increasingly 

p o p u la r  too l for th e  developm ent and use of m odern software. In  fact, Jo h n  O u ste rh o u t, 

crea to r Tel. writes:

For th e  p as t 15 years, a  fundam ental change has been occurring  in  the way 
peop le  w rite com pu ter program s. T h e  change is a  tran sitio n  from system  
p rogram m ing  languages such as C or C + +  to scrip tin g  languages such as Perl 
or Tel. A lthough m any people are p artic ip a tin g  in the change, Few realize th a t  
the  change is occurring  and  ever fewer know why it is h appen ing  [77. p. 23].

A lthough  scrip tin g  languages have been used in a  variety of com pu ting  app lica tions, 

th is  d isserta tio n  p rim arily  focuses on the use of scrip tin g  languages w ith  scientific soft

w are. A tool, SW IG , has been developed to  sim plify the in teg ra tion  o f sc rip tin g  languages 

w ith  ex isting  softw are w ritten  in C and  C + + .  F urtherm ore , the  use of SW IG and  scrip tin g  

languages are shown to have a trem endous im pact on the developm ent, o rgan ization , an d  

use o f scientific software.

T rad itionally , scientific co m pu ting  has been ignored by m ost of the  co m p u ter science 

and  softw are engineering com m unity. Likewise, co m p u ta tio n al scien tists often  give little  

a tte n tio n  to m odern  softw are practice. T h is d isserta tio n  illu s tra te s  th e  p ractical ap p li

ca tion  and  im pact of m any m odern  softw are construc tion  techniques including  th e  use 

of scrip tin g  languages, softw are com ponents, design p a tte rn s , softw are re-engineering, 

and  in terface bu ild ing  tools on scientific program s. W hile the em phasis is on scientific 

app lica tions, m any of the  techniques and resu lts  presented  are applicab le to  o th er areas 

of softw are developm ent.

1.1 The Problem s Facing Com putational 
Scientists

C o m p u ta tio n a l scien tists have recently w itnessed an unpreceden ted  change in the 

environm ent in w hich scientific sim ulations are  perform ed. T h is  changc has been fueled by



a  num b er of developm ents including huge increases in sim ulation  sizes due  to increased 

com pu ting  power, a sh ift in the types of scientific sim ulations being perform ed, and  a  

varie ty  o f new softw are developm ent techniques such as ob ject-o rien ted  p rogram m ing 

and  com ponen t fram eworks.

U nfortunately , these developm ents have g reatly  increased the com plexity  o f developing 

and  perfo rm ing  scientific com putations. T h is  com plexity  m anifests itself in a num ber of 

ways. For exam ple, th e  fact th a t  a  scientific p rogram  might, run  on w orksta tions, shared  

m em ory m ultiprocessors, d is trib u ted  m em ory parallel com puters, and  c lusters g reatly  

com plicates softw are developm ent and  has led som e researchers to call for b e tte r  language, 

softw are developm ent, debugging, and too l su p p o rt [78]. Large-scale sim ula tions have 

resu lted  in large am onn ts o f d a ta  th a t overw helm  existing  hardw are  and  so ftw are -a  

problem  often  referred  to  as the “d a ta  g lu t" [20]. T h e  increased in terest in com plex 

u n s tru c tu re d  three-d im ensional sim ulations has created  a need for new d a ta  analysis and  

v isualization  tools. W hen com bined w ith  the data^glu t, researchers often talk  ab o u t 

‘V isual su p erco m p u tin g ” and  the construc tion  of highly in teractive d a ta  analysis system s 

[80, 35], Even though  each of these problem s is unique, they  are all sym ptom s of the  

increasingly  com plex n a tu re  of scientific com puting  and the breakdow n of trad itio n a l 

approaches.

A lthough th ere  are m any facets to the com plexity puzzle, one of the  biggest problem s 

facing co m p u ta tio n a l scien tists is the process by which scientific softw are is developed, 

assem bled, an d  controlled. Not only is the developm ent of new softw are m ore com plicated , 

b u t sc ien tists m ust work w ith  a  wide variety  of existing packages, lib raries, and  tools. 

T hese  com ponen ts are often  w ritten  in different languages, use a  variety of p rogram m ing  

sty les, and  m ake different assum ptions ab o u t d a ta  layout, file form ats, and  user interfaces. 

As a  resu lt, m any co m p u ta tio n al scien tists find them selves spend ing  a  large am o u n t of 

tim e  fighting w ith a "w itches b rew ” of different program s, tools, and  packages.

To address these problem s, there has been considerable in terest in im proving the 

developm ent, s tru c tu re , and usability  of scientific program s. T h e  use of advanced softw are 

developm ent techniques such as ob ject-o rien ted  program m ing is becom ing increasingly  

com m on in scientific p ro jec ts  [31, 52, 86j. To provide b e tte r  in teg ra tion  betw een tools, 

developers have been  working on the creation  of in tegra ted  problem  solving env ironm ents 

an d  com ponen t fram ew orks [80, 84]. To im prove usability, a nu m b er of efforts have 

focused on user interfaces and  the  way in which scientific p rogram s are driven  [80, 49], If



a  sensib le so lution to  these problem s can be devised, il will g reatly  s tream line  th e  problem  

solving process as well as the way in which scientific p rogram s are developed.

1.2 Technical and Cultural Challenges
A lthough  there  are m any benefits to bu ild ing  b e tte r  scientific software, so lu tions need 

to  overcom e a  num ber of cu ltu ra l and technical obstacles. Scientific com puting  is largely 

p rac ticed  by people tra ined  in disciplines o ther th an  com puter science. In  add ition , they  

generally  pay little  a tten tio n  to  softw are engineering and  design- As a resu lt, tools and  

techniques designed for large softw are engineering p ro jec ts  have largely been ignored by 

th e  scientific com m unity. To be useful to  scien tists, so lutions need to be easy to  use an d  

well ad a p te d  to the scientific com puting  cu lture . Furtherm ore, scien tists are  unlikely to 

ab an d o n  years of previous work or rad ically  change th e ir program m ing m ethodology in 

favor of unproven  softw are technology. Therefore, tools m ust not only be sim ple to  use, 

b u t they  m ast work w ith  a diverse range of softw are th a t is often id iosyncratic , difficult 

to use, and  poorly  designed.

1.3 The Need for Evolutionary Improvement
W hen faced w ith  th e  p rospect of im proving scientific softw are, there  is a  tendency  

for softw are engineers to abandon  ex isting  scientific softw are and  developm ent techniques 

in favor of seem ingly revolu tionary  im provem ents or new softw are technology. U nfor

tu n ate ly , th is  practice has th e  danger of producing  a second-system  effect in  which a  

softw are environm ent is created  w ith  the goal of elim inating  every possible shortcom ing  

found in ex isting  system s [17]. U nfortunately , users are often fru s tra ted  to  find th a t  such 

efforts re su lt in system s th a t are too com plicated  and  general purpose  to effectively solve 

any problem .

A lthough  im proving the usability  and  s tru c tu re  of scientific program s is beneficial, it 

is im p o rta n t for softw are developers to realize th a t it is rarely necessary to throw  existing 

softw are away and  s ta r t  over. In fact, m any ex isting  system s can  be g rea tly  im proved 

by m aking  a  series of sm all m odifications. Such an approach  is a ttra c tiv e  to  scien tists 

since they  often  develop a fam iliarity  w ith  their softw are and  are re lu c tan t to  abandon  

prev ious work. T herefore, tools designed to  im prove scientific softw are are  m ore likely to 

succeed if  they  em brace ex isting  softw are and allow developers to  m ake increm ental an d  

evo lu tionary  im provem ents.



1.4 Scripting Languages
S crip tin g  languages are  a powerful tool for bu ild ing  b e tte r  scientific softw are because 

they  provide sc ien tists w ith  an  in terp re ted  environm ent th a t can be used to  specify 

problem s, contro l com plex app lica tions, and solve problem s in an  exp lo ra to ry  m anner. In  

ad d itio n , sc rip tin g  languages provide a fram ework for bu ild ing  and assem bling softw are 

com ponen ts. A com ponent-based  approach  g reatly  im proves the  o rgan ization  of scientific 

p rogram s and  allows different system s to be in tegrated . Such in teg ra tion  allows tools 

to work together m ore efficiently and  stream lines the problem -solving process. F inally, 

sc rip tin g  languages can in te rac t w ith  code w ritten  in com piled languages such as C, C + + ,  

an d  F ortran . T h is allows existing applica tions, as well as perform ance critica l o pera tions, 

to be in co rp o ra ted  as extensions to a  scrip ting  environm ent. T h is, in tu rn , provides an 

evo lu tionary  p a th  for im proving the  o rgan ization  and  use of ex isting  softw are as described 

in the  previous section.

T h e  benefits of scrip tin g  languages have even led som e researchers to  m ake bold  claim s 

a b o u t the  fu ture. P au l D ubois w rites,

M uch o f scientific program m ing is exp lora to ry  in  n a tu re , and  for th a t  so rt of 
p rog ram m in g  the, use of com piled languages will cease. In te rp re te rs  will sim ply 
be fast enough for m ost such calculations. M ore co m pu ta tionally  intensive 
p rog ram s will be  w ritten  as extensions of in te rp re ted  environm ents [33, p. 171].

A lthough  scrip tin g  languages have much to offer com pu ta tional scien tists, it is unlikely 

th a t  sc ien tis ts  will abandon  the  use of com piled code due to  the  com p u ta tio n ally  intensive 

n a tu re  of scientific app lica tions and th e  relatively slow perform ance of in te rp re te rs  (which 

is som etim es m ore th a n  th ree  orders of m agn itude slower th a n  com piled C or C + + ) .  

T herefore, the  in tegra tion  o f scrip tin g  environm ents w ith  ex tensions w ritten  in com piled 

languages such as C, C + + ,  and F o rtran  will be critica l if sc rip ting  languages are to 

succecd in th e  co m p u ta tio n a l science com m unity.

U nfortunately , the  incorporation  of com piled code into a scrip tin g  env ironm ent is a  

difficult endeavor. T h is  difficulty arises from  the  fact th a t  scrip tin g  languages p rovide no 

au to m a ted  m echanism  for accessing com piled code. As a re su lt, sc ien tists are forccd to  

w rite  w rap p er codc th a t  ac ts as a glue-layer betw een their app lica tion  and the  scrip tin g  

language in te rp re ter. C reating  th is  w rap p er code is com plicated , tedious, and  prone to 

erro r. T herefore, scrip tin g  languages cu rren tly  require  too  much tim e and  effort to  be  

used w ith  most, scientific com pu ting  projects.



If the process o f in teg ra ting  scrip tin g  languages and  com piled code can  be sim plified, 

co m p u ta tio n a l scien tists will be able to effectively utilize scrip tin g  in a  wide range of 

app lica tions. Such sim plification  has even been discussed in the  lite ra tu re . Paul D ubois 

also w rites,

T h e  specification o f in fo rm ation  in order to ru n  a significant physics calcu lation  
is a  com plex task; th e  use of scrip tin g  languages for m aking such specifications 
will becom e universal. We shall have good tools th a t  au tom atically  connect a 
sc rip tin g  language to  com piled m odules [33, p. 171].

A lthough  a num ber of ex isting  tools can be used to  c rea te  scrip tin g  language ex ten 

sions, these tools are specia l purpose, lim ited in their capabilities, and  som ew hat difficult 

to  use. As a  re su lt, these tools have rem ained of lim ited use to  the co m p u ta tio n a l science 

com m unity.

1.5 Research Goals
T h e  goal of th e  research  is to develop a general purpose  scrip tin g  language ex tension  

b u ild in g  tool an d  to  dem o n stra te  the im pact of such a tool on the  developm ent, o rganiza

tion , and  use o f scientific software. In p a rticu la r, the  research will show how such a  tool 

m akes it easier for scien tists to use scrip ting  languages and  how the  use of a  scrip tin g  

env ironm en t fundam en tally  im proves th e  way in which scientific softw are can  be used to 

solve scientific problem s.

1 .5 .1  M a k i n g  S c r i p t i n g  L a n g u a g e s  S im p l e  t o  U s e

T h e  research will show how an au to m ated  extension build ing  tool can sim plify th e  way 

in w hich scien tists cu rren tly  u tilize scrip ting  languages. F irs t, such a  too l would allow 

sc ien tis ts  to easily re tro fit ex isting  app lica tions w ith  a  scrip tin g  language interface. T h is  

would im prove the  usability  of those app lications and  allow them  to be used in a m uch 

m ore flexible m anner th a n  previously possible. Second, by au to m atin g  the c rea tion  of 

sc rip tin g  interfaces, scrip tab le  app lica tions would be largely insensitive to changes in the  

underly ing  im p lem en ta tio n -m ak in g  such app lica tions m ore ad ap tab le  to change. F inally, 

by a u to m a tin g  th e  process of ex tension  build ing , sc ien tists will b e  ab le  to  utilize sc rip tin g  

languages in situ a tio n s w here they m ight o therw ise n o t b e  considered.



1 .5 .2  S im p l i f y i n g  S o f t w a r e  D e v e l o p m e n t

S crip ting  languages provide a highly flexible environm ent for contro lling  app lica tions 

as well as in teg ra ting  softw are com ponents. If  the  construc tion  of scrip tin g  in terfaces can 

be sufficiently sim plified; it will possible for sc ien tists to easily inco rporate  softw are into 

a  sc rip tin g  environm ent. T h is, in tu rn , can have a d ram a tic  im pact on the  continued  

developm ent and  o rgan ization  of th a t  software. In p a rticu la r, the research  will show how 

sc rip tin g  languages lead to g rea ter flexibility, b e tte r  reliability, an d  im proved m odularity . 

F u rth erm o re , it will be shown th a t such an  approach  allows different softw are system s 

to  be packaged as collections of com ponents and  com bined w ith  o ther system s. T h is  

in teg ra tio n  allows different p rogram s to work together m ore efficiently th an  previously  

possible.

1 .5 .3  I n c r e a s i n g  t h e  U s a b i l i t y  o f  S c i e n t i f i c  P r o g r a m s

F inally , the  p rim ary  purpose of using scrip ting  languages is to  im prove the usabilit}r 

of scientific program s. S crip ting  languages are p articu la rly  ap p ro p ria te  for scientific 

ap p lica tio n s because they  provide a  flexible in te rp re ted  environm ent th a t  can  be used to 

specify com plex problem s, ru n  sim ulations, and  in te rac t w ith  p rogram s in an  exp lo ra to ry  

m an n er. C urren tly , these qualities are  usually only found in  large com m ercial system s 

such as M A TLA B, M ath em a tica : M aple, and  IDL [53, 108, 22, 83]. However, the  research 

will show th a t  the  use of extension build ing tools and  scrip tin g  languages m akes it easy 

for scien tists to construc t their own app lica tions of com parab le power and  flexibility.

1.6 M ethodology
A general purpose scrip tin g  language ex tension  tool will be developed and freely 

d is tr ib u te d  to the  softw are developm ent com m unity. T h is  purpose of th is  tool will be 

to  au to m atica lly  co n stru c t scrip tin g  language interfaces to  ex isting  p rogram s w ritten  in 

C and  C + + .  A lthough  a  large num ber o f scientific program s arc cu rren tly  im plem ented  

in F o rtran , th e  vise of F o rtran  will not be considered. F irst, an  increasing  num ber of 

scientific p rogram s are now being  w ritten  in C or C + + . Second, scrip tin g  languages 

requ ire  com piled ex tensions to be accessed th rough  a  C interface. At, this tim e, the  C 

in terface to  F o rtran  varies by com piler and  is highly n o n stan d a rd  (m aking au to m atic  

ex tension  build ing  difficult). Finally, since scrip ting  language access to F o rtran  already  

requ ires a  C interface, th is interface can be used w ith  tools designed for C and  C + +  code.



Iii ad d itio n  to  developing an extension build ing tool, a  num ber of interface co nstruc tion  

and  design techniques for m igrating  ex isting  app lica tions to  a scrip tin g  environm ent will 

be developed. Som e o f these techniques include m ethods for d a ta  m anagem ent, error 

hand ling , type m anagem ent, and  the creation  of scrip ting  language com ponents.

To d em o n stra te  the im pact of the tool and  interface build ing  techniques, a detailed  

case s tu d y  will he conducted . T he case study  will describe the process of transfo rm ing  an  

ex isting  scientific p rogram  in to  a  scrip tab le  app lica tion  and how th a t  ap p lica tio n  im proves 

as a  resu lt o f o p era tin g  in a scrip ting  environm ent.

F inally , a  user survey will be used to  determ ine the  effectiveness of the  extension 

b u ild in g  tool w ith  o ther applications. T h e  survey will also help identify  s tren g th s  and  

w eaknesses of th is approach  as well as the  im pact on the app lica tion  build  in process.

R esu lts  will be validated  th rough  the use of the  case stu d y  and  user survey. In  

p a rticu la r, success will be based on the  following crite ria

E a s e  o f  u se . U nless an  extension bu ild ing  tool is easy to use, it is unlikely to  be of m uch 

use to the  scientific com m unity.

A p p l ic a b i l i ty  to  r e a l  s o f tw a re .  To be succcssful, an  ex tension  bu ild ing  tool m ust be 

able to  o p era te  w ith  the software developed and used by scientists.

P r o d u c t i v i ty .  Tools m ust m ake scien tists m ore p roductive  by sim plify ing the  develop

m en t of scientific softw are and stream lin ing  the  way in w hich th a t  softw are is used 

to  solve scientific p roblem s (i.e., im proving th e  “usab ility ” of scientific softw are).

P e r f o r m a n c e .  G iven th a t  m ost scientific p rogram s are co m pu tationally  intensive, so lu

tions m ust n o t in troduce large perform ance penalties.

1.7 Results
A freely available scrip tin g  tool, SW IG (Sim plified W rap p er an d  In terface G enerato r), 

has been  developed and  d is trib u ted  [8, 5], SWTG allows developers to  create  scrip tin g  

in terfaces to p rogram s w ritten  in C, C + + ,  and  O bjective-C . To sim plify  use, SW IG  

co n stru c ts  scrip tin g  interfaces d ircctly  from ANSI C /C + +  declara tions as opposed to 

using a  form al in terface defin ition  language. T hus, using only C header files, a scientist, 

can often  co n stru c t a sim ple scrip ting  in terface to  an  app lica tion  in only a m a tte r  of 

m inutes. In ad d itio n , SW IG has an  ex tensib le  design th a t  allows it to  su p p o rt m u ltip le



sc rip tin g  languages and  to be custom ized. C urren tly , SW IG  is being used by several 

th o u san d  users to  construc t ex tensions to Perl, P y th o n , Tel, and  Guile on Unix, W indow s,

In add ition , a  detailed  case s tu d y  is presented in  which SW IG  has been used to 

tran sfo rm  the  SPaSM  m olecular dynam ics code a t Los Alam os N ational L ab o ra to ry  into 

a h ighly  flexible an d  efficient sc rip tab le  app lica tion  [10]. In th e  process, th e  case s tu d y  

exam ines the  use of SW IG and  scrip ting  languages w ith  a real app lica tion  over a  3-year 

period. As a  result,, the s tu d y  provides a descrip tion  o f how an ex isting  app lica tion  can 

be in co rp o ra ted  in to  a  scrip ting  environm ent and  how th a t app lica tion  has im proved over

In th e  case study , it  will b e  shown th a t  SW IG  enabled sc ien tists to  build  a scrip ting  

in terface to  the SPaSM  code in a  relatively  sh o rt am oun t of tim e and  how the  re su ltin g  

sc rip tin g  in terface indirectly  led to  a  series o f increm ental changes resu ltin g  in im proved 

reliability , o rgan ization , and  m odularity . F urtherm ore , th e  use of SW IG  and  scrip tin g  

languages eventually  resu lted  in a  h igh-perform ance highly flexible com ponent-based  

system  capab le  of in teg ra ted  sim ulation , d a ta  analysis, and v isualization . In ad d itio n , the  

sc rip tin g  environm ent created  w ith  SW IG revolutionized th e  use of the  code and  m ade 

it possib le for scien tists to  perform  large-scale sim ulations of m ateria ls  on a  day-to-day

Finally, a  user survey consisting of 119 responses from cu rren t SW IG  users is p re

sented. T h e  survey shows th a t SW IG is being used w ith  a wide variety  of scientific and  

nonscientific app lications. F urtherm ore , survey responses ind icate  th a t SW IG  greatly  

sim plifies the creation of scrip ting  language interfaces, im proves p roductiv ity , and has a

B ased on the resu lts  of the  case stu d y  and  user survey, SW IG  is show n to have 

positive im pact on the  developm ent and  use of scientific app lications. F irst, SW IG  greatly  

sim plifies the  in teg ra tion  of scrip tin g  languages and  com piled code. T h is m akes it possible 

to  easily inco rp o ra te  ex isting  app lica tions in to  a scrip ting  environm ent as well as allowing 

sc ien tists to  use scrip tin g  languages in situ a tio n s w here they m ight o therw ise have not 

been  considered. Second, the  use of SW IG and scrip ting  languages sim plifies the devel

opm en t and  organ ization  o f scientific so ftw are-resu lting  in g reater reliability, flexibility, 

and m odularity . Finally, the  use of scrip tin g  environm ents su b stan tia lly  im proves the



E ven though  th is d isserta tio n  p rim arily  focuscs on th e  developm ent of scientific soft

ware, SW IG  is also applicab le  to  o ther areas of softw are developm ent. In p a rticu la r, the 

user survey reveals th a t  nearly 40% of SW IG users are  working on nonscientific p ro jects 

including  in d u stria l and  com m ercial softw are developm ent.

1.8 Organization
T h is  d isse rta tio n  p rim arily  describes SW IG  and  th e  process of c rea tin g  sc rip tab le  

scientific app lications. C h ap te r 2 describes som e of the softw are problem s faced by 

co m p u ta tio n a l sc ien tists and  re la ted  research on scientific softw are environm ents. C h ap te r 

3 describes scrip tin g  languages and  the m echanism s by which they  are ex tended  w ith  

com piled code. T h e  design and im plem entation  of SW IG  are described in C h ap te r 4. 

C h ap te rs  5 and  6 describe stra teg ies for m igrating  ex isting  app lica tions to a sc rip tin g  

env ironm ent as well as aspects of com ponent-based scrip tin g  app lications. C h ap te r 7 

p resen ts  a deta iled  case study  describ ing the  use of SW IG and  scrip tin g  languages w ith  

th e  SPaSM  m olecular dynam ics code a t Los A lam os N ational L aboratory . Finally, a  user 

survey is presented  in C h ap te r 8. T h is survey provides s ta tis tica l d a ta  ab o u t who is 

using SW IG as well as an ted o ta l evidence describ ing how SW IG  sim plifies the  creation  

o f sc rip tab le  applications, im proves p roduc tiv ity , and im proves th e  developm ent an d  

o rgan iza tio n  o f scientific applica tions.



CH APTER 2 

SCIENTIFIC SOFTW ARE  

2.1 The Culture of Scientific Computing
Scientific com puting  has a unique cu ltu re  th a t  is q u ite  different th an  th a t found in a  

com m ercial or in d u stria l setting . In a nonscientific se tting , the  p rim ary  goal of a  softw are 

p ro jec t is usually  th e  construc tion  of a  well-defined p ro d u c t such as a billing system , 

a  CAD system , or a  database . T here arc a  variety of softw are engineering techniques 

th a t  can be used to  design, specify, and im plem ent such pro jects. F urtherm ore , there 

a rc  varie ty  o f m etrics for m easuring  the success or fa ilu re  of these efforts. T h e  p rim ary  

goal of m ost scientific p ro jec ts, however, is not to build  a specific p ro d u c t b u t  to  gain 

u n d ers tan d in g  and  knowledge ab o u t a scientific problem  of in terest. U n d e rs tan d in g  th is 

difference is im p o rtan t if successful tools are to  be developed.

M ost scientific co m pu ting  p ro jec ts are  s ta rted  by a  sm all g roup  of sc ien tists (physicists, 

chem ists, m ath em atic ian s, etc.) who are in terested  in s tu d y in g  a p a rtic u la r  problem . 

M ore often  th a n  no t, p rogram s s ta r t  sm all and  are w ritten  to address a  p a r tic u la r  class 

of problem s. Few co m p u ta tio n al scien tists s ta r t  w ith  the  goal of w riting  a  large general 

pu rp o se  softw are package. However, program s th a t  prove to  be useful m ay evolve into 

larger system s over tim e.

W h en  creating  a scientific p rogram , scien tists arc unlikely to use m any (if any) of the 

softw are engineering m ethodologies th a t m ight be found in  a large p rog ram m ing  effort 

[109, 16, 17, 37], T h e  use of “requ irem ents” docum ents, program  analysis, C A SE tools, 

and  so fo rth  is v irtually  unheard  of. One reason for th is is th a t scientific p rogram s are 

alm ost always ex perim en tal and  unproven. M ore often th an  not, the scien tists m ay n o t 

know exactly  how to solve the problem  in advance. In  fact, th e  en tire  “design” phase  of 

a  p ro jec t m ay ju s t  be a  discussion of the scientific problem  (in itia l cond itions, num erical 

m ethods, physical m odels, etc.). As a result, it is extrem ely  difficult, if no t im possible, 

to form ally describe th e  s tru c tu re  th a t  a  scientific p rogram  will take in advance. P au l 

D ubois, w rites:



A scientific program  is usually  th e  p ro d u c t o f one or two people, who w rite  
it in itia lly  to solve a class of problem s faced by them selves and  p erh ap s a 
few friends. It is much ra re r for a  decision to  be m ade early  to w rite  a  large 
program ; ra th e r, the p rogram s th a t prove to  be useful are added  to, and  evolve 
in to , large p rogram s over tim e. Such program s have n o t been su itab le  su b jec ts  
for a  m assive analysis and  design effort. In fact, scien tists would no t d ream  of 
doing such  a th in g  even if they were to  have the skill. Usually, it is no t even 
know n if th e  approach  being taken  will ac tua lly  work. A nyth ing  rem otely  like a  
“R eq u irem en ts’* docum ent is of questionable value to the scien tist. G enerally, 
th e  au th o r has a class of problem s in  m ind  and  an a lgorithm ic idea th a t  he 
or she  believes will do the m odeling joh. T h e  en tire  R equ irem ents P h ase  
usually  involves a little  m u tte rin g  to oneself ab o u t w hat kinds of geom etry  
and  b o u n d ary  conditions to  allow for [29, p. 4].

E ven  though  trad itio n a l softw are engineering techniques arguab ly  m ight re su lt in 

“b e t te r” scientific softw are, the inherently  unp red ic tab le  n a tu re  of scicntific p roblem s 

m akes the  app lica tion  of such techniques difficult. Genevieve Dazzo w rites,

Scientific p rogram s tend  to undergo m ore revision th an  th e ir business coun
te rp a rts  because the needs o f their users change m ore d rastica lly  over a  sh o rt 
p e rio d  o f tim e. Users of scientific program s are anxious to explore new areas 
an d  ex p an d  ex isting  know ledge [‘26, p. 52].

Finally, perform ance is an  im p o rtan t p a r t of th e  scientific co m pu ting  cu ltu re  and  

o ften  one of the top p rio rities  when developing scientific app lications. Scientific problem s 

ro u tin e ly  push the lim its o f available hardw are and software. T h e  need for perform ance 

is p rim arily  m otiva ted  by the  need for scien tists to  have an ad eq u a te  tu rn -a ro u n d  tim e 

while s till p roviding useful inform ation about, a  problem . S im ulations th a t  take too long to  

com plete  are of lim ited  value because they do no t provide enough of a  sam ple size to draw  

conclusions (sim ulations often need to  be run  dozens to  h u ndreds of tim es w ith  d ifferent 

p a ram ete rs  to  be useful). Likewise, sim ulations th a t  are of insufficient size m ay not 

have enough accuracy  to  yield in teresting  results. In teresting ly  enough, faste r com puting  

hard w are  does n o t seem  to have had a  large effect on sim ulation  tim e. R a th er, scien tists 

have used increased  com pu ting  power to  im prove th e  accuracy or size o f their s im ulations. 

In  fact, som e au th o rs  have even observed th a t  sim ulation  tim es have rem ained  relatively  

co n stan t over th e  last 20 years desp ite  huge gains in com puting  perform ance [29],

T h e  perform ance focus of m ost p ro jec ts does not necessarily m ean th a t sc ien tists ignore 

o th er softw are developm ent issues. P o rtab ility  is also a concern  b u t is often not addressed  

until a  m achine is ab o u t to d isappear. M aking p rogram s easier to  use is also of in terest, 

b u t no t always a high priority. W hen these issues are considered, it is often  w ith in



th e  con tex t of perform ance. Solutions w ith  severe perform ance pena lties  will usually  be 

dism issed. However, scien tists m ight also w ant to  consider a  quote a ttr ib u te d  to  Jo h n  

O u ste rh o u t, “T h e  best perform ance im provem ent is the tran sitio n  from th e  nonw orking 

s ta te  to  th e  working s ta te ” [104, p. 447],

2.2 Scientific Software
T h e  lack of form al design and  piecem eal grow th o f scientific p rogram s p resen ts  a  

nu m b er of technical challenges to  fram ew ork and tool designers. Even th o u g h  it is 

com m on for sc ien tists to w rite software, they  ten d  to  do so by following the  “p rincip le  of 

least a c tio n .” In  o th e r words, scien tists tend  to favor techniques th a t are  conceptually  

sim ple and  require  the least am oun t of effort on their p a r t (a lthough  th is phenom enon 

does n o t ap p ear to  be isolated to co m p u ta tio n a l science). As a resu lt, m ost scientific 

system s ten d  to b e  sim ple and  m inim alistic in  natu re .

U nfortunate ly , approaches th a t  make a p rogram  easy to  w rite can com e back to  h au n t 

users and  developers. For exam ple, a  program  th a t s ta r ts  sm all and  is grown in an  ad hoc 

m an n er can  becom e a  n igh tm are to  m ain ta in . Likewise, a  p rogram  th a t  is easy to w rite  

m ight no t be easy to use due to  th e  difficulty of w riting  a user interface. T h is  section 

describes som e of the com m on problem s associated  w ith  working w ith  scientific software.

2 .2 .1  P i e c e m e a l  G r o w t h

W hen  a scientific p rogram  is first w ritten , it usually  addresses a specific scientific 

problem . For exam ple, a  program  m ight be w ritten  to perform  a  th ree-d im ensional 

m olecular dynam ics sim ulation  of an ellip tical crack in a periodic face-centered-cubic 

(fee) c ry sta l using a  L cnnard-Jones in tera tom ic p o ten tia l [3]. However, m ost p rogram s 

can  be generalised  to  look a t  o th er re la ted  cases so a scien tist m ay s ta r t  m odifying the 

code w itli new b o u n d ary  conditions, new in tera tom ic po ten tia ls , a variety of num erical 

in teg ra tio n  a lgorithm s, and  features for d a ta  m anagem ent. W hen new features are  added , 

cond itional s ta tem en ts  are often added  to  the p rogram  as follows:

i f  (b o u n d a ry  == FREE) {
Use f r e e  b o u n d ary  c o n d i t io n s  

} e l s e  i f  (b o u n d a ry  == PERIODIC) {
Use p e r io d i c  b o u n d ary  c o n d i t io n s  

}- e l s e  i f  (b o u n d a ry  == DAMPED) {
Use damped b o u n d ary  c o n d i t io n s

>



Even though  add ing  new features to sm all p rogram s is relatively sim ple, it becom es 

increasingly difficult as p rogram s grow in size. In fact., after several years of th is kind of 

developm ent, scien tists m ay find th a t  a su b s tan tia l portion  of th e ir p rogram  has becom e 

a  tang led  web of control logic, special cases, and  obscure functions. Worse still, changing 

any p a r t  of the code may have far-reaching consequences and unforeseen side effects.

2 .2 .2  U s e r  I n t e r f a c e s

Closely re la ted  to  the grow th and  developm ent of scientific softw are are th e  user 

in terface m echanism s used to control such software. T h e  m ost sim ple user in terface is none 

a t all. For sm all p rogram s, p a ram eters  can be hard-coded  into the p rogram  itself. T h is  

approach  works fine for very sim ple problem s, b u t scientific com puting  is an inheren tly  

exp lo ra to ry  activity . S cien tists w ant to  change param eters  and  see w hat happens. T h is  

becom es tedious if th e  code is recom piled a lte r  every change. An a lte rn a tiv e  approach  is 

to  m odify th e  p rogram  to  in teractively  p ro m p t th e  user for various p rogram  p aram eters . 

T h is  allows a  user to change p aram ete rs  a t ru n  tim e, b u t m any scientific p rob lem s are  

solved by ju s t  changing one or two in teresting  param ete rs  and  observ ing  th e  outcom e 

of rep ea ted  sim ulations. Since answ ering the  sam e series of questions quickly becom es 

rep e titiv e , scien tists eventually  ju s t w rite an  in p u t file con tain ing  th e  answ ers to  all of 

th e  questions an d  ru n  p rogram s as b a tch  processing jobs. Finally, scientific program s 

are som etim es contro lled  th ro u g h  a  collection of com m and line options. However, users 

quickly becom e annoyed if they  have to  specify several dozen com m and line op tions each 

tim e a  p rog ram  is rim .

A lthough  all of these user interface schemes are easy to im plem ent, they  break  down 

as p rogram s grow in size and  capabilities. As m ore features are added, th e  developm ent 

o f the user in terface and  the control of the p rogram  becom es increasing com plex. At 

som e po in t, it becom es unreasonable to explicitly  ask the user hundreds of questions 

o r to  provide a hundred  different options on the com m and line. T h e  problem  is f'uther 

com pounded  by the  desire to in tegra te  different packages and provide a  m ore in teractive 

problem  solving environm ent. For exam ple, none of the  user in terface techniques de

scribed  so far would be ap p ro p ria te  for driv ing an  in teg ra ted  and  in teractive  sim ulation , 

d a ta  analysis, and  v isualization  environm ent.

T h e  sim plicity  of ex isting  user interfaces raises the  question  of why sc ien tists d o n ’t use 

m ore soph istica ted  user in terface strateg ies. One such stra tegy , often seen in scientific



system s, is to utilize a sim ple com m and in te rp re te r sim ilar to  w h a t m ight be found ju  a  

com m ercial package such as M ATLAB or M ath em a tic s  [53, 108]. Using an in te rp re te r, a 

scientist, would contro l an  app lica tion  by w riting  a sim ple scrip t or typ ing  com m ands th a t  

the  app lica tion  would in te rp re t a t ru n  tim e. T h is  provides a g rea t deal of flexibility and 

ap p ears  rem arkab ly  sim ilar to  o th e r techniques (especially since sc ien tists are a lready  

accustom ed to  w riting  scrip ts  and  in p u t files). However, m aking scientific program s 

in te rp re t com m ands requires an  in terp re ter. W riting  a new in te rp re te r from scratch  is a. 

tim e-consum ing  and  difficult endeaver for scientists. O n the  o th e r hand , using an  ex isting  

in te rp re te r  can  be equally  difficult since a scien tist m ay no t know how to in tegra te  it into 

th e ir ex isting  p rogram s and  nse it effectively.

F inally , scien tists m ight consider the use of a graphical user interface (GUT). T h is  is 

often  a “p o p u la r” no tion until scien tists discover the  difficulty of creating  a  GUI. T he 

developm ent o f a  G U I is su b stan tia lly  m ore difficult th an  any of th e  schem es described 

so fa r-req u irin g  deta iled  knowledge o f graphical user interface libraries, event driven 

p rog ram m ing , wiclget libraries, and so forth . Furtherm ore, the im p lem en tation  of a  usable 

G U I is a non triv ia l task . One would certain ly  no t w ant to present the user w ith  a d ialogue 

box con tain ing  h u ndreds of b u tto n s  and en try  fields because th a t would not be m uch 

different th a n  ju s t asking the user a  series of questions. To fu rth e r com plicate m a tte rs  

G U I interfaces are  often highly n o n p o rtab le  and  difficult to m anage on ex p erim en ta l 

p la tfo rm s. In ex trem e cases, a  m achine m ight only su p p o rt batch-processing  jo b s an d  

have no su p p o rt for g raph ical display. Finally, p rom oters of g raph ical user interfaces 

often  assum e th a t the user w ants to  constan tly  in te rac t w ith  th e ir program s. A lthough  

in te rac tio n  is clearly  im p o rtan t, som e scientific program s can rn n  for tens to hundreds o f 

hours. T herefore a  scrip ting  and batch  processing capab ility  is alm ost alw ays necessary. 

As a  re su lt, a g raph ical user in terface is m ost useful w hen com bined w ith  a  com m and 

in te rp re te r  or o th er batch-orien ted  interface.

O verall, scien tists ten d  to  prefer user in terface schem es th a t are  sim ple to  im plem ent 

even though  m ore soph istica ted  techniques are available. Since scientific p rogram s s ta r t  

sm all, th e re  is in itia lly  little  need to  utilize a highly soph isticated  user interface. F ur

th erm o re , usability  is only a m inor concern since th e  in itia l developers of a system  tend  

to  be its p rim ary  users (also, th e  goal of m ost scientific p ro jec ts is n o t to  deliver a 

po lished  p ro d u c t). As a result, user interface problem s tend  to  “sneak u p ” on developers 

as p rogram s grow in size. In Fact, it is not unusual for scientific p rogram s to  ad o p t a



2.3 The Search for B etter Scientific 
Software

In la te r sections, the use of scrip tin g  languages and  au to m ated  ex tension  bu ild ing  

tools will be described  as a  m eans for im proving th e  usability  and  o rgan ization  o f sci

entific software. However, this is not the only approach  being pu rsued  in the  scientific 

com m unity. T h is  section briefly describes a num ber of o th er developm ent efforts. T he 

p rim ary  goal o f th is section is to call a tten tio n  to  related  work th a t is aim ed a t changing 

th e  way in which scientific softw are is developed and  used.

2 .3 .1  O b j e c t - O r i e n t e d  F r a m e w o r k s

Som e scien tists have been adop ting  th e  techniques of ob ject-o rien ted  p rogram m ing  

to  p rov ide an  app lica tion  developm ent environm ent for solving science and  engineering 

problem s. Som e efforts include PO O M A . A + + /P +  +  , P E T S c , and Diffpack [84, 81, 4, 18|. 

T h e  idea beh ind  these system s is to provide scien tists w ith  a useful collection o f ob jects 

and  an  env ironm ent in  which the  ob jects can be used to solve problem s. For exam ple, a  

system  m ight provide basic ob jects for m atrices, u n stru c tu red  meshes, vectors, com plex 

num bers, partic les, vector fields, and  so on. A num ber of opera tio n s and  m ethods such 

as basic arithm etic., linear solvers, p reconditioners, v isualization, and  erro r analysis could  

th en  be app lied  to the  ob jects  as needed. To solve a problem  w ith  one of these system s, a 

sc ien tis t assem bles an  ap p ro p ria te  collection o f ob jects and  applies a series of “in teresting" 

o p era tio n s to them .

T h is  approach  is a ttra c tiv e  for a num ber o f reasons. F irst, it provides a tigh tly  

in teg ra ted  environm ent th a t  allows objects to  in te rac t w ith  each o ther. Second, it allows 

softw are designers to h ide m uch of th e  com plexity  from users. For exam ple, on a parallel 

m achine, the parallelism  could  be b idden away in  a b s tra c t base classes and  lower levels 

o f th e  fram ework. A t the  highest level, users m ight no t even be aw are of such parallelism  

or the  technical d e ta ils  involving its im plem entation . In  add ition , th is app ro ach  can 

re su lt in  very com pact and  “sim ple” form ulations of scientific problem s. For exam ple, a 

sc ien tis t m ight be able to solve a  problem  by sim ply crea ting  a  few ob jects  and  w ritin g  a 

few m ath em atica l equations. O p era to r overloading and  o ther advanced  language featu res 

can often  hide much of the underly ing  com plexity  w hile g reatly  reducing  the  am oun t of 

code th a t  m ust be w ritten  by the user. Finally, such approaches a tte m p t to cap ita lize

num ber o f  in c reas ing ly  com p lex in terface  schemes over th e ir  life tim e .



on th e  general benefits of ob ject oriented program m ing  including m anagem ent of large 

softw are system s, controlling  complexity, code reuse, and  encapsulation .

2 .3 .2  C o m p u t a t i o n a l  S t e e r i n g

C o m p u ta tio n a l steering  is an  em erging field th a t a tte m p ts  to provide in teg ra tio n  

betw een sim ulation , d a ta  analysis, and  visualization  [49, 79], U ser in te rac tio n  is a key 

featu re because steering  system s provide scien tists w ith  a  h ighly flexible and  in terac tive  

d a ta  exp lo ra tion  and  sim ulation  environm ent. T h a t  is, they allow sc ien tists t,o in te rac t 

w ith  th e ir d a ta  in real tim e, guide sim ulations, and play o u t d ifferent scenarios.

S teering  system s are p rim arily  focused on the  way in  which a scien tis t perform s and  

in terac ts  w ith  sim ulations. M uch o f the work is focused on issues of d a ta  locality, m oving 

d a ta  betw een m achines, v isualization  techniques, and  m echanism s for p resen tin g  th e  d a ta  

to  th e  user. Som e recent steering  efforts include the S C IR un system  developed a t  U tah , 

p rogram  in s tru m en ta tio n  tools a t  G eorgia Tech. and  in teg ra tion  of v isualization  system s 

such as AVS w ith  sim ulation  codes [80, 100, 99, 98, 97, 21, 59, 44].

T h e  in teresting  aspect of steering  system s, is th a t  in  providing in teg ra ted  sim ula tion  

and  v isualization  to  the user, they also address com plex softw are co n stru c tio n  issues. In 

o rd e r to  m ake a steering  system  work, th e  different subsystem s need to be com bined 

and  controlled in  an  effective m anner. In m any cases, the com ponents are th ird -p a rty  

packages and  libraries. T herefore, developers need to worry ab o u t the  interfaces betw een 

m odules, fram ew orks for com bining and using m odules, and  th e  difficulties of using 

ex isting  software. Since these issues also arise in scrip tin g  environm ents, m any of the 

techniques u tilized  by steering  system s also apply  to  scrip tabfe applica tions.

2 .3 .3  H e t e r o g e n e o u s  C o m p u t i n g

A num ber o f researchers have been  in terested  in  th e  problem  of providing softw are and  

in fra s tru c tu re  for heterogeneous com puting. Some efforts include the  I-WAY, G lobus, the  

G rid , and  Legion [27, 40, 92, 47]. Significant portions o f these p ro jec ts  are devo ted  to 

in fra s tru c tu re  issues such as faster netw orks, high perform ance com puting  p latfo rm s, and  

high-end  v isualization  system s, b u t there  is also a fundam ental softw are p rob lem  th a t  

needs to  be addressed. In p articu la r, how are scien tists going to go ab o u t hooking all 

o f these pieces together? How will they w rite softw are to  ru n  in such a heterogeneous 

env ironm ent?  How can ex isting  system s b e  inco rpora ted  into such an  environm ent?



Like efforts in  co m p u ta tio n al steering  and  scrip tin g  environm ents, success depends upon  

finding schem es for build ing , controlling, and  using scientific softw are com ponents.

2 .3 ,4  C o m p u t a t i o n a l  P r o x i e s

T h e  in teg ra tio n  and  control of scientific softw are com ponents have also been  accom 

plished using  ob jcct-o rien ted  da tabases and  co m p u ta tio n al proxies [24], W ith  a  proxy 

system , th e  orig inal scientific app lica tions rem ain  unm odified  while a proxy system  is 

used to  provide a  generalized in terface to  users. T h e  proxy system  m anages th e  execution  

and  tran sfer of d a ta  betw een different com ponents while h iding deta ils  from the users. In  

o rder to do this, th e  proxy server knows how each p rog ram  is controlled as well as the  

d a ta  fo rm ats used for in p u t and o u tp u t.

T h e  proxy approach  is p rim arily  used to encapsu la te  a  variety  of legacy app lica tions 

in to  a  unified environm ent. I t does not change the way in which each ind iv idual app lica

tion  is s tru c tu re d  or used nor does it address th e  problem s o f moving m assive am oun ts 

o f d a ta  a round  betw een subsystem s (a lthough  it m ay hide the process from  users).

An app ro ach  sim ilar to  com pu tational proxies can som etim es be accom plished using 

scrip tin g  languages. For exam ple, E xpect is a  Tc.1-based ex tension  th a t  is often  used 

to  drive ex isting  app lica tions by m im icking th e  in p u t of users [63]. Likewise, Perl and  

P y th o n  can be  used to  drive legacy app lications from  a  scrip tin g  environm ent [101, 66].

2 .3 .5  C o m p o n e n t s  a n d  D i s t r i b u t e d  O b j e c t s

T h e  creation  and  in tegra tion  of softw are com ponents are also of g rea t in te re st to 

com m ercial and  in d u stria l softw are developm ent efforts. T h e  p rim ary  difficulty in  th is  

case is th a t  p rog ram m ing  p ro jec ts are often undertaken  by large team s of p rogram m ers 

who are working on very large and com plex system s. Since ind iv idual com ponents 

m ay be developed by different groups o f p rogram m ers, fram ew orks for in teg ra tin g  these 

com ponen ts arc of critica l im portance. Two of th e  m ost com m on com ponent arch itec tu res 

include C O IIB A  (the C om m on O bjec t R equest B roker A rch itectu re) and  M icrosoft CO M  

(C om m on O bjec t M odel) [74, 87].

C O R B A  is a  specification created  by the O b jec t M anagem ent G roup (O M G ), a con

so rtiu m  of co m p u ter com panies including Sun, HP, DEC. and IBM . CO M  is a  com peting  

com ponen t a rch itec tu re  developed by M icrosoft and  is the hasis for m ost app lica tions 

developed in the  W indow s environm ent.



W hen using COM  or C O R B A , app lica tions are b u ilt by assem bling com ponents. E ach 

com ponen t can  be  though t of as providing a  specific service such as access to a da tabase , 

perfo rm ing  co m p u ta tio n a l intensive operations, or p resen ting  the  user w ith  an  interface. 

A lthough these services may all ex ist on a single m achine, they m ay also be d is tr ib u te d  

across a  netw ork o f m achines. T hus, a d a tab ase  server could provide d a tab ase  access to  

o th er m achines on the  netw ork and  be nsed as a  com ponent in various o th e r softw are 

packages.

C om ponen t arch itectu res allow com ponents to be com pletely decoupled, w ritten  in 

d ifferent languages, or to  ex ist on different m achines. However, the  key to  using  C O R B A  

and  C O M  is th a t  th e  interfaces between com ponents are precisely defined. In terfaces 

a re  specified using an  interface definition language (IDL) such as C O R B A  IDL. T h e  

1DL specification provides a  language an d  p la tfo rm  independen t descrip tion  of all of the 

available ob jects, d a ta ty p es , and  operations su p p o rted  by a  com ponent. W ith  an  ID L 

com piler, the  in terface descrip tion  is tu rned  into client an d  server s tu b s  th a t m ust be  

w ritte n  by the developer. After a developer fills in these s tu b s, the  com ponen t cau  be 

m ade available for general use by o th er softw are clients.

Even th o u g h  C O R B A  and  COM  are being used in an  increasing num ber of com m ercial 

app lica tions, these system s are unlikely to have a  large ap p eal to  co m p u ta tio n a l scien tists 

since they  are viewed as being  too cum bersom e and  difficult to use in a  scientific se tting . 

T h e  p rim ary  benefit th a t  scien tists w ould receive from a com ponent a rch itec tu re  is a  

well-defined m echanism  for glu ing softw are com ponents together. However, given the 

n a tu re  of scientific softw are and  the cu ltu re  of scientific com puting  p ro jec ts, th is  task  

can often b e  accom plished th rough  o th er m eans such as ob ject-o rien ted  fram ew orks or 

sc rip tin g  languages.

2.4 Limitations of Other Approaches
A lthough  m any of the  approaches described  im prove scientific softw are, they also suffer 

from  a  num ber of draw backs th a t has prevented their w idespread use in the  scientific 

co m pu ting  com m unity. T h is  section briefly describes som e of these problem s.

2 .4 .1  P o o r  P e r f o r m a n c e

Scientific app lica tions routinely  push  the  lim its of the  m achines th a t  they  ru n  on. Yet. 

ob jec t-o rien ted  fram ew orks and  com ponent a rch itectu res have a  num ber o f well-known 

p erfo rm ance problem s. In  C + + ,  if ob jects  are created  th rough  inheritance, there  is a  p e r



form ance pena lty  due to  v irtu a l function calls. O p era to r overloading an d  o th er advanced 

featu res often resu lt in th e  creation  and  d estru c tio n  of large num bers of tem p o ra ry  ob jects 

[28]. T h e  creation  of tem poraries is also p rob lem atic  for very large o b jec ts  such as m illion 

elem ent arrays (especially w hen m em ory u tiliza tion  is critica l). C om ponent arch itec tu res 

such as C O R B A  suffer ad d itio n a l perform ance penalties since they are often b u ilt a round  

RPC -like m echanism s for invoking procedures and  m ethods.

A widely cited  artic le  in 1994 rep o rted  resu lts in which C + +  was as m uch as 700% 

slower th an  F o rtran  [50]. As a  result, there has been considerable in te rest in techniques 

designed for im proving C + +  perform ance. O ne highly publicized technique involves 

the  use of expression tem plates [51, 86, 95, 96]. Using expression tem plates, ru n  tim e 

perfo rm ance com parable w ith  C and F o rtran  can be achieved for ce rta in  o p era tio n s  [95]. 

However this perform ance im provem ent is achieved by expand ing  a r ith m etic  expressions 

in to  nested  tem p la te  definitions. T h is  grossly inflates com pilation  tim e and  m akes debug

ging ex trem ely  difficult since m ost debuggers do n o t fully su p p o rt tem plates. G iven the  

rap id ly  changing and  experim en tal n a tu re  of scientific app lica tions, th is is an  unaccep tab le  

so lu tion  to  m any co m p u ta tio n a l scientists.

In criticizing ob ject-o rien ted  of fram ew orks, it is im p o rtan t to  po in t ou t th a t  differences 

in design have a  large im pact on perform ance and  th a t not all fram ew orks suffer from 

perfo rm ance problem s. T h e  s ta te  of C + +  com pilers also ap p ea ls  to  be im proving  [86],

2 ,4 .2  C l o s e d  S y s t e m s

M ost fram ew orks enforce a rigid set of rules th a t  m ust be followed by softw are devel

opers. For exam ple, an  ob ject-o rien ted  fram ework typically provides an  extensive inher

itance hierarchy th a t m ust be used by developers w hen developing new code. Likewise, 

com ponen t a rch itec tu res  such as C O R B A  and  C O M  precisely define the  m echanism s by 

which softw are com ponents are construc ted  and  in terac t w ith  each other.

A lthough  th e  form ality  provided  by these approaches m ay be ap p ro p ria te  for large 

p rog ram m in g  efforts, it also resu lts in closed system s th a t com plicate the  use of existing 

software. For exam ple, if a scien tist w anted Lo inco rporate  an ex isting  ap p lica tio n  in to  

such an environm ent, th ey  would be forced to  encapsu la te  the  ap p lica tio n  inside an  

a d a p te r  class th a t  was com patib le  w ith  th e  ta rg e t fram ework [43]. D epending  on the  

n a tu re  of the original app lica tion , th is  process could be qu ite  com plicated . Closed 

system s also discourage reuse since the  com ponents of one system  are generally  not usable 

w ith in  o th er system s. For exam ple, C O M  and C O R B A  com ponents canno t be easily used



together. Likewise, C + +  system s based on im plem entation  inheritance  m ake it alm ost 

im possible for com ponents to  be ex trac ted  and  used in o th e r system s.

2 .4 .3  P r o g r a m m i n g  in  t h e  L a r g e

M any fram ew orks are designed for large-scale', p rogram m ing  efforts and  th e  develop

m ent of packages. For exam ple, a t Los A lam os N ational L aboratory , a recenL artic le  a b o u t 

th e  A SC I (A ccelerated S trateg ic  C om puting  In itia tive) p ro jec t s ta ted  “W e will b e  form ing 

code developm ent team s larger th an  any we have ever a ttem p ted  to  m anage, w ith  as m any 

as 20 to  30 s ta ff m em bers each. A nd these team s will be developing ex trem ely  com plex 

softw are th a t  m ust ru n  on th e  w orld’s largest m assively parallel co m p u te rs” [82, p. 3]. 

R a th e r  th a n  a tte m p tin g  to investigate new scientific problem s, these efforts are p rim arily  

orien ted  tow ards developing p roduc tion  softw are for solving engineering problem s. T he 

form ality  provided by fram ew orks is likely to  be a su itab le  m echanism  for m anaging  

such p ro jec ts. However, m ost com pu tational scien tists rarely  set o u t to  create  m assive 

softw are packages. As a resu lt, the form alism  and m ethodology used to m anage large 

softw are p ro jec ts  often  becomes an  obstacle in  sm all p rojects.

2 .4 .4  P o o r  A d a p t a t i o n  t o  C h a n g e

Fram ew orks tend  to  enforce a p a rticu la r design m odel on users. Scientific p rogram s, 

on the o th er hand , are usually  grow n in a piecem eal and  adhoc m anner. T h is  difference 

creates two fundam en tal problem s. F irst, a system  th a t  is too  rigid m ay be too difficult 

to  m odify and  ex tend  w ith  new features (or so difficult to u n d ers tan d  th a t  sc ien tists 

do n o t know w here to  s ta r t) .  Likewise, when changes are m ade, th ey  m ay be difficult 

to  inco rpo ra te . For exam ple, in a com ponent arch itec tu re , th e  ad d itio n  o f new featu res 

w ould require  m odifications to in terface definition files, regeneration  o f s tubs, and  so forth . 

In  a  scientific se tting  w here softw are changes rapidly, th is clearly  presents a  problem .

2 .4 .5  C o n c e p t u a l  D i f f ic u l t i e s

Finally, for a  scien tist who has only w ritten  F ortran  or C program s, ju m p in g  in to  a 

large ob jec t-o rien ted  fram ew ork can be overw helm ing. Not only m ust sc ien tists learn  

a new  language to  use these system s, they  need to learn a w hole new vocabulary  an d  

m in d se t for th ink ing  ab o u t problem s. To fu rth e r com plicate m a tte rs , general purpose 

system s such as CO RBA  and  CO M  are often b loated  w ith  features such as security, 

quality  of service, garbage collection, version control, and  fau lt tolerance. Few scien tists



have m uch in terest (or need) to use such features and are easily overw helm ed by the 

com plexity  th a t they  in troduce.

2.5 Scripting Languages and SW IG
In the  following chap ters, th e  use o f scrip ting  languages and  SW IG  will be presen ted  

as a  new approach  for build ing, m anaging, and using scientific software. T h is  approach  

is a ttra c tiv e  because it solves m any of the  p ractical softw are problem s encoun tered  by 

co m p u ta tio n a l scien tists while addressing  all of the  above lim itations. In p articu la r.

P e r f o r m a n c e .  S crip ting  languages can in te rac t w ith  code w ritten  in com piled languages. 

T h is  allows perform ance critica l operations to  be easily w ritten  in C, C +  +  , or 

F ortran .

O p e n  s y s te m s .  R a th e r th an  enforcing a rigid s tru c tu re , sc rip ting  languages m ake it easy 

to work w ith  a wide variety of software com ponents. Furtherm ore , SW IG  sim plifies 

the process o f inco rporating  ex isting  packages in to  a  scrip tin g  environm ent regardless 

o f th e ir  underly ing  im p lem en tation  or design.

P r o g r a m m i n g  in  t h e  la rg e  a n d  s m a ll .  A lthough scrip ting  languages have been  used 

in large-scale program m ing  pro jects, they enforcc very few rules and  can  be easily 

used in sm all p ro jec ts. T h is  m akes them  ap p ro p ria te  for a  wide variety  of scientific 

program s.

A d a p ta t i o n  t o  c h a n g e .  U sing ex tension  bu ild ing  tools such as SW IG , scrip tin g  lan 

guages can  easily respond  to rap id  changes in the  underly ing  im p lem en ta tio n  of 

scientific program s. F urtherm ore , scrip ting  languages can  be easily used w ith  pro

gram s th a t  are under developm ent or in an  unfinished s ta te .

C o n c e p tu a l  s im p lic i ty .  S crip ting  languages are sim ple to  learn  and use. F u rtherm ore , 

they can be added  to the softw are already being  used by scien tists. T hus, scrip ting  

is m ore of an  evo lu tionary  im provem ent ra th e r th an  an  revo lu tionary  change.

In  ad d itio n , it will be shown th a t  scrip tin g  languages and SW IG  enable scien tists 

to achieve m any of the sam e benefits associated  w ith  o th er approaches. T h is  includes 

im proved m o d u la rity  and encapsulation , system s in teg ra tion , developm ent of com ponen t 

arch itec tu res, and  in teractive exp lo ra to ry  problem  solving.



CH APTER 3 

SCRIPTING  LANGUAGES

S crip ting  languages have m uch to offer scien tists because they provide a  powerful 

m echanism  for specifying scientific p roblem s, in teg ra ting  softw are com ponents, con tro l

ling scientific system s. F urtherm ore , scien tists already  use sim ple sc rip ts  and  scrip ting  

languages for a num ber of o ther tasks. T h is  section  discusses scrip tin g  languages, the 

benefits they  b ring  to  scientific com puting  applications, and  the  m ethods by w hich 

sc rip tin g  languages are extended.

3.1 W hat Is a Scripting Language?
I t  is su rprising ly  difficult to give precise definition o f a  scrip tin g  language. However, 

sc rip tin g  languages share  a  num ber of qualities.

C o m p o n e n t  g lu in g . R a th er th an  build ing  program s from scratch , scrip ting  languages 

are  p rim arily  designed to  glue com ponents together. For exam ple, the U nix shell 

provides an  environm ent for executing and  contro lling  p rogram s as well as m oving 

d a ta  betw een p rogram s using files and pipes, in  a  s im ilar sp irit, sc rip tin g  languages 

also can be used in a m ore fine-grained m anner by gluing softw are libraries together, 

passing  d a ta  betw een individual functions, creating  collections of w idgets for user 

interfaces, and  so forth .

I n t e r p r e t e d .  U nlike com piled languages such as C, C + + ,  or F o rtran , scrip tin g  language 

p rogram s are in terp re ted . T h is  elim inates the  need for a  sep a ra te  com pilation  s tep  

an d  allows scrip tin g  languages to  be run  interactively.

H ig h - le v e l .  S crip ting  languages provide a variety of useful d a ta  s tru c tu re s  along w ith  

techniques such as dynam ic typing. T h is  resu lts in p rogram s th a t  are sm aller and 

easier to  develop th a n  in com piled languages.



T raditionally , sc rip tin g  languages have been dism issed as being to o  sim plistic  to solve 

real problem s, in  (act., alm ost any th ing  th a t can be done in a com piled language can 

also be accom plished in a scrip ting  language. M any m odern  scrip tin g  languages also 

su p p o rt ob ject-o rien ted  program m ing  as well as aspects of functional p rog ram m ing  found 

in  languages such as Lisp and Scheme [94, 42]. In add ition , m ost scrip tin g  languages also 

provide high-level access to op era tin g  system  services such as the  file system , sockets, an d  

th read s.

M uch o f th e  confusion regard ing  scrip ting  languages is due to a m isu n d ers tan d in g  of 

th e  role sc rip tin g  languages play in re la tionsh ip  to system s program m ing  languages such 

as C and C + + .  Jo h n  O usterhou t w rites,

System  program m ing  languages were designed for bu ild ing  d a ta  s tru c tu re s  and  
a lgorithm s from  scratch , s ta rtin g  from  the  m ost p rim itive  com pu ter elem ents 
such as words of m em ory. In con trast, sc rip ting  languages are designed for 
gluing: T hey  assum e the  existence of a set of powerful com ponents and  are 
in tended  p rim arily  for connccting com ponents [77, p. 23].

3.2 Component Gluing
O ne of t,he m ost pow erful features o f scrip ting  languages is th e ir ab ility  to glue softw are 

com ponen ts together. .John O u sterh o u t w rites,

I  concluded th a t  th e  only hope for us was a com ponent approach . R a th e r 
th a n  bu ild ing  a  new app lica tion  as a self-contained m onolith  w ith  h u ndreds of 
th o u san d s of lines of code, we needed to  find a  way to divide ap p lica tio n s into 
m any sm aller reusable com ponents. Ideally, each com ponent would be sm all 
enough to be im plem ented by a  sm all g roup , an d  in teresting  app lica tions could 
be crea ted  by assem bling com ponents. In th is environm ent it should  be possible 
to  c rea te  an  exciting  new app lica tion  by developing one new com ponent and  
th en  com bining it w ith  ex isting  com ponents.

T h e  com ponent based  approach  requires a powerful and flexible “glue” for 
assem bling th e  com ponents, and it occurred  to  me th a t  p erh ap s a  shared  
scrip tin g  language could provide th a t glue [76, p. xviii].

T h e  n a tu re  of scrip ting  language “com ponents’’ can vary widely. A t a m in im al level, a  

com ponen t m ight be a  s tand -a lone  program  and a scrip ting  language used for job  control 

as found in a  Unix shell. Packages such as E xpect can also be used to  sc rip t executab les 

an d  m im ic the  in p u t o f users [63], However, m ost scrip ting  languages can  also be ex tended  

w ith  functions w ritten  in com piled languages sucJi as C, C + + ,  and F ortran . In  th is  role, 

sc rip tin g  languages can be used to in te rac t w ith  com piled lib raries an d  p rogram s a t a



functional level. T h is  m akes it possible to use scrip ting  languages as a  fram ew ork for 

in te rac tin g  will) com piled code and  build ing  softw are com ponents.

3.3 High-Level Programming
An im p o rtan t aspect of using scrip ting  languages is their su p p o rt for high-level p ro 

gram m ing. To u n d e rs ta n d  this, it is helpful to co n tras t scrip ting  languages w ith  low-level 

system s program m ing  languages like C, C +  +  , and  F ortran . In  com piled languages there 

a re  a  few basic d a ta ty p es , a  set of basic operations, and  program m ing  co n stru c ts  such as 

loops, contro l flow, etc. P rogram s and  d a ta  s tru c tu re s  are generally b u ilt from scra tch  

using  these p rim itiv e  features. S crip ting  languages, on the  o th er hand , supply  a  rich vari

ety  of o b jec ts  such as lists, associative arrays (i.e., hash  tab les), arrays, infin ite precision 

in tegers, and  so forth . T hey  also assum e the  existence of a large set of com ponents. T hus, 

ra th e r  th an  build ing  app lica tions from scratch , scrip ting  languages allow ap p lica tio n s to  

be b u ilt by glu ing  d ifferent com ponents together and  m anaging d a ta  w ith  pow erful d a ta  

s tru c tu re s .

A second a rea  w here scrip tin g  languages differ is in their trea tm e n t of d a ta ty p es . 

L anguages such as C and  C + +  have s tric t a type-checking m echanism  th a t  checks the 

valid ity  of code du rin g  com pilation . V iolations of the type system  resu lt in com pile-tim e 

errors. S crip ting  languages, on the o th er hand , defer type-checking u n til ru n  tim e. T hus, 

the  P y th o n  function

d e f  a d d ( a , b ) : 
r e t u r n  a+b

can be used for any two o b jec ts  th a t  can  be legally added. For exam ple,

> »  a d d ( 3 ,4 )  # I n t e g e r s
7
» >  a d d ( " H e llo "  ."W o rld '1) # S t r i n g s  
H e llo U o r ld
>>> a d d ( [ 3 , 4 , 5 ] ,  [6 ] )  # L i s t s
C 3 ,4 ,5 ,6 ]
> »

D ynam ic typ ing  also benefits com ponent gluing because it m akes it possib le to  com binc 

an d  u tilize com ponen ts an d  o b jec ts  in  a way th a t  is sim ply  not be possible (or easily 

im plem ented) in  a  com piled language. To illu s tra te  th is, consider th e  following P y th o n  

function:



d e f  p l o t _ d a t a ( x ,  y ,  n p o i n t s ,  c o l o r ,  im g ) : 
f o r  i  i n  r a n g e ( 0 , n p o i n t s ) ;

im g .p l o t ( x [ i ] , y [ i ] , c o lo r )

T h is  function  w ould work p roperly  w ith  any kind ob ject th a t  defined a  “p lo t” m ethod. 

T h is  would be checked a t run  tim e and  th e  use of an  ob ject w ithou t th is  m eth o d  would 

sim ply resu lt in  a ru n -tim e erro r. In  co n trast, the  strongly  typed  n a tu re  of C + +  w ould 

g reatly  re s tr ic t the  use of a sim ilar function  by forcing it to only o p era te  on a specific types 

of ob jects  or ob jects  derived from a  com m on base class. As a resu lt, system s p rogam m ing 

languages tend to be m uch m ore rigid and form al w ith  respect to the  use of o b jec ts  and 

th e  m echanism s used to glue com ponents together. T h is  often  m akes it m ore difficult to 

glue com ponen ts together and reuse softw are com ponents.

C ritics  are quick to  po int ou t th a t  ru n -tim e checking can lead to  h idden  errors because 

erro rs are  n o t detected  u n til code is ac tua lly  executed. A lthough th is claim  has som e 

m erit, ru n -tim e typing often resu lts in code th a t is easier to w rite, m ore flexible, and  highly 

reusable. R u n -tim e  checking has also been used successfully in o th er ob ject-o rien ted  

languages such as O bjective-C  or Sm alltalk  [23, 46].

F inally , sc rip tin g  languages excel a t sim plifying com plicated  program m ing  tasks. For 

exam ple, consider the process of w riting  a g raph ical user interface. If  w ritten  in C  or 

C +  +  , it can take hundreds of lines of code to  open a w indow and place a  b u tto n  on the 

screen. In  co n trast, th is  is easily accom plished w ith  a  sim ple two line T c l/T k  sc rip t [77].

T h e  high-level n a tu re  of scrip ting  languages m ake it easier to  develop significant 

ap p lica tio n s in a  sh o rt am ount of tim e. In fact, recent repo rts  confirm  th is fact by c iting  

huge reductions in  code size and  developm ent tim e [77]. T he effectiveness of high-level 

languages has also been described  by Frederick B rooks in the  M y th ic a l  M a n - M o n th :

Surely  the  m ost powerful stroke for software p roductiv ity , reliability , and  sim 
plicity  has been the progressive use of high-level languages for p rogram m ing.
M ost observers cred it th a t  developm ent w ith  a t least a factor of five in  p ro d u c
tivity , an d  w ith  concom itan t gains iri reliability, sim plicity, and  com prehensi
b ility  [17, p. 186].

T h ese  benefits apply  to th e  use of scrip ting  languages in general b u t w ould clearly 

app ly  to  scientific com puting  applications. In  fact, the problem s o f trad itio n a l softw are 

developm ent have already  appeared  in the scientific lite ra tu re .

F rankly, the  lim iting  factor for fu tu re  [scientific] system s m ay well be w riting  
the  softw are itself. Few h ard , reliable d a ta  po in ts ex ist for tren d s in softw are 
p roduc tiv ity , b u t the percep tion  persis ts  th a t  p ro d u c tiv ity  increases have been



glacially  slow for program s w ritten  in conventional languages such as F o rtran ,
C, A da, or Java [85, p. 45].

S crip ting  languages m ay provide scien tists w ith  an  a lte rn a tiv e  approach.

3.4 Scripting and Scientific Computing
S crip ting  techniques have already  been  used in a  variety of scientific app lica tions. 

C om m ercial system s such as M ATLAB, M athcm atica , M aple, an d  IDL provide in teractive  

com m and-driven  interfaces th a t are rem arkab ly  sim ilar to  scrip tin g  languages [53, 108, 

22, 83]. A num ber of specialized languages such as Yorick and  Basis have also been 

developed for bu ild ing  scientific app lica tions [71, 32], M ore recently, th e  P y th o n  sc rip tin g  

language has seen increased use in a  varie ty  of scientific app lica tions [fifi, 30, 55, 13]. 

S crip tin g  languages are also widely used in the  tools used by scientists. For exam ple, the 

V isualiza tion  Toolkit includes a T c l/T k  in terface [89], P lo ttin g  packages, perform ance 

ana lysis tools, an d  co m p u ta tio n al steering  system s such as S C IR un  also m ake extensive 

use of sc rip tin g  languages a lth o u g h  th is m ay not be ap p a ren t to  th e  user [2, 48, 80]. In 

m any  cases, scien tists m ay not be aw are th a t their tools are using scrip tin g  languages in 

a  su b s ta n tia l way.

To u n d ers tan d  the  benefits th a t  scrip ting  brings to these system s, consider the  fact th a t  

m any scientific app lica tions are m onolith ic packages w ith  lim ited  flexibility. M ore often 

th a n  not, they are controlled by a series of com m and line sw itches or a  sim ple com m and 

processor. F u rtherm ore , p rogram s are typically used in a  ba tch  processing m ode w ith 

l i tt le  if any user involvem ent. S crip ting  changes th is  by encapsu la ting  app lica tions in a 

highly flexible in te rp re ted  environm ent. T his provides a  b e tte r  m echanism  for controlling  

scientific softw are and allows users to in teract w ith p rogram s and  d a ta . Not only th a t, 

sc rip tin g  has a positive im pact on the developm ent of scientific softw are [32]. In p articu la r,

F a s t e r  d e v e lo p m e n t .  A su rp ris ing  portion  of m any scientific app lica tions is devoted 

to  the han d lin g  o f in p u t p aram eters  and  control flow. S crip ting  languages already  

provide th is kind of in fras tru c tu re . As a resu lt, developm ent can  focus on the 

creation  of m odules, not the  m echanism  by which those m odules are controlled. 

System s in which scrip ting  is applied  m ay experience a reduction  in code size [32],

R e d u c e d  d e b u g g in g  t im e .  Scrip ting  provides an  in terp re ted  and  in teractive  environ

m ent for in terac tin g  w ith  scientific program s. Scientists can query  values, execute



functions, and perform  operations in a  m anner sim ilar to  th a t found in a debugger. 

If  d a ta  analysis and visualization com ponents are available, these can also be used 

in  the  search  for bugs. Since th is capability  is always available, m uch Less tim e is 

sp en t using debuggers.

R a p id  p r o to ty p in g .  New features can often be im plem ented in  the  scrip tin g  language 

in terface first, and  moved to  com piled code later. G iven the long com pile tim es 

assoc ia ted  w ith  m any system s, having an in te rp re ted  developm ent environm ent 

tends to  reduce developm ent tim e (since new features can  be im plem ented and  

tes ted  w ith o u t recom pila tion).

P o r t a b i l i t y .  Most, sc rip ting  languages can  o p era te  on a  variety  of a rch itec tu res  including  

U nix, W indow s; and M acintosh system s. By im plem enting an  app lica tion  w ith in  

a  scrip tin g  environm ent, cross p latform  su p p o rt can  be achieved w ith  much less 

effort th an  before. T h is is because the scrip tin g  environm ent provides generalized 

su p p o rt for p la tfo rm -dependen t operations such as I /O , g raph ical user interfaces, 

an d  process m anagem ent.

R e u s e .  S crip ting  encourages th e  developm ent of m o d u lar and  reusable code. Tf a su itab le  

collection of m odules can  be created , they  can be reused in o th e r applica tions.

V irtu a lly  every co m p u ta tio n al scien tist has u tilized  packages th a t  m ake use of in te r

p re te d  interfaces. F u rth erm o re  such interfaces have proven to  be highly successful in a 

varie ty  of com m ercial system s. Therefore, it is su rprising  th a t  scrip tin g  techniques are 

n o t used m ore frequently  in scientific applications.

3.5 Scripting Language Extension  
Programming

A lthough  scrip tin g  languages have a  num ber of p rac tica l benefits, it is unlikely th a t 

sc ien tis ts  will abandon  com piled languages any tim e in  the foreseeable fu tu re . T h is  is 

p rim arily  because the perform ance of scrip tin g  languages is som etim es m ore th an  th ree  

orders of m ag n itu d e  slower th a n  a  com piled language [88]. D espite the  o th er benefits of 

sc rip tin g  languages, they  are no t enough to ofTset the perform ance penalty  th a t  w ould be 

in cu rred  by en tire ly  giving up  a com piled language like F o rtran  or C.

However., scrip ting  languages can  in te rac t w ith  com piled extensions w ritten  in C , C + t ,



or F o rtran . T h is largely elim inates the perform ance pena lty  by allowing perfo rm ance 

critica l code to  be w ritten  in a  com piled language and m erely controlled th rough  scripting- 

In  such system s, th e  underly ing  app lica tion  m ay rely u p o n  h igh-perform ance num erical 

lib raries  while sc rip tin g  languages would be used a t the h ighest level o f th e  system  for 

control, problem  se tu p , and  user in teraction . Jn th is  role, sc rip tin g  languages only account 

for a  tiny  p o rtio n  of th e  overall execution  tim e while com p u ta tio n ally  intensive op era tio n s 

a re  still executed in com piled code an d  d o m in ate  the overall execution  tim e. T herefore, 

th e  fact th a t  a  scrip tin g  language runs much tim es slower th an  com piled code m ay be of 

m in im al conc.orn.

3 .5 .1  E x t e n s i o n  M o d u l e s

To ex tend  a  scrip tin g  language w ith  com piled code, it is necessary to  c rea te  an 

“ex tension  m odule.” A n extension m odule consists of th ree  p a rts  as shown in F igure 3.1. 

F irs t, th ere  is the  C /C + +  code th a t im plem ents the  functionality  of th e  m odule or 

w hich corresponds to an  existing app lica tion  th a t  is to  be inco rpora ted  in to  a  scrip ting  

environm ent. Second, there is w rapper code th a t is used to  provide th e  glue connecting  the 

sc rip tin g  in te rp re te r  and  the underly ing  C code. Finally, there is a m odule in itia liza tion  

function. T h is  function  is used to  register the conten ts of an  ex tension  m odule w ith  the 

sc rip tin g  language in te rp re te r w hen th e  m odule is loaded.

W hen creating  an  ex tension  m odule, it is necessary to  w rite the  w rap p er code an d  

m odu le  in itia liza tion  function. To do this, scrip tin g  languages provide a C level A P I 

th a t  developers can  use to access the scrip ting  in terp re ter, convert d a ta  to  and frorn a C 

rep resen ta tio n , rep o rt errors, reg ister new com m ands, create  variables, and so forth .

In itia liza tion
W rappers

C /C +  +

F ig u r e  3 .1 . E x tens ion  m odu le  o rg an iza tio n



3 .5 .1 .1  W r a p p e r  F u n c t i o n s

To execute functions and  procedures in a com piled language, it is necessary to  w rite  

w rap p er Functions. T h e  role of a  w rapper function  is to  convert d a ta ty p e s  betw een 

languages, provide th e  logic needed to  m ake the  function  call, and  to handle errors. To 

illu s tra te  the process, consider a sim ple C function such as follows:

/ *  Compute n - f a c t o r i a l  * /  
i n t  f a c t ( i n t  n )  {

i f  (n  <= 1) r e t u r n  1; 
e l s e  r e t u r n  n * f a c t ( n - l ) ;

>

A w rap p er fu n c tio n  used to  access th is function  from Tc) is shown below [76].

/*  A T e l W rapper F u n c t io n  * /  
i n t
w r a p _ f a c t ( C l ie n tD a ta  c l i e n t D a ta ,  T c l_ I n t e r p  * i n t e r p ,  

i n t  a r g c , chair * a rg v  [ ] )
{

i n t  r e s u l t ;  
i n t  argO ; 
i f  ( a rg c  != 2) {

T c l _ S e t R e s u l t ( i n t e r p ,  "Wrong # a r g s .  f a c t  -[ i n t  } " ,TCL_STATIC); 
r e t u r n  TCL^ERROR;

>
argO  = ( i n t )  a t o l ( a r g v [ 1 ] ) ;  
r e s u l t  = f a c t ( a r g O ) ;
s p r i n t f  ( i n t e r p - > r e s u l t , "‘/el d " , ( lo n g )  r e s u l t ) ;  
r e t u r n  TCL_0K;

>

For Tc5 to access the w rapper function, it m ust first be registered w ith  the  T el 

in te rp re te r. T h is  is done in the  m odule in itia liza tion  function  as follows:

/ *  A s im p le  T e l  m odule i n i t i a l i z a t i o n  f u n c t i o n  * /  
i n t  E x a m p le _ I n i t (T c l_ In te rp  * i n t e r p )  { 

i f  ( i n t e r p  == 0)
r e t u r n  TCL_ERR0R;

/*  C re a te  a  new command ’f a c t ’ * /
T c l_ C re a te C o m m a n d (in te rp , " f a c t " ,  w ra p _ fa c t ,  ( C l ie n tD a ta )  NULL, 

(T c l_C m dD ele teP roc *) NULL);

>
r e t u r n  TCL_0K;



W hen  the ex tension  m odule is loaded, the m odule in itia liza tion  function  is executed . 

T h is  function  registers a  new com m and “fact" w ith  the T el in terp re ter. W hen  th is 

com m and subsequen tly  ap p ears  in a scrip t, execution is passed to the  w rap p er function. 

T h e  w rap p er function  collects a rgum ents passed to the function  and  converts th em  to a  C 

rep resen ta tion . Since T el passes all argum ents as strings, th e  w rapper function  converts 

a rg u m en ts  from  strings to the  ap p ro p ria te  C rep resen ta tion . A fter conversion, th e  real 

C fu n c tio n  is executed. Finally, the  re tu rn  value of the  the function is converted  back 

in to  a  s trin g  and  re tu rn ed  to Tel. A lthough the process has been illu s tra ted  for T el, a 

s im ilar p rocedure  is used for all sc rip tin g  languages and  deta iled  exam ples are show n in 

A ppend ix  A.

3 .5 .1 .2  V a r i a b l e  L i n k in g

V ariable linking is th e  process o f accessing global variables in a  com piled p rog ram  

from  a  sc rip tin g  language. Even though the use of global variables is highly d iscouraged 

in  softw are engineering circlcs, they arc used q u ite  frequently  in scicntific ap p lica tio n s to 

sto re  th e  values of various sim ulation  param eters.

T h e  sim plest way to su p p o rt global variables is th rough  the  use o f functions such as 

th e  following:

/ /  A g lo b a l  v a r i a b l e
d o u b le  D t ;

/ /  G et and  s e t  t h e  v a lu e
d o u b le  D t_ g e t ( )  { 

r e t u r n  D t ;
>
v o id  D t_ s e t (d o u b le  d) {

Dt = d;
>

T h ese  functions can  th en  be added  to  the scrip ting  in terface as o rd in ary  w rap p er func

tions.

Som e scrip tin g  languages, such as T el, provide an  a lte rn a tiv e  m echanism  th a t  can 

be used to m ake global variables ap p ear as o rd inary  scrip tin g  language variables. For 

exam ple, execu ting  th e  following C code in the m odule in itia liza tion  function

T c l_ L in k V a r ( in te r p ,“D t" , (ch ar *) &Dt, TCL_LINK_DOUBLE); 

turns Dt into a Tel variable that is mapped directly onto a C global variable. W hen this



variable is accessed or modified from the scripting interpreter, the underlying C variable 

is then accessed directly.

Other scripting languages can create special variables where read and write operations 

are mapped onto functions written in C. For example, in Perl, the following functions can 

be written.

in t
wrap_set_DtCSV* sv , MAGIC *mg) {

Dt = (double ) SvNV(sv); 
retu rn  1;

>
in t
wrap_get_Dt(SV * sv , MAGIC *mg) {  

s v _ se tn v (sv , (double) D t ) ; 
return  1;

>

When a new value is assigned to Dt, the set method is used to change the value. When 

the value of Dt is read, the get method is used to retrieve the value. Thus, in a Perl script, 

Dt would appear, for all practical purposes, like an ordinary variable.1

# Change Dt
$Dt = 0 .0001; # C a lls  wrap_set_Dt

# P r in t out the value
p r in t  $D t," \n"; # C a lls  wrap_get_Dt

Support for variable linking varies widely between scripting languages. Global vari

ables can always be accessed through a functional interface. However, if a scripting 

language offers an alternative mechanism, it can be used to make the scriptiug interface 

more convenient to the user.

3.5.1.3 Creating Constants
Most interesting programs, especially scientific ones, define a variety of constants for 

setting modes, physical constants, and so forth. In a C program, these might be defined 

as follows:

# d e fin e  PI 3.14159265359
con st double E = 2.71828182846;

1 In Per) these are known as magic variables.



Making constants available to a scripting language interpreter can be accomplished by 

creating scripting variables that contain the corresponding value. This is done by placing 

special function calls in the module initialization function that create constants when an 

extension module is loaded. For example, in Python, placing the following function calls 

in the initialization function would create two constants

P yD ict_S etItem S tr in g(d ," P I" , PyFloat_From Double(PI));
P yD ict_S etItem S trin g(d ," E " , PyFloat_FromDouble(E));

3.5.1.4 O bject M anipulation
Although the interfaces to functions, variables, and constants are relatively straight

forward. C structures, unions, and classes presents a more difficult problem. When 

working with objects, there are three fundamental problems. First, there is the issue of 

representation. Second, there is the problem of object creation and destruction. Finally, 

one must devise a mechanism for executing methods and operations on objects.

A common approach to the representation problem is to generate object, handles. A 

handle is simply a name that is assigned to an object and used in the scripting language 

interface. Internally, a hash table is used to map handle names into pointers of the 

appropriate object type. When wrapper functions cxpect an object or pointer to an 

object, a handle name is used as a key in a hash table lookup. If a match is found, 

a pointer tn an object is extracted and passed to the C function. If not, an error is 

generated.

To create and destroy objects, it is necessary to create and destroy handles. This is 

accomplished using special constructor and destructor functions that are added to the 

scripting language interface. For example, functions to create and destroy V ector objects 

might look like the following:

char * crea te_V ector() {
Vector *v = new V ectorO  ; 
char *narne = create_handle_narae(); 
add_handle(nam e, v ) ; 
retu rn  name;

>

void  d e le te_ V ecto r (ch a r  *name) {
Vector *v = (V ector) lookup_handle(nam e); 
i f  ( !v )  error("N ot a v a lid  o b je c t!" );  
d e le te  v;



rem ove_handle(nam e); 
return;

>

Although handles allow objects to be created, destroyed, and passed between different 

C /C + +  functions, they do not allow a program to examine the internals of an object. 

Therefore, to invoke methods and extract internal information, accessor functions can 

be written. An accessor function provides a functional interface that can be used to 

manipulate objects given a handle. For example, if the definition of a V ector is

s tr u c t  Vector ■{ 
double x ,y ,z ;  
void  n orm alize( ) ;

>;

the following accessor functions could be used to examine and modify member data.

double V ector_x_get(V ector *v) { 
retu rn  v->x;

>
vo id  V ector_x_set(V ector  *v, double x) { 

v->x = x;
>

Likewise, the following accessor function could be used to invoke a member function.

vo id  V ector.n orm alize(V ector  *v) { 
v -> n o r m a liz e ();

>

Using accessor functions, access to objects is controlled entirely through function calls. 

As a result, a scripting interface can be built by simply creating wrappers around these 

function calls using earlier techniques.

Most modern scripting languages also provide support for object-oriented program

ming. An alternative approach to wrapping C and C + +  objects is to encapsulate them 

with a scripting wrapper or adapter class. When a wrapper class is used, C and C + +  

objects are encapsulated inside a scripting language class. This class provides a natural 

object-oriented interface to the underlying objects and hides implementation details from 

users. For example, the following Python code illustrates the use of V ector objects when 

incorporated into a wrapper class.

v l  = V ectorO  
v l .x  = 2



v l , y  = 3
v l . z = 4
v2 = V ectorO
v 2 . x = - 1 .5
v 2 .y  = 4
v 2 . z = 5
v 2 .n o r m a liz e ()
d = d o t .p r o d u c t(v l ,v 2 )

The process of writing scripting language wrapper classes varies widely and is ommit- 

ted here for the sake of clarity. One approach, based on accessor functions, is discusscd 

in Chapter 4. A variety of other objcct-oricntcd wrapping techniques can be found in 

[76, 66, 101, 106, 67, 39],

3.5.2 Compiling an Extension M odule
To use a module it must be compiled in a form that the scripting language understands. 

Most modern scripting languages support dynamic linking of extensions [41]. With 

dynamic linking, extension modules are compiled into shared libraries or dynamic link 

libraries (DLLs). These libraries can then be loaded by the scripting language at run 

time. To load a module, a user simply starts the scripting language interpreter and issues 

a command such as “import foo.:’ This command loads the module into memory as a 

shared library. Immediately after loading, the module initialization function is executed 

and control returned to the scripting interpreter. At this point, the contents of the module 

can be used.

Although supported on most machines, dynamic linking may not work in all eases. If 

building modules as shared libraries is not an option (or undesirable) it is also possible 

to integrate an extension module directly into the scripting language interpreter. To do 

this, the extension module and the scripting language interpreter are linked together to 

form a new executable. In the proccss, a new main program is written. This program 

initializes the scripting language interpreter and initializes the extension module upon 

startup. Thus, when the user runs the new version of the interpreter, the extension 

module will automatically be available for use.

3 . 6  S c r i p t i n g  V e r s u s  C o m m e r c i a l  P a c k a g e s

Many commercial packages such as MATLAB and IDL can be used as a framework 

for solving scientific problems [53, 83]. Not only do these systems have significant 

functionality, but they also have a foreign function interface. This allows a scientist



to extend the package with new functionality and to utilize the functionality already 

provided by the system. For example, MATLAB can be extended with new functions 

by writing .special wrapper functions in C (68). In reality, the process of writing these 

wrappers is identical to that found with scripting language extensions.

In many respects, these packages can be viewed as domain-specific scripting languages. 

The system is controlled by an interpreted and interactive language that glues components 

together and can be extended by writing special wrappers (the same technique used by 

scripting languages). The main limitation of using commercial packages is their lack of 

generality and the fact that they are closed systems. For example, the only datatype 

supported in MATLAB is a matrix. This limited representation makes it difficult to 

represent nonmatrix objects and apply MATLAB to other domains.

Despite the limited generality of such systems, packages like MATLAB are examples 

of what a scriptable scientific application might look like-a collection of compiled modules 

controlled by an interactive and interactive language. Since such systems are so similar 

to scripting languages in both use and design, they will be included in further discussion. 

Thus, techniques described for extending Perl, Python, or Tel could also be applied to a 

number of commercial scientific computing packages.

3 . 7  S c i e n t i f i c  C o m p u t i n g  a n d  t h e  

P r o b l e m s  w i t h  S c r i p t i n g

Despite the potential benefits that scripting languages offer scientists, they are not 

widely used in the scientific computing community. Although much of this may be due to 

a perception of poor performance, it is most likely due to the difficulty of integrating 

scripting languages with existing applications. It particular, there are the following 

problems.

T h e c o m p le x ity  o f  ex te n s io n  build ing. Building a scripting language extension is an 

extremely tedious and complex chore that requires an intimate knowledge of the 

target scripting language. Most scientists arc simply not interested in this task-

T h e ch oice  o f  scr ip tin g  language. Given the complexity of building a scripting in

terface, the logical next step is to pick the “best” scripting language and use it for 

everything. Unfortunately, there is no such thing since all scripting languages have 

strengths and weaknesses depending on the application. For example, Tcl/T k is pri



marily used in the construction of graphical user interfaces, Perl is used extensively 

for text, processing, and Python for object-oriented programming. In many eases 

the choice of language may be a matter of personal preference. In any case, it is not 

inconceivable that one would want to use different scripting interfaces for different 

tasks. Unfortunately, the heavyweight extension mechanism all but prohibits this.

R ap id  change. Scientific applications often change to address new problems. Unfortu

nately, the extension building process is not well-adapted to this environment since 

new features and changes to interfaces require changes to the underlying wrapper 

code.

Unless these problems can be addressed, it is unlikely that scripting languages will be 

of much use to scientists. Scientists must be convinced that scripting is simple to use and 

results in few performance penalties.



C H A P T E R  4  

S W I G  

4 . 1  C o m p i l a t i o n  o f  S c r i p t i n g  C o m p o n e n t s

In this chapter, SWIG (Simplified Wrapper and Interface Generator) is described 

[5, 6, 8]. SWIG is a compiler that has been developed to automatically construct scripting 

language interfaces to compiled code written in C, C+ + , and Objective-C [61, 31, 23]. 

Versions of SWIG have been available for public use since February, 1996 and development 

has been ongoing. SWIG currently supports Perl, Python. Tel, and Guile extension 

building on Unix, Windows-NT, and Macintosh systems [101, 66, 76, 65]. Experimental 

modules are also available for Java and MATLAB [38, 53].

This chapter is not intended to serve as a detailed description covering all of SWIG’s 

features. Detailed information about using SWIG can be found in the SWIG Users 

Manual [9], This chapter primarily focuses on the design, implementation, and operation 

of the SWIG compiler as well as a variety of associated language issues.

4 . 2  R e l a t e d  W o r k

Given the difficulty of building scripting extensions, there has been considerable in

terest in the creation of tools that simplify the task. Rather than writing glue code by 

hand, an extension building tool allows a user to specify the contents of scripting language 

component using an interface definition language (IDL). Interface descriptions axe written 

in this language and compiled into scripting language components. Most scripting-related 

extension tools fall into the following categories :

S tu b  gen erators. A stub-generator compiles an IDL file into a file containing a collec

tion of empty function definitions known as “stubs.” The stubs contain all of the 

pieces needed to build a module, but it is up to the user to fill in the stub bodies 

with the appropriate glue code. Such a technique is most commonly found with 

distributed applications involving RPC, 1LU, and CORBA, but can also found in



scripting generators such as the Modulator tool used lor building Python extensions 

[93. 25, 74, 66],

L an gu age-sp ecific  m od u le  b u ild ers. Most scripting languages have specialized tools 

for building extensions. For example, h2xs and xsubpp are tools for building Perl 

extensions, Modulator can be used for building Python extensions, and Tel has a 

number of tools such as Itcl+H- and ObjectTcl [91, 66, 54, 106],

A p p lica tio n -sp ec ific  gen erators. Large applications with scripting interfaces may in

clude specialized interface construction tools. For example, the Visualization Toolkit 

(VTK) includes a YACC-based parser that compiles VTK C-5--I- class definitions into 

Tel, Python, and Java intcrfaccs [67, 89].

E m b ed d in g  to o ls . Embedding tools, such as Embedded Tk (ET) for Tel, provide a 

mechanism for embedding scripting languages in compiled code [56]. This is a 

fundamentally different problem than controlling C /C + +  code with a scripting 

language. Rather, these tools address the problem of accessing scripting languages 

from a compiled language.

Although extension building tools can simplify the interface generation process, they 

vary widely in capabilities and support. Most tools use their own interface definition 

format, making it nearly impossible to change tools or languages. In some cases, the use 

of a tool may even be nearly as difficult as writing an extension by hand. Finally, most 

extension building tools offer little in the way of documentation and support-often being 

labeled as obscure and magical tools for hackers and gurus. In fact, if one surveys popular 

scripting language books, almost no mention is made of such tools [76. 105, 101, 66]. This 

is unfortunate since the use of extension building tools greatly enhances the usefulness of 

most scripting languages.

Very little work appears to have been done in the development of general purpose 

scripting language extension tools that support both multiple scripting languages and a 

wide range of C /C + +  code. The closest approximation is the interface builder packaged 

with the Visualization Toolkit, which is able to build to intcrfaccs to Tel, Java, and 

Python [89]. The ILU system also provides support for multiple languages, but is 

primarily used for distributed computing applications [25].



4 . 3  D e s i g n  G o a l s

SWIG shares many of the features found in other interface generation tools, hut 

attempts to address many of the limitations that make those tools difficult to use. Simply 

stated, the primary design goals of SWIG are as follows:

• Simplicity.

• Applicability to existing software.

• Support for rapid change.

• Separation of interface and implementation.

• Extensibility.

• Support for multiple scripting languages.

Meeting these goals involves a number of tradeoffs and considerations. For example, a 

tool that is simple to use might not provide the formality required in a very large software 

project. Likewise a tool that is too general purpose might not be able to produce quality 

interfaces to each scripting language. For a better understanding of the design, each goal 

is now described in some detail.

4.3.1 S im plicity
To computational scientists, a tool is simple to use if it requires a minimal effort to 

use effectively. In an ideal setting, tools designed to help scientists should not interfere 

with the problem solving process. In other words, the use of a software tool should not 

become the primary focus of a project. For scripting extension building tools, this can 

be achieved by fully automating the extension building process, making it as easy as 

possible for users to specify scripting interfaces, and to produce scripting interfaces that 

are closely mapped to the underlying compiled code.

To automate extension building, a compiler should produce a fully functional scripting 

language module, not a collection of stubs. Ideally, the user should not have to write any 

of the scripting wrapper code as described in Chapter 3 nor should they be required to 

modify the output of the compiler.

To simplify the specification of interfaces, a compiler should make it as easy as 

possible for users to seamlessly integrate scripting with their programs. One problem



with many interface generation tools is their reliance upon special interface definition 

languages (IDLs) that require the user to precisely specify almost all aspects of their 

application. Although such an approach provides more formality aud precision, it also 

makes such tools hard to use in the experimental and exploratory environment associated 

with scientific projects. In such cases, the development of the interface specification may 

be only slightly less cumbersome than writing wrapper functions by hand. Furthermore, 

the rapidly changing nature of scientific software complicates the maintenance of interface 

specifications and may result in situations in which interfaces are inconsistent with the 

actual implementation.

To simplify the specification of interfaces, the ANSI C /C + +  declarations found in 

header files and source files could be used. By specifying interfaces in this manner, 

scientists would not have to learn a special interface definition language and would be 

able to quickly build scripting interfaces to existing programs. Such an approach also 

works well in a rapidly changing software environment since changes to the underlying C 

implementation arc easily propagated to the scripting interface.

Finally, the scripting interfaces produced by the compiler should closely match the 

underlying C and C+ + code. For example, a C function should be mapped to a scripting 

language command of the same name, variables mapped to scripting variables, and so 

forth. In other words, the scripting interface should merely be an extension of the 

compiled code. This is an important feature because computational scientists are most 

likely to work with both C /C + +  code and scripts. Therefore, the scripting interface 

should merely expose the underlying functionality to the user in a straightforward manner 

as opposed to hiding or obscuring it.

4.3.2 A pplicability to Existing Software
Scientific programs vary widely both in implementation and design. Furthermore, 

the implementation of such programs may be quite complex-utilizing sophisticated data 

structures and algorithms. To successfully build scripting interfaces, tools must support 

a wide range of programming styles and techniques. To accomplish this, the compiler 

must support a large subset of the programming features found in scientific programs 

including functions, global variables, constants, and classes. The compiler also needs to 

support a wide range of datatypes including fundamental types (integers, floating point, 

strings), structures and objects, arrays, aud pointers. Finally, the compiler needs to be



highly adaptable. Rather than requiring users to structure interfaces and components in 

a precise manner, it should be possible for users to add scripting intcrfaccs to existing 

software without having to make substantial modifications to that software.

4.3.3 Support for Rapid Change
Scientific applications change more rapidly than their commercial counterparts. Inter

face generation tools must keep pace with this change without becoming a burden. The 

best way to support rapid change is to automate the interface generation process while 

making it nearly invisible to the user. By fully automating the compilation of scripting 

modules and using the same language syntax as the original application, interface gen

eration can be hidden away in the compilation of a program. Thus, when changes are 

made to that program, they can automatically be reflected in the scripting interface.

4.3.4 Separation of Interface and Im plem entation
One problem with modifying existing applications to operate in a new environment is 

that those applications may be modified in a way that prevents their use in other settings. 

For example, if a scientist builds a Tel interface to a scientific application by hand, there 

is a lendency for Tel specific C code Lo creep inLo the uriginal application. As a result, 

the program eventually becomes inseparable from its Tel interface.

To prevent this, a compiler should strive to maintain a strict separation of the compiled 

code and its scripting interface. By doing so, the original application will remain general 

purpose and be usable in other settings (including those that do not involve scripting 

languages).

4.3.5 E xtensib ility
Just as scientific programs and problems change, the compiler should be extensible 

in order to handle new situations. There are two cases that need to be considered. 

First, a user may want to extend or alter the behavior of the compiler to provide a 

“better” interface to their program. Ideally, there should provide special directives or 

commands that can be placed directly in interface description files for this purpose. A 

second important area of extensibility is support for new scripting languages. A variety 

of scripting languages are currently available and new ones may appear in the future. 

Thus, the compiler should be general purpose and easily extended to support different 

languages as appropriate.



4.3.6 Support for M ultiple Scripting Languages
When it comes to C extension building, scripting languages are surprisingly similar. 

They are all extended with wrapper code and the techniques for writing this wrapper code, 

building modules, and using extensions are essentially the same. A compiler that exploits 

this similarity and supports multiple languages has many interesting aspccts. First, it 

largely eliminates the problem of choosing the l:best” scripting language. Rather, different 

languages can easily be used and evaluated for the job at hand (or personal preference). 

Second, it allows applications to simultaneously support a variety of different interfaces. 

This generally improves the usefulness of an application and allows it to be used in a wide 

variety of different settings. Finally, a compiler supporting multiple scripting languages 

would unify a number of extension building efforts and provide a general purpose tool for 

building scriptable applications regardless of the scripting language being used. This, in 

turn, allows developers to focus their attention on the creation of scriptable applications, 

not the specific scripting language that will be used.

4 . 4  I m p l e m e n t a t i o n

SWIG is implemented in C + +  and consists of three primary components: an ANSI 

C /C + +  parser, a scripting language wrapper code, generator, and a documentation 

generator as shown in Figure 4.1. The input to SWIG is a subset of the ANSI C /C + +  

language that is extended with special directives. The output of SWIG is a C or C+ +  

source file that is compiled and linked with the rest of an application to create a scripting 

language module. The code generator and documentation generator are extensible to 

support different scripting languages and documentation formats respectively. Currently, 

scripting language modules are available for Perl. Python, Tel, and Guile whereas doc

umentation can be generated in HTML, plain text, and LaTeX. Further discussion will 

focus exclusively on the code generation process while details about the documentation 

system can be found in the SWIG Users Manual [9].

4.4.1 Parsing
The SWIG parser accepts a subset of ANSI C, C + + , and Objective-C and is im

plemented using YACC [62]. Before parsing, all input files are passed through a C 

preprocessor chat handles conditional compilation and macro expansion. In addition 

to normal C code, SWIG understands a number of special directives that are used to





To generate code, au instantiation of a particular language class is created (Tel, Perl, 

Python, ct,c...) and given to the parser. The setjm odule method is used to set the name 

of the scripting language extension module. Afterwards, the parser executes methods 

such as crea te_ fu n ction , lin k _ v a ria b le . and d eclare_con st to generate wrappers. 

To illustrate, suppose that the following C declarations were to be encapsulated in a 

module “Poo."

in t  f a c t ( in t ) ;
vo id  p lot(Im age *img, double x , double y , in t  c o lo r ) ;  
double D t;
Hdefine PI 3.14159265359  

To construct the scripting language module, SWIG performs the following operations:

1. Create a new language object, 

lang = new LANGO;

2. Set the module name. 

lang->set_m odu le("F oo");

3. Create wrappers. 

la n g -> c r e a te _ fu n c tio n (" fa c t" , i n t ,  ( in t ) ) ;

la n g -> c r e a te _ fu n c tio n ( llp lo t" , v o id , (Image *, doub le, doub le, i n t ) ) ;  

la n g -> lin k _ v a r ia b le (" D t" , d o u b le ); 

la n g -> d ec la re_ co n st(" P I" , dou b le , 3 .14159265359);

4 . 5  S W I G  D i r e c t i v e s

Although the input to SWIG primarily consists of ANSI C /C + +  declarations, a 

number of special directives are also available as shown in Table 4.1. These directives are 

used to guide the compilation process, provide hints, and customize SWIG’s behavior. 

A full description of the directives can be found in the SWIG Users Manual although a 

brief description of the most commonly used directives can also be found lu Appendix B 

[9]. A number of the more interesting directives will also be described in later sections.



45

Table 4.1. Commonly used SWIG directives
7.{ ... •/.} ‘/.addmethods

'/.apply 7. checkout

'/.clear 7.disabledoc
‘/.echo 7.enabledoc
“/,except 7.extern

7, import ^include

7, in it 7.{ . . . ’/.} 7«inline 7.{ ... 7.}
V.module 7.native
7, name 7.new

7,pragma ^readonly

y.readwrite 7«rename
”/,typedef 7«typemap
7.wrapper */,{ ... '/*}

4 . 6  S W I G  I n p u t  F i l e s

Since SWIG interfaces are built using a mix of ANSI C / C + +  declarations and special 

directives, there are several approaches for constructing an input file. The most common 

approach is to use a separate “interface file.” This file contains a selective list of the 

C / C + +  declarations to be wrapped along with spccial directives. Another common 

approach is to insert SWIG directives directly into a C header file and to utilize conditional 

compilation. SWIG defines a symbol SWIG that can be used by the preprocessor for this 

purpose. Finally, SWIG can extract declarations directly from C source Pdes.

4 . 7  A  S i m p l e  S W I G  E x a m p l e

To use SWIG., the user specifies an interface using ANSI C declarations such as follows:

/ /  f i l e  : exam ple. i
‘/♦module example
*/.{
^include "example.h"
7 .)

in t  f a c t ( in t  n ) ; 
double D t;
# d e fin e  PI 3.14159265359

To build the module, the user runs SWIG and compiles the wrapper code into a shared 

library as follows:1

'The compilation process varies according the compiler and operating system being used



’/. swig - t e l  exam p le .i
Making wrappers for  Tel
'/. gcc -c  - f p ic  exam ple.vrap . c exam ple.c
°/» gcc -sh ared  example_wrap. o exam ple.o -o  exam ple.so

To use the new module, the user starts the scripting language interpreter and loads the 

module as follows:

*/. t c l s h
‘/. load  . /exam p le . so 
*/o f a c t  4 
24
'/. s e t  Dt 0.0001  
'/. p u ts $PI
3.14159265359  
*/.

To switch scripting languages, SWIG is given a different, target language option. For 

example, a Python module could be built as follows:

*/, sw ig -python example . i  
Making wrappers fo r  Python
‘/t gcc -c  - f p ic  - I /u s r / lo c a l/ in c lu d e /p y t h o n l  .5 \  

example_wrap. c exam ple.c  
‘I, gcc -sh ared  example_wrap. o exam ple.o -o  examplemodule. so 
*/, python
Python 1 .5  (#1 , Jan 1 1998, 11:26:26) [GCC 2 .7 .2 .1 ]  on lin u x2  
Copyright 1991-1995 S t ic h t in g  Mathematisch Centrum, Amsterdam 
>>> import example 
>>> exam ple. f a c t (4)
24
» >  example . c v a r . Dt = 0 .0001  
>>> p r in t  exam ple.PI
3.14159265359  
> »

This simple example illustrates the use of SWIG and contains most of what users need 

to know to get started. First, interfaces are specified using ANSI C declarations. Second, 

a module name must, be given using the ’/.module directive. Header files and support 

code are then included using the ‘/.{, ‘/.} directive. Finally, the SWIG compiler is used to 

generate the wrapper code. This wrapper code is compiled and linked with the original 

application to create a module.



4 . 8  D a t a t y p e s  a n d  D a t a  R e p r e s e n t a t i o n

Although the processing of simple C declarations such as functions and variables is 

straightforward, the most difficult aspect of interface generation is the handling of C 

datatypes. In order to work with a wide variety of C code, the SWIG compiler must 

support most of the C built-in datatypes such as integers and floating point numbers as 

well as derived types such as pointers, arrays, structures, unions, and classes. Further

more, methods for converting these types to and from a scripting representation must be 

devised. This section describes SWIG’s treatment of datatypes.

4.8.1 Fundamental Types
ANSI C defines the fundamental datatypes shown in Table 4.2. The size of each type 

is implementation specific, but typical values for 32 bit architectures are shown. Scripting 

languages provide the datatypes shown in Table 4.3. When building the scriptiug language 

interface, SWIG maps the fundamental C datatypes into the closest appropriate scripting 

language datatype. This mapping is shown in Table 4.4. When datatypes are converted 

between C and scripting, truncation effects may occur. In particular, large integer values 

in a scripting language may be truncated when converted to a C datatype with less 

precision. Likewise, 64 bit C integers may be truncated when passed to a scripting 

language. In addition, single precision floating point numbers arc usually cast to and 

from double precision values. Finally, two datatypes of notable interest are char and 

char *. In C, char is commonly used to hold a single character of text while char * is 

used to hold character strings. Therefore, both of these types are mapped into scripting 

language strings.

4.8.2 Pointers, Arrays, and O bjects

Most C programs make extensive use of pointers, arrays, and data structures. To build 

useful scripting interfaces, a mechanism for handling these datatypes must be developed.

4.8.2.1 Typed Pointers
SWIG encodes C pointers as typed pointers in the scripting language interface. A 

typed pointer is simply a representation that contains both the value of the pointer and 

its corresponding type. For example, in Tel, a C pointer of type "Vector *" might be 

encoded as the string “_100fea8_Vector_p.” When typed pointer values are passed to C



Table 4.2. Fundamental C datatypes
Name Description Typical size (bits)
in t Integer 32
long Long integer 32 or 64
short Sliort integer 16
f lo a t Single precision floating point 32
double Double precision floating point 64
char Single byte character 8
void No value -

T able 4.3. Scripting c afcatypes
Name Equivalent C Datatype Typical size (bits)
Integer long 32 or 64
Float double 64
String char * variable
None void -

Table 4.4. 'Datatype conversion
C Datatype Scripting Datatype
in t
unsigned in t  
long
unsigned long  
short
unsigned sh ort  
s ign ed  char 
unsigned char

Integer (long)

f lo a t
double

Floating point (double)

char 
char *

String (char *)

vo id None



functions from scripting, the pointer value is extracted and the type compared against 

an expected value. If a type mismatch occurs, a run-time error is generated.

One of the primary differences between scripting and compiled languages is that 

scripting language defer type-checking until run-time. This differs from G and C+ +  

where type checking occurs during compilation. With typed pointers, the type checking 

normally performed by a C compiler is performed at run-time using the type-signature 

information attached to each pointer value. When a violation of the C type system is 

detected, a run-time type error is generated.

Typed pointers provide a flexible mechanism for working with complex C datatypes. 

Essentially any C pointer value can be represented in the scripting language and used in 

a manner that is similar to C. The only major difference is that scripting languages are 

unable to dereference pointer values. In other words, scripting languages can represent 

and use C pointers but cannot peer inside or manipulate the objects that are being pointed

4.8.2.2 Arrays
Pointers and arrays are often used interchangeably in C programs since the “value” 

of an array in C is simply a pointer to the first element of the array [61]. Due to the 

close relationship between arrays and pointers, SWIG manages all arrays as pointers. By 

doing so, all of the techniques for manipulating typed pointers can be easily utilized.

Although the treatment of arrays as pointers is simple enough, there tire a number of 

subtle problems with arrays. First, pointers contain no size information that can be used 

by scripting wrapper functions. Thus, a function such as

vo id  foo (d ou b le  a [1 0 ]) ;

would accept any argument of type double * regardless of whether or not that argument 

was an array or an array of the proper size. Second, no special treatment is given 

to multidimensional arrays. When multidimensional arrays are wrapped by SWIG, a 

pointer to the first element of the array (stored in row-major order) is expected. Again, 

any argument of type double * may be used. Finally, there is no relationship between 

arrays in C and arrays in a scripting language. Although most scripting languages contain 

an array or list datatype, the representation of this data is different than that used in C. 

As a result, it is not possible to substitute a scripting language array for a C /C + +  array 

(although SWIG can be customized to perform this conversion).



4.S.2.3 Structures and Objects
SWIG represents all structures and objects by reference using typed pointers. This 

avoids the problem of data representation because it is not necessary for SWIG or scripting 

languages to understand the internal implementation of a C /C + +  object for it to be 

used. For example, the following SWIG interface could be used to provide access to a 

few functions in the standard C library,

’/jnodule s td io
u
# in c lu d e  < std io .h >
7o>

/ /  Some I/O fu n c tio n s
FILE *fopen(char ^ filenam e, char *roode); 
in t  fc lo se(F IL E  * );
unsigned freadC void *p tr , unsigned s i z e ,  unsigned n o b j, FILE *) ; 
unsigned fw r ite (v o id  *p tr , unsigned s i z e ,  unsigned n ob j, FILE * );

/ /  Now a few memory a l lo c a t io n  fu n c tio n s  
void  *roalloc(unsigned n b y te s ) ; 
vo id  fr e e (v o id  * );

From the scripting language interpreter, these function could be used in a completely 

natural manner. For example, the following Perl function copies a file using the above 

functions.

use s td io ;  
sub f i le c o p y  {

my (S so u r c e ,$ ta r g e t)  = ;
my $ f l  = s t d i o : :fo p en ($ so u rce , " r" );
my $f2 = s t d i o : : fo p e n ($ ta r g e t , "w");
my $b u ffer  = s t d i o : :m a llo c (8 1 9 2 );
my $nbytes = s t d i o : : fr e a d ($ b u ffe r ,1 ,8 1 9 2 , $ f l ) ;
w h ile  ($nbytes > 0) {

s t d io : : f w r i t e ( $ b u f f e r ,1 ,8 1 9 2 >$ f 2 ) ;
Snbytes = s t d i o : :fr e a d ($ b u ffe r ,1 ,8 1 9 2 , $ f l ) ;

>
S t d io : : f r e e ( $ b u f f e r ) ; 
s t d i o : : f c l o s e ( $ f l ) ; 
s t d i o : : f c l o s e ( $ f 2 );

In this example, the definition of FILE was not required to build the scripting interface, 

nor was it required to manipulate such objects from the scripting language interpreter.



Thus, SWIG allows scripting languages to manipulate a wide variety of C /C + +  objects 

even when minimal information is available about the nature of those objects.

4.8.3 Unsupported D atatypes
SWIG supports most common C datatypes, but there are a few exceptions. The types 

of lon g  lon g  and long double are not supported because scripting languages do not 

provide enough precision to represent values of these types. Pointers to functions and 

pointers to arrays are not fully supported due to a limitation in the SWIG parser. Finally, 

pointers to C + +  member functions are not supported since they have a different internal 

representation than other types of C and C + +  pointers [34j.

4 . 9  O b j e c t s ,  C l a s s e s ,  a n d  S t r u c t u r e s

As just described, SWIG represents all objects as typed pointers. Typed pointers 

contain no information about objects themselves so it is not possible to peer inside the. 

object pointed to or to execute an object’s methods. However, in Chapter 3, several 

methods for acccssing objects were described. SWIG uses these techniques and provides 

a layered approach as shown in Figure 4.2.

At the lowest level, typed pointers are used to represent objects. These pointers can 

be passed around between different C functions, but no further information is available. 

At the next level, accessor functions are used to look inside objects and execute methods. 

Finally, at the highest level, accessor functions are used to build wrapper classes that 

provide the user with a very natural object-oriented interface.

4.9.1 O bjects as T yped  P oin ters

The representation of objects as typed pointers allows objects to be freely passed 

around between different C functions without regard for their internal representation. 

For example, the following functions could easily be turned into a scripting interface

S in clu d e "vector.h"
V ector *new _vector(double x , double y , double z ) ;
vo id  d e le te _ v ec to r (V ec to r  * v ) ;
double dot_product(V ector * v l ,  V ector * v 2 ) ;
vo id  cross_produ ct(V ector * v l ,  Vector *v2, V ector * r e s u l t ) ;

From the scripting language, these functions could then be used as shown in the 

following interactive session:





Python 1 .5  (#1 , Jan 1 1998, 11:26:26) [GCC 2 .7 .2 .1 ]  on lin u x 2  
C opyright 1991-1995 S t ic h t in g  M athematisch Centrum, Amsterdam 
>>> import v e c to r  
>>> a = new _vector(1 ,2 ,3 )
>>> b = new _vector(4 ,5 ,6 )
>>> p r in t  d ot_p rod u ct(a ,b )
32
>>> r e s u lt  = new _vector(0 ,0 ,0 )
>>> c r o ss _ p r o d u c t(a ,b ,r e s u lt )
>>> p r in t  r e s u lt  
_100fe8aO_Vector_p  
>>> d e le te _ v e c to r (a )
>>> d e le te _ v e c to r (b )
> »  d e le te _ v e c to r (r e s u lt )

In this example, vectors are created and used in several functions, However, it is 

not possible to look inside a Vector. For example, when printing the result of the cross 

product operation above, only the typed-pointer value is returned.

4.9 .2  A ccessor Functions
To provide access to the internals of an object, SWIG automatically generates accessor 

functions when it is given the definition of a structure, class, or union. For example, the 

structure

s tr u c t  V ector {
V ector(doub le x , double y , double z) ;

"VectorO  ; 
double x ,y ,z ;  
void  n orm alizeO ;

is expanded into the following collection of accessor functions:

V ector *neu_V ector(double x , double y , double z) {  
retu rn  new V e c t o r ( x ,y ,z ) ;

>
vo id  d e le te_ V ecto r(V ecto r  *v) { 

d e le te  v;
>
double V ector_x_get(V ector *v) { 

retu rn  v->x;
>
double V ector_x_set(V ector  *v, double x) { 

retu rn  (v->x = x ) ;
>
double V ector_y_get(V ector *v) {



>
double V ector_y_set(V ector  *v, double y) {. 

retu rn  (v->y = y );
>
double V ector_z_get (V ector *v) { 

retu rn  v->z;
>
double V ector_z_set(V ector  *v, double z) { 

retu rn  (v->z = z ) ;
>
vo id  V ector_norm alize(V ector *v) { 

v -> n o r m a liz e ();
>

Since accessor functions are ordinary C functions, they can be wrapped into a scripting 

language interface using techniques described previously. When used in a scripting 

language, the user explicitly passes a typed-pointer to the accessor functions to extract 

information from the object or invoke methods.

Virtually any kind of C /C + +  object can be manipulated through function calls in this 

manner. In fact, early C + +  compilers used similar techniques to transform C + +  classes 

into C code for compilation [34], Because of the generality of this approach, fclie use of 

accessor functions forms a foundation for building scripting interfaces to most types of 

objects. Not only can accessor functions be used to interface with objects, they can be 

used from any scripting language (including those with no support for object-oriented 

programming). Jn scripting languages with object-oriented capabilities, the accessor 

functions can be used to build more sophisticated interfaces as described next.

4.9 .3  W rapper C lasses

Using the accessor functions generated for objects. SWIG can optionally generate 

wrapper classes (also known as shadow classes). Wrapper classes provide a natural object- 

oriented interface around C /C + +  objects using the object-oriented capabilities of the 

target scripting language. For example, in Python, a wrapper class might appear as 

follows:

# A Python wrapper c la s s
c la s s  Vector:

d ef _ _ in i t __( s e l f  , x , y , z ) :
s e l f . t h i s  = n e w _ V e c to r (x ,y ,z ); 
s e lf .th is o w n  = 1

return v->y;



def __d e l_ _ ( s e l f ) :
i f  s e lf .th is o w n  == 1:

d e le t e _ V e c to r ( s e l f . t h is )
def __g e titem __(s e lf .n a m e ) :

i f  name == ’x 1 :
retu rn  V e c to r _ x _ g e t (s e lf . t h i s )  

e l i f  name == ’y ’ :
return  V e c to r _ y _ g e t (s e lf . t h is )  

e l i f  name == ’z ’ :
retu rn  V e c to r _ z _ g e t ( s e lf - th is )

e l s e :
retu rn  s e l f . __d i e t __[name]

def __s e t ite m __(s e lf .n a m e ,v a lu e ) :
i f  name == J x J:

retu rn  V e c t o r _ x _ s e t ( s e lf . t h is ,v a lu e )  
e l i f  name == Jy ‘ :

retu rn  V e c to r _ y _ s e t ( s e lf .t h is ,v a lu e )  
e l i f  name == ’z 1 :

retu rn  V e c t o r _ z _ s e t ( s e lf . th is .v a lu e )
e l s e :

s e l f ._ _ d i c t __[name] = value
def n o r m a liz e ( s e lf ):

V e c to r _ n o r r a a liz e (se lf .th is )

Using wrapper classes, objects can then be created and used as if they were objects 

created in the target scripting language. For example,

import v ec to r
# C reate some v e c to r s  
a = V e c t o r ( l ,2 ,3 )
b = V ector( 4 ,5 ,6 )  
r e s u lt  = V e c to r (0 ,0 ,0 )

U Compute some va lu es  
p r in t  d ot_p rod u ct(a ,b )  
c r o ss _ p r o d u c t(a ,b .r e s u lt )

# P rin t the r e s u lt
p r in t  r e s u l t .x ,  r e s u l t .y ,  r e s u l t .z

# Invoke a method 
r e s u lt .n o r m a liz e ()

4.9 .4  C lass E xtension  

When generating scripting interfaces to C /C + +  objects, the interface does not need to 

exactly match that of the original object. In fact, object definitions can even be expanded



with new methods and capabilities. For example, .suppose that a user wanted to add a 

method for printing out the value of an object for debugging and diagnostics. This could 

be specified with SWIG as follows:

y.addmethods V ector { 
vo id  o u tp u t() {

p r in t f  (" [ ‘/.g, ‘/.g, ‘/ .g ] \n " ,  s e l f - > x ,  s e l f - > y , s e l f - z ) ;
>

>

When the scripting interface is built, SWIG will attach this new method to the original 

definition of Vector. As a result, it will be possible to use this method from scripting 

exactty as if it were part of the original object definition. For example,

>>> a = V ectorC l,2 ,3 )
>>> a .o u tp u t()
[ 1 .0 ,  2 .0 ,  3 .0  ]
> »

The class extension mechanism only affects the scripting language interface and does 

not involve modifications to the original code or special C compiler tricks. Class extension 

turns out to be an extremely useful tool for building interfaces because C structures can 

be extended into classes, C + +  classes can be extended with new methods, and programs 

can be made to appear object-oriented even if they are not.

It is important to note that class extension only affects the scripting language interface. 

Added methods are not visible to the original C or C + +  program nor do they become 

part of the definition of an object. In fact, the primary purpose of class extension is to 

improve the scripting interface to objects. A further example of class extension will be 

given in Chapter 5.

4.9.5 T yp e C hecking and Inheritance
When checking the type of a pointer, a comi>arison is made against an expected 

value. However, this presents a problem when working with inheritance hierarchies. To 

illustrate, suppose that a Shape class defined an abstract method for drawing as follows:

c la s s  Shape { 
p u b lic :

v ir t u a l  vo id  drau() = 0;

>;



When SWIG generates the wrappers for this class, the following accessor function is 

created.

vo id  Shape_drau(Shape *s) { 
s -> d r a u () ;

>

The accessor function expects a Shape object, but to operate correctly the function 

should allow any object derived from Shape to be used. To correctly capture this behavior, 

the SWIG run-time type checker is encoded with the C + +  inheritance hierarchy. Thus, 

when extracting and checking pointer values, SWIG checks the type against the expected 

value as well as all derived types. In addition, proper type casting is performed to avoid 

slicing problems and to properly support multiple inheritance.

4 . 1 0  T y p e  M a n a g e m e n t  W i t h  T y p e m a p s

The most critical aspcct of extension building tools is the process by which different C 

datatypes are processed when generating wrapper code. In previous sections, general pur

pose rules for handling fundamental C datatypes and pointers were presented. However, 

SWIG also allows users to customize the way in which specific datatypes are processed. 

Such customization dramatically changes the nature of the generated scripting interface 

and allows users to tailor SWIG to the needs of their applications. This section provides 

a high-level introduction to typemaps and their use.

4.10.1 T ypem aps

Simply stated, typemaps are special processing rules that are attached to specific 

C /C + +  datatypes in order to customize the way iri which SWIG generates wrapper 

code. The name “typemap” and general idea, has been derived from the xsubpp compiler 

packaged with Perl although the SWIG implementation expands upon the idea [91].

To illustrate how typemaps work at a high level, consider the following SWIG interface

’/.module example 
‘/.in clu d e c o n s tr a in t s . i  
‘/.in clu d e typem aps. i

‘/.apply double NONNEGATIVE { double px
'/.apply in t  ’•'OUTPUT { in t  *u id th , in t  *height >;
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/+  Compute a square root * / 
double sq rt(d o u b le  px) ;

/*  Return the width and h e igh t o f an image */

vo id  im agesize(Im age *img, in t  *w idth, in t  * h e ig h t) ;

Now, consider the use of the resulting scripting interface as shown for an interactive. 

Pyt.hon session.

>>> s q r t ( - l )
Traceback (innerm ost l a s t ) ;

F i le  "<std in>", l in e  1, in  ?
ValueError: Expected a n on -n egative  v a lu e .
>>> sz  = im agesize(irag)
>>> p r in t  sz  
(400 ,3 0 0 )
» >

In this case, the sq rt function generates a Python exception when passed a negative 

value. Furthermore, the im agesize  function takes the returned width and height and 

returns them as a two-element Python tuple.

To better understand what is happening, SWIG splits all C declarations into a collec

tion of (type,name) pairs as follows:

(d o u b le , "sqrt") 
(d o u b le , "px") 
(v o id ," im a g esize" )  
(Image * , ,'img'') 
( in t  * , "width") 
( in t  * , "height")

s q r t : retu rn  type  
s q r t : Argument 1 
im agesize: return  type  
im agesize: Argument 1 
im agesize: Argument 2 
im agesize: Argument 3

The ‘/.apply directive in the interface file attaches special processing rules, known as 

typemaps. to specific (type, name) pairs. Thus, (d oub le, "px") has been forced to 

be a nonnegative value whereas ( in t  *, "width") and ( in t  *, "height") have been 

marked as output values. During processing, SWIG checks each (type, name) pair to 

see if it matches any of the typemaps that have been specified. If a match is found, the 

special processing associated with the typemap is used when generating wrapper code. 

Once defined, typemaps apply to all future occurrences of a particular (type, name) pair. 

Thus, all occurences of in t  *u idth  and in t  *h eigh t would be processed as output 

values in the above example.



4.10.2 T ypem ap R ules
So far, the general idea behind typemaps has been presented, but how are typemaps 

actually created? Consider the Tel wrapper function for the factorial function given in 

Chapter 3.

/*  A Tel Wrapper Function * /
s t a t i c  in t
w rap _fact(C lien tD ata  c lie n tD a ta , T cl_In terp  * in te r p ,  

in t  argc , char * argv [])

in t  r e s u lt ;  
in t  argO; 
i f  (argc != 2) {

T cl_SetR esu lt(in terp ,"W ron g # a r g s . fa c t  {  in t  } ",TCL_STATIC); 
retu rn  TCL_ERR0R;

>
axgO = ( in t )  a t o l ( a r g v [ l ] );  
r e s u lt  = fa c t (a r g O );
s p r in t f  ( in t e r p -> r e s u lt , '“/.ld" , (lo n g ) r e s u l t ) ;  
retu rn  TCL_0K;

>

The wrapper function performs several distinct operations. First, the function argu

ment is converted from Tel to C. Then, the C function is callcd. Finally, the result of the 

C function is converted back into Tel. In SWIG, each of these operations is given a unique 

name such as “in” for input parameter processing, “nut" for output value processing, and 

so forth. To define a new typemap, the 7,typemap directive is used as follows:

/ /  R edefine th e  method fo r  con vertin g  in te g e r s
7ityperaap(tcl, in ) in t  n {

$ ta rg e t  = ( in t )  a to l(S s o u r c e ) ; 
p r in t f  ("R eceived n = */4d\n" , $ ta rg e t)  ;

>

in t  f a c t ( in t  n ) ;

When SWIG generates wrapper code, the C code supplied in the typemap will be 

inserted into the wrapper function whenever a function argument of “'in t  n” is encoun

tered. In the proccss. the $source and $ ta rg e t tokens are replaced with the names of 

real G variables in the wrapper function. Thus, the wrapper function for f a c t O  with 

the above typemap appears as follows:

/*  A Tel Wrapper Function w ith a typemap * /
s t a t i c  in t



w rap _fact(C lien tD ata  c lie n tD a ta , T cl_In terp  * in te r p , 
in t  argc , char *argv [ ] )

{
in t  r e s u lt ;
in t  argO;
i f  (argc != 2) {

T c l_ S e tR e su lt( in te r p , "Wrong # args. fa c t  { in t  } " ,TCL_STATIC); 
retu rn  TCL_ERROR;

>
/*  Typemap code * /
i

argO = ( in t )  a t o l( a r g v [1 ]) ;  
p r in t f  ("R eceived n = */,d" , argO );

>
r e s u lt  = fact(argO );
s p r in t f  ( in t e r p -> r e s u lt , "‘/.Id11, (lon g ) r e s u l t ) ;
retu rn  TCL_0K;

>

In this example, new C code (from the typemap) has been inserted into t.he wrapper 

function, replacing the original code that was used to convert integers from Tel to C. The 

Ssource token has been replaced with a r g v [l]  which contains the string Tel passed as 

an argument. The Star ge t token was replaced with argO which is the integer value that 

will be passed to the real C function.

Although a simple example has been presented, SWIG defines approximately a dozen 

different typemap operations. These include input and output operations, default argu

ments, value checking, output arguments, and so forth as shown in Table 4.5. A full 

discussion of typemaps is not possible here and interested readers are advised to consult 

the SWIG Users Manual for more information [9].

4.10.3 Advantages of Typem aps
More formal interface generation tools often force users to explicitly state the nature 

of the interface being constructed. Therefore, functions might be declared as follows:

double foo('/4input double *a, ‘/ou tp u t double *b, in t  n) ;

Unfortunately, annotating interfaces in such a manner is problematic. First, if users 

are required to annotate a large number of functions, it makes SWIG difficult to use. 

Second, such annotation breaks from ANSI C /C + +  syntax. This would make it difficult 

to mix SWIG interfaces with C header files and would severely limit SW IG’s ability 

to operate as rapid development tool. Finally, this approach would require the SWIG
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Table 4.5. SWIG typemap rules
Name Description
arginit
argout
check
const
default
except
freearg
ignore
in
member in
membcrout
new free
out
ret
varin
varont

Initializes function arguments 
Returns values through function arguments 
Checks the value of function arguments 
Creates scripting language constants 
Sets a default value to function arguments 
Exception handling
Fiees resources used in argument conversion
Forces an argument to be ignored
Converts values from scripting to C
Sets member data of C /C + +  objects
Returns member data of C /C + +  objects
Used to free memory
Converts data from C /C + +  to scripting
Cleans up return results of functions
Sets global variables
Gets the value of global variables

compiler to support a large collection of built-in processing rules. This would complicate 

the implementation of SWIG and limit its flexibility-especially if users did not like the 

behavior of the built in rules.

The typemap approach solves all of these problems. First, if programs uses consistent 

naming schemes for function parameters, typemaps can be used to quickly attach special 

processing rules to large collections of functions. In other words, once defined, a typemap 

applies to all future occurrences of a parameter avoiding the need to explicitly annotate 

every single function. Even if a program does not use a consistent naming scheme for 

parameters, it is unlikely that, a developer would have picked names at random. Therefore, 

a SWIG interface file is often easily modified to fit into the typemap model. Second, the 

use of typemaps preserves ANSI C /C + +  syntax. This allows users to customize interfaces 

while still being able to work with C header and source files. Finally, typemaps provide 

users with an almost unlimited number of customization options. Rather than rigidly 

defining a few special processing rules in the compiler, typemaps can be written to add 

almost any kind of special purpose processing. This makes SWIG more flexible and easily 

adapted to a wide variety of software.



4 . 1 1  E x c e p t i o n  H a n d l i n g

All scripting languages provide a mechanism for wrapper functions to report errors. 

Ideally, SWIG should exploit this to convert, run time errors in the C /C + +  code into 

scripting language errors. That is, if an error occurs someplace inside the C code, it 

.should be reported to the user in the form of a scripting language error. SWIG allows 

users to specify exception handling code using the '/.except directive. For example, the 

following exception handler can be used to convert errors in the standard C library into 

Perl exceptions.

/ /  A SWIG ex cep tio n  handler fo r  the standard C lib r a r y
'/.except (p e r l5 )  { 

errno = 0;
$ fu n ctio n  
i f  (errno) {

c r o a k (s tr e r r o r (e r n io ) ) ;
}

}

During compilation, SWIG inserts the exception handling code directly into all of the 

wrapper functions. In the process, the $ fu n ctio n  token is replaced with the real C /C + +  

function call. As a result, a wrapper function might appeal- as follows:

XS(_wrap_fopen) {
FILE * r e su lt ;  
char *argO; 
char * a r g l;

/*  E xception  hand ling code * /  

errno = 0;
r e s u lt  = fo p e n (a r g O ,a r g l); 
i f  (errno) {

c r o a k (s tr e r r o r (e r r n o ));
>

>
/*  Return the r e s u lt  * /

>

Should an error occur, an appropriate error message will now be extracted from the 

C library and reported back to the user as a Perl error.



4 . 1 2  M i x e d - L a n g u a g e  P r o g r a m m i n g  I s s u e s

The use of SWIG results in mixed-language applications in which scripting languages 

provide high-level control and compiled code is used to implement much of the underlying 

functionality. This section briefly describes some of the language issues that arise when 

working in such an environment.

4.12.1 Nam espace M anagem ent
When incorporating existing applications into a scripting environment, it is sometimes 

possible to generate, namespace clashes. First, the name of a C function or variable 

may conflict with the name of a keyword or function defined in the scripting language 

interpreter. Tb fix this problem, SWIG provides the ‘/.name directive that changes the 

name assigned to a declaration. For example, the declaration

‘/.name(output) vo id  p r in t(c h a r  *s) ;

creates a new scripting language command “output” that is really mapped onto a C 

function “print.” The second type of namespace clash occurs in the underlying C wrapper 

code created by SWIG. In rare instances, the C implementation of the scripting language 

may define symbols that are used by the application being wrapped. SWIG is unable to 

resolve these conflicts becausc they arc due to linking problems (and outside the scopc 

of SWIG’s capabilities). However, these conflicts can usually be resolved by making 

minor modifications to the original application or with clever use of the C preprocessor. 

Fortunately, most scripting languages use a naming scheme that avoids these problems.

4.12.2 M em ory M anagem ent
The use of scripting language extension modules involves the management of objects 

created by the scripting language interpreter as well as those created in C /C + + . Given 

that scripting languages implement various forms of memory management and garbage 

collection, the use of C /C + +  extensions raises a number of issues.

4.12.2.1 Garbage C ollection and Pointers
SWIG manages all objects and complex data structures through the use of typed 

pointers. Although these pointers refer to some underlying C /C + +  data structure, the 

data cannot, be examined or directly manipulated by the scripting language interpreter. 

Tb further complicate matters, the scripting language interpreter has no way to know



where the data, being pointed to actually came from. Therefore, it would be a mistake 

for the scripting language interpreter to deallocate memory that was still in use in the 

underlying C /C + +  application.

To prevent these problems, SWIG maintains a strict separation between the ma

nipulation of typed pointers in the scripting interpreter and the underlying C /C + +  

data. Although scripting languages often implement garbage collection using reference 

counting, this is only applied to the pointer value itself—not the underlying data. In 

other words, when a pointer goes out of scope, only the pointer itself is deleted. To 

delete the underlying data, the user must explicitly destroy it by either invoking a C + +  

destructor or calling a deallocation function.

The explicit destruction of objects closely matches the memory management schemes 

used in C and C + +  programs. For example, in C, objects are typically created and 

destroyed using m alloc and fr e e . In the scripting interface generated by SWIG, a 

program manipulating C /C + +  data would be required to use an identical approach. 

Furthermore, just as in C, a program written in a scripting language would be subject to 

the same potential problems found in C programs such as memory leaks, accidental use 

of deallocated memory, dangling pointers, and so forth. That is, the use of C /C + +  data 

from scripting is not much different than the use of that data from C or C+ +  .

4 .12 .2 .2  Im plic it M em ory A llocation

Certain C functions implicitly perform a memory allocation when executed. SWIG 

has 110 way to know if this occurs or not. Therefore, it is often up the user to know which 

functions allocate memory and to clean up that memory when it is no longer in use. In 

addition, SWIG provides a special directive, ‘/.new that can be used to provide a hint to 

the code generator that a function is returning newly allocated memory. For example,

‘/.new char *get_messageO ;

tells SWIG that this function is returning newly allocated character string. If the user 

chooses, they can define a typemap that cleans up this memory upon exit from a wrapper 

function. For example,

‘/.typemap (new free) char * { 
f r e e (S s o u r c e ) ;

>



In this ease, the C function returns a newly allocated string that is copied into a scripting 

language string. Afterwards, the codc supplied in the typemap is used to deallocate the 

returned memory before passing control back to the interpreter.

SWIG sometimes generates implicit memory allocation when returning objects by 

value. For example, the function

V ector cross_p rod u ct(V ector  * v l ,  V ector * v 2 ) ;

returns a new object by value. Since SWIG only knows how to manipulate pointers, this 

fuuction gets translated into the following wrapper codc:

V ector *w rap_cross_product(V ector * v l ,  Vector *v2) {
Vector ^ r e su lt  = (Vector *) m a llo c (s iz e o f (V e c to r ) );
♦ r e su lt  = c r o ss_ p r o d u c t(v l, v 2 ) ; 
retu rn  r e s u lt ;

>

In this case, every use of the function would result in an implicit memory allocation. It 

is up to the user to explicitly deallocate the result of the function by invoking f r e e .2

4 . 1 2 . 2 . 3  O b j e c t s  a n d  W r a p p e r  C l a s s e s

In Section 4.9.3, scripting wrapper classes were described. Wrapper classes provide 

high-level management of C and C + +  objects. As a result, it is possible to support a 

limited form of garbage collcction and data management. When SWIG creates scripting 

wrapper classes, it adds a special ownership attribute to the wrapper class. This attribute 

determines if the scripting language interpreter or C /C + +  owns a particular object. 

When the interpreter cleans up a wrapper class object, it invokes the class destructor. 

This destructor examines the ownership attribute to see if the interpreter owns an object. 

If so, the underlying C /C + +  destructor is invoked. If not, the wrapper class is destroyed, 

but the underlying object is preserved.

To determine ownership, SWIG applies a simple rule: if an object is created from the 

scripting language interpreter, it is owned by the interpreter. As a result, wrapper objects 

that are created from scripting are automatically managed by the interpreter while all 

other objects are managed by C /C + + . In addition, the ownership of objects can be 

explicitly changed by the user if needed-

2In C + + ,  the default copy constructor is used co copy the returned object.



4.12.3 Callbacks
Some C /C + +  applications use callback functions to implement certain functionality. 

When working in a scripting environment, it may he desirable to implement callback 

functions in the scripting language interpreter itself. SWIG does not provide any built-in 

support for this type of programming. However, such a capability can often be imple

mented through the use of special wrapper functions and typemaps [9].

A closely related problem is that of overriding C + +  virtual (unctions with methods 

written in scripting languages. Again, SWIG provides no builtin support for supporting 

this style of programming. However, handwritten wrappers can often be written to 

accomplish this.

4.12.4 Process and R esource M anagem ent
Scripting languages provide extensive support for managing operating system re

sources and processes. However, scripting languages do not have the ability to know 

what resources are utilized by an underlying C /C + +  extension nor arc extensions able 

to peer inside the interpreter. As a result, there is a separation between the resources 

used by the interpreter and its compiled extensions. Although this is rarely a serious 

situation, it can lead to problems in complex applications. For example, an extension 

that is multithreaded may cause the scripting interpreter to crash if it is not thread safe.

4 . 1 3  T h e  S W I G  L i b r a r y

To encourage reuse and to make interface generation easier, SWIG is packaged with 

a standard library. The library consists of modules that provide scripting interfaces to 

common libraries (memory management for instance) as well as common customization 

options. Library files are included in an interface using the ‘/.include directive as follows:

'/module example 
’/.in clu d e p o in t e r , i  
‘/.in clu d e ex c ep tio n , i  
'/.include typem aps. i

The most powerful feature of the library is that it is designed to be independent of the 

target scripting language. Thus, many library files are written to work correctly with any 

of the target scripting languages. Finally, the library mechanism is a useful mechanism 

for working with large packages since interface files can be created and put in a shared



repository. All of the users working on a system can then build interfaces to different 

components using files in the repository as needed.

4 . 1 4  L i m i t a t i o n s

Even though SWIG attempts to simplify the construction of scripting interfaces to 

existing applications, it has a number of limitations. First, not all C /C + +  datatypes are 

supported as described in Section 4.8.3. Second, the following C + +  features are currently 

unsupported:

• Operator overloading.

• Overloaded functions.

• Namespaces.

• Templates.

• Nested classes.

Finally, some applications may be poorly suited for use in a scripting environment. For 

example, C + +  programs making extensive use of advanced features may be difficult to 

incorporate in a scripting environment. Likewise, packages involving complex APIs may 

make scripted use and wrapper generation difficult.

Although limitations exist, most “typical” applications can be incorporated into a 

scripting environment with a little work. Even where limitations exist, a number of 

workarounds are available. Some of these workarounds are described in Chapter 5.

4 . 1 5  S u m m a r y

Although it is impossible to cover all of SWIG's features and implementation details, 

there are a number of important points. First, SWIG is designed to build scripting 

interfaces to existing applications written in ANSI C /C  + +  . To simplify this process, 

interfaces axe constructed using the header and source files of those applications. Second, 

SWIG provides mechanisms for interfacing with most of the datatypes and constructs that 

would be found in a typical C /C + +  program. In addition, SWIG is highly adaptable 

and allows users to customize interfaces with exception handlers and typemaps. Finally,



SWIG provides a library mechanism that can be used to simplify the construction of 

interfaces and encourage reuse.



C H A P T E R  5  

I N T E R F A C E  C O N S T R U C T I O N

The effective use of SWIG generally requires more than simply grabbing a C header 

file and turning it into a scripting interface. Therefore, the construction of useful scripting 

intcrfaccs may require the introduction of helper functions, changes to the way in which 

SWIG generates wrapper code, and minor modifications to the application itself. Fur

thermore, a user may decide to change the entire appearance of an application in order 

to promote usability and flexibility. This chapter describes the process and techniques 

used to build scripting interfaces to existing applications.

5 . 1  F i r s t  U s e  o f  S W I G

A typical C /C + +  application consists of functions, variables, and objects that form 

its implementation. In addition, there is a main function and control code that is used 

to start and drive the program. When first building a scripting interface, applications 

are transformed as shown in Figure 5.1. In this transformation, the underlying imple

mentation remains largely unaffected while the control code is replaced with a scripting 

language interpreter. In general, the transformation process involves the following steps:

• Locate header files containing C /C + +  declarations.

•  Copy the headers to a separate interface file.

•  Edit the interface file (if necessary).

•  Remove the application’s main() function and control code.

• Run SWIG to create a scripting language module.

Since commonly used datatypes and functions usually appear in header files, these files 

provide a good starting point for building the scripting interface. Although SWIG can 

sometimes work directly with header files, the contents of these files arc usually copied
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F igure 5.1. Creation of a scriptable application

to a separate interface file. This allows the user to remove problematic declarations and 

add SWIG directives as needed. Thus, the process of building a quick and dirty scripting 

interface really involves little more than copying a few files and making a few small 

adjustments.

After SWIG has been used to create a scripting interface, much of the underlying 

functionality of an application is exposed to the scripting language interpreter. When 

using the scripted version, users can interactively execute functions, set and query vari

ables, and perform almost all of the tasks that might have been previously written in C. 

In fact, the application almost behaves as if it is running inside a debugger or some other 

development tool.

In many cases, the first use of SWIG can be a rapid process. In fact, one early user, 

who was new to SWIG, managed to create a Tel interface to the OpenGL graphics library 

in approximately 10 minutes [75], Such results are encouraging, but a word of caution 

is order. Even though it can be easy to create a scripting interface, that interface may 

be awkward to use or partially broken. Therefore, effective interface building generally 

requires a little more work.

5 . 2  E v o l u t i o n a r y  I n t e r f a c e  D e v e l o p m e n t

SWIG promotes the evolutionary development of scriptable applications. Rather than 

requiring a scientist to precisely specify a complete interface in advance, header files can 

be used to quickly put a scripting interface on an existing package. By using the scripted 

version, limitations and problems can be identified. These problems, in turn, can be



fixed by either modifying the SWIG interface description or the underlying application 

in an appropriate manner. This process then repeats itself as additional problems are 

discovered.

This approach is particularly well suited for scientific applications because it. allows 

the underlying application to be used even if there are minor problems in the scripting 

interface. Thus, the application and its interface can be improved as the application is 

being used for practical work. In addition, the evolutionary approach closely matches 

the piecemeal manner in which scientific applications are typically developed and main

tained. Finally, the evolutionary approach ultimately results in better interfaces because 

changes arc motivated almost entirely by the use of the application. In other words, by 

using the application, techniques for improving the interface can be easily be found and 

implemented. This, in turn, results in an interface that is well suited to the needs of users 

and the problems at hand.

5 . 3  H e l p e r  F u n c t i o n s

To supply missing functionality or to provide a scripting interface with new features, 

“helper functions” can be added to a SWIG interface. A helper function is simply a new 

function, written in C, that is added to the scripting interface (and “helps" to improve 

the intcrfacc in a manner of speaking). A simple helper function is as follows:

’/.inline '/.{ 
void
p rin t_V ector(V ector  *v) {

p r in tf  (" [ ‘/.g , “/,g , */,g ] \n " , v-> x , v -> y , v - > z ) ;
}
’/.}

The "/.inline directive is used by SWIG to add new C functions to the scripting 

interface (the term “inline” is used because the given C code is inlincd into the output 

wrapper code). In this case, a simple debugging function has been added to the interface 

to output the value of V ector objects.

Limitations in the SWIG parser can also be addressed using helper functions. For 

example, SWIG and most scripting languages do not support C + +  operator overloading. 

However, an overloaded operator can be encapsulated in a helper function as follows:

’/ . in l in e  ’/.{
V ector
vector_add(V ector &a, Vector &b) {



>
*/.}

Helper functions can also be used Lo change the interface to certain parts of a package. 

For example, a scientific application might require the user to set the values of global 

variables before calling a function as follows:

Min_x = 0 .0 ;
Min_y = 0 .0 ;
Min_z = 0 .0 ;
Max_x - 283.1;
Max_y = 283 .1;
Max_z = 500 .0;

in it ia l iz e _ g e o m e t r y O ; # I m p lic it ly  depends on above param eters

Such an approach is somewhat awkward to use from scripting because there are implicit 

dependencies between Hie variables and the behavior of the function call. Therefore, a 

helper function could be used to provide an alternative interface as follows:

‘/ . in l in e  '/,-{
v o id  geom etry(double xmin, double ymin, double zmin,

double xmax, double ymax, double zmax) {
Min_x = xmin;
Min_y = ymin;
Min_z = zmin;
Max_x = xmax;
Max_y = ymax;
Max_z = zmax; 
in it ia l iz e _ g e o m e t r y ( ) ;

>
*/.}

Helper functions are an integral part of using SWIG because they supplement and 

enhance the scripting interface without affecting the underlying application. Even though 

the creation of helpers may appear tedious, they can almost always be written in ordinary 

C or C + +  without regard for scripting language internals. As a result, helpers are 

relatively easy to write and are usable from all scripting languages.

5 . 4  T y p e  M a n a g e m e n t

In Chapter 4 methods for representing various datatypes were described along with 

the SWIG pointer model. This section describes the manipulation of C datatypes within

return a+b;



a scripting environment along with some of the techniques used to make bettor interfaces.

5.4.1 Type Conversion
By default, SWIG manages all types other than than the simple built-in C datatypes 

as pointers. Although simple, this approach can lead to usability problems by making 

the scripting interface awkward to use. As a result, it may be useful to override SW IG’s 

default behavior and to process certain datatypes differently. For example, the OpenGL 

library contains a large number of functions that expect small arrays passed as arguments 

(params) such as

vo id  glLightfvCGLenum l ig h t ,  Glenum pname, G Lfloat *param s);

By default, SWIG will generate an interface that requires the params argument to be 

passed as a pointer. To generate this pointer, helper functions can be written to create 

an array, populale it with values, and deallocate it when finished. However, a more 

elegant approach is to use a typemap to map scripting language lists and arrays into an 

appropriate params object. An example typemap for Python is as follows:

‘/.typem ap(python,in) G Lfloat *params(GLfloat tem p[10]) {
in t  i ,  sz;
i f  ( !PyL ist_C heck($source) {

PyErr_SetString(PyExc_TypeError, "Expected a l i s t ! " ) ;  
retu rn  NULL;

}
sz  = P y L is t_ S iz e ($ so u r c e );
i f  (sz  > 10) sz  = 10;
fo r  ( i  = 0; i  < sz ; i++) {

PyDbject *0  = P y L ist_ G e tIte m ($ so u r c e ,i); 
i f  (PyF loat_C heck(o)) {

tem p[i] = (G Lfloat *) P yF loat_A sD ouble(o);
> e l s e  {

PyErr_SetString(PyExc_TypeError, "Expected a f lo a t ! " ) ;  
retu rn  NULL;

>
>
S ta rg et = temp;

}

The precise implementation of the typemap is not so important for this discussion. 

However, the use of the typemap changes the scripting interface so that Python lists can 

be used wherever a parameter of G Lfloat *params occurs in an interface. For example

glLightfv(GL_LIGHT0, GL.AMBIENT, [0 .0 , 0 .0 ,  0 .0 ,  1 .0 ] )



5.4.2 C ontainers

Sometimes it is useful to keep track of additional information about, various C objects 

in a scripted application. For example, it might be useful to manage C arrays as both 

a pointer value and size to improve reliability. To illustrate, consider the following C 

function:

double
dot_product(double *a, double *b, in t  le n )  { 

in t  i ;
double r e s u lt  = 0 .0 ;  
fo r  ( i  = 0; i  < len ; i++,a++,b++) { 

r e s u lt  += (* a )* (* b );
>
retu rn  r e s u lt ;

>

In this function, two arrays are passed as pointers, but no guarantee is made about the 

size of those arrays. In fact, a size mismatch could result in a program crash or erroneous 

result. Unfortunately, there is no way for the function to know the real sizes of the array 

arguments.

One trick for working around this problem is to use a container structure. For example, 

a C array might be described by the following structure:

s tr u c t  DoubleArray { 

double * p tr ; 
in t  s iz e ;

>

Using the container, a simple helper function can be written to override the original 

C function as follows:

/ /  C reate a h e lp er  fo r  dot„product
U
double new_dot_product(DoubleArray *a, DoubleArray *b) { 

i f  (a -> s iz e  != b -> s iz e )  {
error("A rray s iz e  m ism atch!"); 
retu rn  0 .0 ;

>
retu rn  d o t_ p r o d u c t (a -> p tr ,b -> p tr ,a -> s iz e ) ;

g lL igh tfv (G L _ L IG H T l,  GL_SPOT_DIRECTION, [ - 1 . 0 ,  0 . 0 ,  0 . 0 ] )



•/.}

/ /  Wrap the h e lp er  fu n c tio n  (but use the o r ig in a l  name) 
*/,nanie(dot_product)
double new_dot_product(DoubleArray *a, DoubleArray * b ) ;

In the scripting interface, the dot .product command will now expect two array objects 

as arguments. If any other kind of object is passed, or if the sizes mismatch, an error 

will be generated. Thus, in effect, the scripting interface is shielding the underlying C 

application from a potential error.

5.4.3 A liasing
SWIG provides minimal support for certain C /C + +  datatypes such as pointers to 

functions and templates. Some of these difficulties arc due to parsing limitations (very 

complex datatypes) and others are semantic (what is a template in a scripting language?). 

However, some of these problems can be eliminated by hiding problematic datatypes 

behind new names. To illustrate, consider the definition of a simple C + +  template class.

tem p la te< c la ss  T> c la s s  L is t  { 
p r iv a t e :

p u b li c :
L is t  ( );

“L is t  ( );  
void  append(T o b j);
T g e t ( in t  n ) ;
T rem ove(int n ) ; 
in t  len g th  0  ;

} ;

If this class were given to SWIG, it would be ignored since there is no way to 

build a scripting interface to a raw template definition (since no real type-information is 

available). However, an aliasing trick can be used to produce an interface to a specific 

instantiation of the template class as follows:

/ /  SWIG in te r fa c e  to  a C++ tem plate in s ta n t ia t io n  
*/.{
/ /  In se r t  a typ ed ef in to  the wrapper code (SWIG ig n o res  t h i s )  
typ ed ef L ist<double> D oubleL ist;
*/.}

/ /  Wrap i t  as a normal c la s s



c la s s  D oubleL ist { 
p u b lic :

D ou b leL ist( ) ;
"D oubleL ist() ;

vo id  append(double o b j);
double g e t ( in t  n ) ;
double rem ove(int n ) ;
in t  l e n g th Q ;

>;

In this case. the template instantiation has been aliased to a new name of D oubleL ist. 

This name is then used to define a class in the interface file. When compiling, SWIG 

converts the class definition into wrapper functions and produces a scripting interface 

capable of creating and manipulating objects of type L is t< d o u b le> .

5 . 5  O b j e c t - B a s e d  I n t e r f a c e s

Although the use of objects is supported (to varying degrees) by most scripting 

languages, existing applications written in C may make limited use of such techniques. 

However. SWIG can be used to retrofit an objcct-based scripting interface onto such 

applications.

Building object-oriented interfaces to non-object-oriented programs can be accom

plished using the SWIG class extension mechanism. To illustrate, suppose that a object- 

oriented scripting interface to the ANSI C file I/O operations were to be constructed. 

This could be done using class extension as follows:

•/.{
^ in clu d e < std io .h >

typ ed ef s tr u c t  { } FILE;
‘/,addniethods FILE {

FILE(char * filen am e, char *mode) { 
retu rn  fo p e n (file n a m e , m ode);

>
in t  c lo s e O  {

i c l o s e ( s e l f );
>
in t  f lu s h O  {

return  f f l u s h ( s e l f );
>
in t  g e tc ( )  {

retu rn  f g e t c ( s e l f ) ;
>



in t  p u tc ( in t  c) {
retu rn  f p u t c ( c , s e l f );

>
in t  p u ts (c o n st  char *s) { 

retu rn  f p u t s ( s , s e l f ) ;
>
s iz e _ t  read {vo id  *p tr , s iz e _ t  s i z e ,  s iz e _ t  nobj) { 

retu rn  f r e a d (p tr , s i z e , n o b j . s e l f ) ;
>

>

Using this interface, files could be created and manipulated exactly as if they were 

objects. For example,

# Python s c r ip t  m anipulating f i l e s  
f  = F i le O 't e s t '1, "w") # Open a f i l e
f .p u ts (" H e llo  world\n") # P rin t a message

f .c l o s e O  # C lose the f i l e

The process of building object-based interfaces does not require modifications to the 

underlying C  code nor does it rely on C + + -  For example, the construction of an object- 

based interface to the file I/O operations required no changes to the C  library nor did it, 

even require the definition of the FILE structure.

5 . 6  I m p r o v i n g  R e l i a b i l i t y

Existing programs may experience problems when operating in a scripting environment 

due to its highly flexible and event driven nature. Although exception handlers can be 

defined to catch run-time errors, a number of other modifications can be made to improve 

the stability of scriptable applications.

5.6.1 Execution Order Dependencies
Within a software package, execution order dependencies may implicitly exist between 

certain functions. That is, assumptions may be made about the order in which functions 

are to be executed. In addition, certain functions may only be legally executed once while 

other functions may be used repeatedly. Scripting can cause such applications to fail since 

functions can now be executed al: any time and in any order. Furthermore, when users 

are unaware of such dependencies and limitations, they can easily write scripts that crash
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the program or cause erroneous execution.

In Figure 5.2, execution order dependencies between different functions are shown. In 

the figure, function A must be executed prior to executing functions B or C. Likewise, 

function D requires the prior execution of B and function E requires the execution of 

functions B and C. To capture the relationship between these functions, additional state 

variables can be added to the application and used as a safety check. For example, the 

original code might be modified as follows:

/ /  S ta te  v a r ia b le s  
A _ in it  = 0;
B _ in it  = 0;
C _ in it  = 0;
/ /  Functions  
A() {

A _ in it  = 1;
>
B ( )  {

i f  ( !A _ in it )  return;

B _ in it  = 1;
>
CO {

i f  ( !A _ in it )  return;

C _ in it  = 1;
>
DO {

i f  ( !B _ in it )  return;

>
EO {

i f  (O B ^ in it )  II ( !C _ in it ) )  return;

>

State variables can also be used to handle cases of reentrancy. For example, if a 

function can only be executed once, it can be modified as follows:

AO {
i f  (A _ in it)  return; / /  Already executed  

A _ in it  = 1;
>



Figure 5.2. Execution order dependencies

SWIG currently provides no mechanism for explicitly specifying the dependencies 

between functions. As a result, such modifications are generally made to the original 

application. Although this requires slight modifications to the original code, it has the 

benefit of improving the reliability of the original applicatiou independently o fits  scripting 

interface.

5 .6 .2  A r g u m e n t  C h ec k in g  

Other reliability problems can occur if invalid values are passed to certain functions. 

For example, functions might only work on positive values, non-NULL pointers, and so 

forth. Although the functions can be modified directly, SWIG typemaps can also be used 

to impose constraints on function argument values. For example,

/ /  SWIG in te r fa c e  w ith argument checks 
’/.typemap(check) double P o s it iv e  { 

i f  (S ta rg e t <= 0)
SWIG_exception(SWIG_ValueError,"Expected a p o s i t iv e  v a lu e" );

>

/ /  Make sure a l l  FILE * va lu es are non-NULL 
*/,typemap (check) FILE * { 

i f  (S ta rg e t == NULL)
SWIG_exception(SWIG_ValueError, "Received a NULL p o in ter " );

>
>

double log (d ou b le  P o s i t i v e ) ; / /  Works on ly  on p o s i t iv e  v a lu es  
in t  fc lo se (F IL E  * ); / /  FILE * must be non-NULL



In this case, the value checking code is used wherever arguments of double P o s it iv e  

and FILE * appear. If an improper value is passed to such fuactions, a scripting language 

error will be generated.

5 . 7  D a t a  M a n a g e m e n t

Most scicntific applications are data intensive. Managing data is important and there 

arc several approaches that are commonly used. First, an application may store data in 

global variables. With this approach, functions implicitly examine and modify the state 

of the system. A second approach is to use object-oiientcd techniques in which various 

types of objects are used to hold data.

The choice of data model has a surprisingly large impact on the nature of the scripting 

language interface presented to the user. In some cases, the use of global data may simplify 

a scripting interface by reducing the number of program parameters that are passed to 

various functions. For example, a simulation code might maintain a large pool of data 

corresponding to the current state of a simulation and assume that all functions operate 

on that data. Likewise, object oriented techniques are most useful when working with 

large collections of objects. For example, a visualization system might allow a user to 

manipulate different images and viewpoints. In this case, an object-oriented scripting 

interface would most closely match the intended use of such a system.

Although existing programs may utilize one or both of these data management models, 

it is sometimes useful to change the data model when building a scripting interface. Such 

a change can improve the usability and flexibility of an application without requiring any 

modifications to its underlying implementation. Furthermore, such changes might allow 

an old application to be used in new and interesting ways.

To change an application relying on global parameters to an object-oriented model, a 

container class can be used. This class mirrors the global variables used in the original 

application. Methods for setting and saving the state of the system are then implemented 

to copy the values of global variables. Finally, wrappers are created around the original 

functions so that the state of the system is property managed. For example,

/ /  G lobal v a r ia b le s  in  o r ig in a l  a p p lic a t io n  
extern  double Minx; 
ex tern  double Miny;

/ /  C lass fo r  b u ild in g  an 00 in te r fa c e



c la s s  Data { 
p r iv a t e :

/ /  Mirror th e  g lo b a l v a r ia b le s  here 
double minx, miny, minz; 
double maxx, maxy, maxz;

p u b lic :
D ata ();

"DataO ;
/ /  Set th e  g lo b a l v a r ia b le s  
void  s e t _ s t a t e ( )  {

Minx = minx;
Miny = rainy;
Minz = minz;

>
/ /  Save th e  g lo b a l v a r ia b le s  
void  s a v e _ s ta te ( )  { 

minx = Minx; 
miny = Miny; 
minz = Minz;

>
// Now object-oriented implementations of functions 
vo id  memory(int s iz e )  { 

s e t _ s t a t e ( ) ;
: : m em ory(size); 
s a v e _ s t a t e ( ) ;

>
void  in te g r a t e ( in t  n s tep s)  { 

s e t _ s t a t e ( ) ;
: : in te g r a t e ( n s t e p s ) ; 
s a v e _ s t a t e ( ) ;

}

Likewise, an object oriented interface can be transformed using similar techniques.

For example,

/ /  G lobal v a r ia b le  ho ld ing  current s ta t e  
Vieu *gLobal_view = 0;

/ /  Set the current s ta te  
void  set_v ieu (V iew  *v) {  

g lob a l_v iew  = v;



/ /  Methods op era tin g  on th e  g lo b a l view
void  r o ta te _ r ig h t(d o u b le  deg) {

g lo b a l_ v ie w -> r o ta te _ r ig h t(d e g );
>

void  r o ta te _ le f t (d o u b le  deg) {
g lo b a l_ v ie w -> r o ta te _ le f t (d e g ) ;

>

It is important to note that these transformations do not affect the original application. 

Rather, they can be used to change the “appearance” of an application when building 

its scripting interface. As a result, this allows old applications to be used in new and 

interesting ways.

5 . 8  P e r f o r m a n c e  C o n s i d e r a t i o n s

The performance characteristics of scripting languages is a major concern for most 

application developers. The poor performance of interpreters is generally well known 

although not often quantified. The failure of software projects in which the performance 

of high-level languages was ignored has also been occasionally described in the literature

The performance of scripting languages has a major impact on the design and im

plementation of scripting interfaces to scientific systems. This section describes the 

performance properties of scripting languages and associated design considerations.

5.8.1 T he P erform ance of Scrip ting  Languages

Although scripting languages and interpreters have been gaining in popularity, sur

prisingly little information is available about their performance characteristics. Users are 

well-aware that that scripting languages are slower than C, but just how much slower are 

they?

In a recent paper providing a clock cycle analysis of interpreter performance (including 

Java, Perl, and Tel), scripting languages were shown to have a performance approximately 

400 to 3700 times slower than C on a simple benchmark [88]. Much of this slowdown is 

due to the overhead of decoding and dispatching scripting language commands. However, 

the authors also point out that the performance of interpreters is not easily characterized 

by any single factor:



The performance of an interpreter cannot be attributed solely to the frequently 
executed command dispatch loop. Performance is also linked to (1) the expres
siveness of the virtual command set and how effectively these virtual commands 
are used, (2) the use of native runtime libraries, and (3) the way that the 
virtual machine names and accesses memory. The “architectural footprint” of 
an interpreted program is primarily a function of the interpreter itself and not 
of the programs being interpreted, and that the high-level interpreters behave 
similarly to large SPECint()2 applications such as gcc [88, p. 158].

The performance of scripting languages is largely impacted by the use of compiled 

code. Thus, even though a simple benchmark application written entirely in the scripting 

language may run 1000 times slower than C, a script making heavy use of a compiled 

extension may run much faster. For example, the same article showed that for certain 

operations such as string splitting, concatenation, and file I/O , scripting languages were 

only 1.2 to 80 times slower than C [88].

5.8 .2  T he P erform ance of C om piled E xten sion s

When SWIG is used to build a scripting interface, the performance of the underlying 

C code is largely unaffected. Where performance becomes critical is in the use of the 

scripting interface. Whenever a function is issued from the interpreter, it must be decoded 

and dispatched to the appropriate wrapper function. The wrapper function must then 

convert the function arguments into an appropriate representation before calling the 

C function. Afterwards, the result must be converted back into scripting and control 

returned to the interpreter.

The dispatch and decoding process may require several thousand machine instruc

tions [88]. Furthermore, the performance is largely affected by the number of function 

arguments being passed as well as their type (decoding pointers is more expensive than 

decoding integers for instance). Therefore, users should assume that the execution of a 

function issued from a scripting language may require several thousand more machine 

instructions than would have been required in C.

The overall performance degradation of a compiled function due to a scripting interface 

is entirely dependent upon the amount of work performed by that function and the 

performance penalty imposed by the scripting language (which varies widely). Table 5.1 

shows the performance penalties that would be incurred for a variety of function execution 

times and scripting language performance penalties. In the table, the number of native 

instructions represents the number of machine instructions executed by the C function
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Table 5.1. Performance penalties of scripting

Native Instructions
Scripting Instructions 

100 1000 10000
10 11.0 101.0 1001.0
100 2.0 11.0 101.0
10000 1.01 1.10 2.0
1000000 1.0001 1.001 1.01

while the number scripting instructions represents the number of machine instructions 

required to decode and dispatch a command as well as execute the codc contained in the 

wrapper function.

As a rule of thumb. C functions should perform an order of magnitude more work than 

the scripting language in order to achieve a performance penalty less than 10%. Thus, 

if a scripting language requires 1000 instructions to issue a function call, a C function 

should cxccutc approximately 10000 instructions to achieve less than a 10% performance 

penalty. To put this in concrete terms, the function would have to perform approximately 

the same amount of work as required for a matrix multiplication of two 20 x 20 matrices. 

Clearly, the performance penalty skyrockets when functions perform very little work. For 

example, if a function only performed 10 instructions, the performance penalty incurred 

in the scripted version could easily be more than a factor of 100.

5.8.3 D esign ing  for Perform ance

The introduction of scripting to an application will always result in a performance 

penalty. However, the size of the penalty is largely determined by the design and use of the 

scripting interface. Generally speaking, the following situations result in few performance 

penalties when used in a scripting environment.

• Functions involving a significant amount of computation.

• Outer loops of computationally intensive operations.

• Infrequently executed functions.

On the other hand, the following situations tend to result in substantial performance 

penalties when performed from scripting language.

• Repeated use of functions performing little work.



• Inner loops of computationally intensive operations.

• Fine-grained manipulation of large amounts of data.

Although scientific applications vary widely, computational kernels and numerically 

intensive operations should be written in C /C +  +  . Meanwhile, most high-level opera

tions and control can be implemented with scripts. This arrangement also reflects the 

complementary nature of systems and scripting languages where systems languages are 

used for performance critical operations while scripting languages are used for control 

and component gluing.



C H A P T E R  6  

S O F T W A R E  C O M P O N E N T S

Given an existing application, SWIG can be used to construct a scripting interface. 

In doing so, the application become more usable and flexible. However, one of the most 

powerful features of scripting languages is their ability to manage software components. 

Rather than building a huge monolithic package, applications can he decomposed into 

collection of scriptable modules. These modules can then be assembled as needed to solve 

particular problems.

The component approach is attractive for a number of reasons. First, it largely 

eliminates the tangled control logic found in many scientific programs and allows the sub

systems forming a large monolithic package to repackaged as a collection ofloosely coupled 

components. Second, it gives applications a well-organized modular structure that allows 

new features to be added in a sensible manner (since new features can usually be added

new modules). In addition, components simplify development and maintenance sincc 

each module is self-contained and more easily managed than a huge monolithic package. 

Finally, the component approach makes it easier to combine and use different components 

in an integrated environment. For example, a simulation program and visualization tool 

could lie turned into components and combined to form an integrated simulation and 

data analysis system. Such integration would streamline the, problem-solving process and 

could allow scientists to be more productive.

This chapter describes the use of scripting language components, decomposition of 

large applications into modules, integration of components, and design patterns for as

sembling component based software.

6 . 1  S c r i p t i n g  L a n g u a g e  C o m p o n e n t s

Scripting languages support two distinct forms of components. First, a component 

can be written entirely as a script. When the user wants to use the component, it is 

simply loaded and interpreted. The sccond type of component is a compiled extension
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module. These are the types of modules that are created by SWIG. When creating a 

compiled extension, the original C /C + +  code and wrapper functions are compiled in a 

shared library. The scripting interpreter can then load shared libraries as needed and 

execute the wrapper functions they contain.

When SWIG is used to create a scripting interface to an application, that application is 

effectively transformed into a component. As a component, it can be used and combined 

with other components to create new applications. As a result, the application really 

becomes a piece of a much larger programming framework. Although it is impossible to 

cover all aspects of software frameworks here, articles describing the benefits of frame

works and component-based approaches frequently appear in the literature [36, 1, 69]. 

Detailed information about using popular component frameworks such as CORBA and 

COM can be found in a variety of books such as [74, 87], More formal descriptions of 

frameworks and software architecture can be found in [90].

6 . 2  S p l i t t i n g  A p p l i c a t i o n s  i n t o  C o m p o n e n t s

Large applications usually contain a variety of subsystems that are interconnected 

with control code. When SWIG is used to add a scripting interface, much of this control 

code can be eliminated as described in Chapter 5. As a result, the major subsystems of an 

application can be exposed and split into libraries as shown in Figure 6.1. The libraries, 

in turn, can be encapsulated in a collection of scripting language extension modules using 

SWIG.

When using the component-based application, a user only uses the modules that are

main()

Control Code

Subsystems

Scripting L anguage

T

C D

a SWTG
S5H

Libraries Components

Figure 6.1. Splitting an application into libraries and components



needed to solve the problem at hand. Thus, instead of using a single package containing 

all of the functionality, problems are solved by assembling an appropriate set of smaller 

and self-contained modules.

If constructed properly, components can be used from both C /C + +  programs and a 

scripting language environment. Figure 6.2 shows the structure of such a component. In 

the figure, components are split into two parts: a library and a scripting language wrapper 

module. SWIG is userl to build the wrapper module, but the wrappers are decoupled so 

that the component can be used as an ordinary link library from other C /C + +  programs 

in addition to being accessible from a scripting interpreter. This arrangement is useful 

because it provides a strict separation between the implementation of an application and 

its scripting interface. This allows the components to be used in a wide variety of other 

settings. For example, a user might use the components, without modification, to crcatc 

an application entirely in C or C + + .

6 . 3  S y s t e m s  I n t e g r a t i o n

One of the biggest problems faced by computational scientists is the decoupled nature 

of different tools and packages used in the problem solving process. If these tools can be 

integrated and used together in a more efficient manner, problem solving will be greatly 

simplified and scientists will be able to use scientific software in a more productive manner.

One way to simplify the use of different tools and packages is to provide a consistent 

and common interface- Using SWIG, scripting interfaces can constructed for various 

packages ax shown in Figure 6.3. This places different tools under the control of a common 

scripting language interpreter and makes different systems appear similar. As a result, 

this tends to simplify the use of these, tools and hide implementation differences.

Component

C/C++
Programs

C/C++ Wrapper
Library SWIG Code Scripting

Figure 6.2. Structure of a scripting language component
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Scripting Scripting Scripting

Simulation Analysis Graphics

F igu re  6.3. Providing a common scripting interface to different, packages

Although scripting languages can be used to unify different packages imdcr a common 

interface, they do not eliminate the decoupled execution of each package. For example, 

each tool may run independently and exchange data in the form of files and pipes. 

However, the ability of scripting languages to dynamically load and utilize different 

software components allows different packages to be integrated directly into a shared 

process and address space as shown in Figure 6.4. When integrated in this manner, 

packages can be modified to share data directly and interoperate with each other. Tliis 

not only improves the efficiency with which different tools can be used, it allows entirely 

new applications to be developed. For example, the integration of a simulation code aud a 

visualization package could allow a scientist to interactively visualize and steer a running 

sim ulation-a process not possible in a decoupled environment.

Scripting

Simulation Analysis Graphics

Shared Data

Figure 6.4. Direct integration of packages into into a shared environment



6 . 4  C o m p o n e n t  D e s i g n

The maimer in which components are structured and used is of critical importance. 

Without spccial attention, it is possible to create an unmanageable set of components as 

shown in Figure 6.5. Id the figure, there is no discernible structure and each component 

implicitly depends on the existence of other components. Maintaining such a component 

framework is difficult since changes to any one component could break large numbers 

of other components. Likewise, a component may depend on a large number of other 

components-making such a component extremely sensitive to such changes.

To make a components work effectively, developers need to think about the overall 

structure of their applications and the creation of components. Ideally, each component 

should be designed to perform a well-defined set of operations and depend minimally on 

the use of other modules.

Since software components are similar to objects, many of the object-oriented design 

patterns and component based software design techniques can be applied to scripted 

applications built with SWIG [43, 70]. Although an in-depth discussion of object-oriented 

design techniques is not presented here, there are a few particularly useful types of 

components that can be used in the construction of a component framework. This section 

describes these components and the situations in which they can be used.

Figure 6.5. A poorly designed set of components



6.4.1 Libraries

The raw functionality of an application or C library can be packaged into a library 

component. The purpose of a library is to expose functionality to both the scripting 

language interpreter anti other modules written in C- The structure of a library component 

is shown in Figure 6.6, but was also shown in Figure 6.2. Most of the modules created 

from an existing application will be libraries.

6.4 .2  A dapters

An adapter component (also known as a wrapper) is used to change the interface of 

an existing component. The primary application of an adapter is to make two previously 

incompatible components work together. Figure 6.7 shows the structure of an adapter.

Adapters are generally used to add new software components to an existing system  

without changing any of the existing ini,effaces. For example, a system might be coded to 

use OpenGL for graphical display. However, a user might want to port the application to 

a Windows platform and use Direct3D instead. Rather than changing the application to

Scripting

C/C++

A()

B()

F igure 6.6. A library component

Adapter

Figure 6.7, An adapter component.



use a new interface, an adapter component can be written to give an OpenGL interface 

tn the Direct,3D library. Using the adapter, the original application can continue to use 

the original OpenGL interface even though an entirely different graphics display library 

is really being used.

The important feature of adapters is that they are used to make a component mimic 

the behavior of another component in the system. This allows the two components to be 

used in a more-or-less interchangeable manner.

6.4 .3  B ridges

A bridge component is used to provide functionality involving two or more library 

components in a manner that allows those libraries to remain independent. The structure 

of a bridge in shown in Figure 6.8.

The purpose of a bridge is to implement functions that require the use of more than one 

library component, but in a way that preserves the generality of the library components. 

For example, a system may have general purpose library modules for simulation and 

graphical display. Using these two libraries, functions for performing integrated data 

visualization could be implemented. These functions involve both the simulation and 

graphics libraries; but where should the visualization functions be placed? If they are 

placed in the simulation library, that library will now depend on the graphics library. 

Likewise, a similar situation occurs if the functions arc placed in the graphics library. 

The solution to this problem is to place the visualization functions in a separate bridge 

component. This component provides functionality linking the simulation and graphics 

libraries together, but in a manner that preserves the independence of those libraries.

6.4 .4  Facades

A facade component is used to provide a unified interface to a collection of different 

components or subsystems. The structure of a facade is shown in Figure 6.9.

Bridge

AO K> G()

B() GO IX)

Figure 6.8. A bridge component
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Figure 6.9. A  Facade component

The purpose of a facade component is to simplify the interface to a variety of subsys
tems and modules. A  facade can also reduce interface, complexity and decrease the mi in her 
of dependencies between components. For example, suppose that a scientific system was 
to support a collection of different components for making data plots. Further suppose 
that a variety of different plotting libraries were to be used and that each library had a 
different interface. Rather than writing code that interfaced to every possible plotting 
library, a plotting facade component could be developed. Tbe facade would provide a 
generalized plotting interface that clients could use to make plots using any of the plotting 
components available in the system.

The benefits of facades are that they shield clients from the subsystem components 
and make these components easier to use. Facades also allow the individual subsystem 
components to be changed find updated independently without affecting any of the clients 
(i.e., weak-coupling).

Facades are similar to adapters but are used in a slightly different way. An adapter is 
typically used to make the interface of a component mimic that of another component. 
A  facade, on the other hand, is used to create a generalized interface to a collection of 
different components.

6.4.5 Building a C o m p o n e n t  Library
W h e n  creating component libraries, the use of library, adapter, bridge, and facade 

components can greatly simplify the organization and maintainability of the library by



reducing the number of dependencies between components and providing structure. Fig
ure 6.10 shows a. well-structured library of components in which the types of components 
previously described have been utilized. Iu this case, the number of dependencies has been 
greatly reduced. As a result, this collection of components would be easier to develop, 
maintain, and use thau those shown in Figure 6.5.

6.5 SWIG and Component Building

S W I G  only plays an indirect role in the construction of components and couiponent- 
based applications. By simplifying the construction of scripting interfaces, S W I G  allows 
existing applications to be easily incorporated into a scripting environment. The strong 
component flavor of scripting languages then encourages developers to think, about break
ing applications into components and combining different systems within a component 
framework.

W h e n  building scripting components, S W I G  enforces no particular design philosophy 
ou users. As a result, it is largely up to the user to create a sensible mechanism for 
building and hooking different components together.

Adapter

F ig u r e  6 .1 0 . A  des igned  c o m p o n e n t l ib ra r y



CHAPTER 7 

CASE STUDY : MOLECULAR DYNAMICS

S W I G  was originally developed for use with the S P a S M  molecular dynamics code at 
Los Alamos National Laboratory. This chapter describes the use of S W I G  and scripting 
languages with this application over a 3-year period from 1995 to 1998. Particular 
attention is given to evolutionary changes made to improve the usability and structure of 
this application. The goal of this chapter is to present, a case study describing how S W I G  
has been applied to an existing application, how that application has improved over time, 
and what the impacts of such improvements are on the problem-solving process.

7.1 The SPaSM Code

S P a S M  (Scalable Parallel Short-range Molecular dynamics) is a simulation code de
veloped at Los Alamos National Laboratory for performing large scale three-dimensional 
simulations of materials using the method of molecular dynamics [10, 3]. Applications in
clude crack propagation, dislocation dynamics, friction, and shock waves [110. Ill, 57, 58].

S P a S M  was originally developed in 1992 for the Connection Machine 5 massively 
parallel supercomputer [10]. It has since been ported to a variety of parallel machines 
including the Cray T3D, I B M  SP-2, SGI Origin 2000, and Sun Enterprise servers. It also 
operates on single processor workstations and clusters. In 1993, S P a S M  was one of the 
winners in the 1993 Gordon Bell Prize competition for achieving 50 Gflops performance on 
the 1024 processor CM-5 at Los Alamos National Laboratory [64]. S P a S M  is implemented 
entirely in ANSI C  with explicit message passing used for interprocessor communication. 
A  multithreaded version of the code for running on shared memory systems is also 
available.

Prior to 1992. most molecular dynamics simulations were limited to a few hundred 
thousand atoms and mostly performed in two dimensions [14]. S P a S M  was the first 
molecular dynamics code to perforin a simulation with more than 100 million atoms in



three dimensions and has since been used to perform a variety of production simulations 
involving millions to tens of millions of atoms.

Development of S P a S M  lias been an ongoing process. Much of the development has 
involved the introduction of new physical models and the creation of code used to study 
different physical problems. A  scripting language was added to S P a S M  code in 1995 and 
is being used as a foundation for making further improvements today.

7.2 Before SWIG

In Chapter 2, problems related to scientific software such as piecemeal growth and user 
interfaces were discussed. This section describes these issues with respect to SPaSM.

7.2.1 D e v e l o p m e n t  of S P a S M
The first version of S P a S M  was written to perform simple three-dimensional molecular 

dynamics simulations using a short-range Lennard Jones interatomic potential [10], The 
primary goal was to develop and test parallel algorithms for short-range molecular dy
namics and to investigate the scalability and performance of these algorithms. The initial 
implementation, consisted of approximately 3000 lines of ANSI C  and could perform 
simulations with as many as 67 million atoms.

In 1993, development primarily focused on achieving better performance. Although 
good scalability was observed, S P a S M  achieved only 1.5% of the peak performance of the 
CM-5. To improve performance, assembly codc was written to drive the CM-5 vector 
units which resulted in a factor ten performance improvement. A  few additional features 
including new boundary conditions and table lookup methods were also added to the 
code at this time. By the end of 1993, the code had doubled in size to approximately 
6000 lines and could perform simulations with as many as 180 million atoms [15].

By late 1994, S P a S M  had been ported to a variety of other parallel machines. In 
addition, development had focused on making the code better suited to production 
computing. Capabilities for I/O, checkpointing, and restarting were improved and new 
physical models were introduced. A memory optimization also allowed for simulations 
with as many as 300 million atoms. At this time, a number of other scientists had started 
using and expanding the code which had now more than doubled in size to 17000 lines.

B y mid 1995, S P a S M  had grown to nearly ‘25,000 lines. The number of users had also 
inc.rea.sed., making software maintenance problematic. Not only were there many different 
configurations, modules, and extensions, users would often copy the source and make



changes to Uleir local copy. Incorporating these changes back into the master version was 
extremely difficult since it was common for each user to have slightly modified versions of 
the code that was incompatible with all of the other versions for one reason or another. 
By now, it was clear that an alternative approach for organizing and using the system 
would be useful.

7.2.2 User Interfaces
S P a S M  was originally controlled through the use of command line options and inter

active input. A  sample session appears as follows:

7. SPaSM -il -p8:8:8 -mlOOOOO -c4:4:8 -rO:0:0:80:80:160 -tO.OOl \
-elO -olOO

Starting Run 17.
Initializing Node Processors...
Setting up initial conditions...
Number of Particles : 1024000
Nsteps : 1000
Integrating 1000 timesteps...
Nsteps : 1000
Integrating 1000 timesteps...
Nsteps : 0
Writing data to Savel7

To run the code, all of the simulation parameters were specified as command line options. 
The user was then queried for the number of integration timesteps. Entering a positive 
number would result in that many numerical integration steps. Entering zero or a negative 
number would force the program to exit.

As more features were added, the use of command line options became difficult to 
manage. Not only was it difficult for users to remember all of the command line options, 
iL was clear that a more flexible user interface would be needed for continued development.

A  rudimentary command interpreter was added in 1994. This interpreter allowed the 
user to interactively enter a keyword followed by a value. The keywords corresponded to C  
global variables that could be queried or modified. In addition, ccrtain keywords would 
trigger internal functions. With this interface, the code was controlled through both 
command line options and the interpreter. Although this approach made it somewhat 
easier to change parameters and execute simple functions, the interpreter was quite 
limited in functionality. To complicate matters, adding new parameters to the interpreter 
required users to write C  code such as the following:



void
initcond_command(char **tokens)
{

char ^Commands[NC], *Format[NC3, *Carg[NC];
PFI Cptr [NC];
char **cp, **fp, **ap;
PFI *pp;

cp = Commands; fp = Format; ap = Carg; pp = Cptr;
*(cp++) = "aspectx"; *(fp++) = "‘/.d11;
*(ap++) = (char *) feaspectx; *(pp++) = NULL;
*(cp++) = "aspecty"; *(fp++) = '"/,d";
*(ap++) = (char *) feaspecty; *(pp++) = NULL;
*(cp++) = "aspectz" ; *(fp++) = '"/.d";
*(ap++) = (char *) feaspectz; *(pp++) = NULL;

*(cp) = NULL;
/* Parse commands * /

parse_commands(tokens, Commands, Format, Carg, Cptr);

>

>

By 1995, it was clear that this user interface scheme was not going to scale as the. 
application continued to grow. Furthermore, there was a growing interest in adding 
data analysis and visualization capabilities to the system. These additions would be 
significantly more complicated than anything that had previously been written. Thus, a 
better scheme for controlling the application needed to be devised.

7.2.3 D a t a  Analysis a n d  Visualization W o e s  

The primary goal of S P a S M  was to investigate molecular dynamics simulations on a 
scale not previously possible. Even though such simulations could be performed, they 
would typically take tens to hundreds of hours of C P U  time to complete and were always 
submitted as batch processing jobs after a suitable set. of simulation parameters were 
determined. It was not uncommon to have tens of gigabytes of output data to analyze 
after each simulation. To analyze data, each datafile would be transferred over the 
network to a local workstation. Using a standard 10 Mbps network connection, the 
transfer of a 1.6 Gbyte datafile would take between 30 minutes to an hour depending 
on network load. Once available locally, the datafile would be fed into a visualization 
tool. Most visualization was performed vising a customized visualization tool written for 
a high-end SGI Onyx workstation. Although this tool theoretically allowed the user to



interact with the data, it often required several hours to render a single image and was 
usuable for large datasets.

Although large simulations could be performed with SPaSM, analysis and visualization 
of those simulations proved to be a painful process involving days and even weeks of effort. 
Even for small simulations, the process was far from easy. For example, one simulation 
involving 1.2 million particles resulted in 1000 datafiles each about 20 Mbytes in size (20 
Gbytes of data). Although the entire simulation required less than 6 hours of C P U  time 
to run, visualizing the data to produce an animated movie of the time evolution required 
more than a week of continuous processing on two high-end raphics workstations.

From a usability standpoint; this situation was unacceptable. Scientific computing is 
an inherently exploratory activity. Yet, the vast amounts of data made such exploration 
virtually impossible. In fact, the process was so difficult, the first 3 years of the S P a S M  
project saw only a handful of “real” simulations.

7.2.4 T h e  N e e d  for a N e w  A p p r o a c h
After three years of frustration, a new approach had to be developed to make large- 

scale molecular dynamics modeling practical. The data analysis and visualization prob
lems were the greatest concern, but better approaches for controlling and managing the 
simulation code were also needed.

The primary obstacle to effective data analysis was the decoupled nature of simulation, 
analysis, and visualization. W h e n  these tasks are decoupled, analysis is performed by 
taking the output files of a simulation and feeding them into an analysis package (often 
located on a different machine). This package might generate additional data files that 
could be used for visualization and so forth. Unfortunately, for large scale molecular 
dynamics, the amount of data easily overwhelms existing tools and makes this approach 
highly ineffective (for example, loading a large M D  dataset into A V S  would cause the 
system to crash).

A n  obvious solution to the data analysis problem is to provide better integration 
between simulation, analysis, and visualization tools. Rather than performing these 
tasks separately on different machines, perhaps everything could be performed on the 
high performance supercornpnting system. Furthermore, research efforts in computa
tional steering had demonstrated that the integration of these tasks greatly improved the 
usability of scientific systems [80, 49]. Given the data analysis problems with SPaSM, it 
was decided that a steering approach might provide the greatest benefit to users. With



such an approach, tasks that were decoupled would be integrated. This integration would 
eliminate the need (,o transfer huge amounts of data between tools and systems. This, in 
turn, would allow users to perform m o m  simulations and to be more productive.

Although this idea is highly attractive, it is also problematic. H o w  would such a 
system be assembled? H o w  would a user control it? H o w  would it be extended with 
new functionality? At the time, S P a S M  was structured in a relatively ad-hoc manner 
and controlled through a weak user interface. Adding such a sophisticated data analysis 
capability would certainly require a more powerful approach for controlling and building 
scientific software.

7.3 The SWIG Prototype

In 1995, a prototype scripting system was constructed for the S P a S M  code [11]. This 
system consisted of a simple scripting language and an automatic code generator for 
building extensions. This section describes the implementation, use, and results of using 
the prototype. Many of the lessons learned in this stage went into the development of 
the S W I G  compiler and future versions of SPaSM.

7.3.1 A  Scripting L a n g u a g e  a n d  C o m p i l e r
Due to the special purpose nature of parallel machines and difficulty of using existing 

software, a simple parallel scripting language was implemented using Lex and Yacc [G2). 
This scripting language supported a few useful datatypes, provided all of the constructs 
found in a normal computer language (procedures, loops, conditionals, variables, etc...), 
and could operate properly on parallel machines (mainly an issue of proper I/O handling). 
This language could also be interfaced to C  functions. Thus, the idea was that ali of the 
C  functions in S P a S M  could be exposed to the user as “commands” in this language. In 
addition, the command driven interface, could be used to interactively drive data analysis 
and visualization features when they were eventually added to the system.

To provide acccss to C  functions, the scripting language required wrapper functions like 
other scripting languages. To generate these functions automatically, a simple compiler 
was developed to turn simple ANSI C  declarations into wrapper code. This compiler only 
supported global variables and functions. In addition, it only supported four C  datatypes 
(int, double, char *, and void). Although limited, this was enough to support most of 
the S P a S M  code.



7.3.2 Building the Initial S y s t e m
With Dio scripting language and wrapper code compiler in place, a scripting inter

face to S P a S M  was constructed by copying C  header files and editing them slightly to 
create, an interface file for the wrapper generator. Most C  functions in the system were 
already defined in header files so this process effectively exposed most of the underlying 
functionality to the scripting interface. The wrapper code compiler made the process of 
building the scripting interface surprisingly easy. In fact, the initial interface description 
was created in approximately 15 minutes.

Since the scripting language replaced the old command interpreter and command line 
options, the S P a S M  m a i n O  function was modified to initialize and pass control to the 
scripting language interpreter upon startup. Other than modifying mainO and adding 
the scripting interpreter, no other parts of the S P a S M  code were modified. Given that 
the system had grown to approximately 25,000 lines of code, modifying the system in a 
drastic manner was not an option sincc it was unclear whether the scripting approach 
would actually work. Therefore, changes were initially kept to a minimum.

7.3.3 Using the Scripted Version
W h e n  running the scripted version of SPaSM, the user was presented with a command 

prompt. At the command prompt, the user could execute various C functions, set 
variables, query parameters, and execute scripts such as the following:

! Script for strain-rate experiment
! Run parameters
exdot = 0.0;
eydot * 0.001;
ezdot = 0.0;
lx =80;
ly = 40;
lz =10;
lc =20;
gapx = 5.0;
gapy = 25.0;
gapz =5.0;

! Set up a morse potential 
alpha = 7; 
cutoff = 1.7;
source("Examples/morse.script");
makemorse(alpha,cutoff,1000); ! Create a morse table 
init_table_pair(); ! Use a tabulated pair-potential
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! If restarting from a file, the variable Restart is set to 1 
! We'll only create the initial condition if not restarting 
if (Restart == 0)

ic^crackdx.ly.lz.lc, gapx, gapy, gapz, alpha, cutoff); 
set_initial_strain(0.0.017,0); 

endif;

! Now set up the boundary conditions 
set_strainrate(exdot,eydot,ezdot); 
set.boundary.expand();

Benchmarks; ! Report timing information
MovieMode=l; ! Output frame numbers for visualization
FilePath="/sda/sda2/beazley/test";
output_addtype("pe"); ! Output potential energy

! Run it
timesteps(1000,10,50,500)

In the script, most of the function calls correspond to C  functions in the original 
application. Capitalized variables such as Benchmark are mapped directly onto C  global 
variables used to hold various run-time parameters (by convention, global variables were 
capitalized in SPaSM). Most other variables are local to the scripting interpreter and not 
visible to the underlying C  implementation.

Although this approach was somewhat similar to earlier interface schemes, it was also 
significantly more powerful. Rather than creating simple input files, users could write 
sophisticated simulation scripts. These scripts could contain control logic and even define 
new functions. As a result, the scripting language interface was mucli more than a simple 
user interface-in fact, it effectively became an interpreted extension of the underlying C  
code.

7.3.4 D e a d  C o d e  Elimination
By adding a scripting interface, the old user interface scheme was rendered obsolete. 

However, significant portions of codc related to the old user interface were still in place 
despite being inoperative (or dead). With scripting successfully in place, this code 
(corresponding to about a thousand lines of source) was gradually eliminated. As a 
result, S P a S M  was transformed primarily into a large library of functions and variables. 
Even though much of the control logic linking various functions together remained in 
place, the code was gradually simplified as it was freed from its original user interface.



7.3.5 I m p r o v i n g  Reliability
Prior to the use of scripting, S P a S M  required a prccisc sequence of operations when 

running a simulation.

1. Specify problem parameters.

2. Initialize particle memory.

3. Initialize the problem geometry.

4. Initialize the force calculation.

5. Set up an initial condition.

6. R u n  the simulation.

The sequence in which these operations were performed was hard-coded into the 
original implementation and many of the steps assumed the successful completion of 
earlier steps. For example, in order to create an initial condition; it was assumed that 
particlc memory and local geometry had been initialized.

To properly handle these execution order dependencies, S P a S M  was modified with 
state variables using the same process described in Chapter 5. For example

int Memory_Init = 0; 
int Geometry_Init = 0;

void memory() {

Memory_Init = 1; 
return;

>

void geometry0  {
if (!Meraory_Init) {

printf("Memory not initialized!\n"); 
return;

>

Geometry_Init = 1; 
return;

>



void initcondO {
if ( !Geometry_Init) {

printfC’No geometry initialized!\n"); 
return;

}

>

Although the required modifications were minor and simple to implement, such changes 
greatly improved the reliability of the code and made it difficult for the user to crash the 
system by issuing commands in the wrong order.

A  related problem was that of function “rcentrancy.” Previously, certain functions 
could only be used once during a simulation. However, with scripting, it, became possible 
for the user to repeatedly call functions with new parameters. Many functions in S P a S M  
were unprepared for this possibility and would cause a crash if this occurred. To fix this 
problem, many functions were modified to check for prior use as follows:

int Memory_Init = 0;

void memory () ■[

if (Memory_Init) -[
// Memory already initialized.
// Reallocate memory

} else {
// Initialize new memory

>

Meraory_Init = 1; 
return

>

In the months following the introduction of a scripting interface, most of the criti
cal C  functions in S P a S M  were modified slightly to check for proper initialization and 
reentrancy. These changes, although minor, greatly improved the stability of the system 
and made it difficult for users to inadvertently crash the code. It. also allowed S P a S M  
to be used in new ways. By making functions reentrant, it was possible to completely 
reconfigure a simulation on the fiy. For example, a user could dynamically change the 
partitioning of data across processors or change the simulation geometry by simply issuing 
appropriate commands. Previously, such changes would have required checkpointing and



7.3.6 Integrated D a t a  Analysis a n d  Visualization
To add a data analysis and visualization capability, a simple parallel graphics library 

was implemented [11]. In addition, a number of application specific visualization functions 
were written. Previously, these functions were contained in a separate package for use on 
an SG[ workstation. However, in the new implementation, the functions were written to 
directly examine the molecular dynamics data in memory and use the graphics library to 

create various types of plots.
As output, the graphics system produced GIF images [72]. These images were sent 

across a socket connection to a server running on the user’s workstation [93], W h e n  the 
server received an image, it was displayed using an image display tool such as xv.

To control the analysis and visualization system, the C  functions forming the sys
tem were wrapped and included in the scripting language interface. By typing various 
commands interactively, the user could then create and manipulate images as follows:

SPaSM [1] > open_socket("sol.c s .utah.edu",32487)
Opened connection with sol.cs.utah.edu
SPaSM [1] > imagesize(500,500);
SPaSM [1] > colormap("cml5");
SPaSM [1] > range O'ke",0,10);
SPaSM [1] > image 0 ;
SPaSM [1] > rotr(45);
SPaSM [1] > rotd(10);
SPaSM [1] > zoom(200);
SPaSM [1] > down(25);
SPaSM [1] > clipx(45,55);

The introduction of an integrated visualization capability revolutionized the use of 
SPaSM. Since visualization and analysis were now part of the simulation package, they 
could be performed at any time during a simulation. Furthermore, these tasks could 
be accomplished without using a separate tool or transferring large datafiles between 
machines. Using the visualization capability, datasets as large as 100 million atoms could 
be visualized and displayed on an ordinary workstation in as little as 15 seconds over a 
standard T1 internet conncction. By comparison, similar tasks using the older tools used 
to require tens of hours.

re s ta r t in g  t,he e n tire  s im u la t io n .



7.3.7 Lessons Learned
The prototype scripting system was used with S P a S M  for approximately one year and 

revolutionized the manner in which simulations were performed. The use of scripting also 
had an impact on the implementation and underlying structure of the software.

Scripting languages. The prototype demonstrated that scripting languages could be 
used to drive high performance scientific applications. In fact, scripting proved to 
be superior to any of the interlace techniques that had previously been used.

Automatic wrapper code generation. A n  automatic wrapper code generation tool 
proved to a highly effective method for building scripting language interfaces. This 
tool allowed the original application to be scripted in a relatively short amount of 
time. It also allowed developers to focus on other aspccts of the system and the 
addition of new functionality. In fact, in the year that the prototype was used, no 
wrapper functions were written by hand, nor were any errors attributed to the use 
of an automated tool.

Impro v e d  software. The introduction of scripting resulted in improved software. 
Since scripting replaced the original user interface, that code could be stripped from 
the application and thrown away. In addition, the event-driven nature of scripting 
resulted in a number of minor modifications to make S P a S M  more robust and usable.

Benefits of integration. The integration of simulation, data analysis, and visualization 
revolutionized the use of the code. Tasks that used to take hours could now be 
performed in seconds, while tasks taking days could be performed in a matter 
of minutes. This not only made the code more usable, hut made it practical for 
scientists to perform and analyze large-scale molecular dynamics simulations on an 
everyday basis.

Evolutionary improvement. At no time during its transformation was the S P a S M  
code inoperable. The wrapper code compiler could be used to add scripting to 
S P a S M  with few modifications. As minor changes were made and the code improved, 
the scripting interface was easily evolved and maintained.



7.3.8 Limitations
Even though the prototype was Highly successful, it also sufFered from a number of 

drawbacks.

Choice of scripting language The prototype utilized a custom scripting language. 
Although this language was functional, it was severely limited. There were 110 

high-level data structures such as lists and associative arrays, no error handling 
mechanism, nor any support for objcct oriented programming. To further complicate 
matters, there was no documentation and support for users. Compared to other 
scripting languages, it was clear that bringing the custom scripting language up to a 
comparable standard would involve a substantial and long-term development effort 
and that such an effort would be of questionable value.

Limitations in wrapper generation The automatic wrapper generator provided only 
four C  datatypes and only supported functions and global variables. Although this 
proved to be sufficient for building a working prototype, better results might be 
achieved though a more sophisticated compiler capable of supporting a larger subset 
of the C  language.

System organization Although scripting had proven to be an effective means for 
controlling simulations and visualization, little attention was given to the overall 
structure of the application. In fact, S P a S M  was still a large monolithic package 
where all of the different pieces of the system were linked together and combined 
to create a large executable. In addition, much of the control logic found in earlier 
implementations remained in effect despite the improved interface.

Usability The new system was significantly more usable than prior versions, but was 
by no means perfect. The relatively unstructured nature of the original application 
resulted in a scripting interface with minor inconsistencies and quirks. Most of the 
usability problems were due to inexperience with scripting language interfaces and 
limitations in the design of the original S P a S M  implementation. Thus, even though 
it was relatively easy to add a scripting interface, that interface was not without 
problems.



7.4 SWIG and Python

Many of the lessons learned in the prototype went into the development of SWIG. In 
1996, the prototype was replaced with a new scripting interface based on Python and 
S W I G  [7], This section describes that transition and additional improvements made to 
the code.

7,4.1 Building a P y t h o n  Interface
Python was selected as a replacement for the prototype scripting language [66]. Python 

is a freely available object-oriented scripting language that has been used increasingly 
in scientific applications. Since the scripting language interface in the prototype was 
generated automatically with a precursor to SWIG, changing S P a S M  to use Python was 
a simple process. Interface files from the prototype were modified slightly and fed into 
the S W I G  compiler to generate Python wrappers. In addition, the raain() function was 
modified to initialize and start the Python interpreter. No other changes were made to 
the source code.

The conversion process required a few hours of work, but most of this time was spent 
modifying Makefiles and other parts of the build process to use Python instead of the 
older scripting interface. After the conversion, S P a S M  operated in an identical manner 
as before except that the scripting interface was now a Python interpreter. Aside from 
a few minor syntax changes, scripts developed for the older scripting language could be 
easily adapted to Python and used exactly as before.

7.4.2 Splitting S P a S M  into C  Libraries
Since Python supports dynamic loading of modules, S P a S M  was restructured as a 

collection of components. To do this, major parts of the system were identified, isolated, 
and turned into the following collection of C  libraries:

S P a S M  library. All molecular dynamics simulations rely upon a core set of algorithms 
and functions. This library contains general purpose functions for memory m a n 
agement, parallel M D  algorithms, data distribution routines, I/O functions, and so 
forth. The contents of this library almost exactly match the first version of code 
developed in 1992 (although almost all of the algorithms have been refined and 
improved).



System library. To achieve portability across a wide range of platforms, S P a S M  is im
plemented over a machine-independent collect ion of message passing and threading 
wrappers. This library provides the implementation of these wrappers and is used 
as a facade component by most other modules.

Graphics library. The parallel graphics library used for the visualization system 
consists primarily of functions for creating images and primitives for two-dimensional 
and three-dimensional graphics. The graphics library is entirely general purpose and 
does not rely upon any of the data structures or functions contained within other 
modules.

Analysis and visualization library. The analysis and visualization library acts as 
a bridge between the S P a S M  code and the graphics library. Although the graphics 
library is generic, this library directly accesses particle data to create and display 
images.

Simulation libraries. Specific scientific problems involve a certain amount of cus
tomized code such as physical models, boundary conditions, numerical integrators, 
and so forth. The implementation of these features may be different for each 
problem that is solved. Therefore, each problem is encapsulated into a separate 
library. For example, functions used to solve shock wave problems are packaged 
into a separate library than functions used to study dislocation crossings. These 
libraries generally live in user directories as opposed to being part of the generic 
S P a S M  implementation.

By creating these libraries, S P a S M  was split into logically distinct pieces. In the 
process, much of the control logic holding the system together was removed or rewritten. 
Even though few changes were made to the underlying algorithms, significant changes 
were made to the overall structure of the application. Most of these changes were made 
to the interfaces between libraries in order to make each library self-contained and generic.

7.4.3 Creation of P y t h o n  M o d u l e s
With S P a S M  split into C  libraries, Python modules were created to provide access to 

these libraries. The C header files describing each library were modified slightly to serve 
as S W I G  interface files. The headers could then be given to S W I G  to create Python



wrappers. These wrappers were compiled and linked against the C  libraries to form a 
collection of dynamically loadable Python extension modules.

Although there is a one-to-one mapping between Python modules and C  libraries, there 
is a strict separation between the C  implementation and Python interface as described in 
Chapter 6. The C  libraries do not contain any Python specific codc and can be used to 
create stand-alone C  executables. Likewise, the Python extension libraries only contain 
the wrapper code needed to build the Python interface, but these are merely linked 
against the C  libraries to create the full extension module.

Finally, to simplify the maintenance and use of the components, they were placed 
in a common repository accessible to all users. One of the biggest problems with the 
prototype was that users made copies of the source code and started working with a local 
copy. This made maintenance and development difficult since each user always ended up 
with a different copy of the code. With a component repository, a common collection of 
components could be given to all of the users though access to a centralized component 
library. W h e n  changes were made to each component, those clianges would automatically 
be propagated to all of the other users.

7.4.4 Object-Oriented Extensions
Unlike the prototype wrapper generator, S W I G  allows scripting interfaces to C  data 

structures to be built. To exploit this, the scripting interface was modified to include 
various data structures within the S P a S M  code. For example, particles are described by 
the following data structures:

typedef struct { 
double x,y,z;

} Vector;

typedef struct { 
int type; 
int tag;
Vector r;
Vector s;
Vector f ; 
double p e ;

} Particle;

W h e n  given to SWIG, these structures are converted into methods for accessing and 
manipulating Particle objects from the Python interface. Thus, if p is a particle object,



SPaSM [39] > print p.type 
2

SPaSM [39] > print p.r.x, p.r.y, p.r.z 
0.870868933099 0.1 11.5630339965 
SPaSM [39] > p.tag = 1 
SPaSM [39] >

To improve the interface to data structures, the S W I G  class extension mechanism was 
used to attach “methods” to C  data structures. For example, the following interface file 
attaches methods for extracting particles, output, and array indexing.

// Have SWIG attach the following methods to Particles 
V,addmethods Particle {

/* Return a pointer to the nth particle */
Particle(int n) {

return ((Particle *) Particles) + n;
>

/* Array indexing method */
Particle *__getitem_(int n) ■[

return self+n;
>

/* Create a string representation of a particle * /

char *_str__() {
static char s[1024]; 
sprintf (s, "type : 7,d\n\ 

tag : 7,d\n\
r : [‘/.0.17g, 7.0.17g, ‘/.0.17g] \n\ 
s : [%0.17g, 7.0.17g, 7.0 . 17g] \n\ 
f : [%0.17g, 7.0.17g, 7.0.17g] \n\ 
pe : y.0.17f\n",

self->type, self->tag, 
self->r.x ,self->r.y,self->r.z, 
self->s.x,self->s.y ,self->s.z, 
self->f.x ,self->f.y ,self->f.z, 
self->pe); 

return s;
>

>

The added methods do not change the internal C  implementation of particlcs, but 
they make it possible for the user to manipulate and view particles as follows:

SPaSM [39] > p = Particle(10) # Get the 10th particle
SPaSM [39] > print p 
type : 0

a  user can  issues c o m m a n d s  such as th e  fo llo w in g :
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tag
r
s
f
pe

[0.10000000000000, 1.6417378661970, 12.333902929576] 
[0.02565919519959, 0.1543604111549, 8.4869030486381] 
[0, 0 , 0]

-5.972883777266366

SPaSM [39] > # Find the particle with the highest pe
SPaSM [39] > p = Particle(0)
SPaSM [39] > max = -9999999
SPaSM [39] > for i in xrange(0,SPaSM_count_particles()): 
... if p[i].pe > max:
. . . pmax = p[i]
... max = p[i].pe

SPaSM [39] > print pmax
type
rag
r
s
f
pe

[0.87086893309851, 21.684330126758, 127.19337396125] 
[0.04636369788149, -0.0421596288401, 0.08774536227903] 
[0 , 0 , 0]

-4.29142941533476296

SPaSM [39] >

The ability of S W I G  to extend structures into classes also proved to be useful in the 
graphics system. To hold image information, a C  data structure Image was used. Various 
graphics operations then required a pointer to an Image structure as follows:

Image *create_image(int width, int height);
void destroy_image(Image *img);
void plot(Image *img, int x, int y, int color);
void line(Image *img, int xl, int yl, int x2, int y2, int color);

With SWIG, this functionality could be repackaged and attached directly to the Image 
data structure as follows:

“/.addmethods Image {
Image(int w, int h) {

return create_image(w,h);
}

"Image() {
destroy_iroage(self);

>

void plot(int x, int y, int color) { 
plot(self,x ,y ,color);

>



void line(int xl, int yl, int x2, int y2, int color) { 
line(self,xl,y1,x2,y2,color);

>

}

Within the Python interface, images now operate as if they were defined by a C + +  

class. For example,

SPaSM [39] > i = Image(400,400)
SPaSM [39] > i.plot(200,200,1)
SPaSM [39] > i.lineUO, 10,395,150,2)
SPaSM [39] > del i

7.4.5 Exception Handling
To further improve the reliability of the code, an exception handling mechanism was 

added to many of the libraries. C macros for “Try” and “Except” were implemented using 
the C  <set jmp ,h> Library. Various C  functions were then modified to throw exceptions 
such as follows:

/ ♦ A C  function that throws an exception */ 
void *SPaSM_malloc(size_t nbytes) {

void *ptr = (void *) malloc(nbytes);
if (!ptr) Throw("SPaSM_nialloc : Out of memory!’1);
return ptr;

>

If an uncaught exception occurs, the C  program prints a message and exits. However, 
other C  functions were modified to catch exceptions and recover if possible. For example,

/ ♦ A C  function catching an exception */ 
int foo() { 

void *p;
Try {

p = SPaSM_malloc(NBYTES);
> Except {

printf("Unable to allocate memory. Returning!\n"); 
return -1;

>

>

The exception handling mechanism was also hooked into the Python exception handler 
using SWIG. This was done by defining an exception handler as follows:

/ /  A u s e r  d e f in e d  e x c e p t io n  h a n d le r



/texcept (python) {

Try {

$function
> Except {

PyErr_SetString(PyExc_RuntimeError,SPaSM_error_msg());
>

>

// C declarations

The handler code gets placed into all of the Python wrapper functions and effectively 
translates C  exceptions into Python exceptions. Now, when S P a S M  is used from Python, 
exceptions in the C  code simply result in Python errors as follows:

SPaSM [39] > SPaSM_roemory(50000000)
RuntimeError: SPaSM_malloc(505032704). Out of memory!
(Line 52 in memory.c)
SPaSM [39] >

7.5 The Current Implementation

The current version of S P a S M  makes extensive use of S W I G  and its Python interface. 
This section briefly describes the organization and use of the system.

7.5.1 C o m p o n e n t s
As described previously, S P a S M  was split into a collection of C  libraries that form the 

core set of components of the system. Associated with each library is a Python wrapper 
extension module that exposes the functionality of each library to the user. In addition 
to the core libraries, a number of modules are enhanced through additional code written 
entirely in Python. For example, the visualization system is now implemented partially 
in C  and Python. Figure 7.1 shows the overall organization of the system and Table 7.1 

shows the implementation details of each component.
Unlike the monolithic nature of earlier versions, S P a S M  is now maintained entirely as 

a collection of components. Attempts to minimize the dependencies between components 
has also allowed most modules to be maintained separately. A  number of components also 
function as facades and bridges as described in Chapter 6. For example, the analysis and 
visualization library serves as a bridge connecting the simulation and graphics subsystems. 
A  general purpose system library acts as a facade for a variety of low-level system calls 
and allows the other modules to seamless operate with a threads library, MPI, or on
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Figure 7.1. S P a S M  component arcliitecture

Table 7.1. S P a S M  component implementation
Component ANSI C  (lines) Python (lines)
S P a S M  Library 7300 -

System Library 2400 -
Graphics 11000 -
Analysis &  Visualization 2700 -

Remote Graphics 550 -
Interactive Visualization - 2000
Real-time Visualization - 1000
Datafile Visualization - 650



a single processor workstation. An interactive data analysis and visualization module 
is implemented entirely in Python and provides a common interface to two different 
visualization components one for analyzing running simulations in real time, and one 
for post-processing data files. Finally, a few special purpose libraries such as a remote 
graphics module provide additional functionality to allow the graphics subsystem to send 
images over a socket connection.

7.5.2 U s i n g  the S y s t e m
W h e n  a user runs SPaSM, the Python interpreter is started and a number of the core 

modules are loaded. Afterwards, the user is presented with a command prompt. For 
example,

Python 1.4 (Jan 3 1998) [GCC 2.7.2.1]
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam

SPaSM ===== Run 41 on guinness ==== Sun Apr 26 16:08:46 1998

Copyright (C) 1992-1997
Regents of the University of California

Loading ’startup.py’
SPaSM [41] >

Al, the prompt, the user can issue commands, execute scripts, and execute any valid 
Python program. Specific simulations are packaged as Python modules and can be loaded 
and run interactively. However, common operations are likely to be placed in a script as 
follows:

# Shock wave problem

from Shock import *
nx = 1 5
ny = 15
nz = 75
sh.ock_velocity = 8.5
temp = 0.01
width = 0 . 3 3 3 3  # Width is percent of total z length
rO = 1 .0 901 733  # Lattice spacing
gap = 0 . 1 0  # Gap (7, of z length)
cutoff = 2 . 0  # Interaction cutoff

ic_shock(nx,ny,nz,shock_velocity,width,gap,temp,r0,cutoff) 
init_lj(1,1,cutoff)



set.boundary_periodic() 
set_path("/rO/beazley")
SPaSM_set_output( [X,Y ,Z ,KE,PE]) 
timesteps(100,10,50,100)

W h e n  S P a S M  is used interactively, the user can perform both simulation and analysis 
as needed. For example, after running the 100 timesteps in the previous example, the 
user could load the visualization system and take a look at Die data. For example,

SPaSM [41] > from vis import *
Colormap set to ’cm_zhouJ 
Image size set to (400,400)
SPaSM [41] > set_server("slack",1033)
Setting image server to slack port 1033 
SPaSM [41] > ke = Spheres(KE,0,20)
SPaSM [41] > rotr(90)
SPaSM [41] > rotd(10)
SPaSM [41] > zoom(200)
SPaSM [41] > vz = Profilez(VZ,40,-2,10)

After issuing these commands, images will appear on the user’s screen as shown in 
Figure 7.2. These images represent the current state of the simulation loaded in memory 
and can be used to watch the progress of the simulation and for diagnostics. In fact, it is 
even possible to run the simulation and update images simultaneously.

Although the system may appear disorganized and unstructured, this is precisely the 
desired mode of operation. Rather than having a huge inflexible monolithic application, 
the code is broken up into small modules that can be used as needed. Furthermore, the 
Python interface allows users to experiment with the code. Functions can be executed, 
variables queried, scripts executed, and simulations performed in an interactive and 
exploratory fashion.

7.5.3 Writing U s e r  C o d e
S P a S M  is now controlled through Python, but most users still write code in C. 

This code includes force functions, boundary conditions, initial conditions and numerical 
integrators. Even though many of these functions could be written in Python, they are 
written in C  because they are numerically intensive and performance critical.

Problem specific code is maintained separately by each user of the system. Thus, 
one user may be studying shock waves while another is studying dislocation dynamics. 
For each simulation, the user simply compiles their problem specific code into a Python
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Figure 7.2. Sample S P a S M  session

extension module. This module is then linked against the core S P a S M  libraries aud used 
like other modules in the system. In principle, an infinite number of user modules can 
be created. These modules can be maintained independently and two users can be using 
S P a S M  simultaneously with entirely different problems.

In the previous section, an example involving shock waves was described. This problem 
consists of approximately 4000 liues of ANSI C  code that define all of the physical 
properties of the problem. To create a Python module, the functions specific to this 
problem are placed in a S W I G  interface file that is converted to Python wrappers during 
compilation.

Since each problem is defined by a relatively small amount of self-contained C  code, 
the development of modules is considerably easier than working with a large monolithic 
package. Another important point is that by working with small modules, these modules 
can be quickly compiled and modified. For example, the entire shock wave problem 
mentioned above can be recompiled and linked with full optimization in less than a 
minute on a Sun Ultra-1 workstation. Although the compilation time of modules may



seem like a minor point, scientists spend a tremendous amount of time making minor 
modifications, recompiling their applications, and testing the outcome. For example, a 
single user of the current S P a S M  system was recently observed t;o have recompiled their 
simulation module 340 times in a month. Had the compilation and linking process taken 
15 minutes, this user would have wasted 85 hours stal ing at their screen (a startling figure 
considering that there are only 40 hours in a work week).1

7.5.4 P y t h o n  P r o g r a m m i n g
One of the most surprising aspects of the system is that significant functionality can 

be implemented entirely in Python. Since Python is packaged with a large collection 
of modules and extensions, these can be utilized to create interesting extensions to the 
molecular dynamics system. A  few of these extensions are now described.

7.5.4.1 W e b  B a s e d  Simulation Monitoring
Even with the scripting interface, production simulations may run for tens to hundreds 

of hours. During this time, it is generally impossible for the user to monitor the progress 
of a simulation or to view preliminary results (although the visualization system can be 
set up to generate image files on a periodic basis). To provide this capability, a simple 
web-server has been implemented entirely in Python. The web-server utilizes the S P a S M  
visualization module, a variety of Python network modules, and is implemented in fewer 
than 200 lines of code.

Using the web-server extension, the scientist registers images and files with the server 
before starting a simulation. A  simple numerical integration loop is then written in 
Python. Inside this loop, a polling operation is performed lo see if any users have 
connected to the code with a web-browser. If so, these requests are serviced before 
continuing on with the simulation. A  simple example is as follows:

# Load the shock wave problem 
execf ile(11 shock .py11)

M Load the visualization module 
from vis import *

1 Unfortunately, r.hc developers of sophisticated object-oriented frameworks do not seem to appreciate

compilation speed sincc 30 minute (or even 10 hour) compilation times seem to becoming increasingly 

common [84].



# Create some images 
images!ze(450,450)
ke = Spheres(KE,0,20) 
ke.rotr(90) 
ke.rotd(20) 
ke-zoom(160)
ke.title = "Kinetic Energy"

vz = Profilez(VZ,60,-l,10) 
vz.title = "Velocity Profile"

shear = PlotCells(SHEAR,-10,10) 
shear.title = "Shear Stress" 
shear.smooth=l 
shear.copyview(ke)

# Create a link to the web-server on my web-page
spasmweb.linkfile("/home/grad/beazley/.public_html/spasm.html")

# Add the images to the web server 
ke.web("kinetic.gif")
vz.web("velocity.gif") 
shear.web("shear.gif")

# Now run the simulation and periodically poll 
for i in range(0,5000):

timesteps(1,10,50,100) # Integrate
spasmweb.poll() # Check for a connection

W h e n  this script is executed, the user can point a web-browser directly to the running 
simulation code. Through the browser interface, the user can examine output files of the 
simulation as well as generate images. W h e n  an image request is made, the visualization 
module produces a plot and sends it directly to the client. No temporary files are 
created nor does the server feed previously generated images to the user. Furthermore, 
no conventional web-server is running on the simulation maclhne-the user connects to 
the physics code directly.

Although simple to use and implement, this extension provides a feature not available 
in other versions of the code. Even more surprising is the fact that it is implemented 
entirely in the scripting language interface. In other words, the web-browsing feature 
required no modifications to the underlying C  code or other parts of the system. Currently 
the web-monitoring feature is being used to remotely monitor large-scale simulations 
running on the ASCI SGI Origin 2000 machines at Los Alamos National Laboratory.



7.5.4.2 C o d e  B r o w s i n g
One problem with breaking S P a S M  into libraries and modules is the problem of finding 

functions. For example, a user might want to look at a C  function to see what it does 
or make a modification. Unfortunately, this is difficult if the user does not know, or 
remember, where the function is defined.

To solve this problem, a simple code browser was implemented entirely in Python. 
The browser uses Python regular expressions to scan files and directories for function 
declarations. Thus, using this module, a user can search for files and examine their 
contents as follows:

SPaSM [47] > import browse
SPaSM [47] > browse.find("timesteps")
I * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

****** ./timesteps»c ******
* * * * * * * * * * * * * * * * * * * * * * * * * * * * *

extern void
extern void
extern void
extern void
extern void

set_boundary_periodic(void); 
init_lj(double.double.double); 
integrate_first_velocity(void); 
integrate_adv_coord(void); 
integrate_adv_velocity(void);

#define TIMESTEP_TIMER 20

int
timesteps(int nsteps, int energy_n, int output_n, int checkp_n) { 

int laststep;
static int print_log = 0;

/* Check to make sure it’s okay to proceed */

if (!InitGeom) {
SPaSM_fprintf(stdout,"No geometry initialized.\n") ; 
return -1;

— More—  (14'/.)

A  similar capability is also available for file editing as well. In this case, when a function 
is found, an editor process (such as emacs or vi) is spawned with the appropriate source



7.5.4.3 Distributed Objects
In Chapter 3 distributed object systems such as C O R B A  and C O M  were described as 

alternative approaches to scripting. As it turns out, many scripting languages can also be 
used in a distributed object framework. For example, the ILU system provides bindings 
to Python and allows distributed object servers and clients to be implemented entirely in 
Python [60].

As an experiment, ILU was used to build a distributed object binding to the S P a S M  
visualization system. This was done by creating a Python wrapper class around fclie image 
objects defined in the visualization module. This class was then published on the network 
using the ILU extension to Python. Once published on the network, remote clients could 
conncct to the visualization system to create and manipulate images.

One such client is a simple Tcl/Tk graphical user interface tool that allows users to 
interactively drive the visualization system. The client side of the ILU interface was 
implemented in ANSI C. The functions in this interface were then interfaced to Tcl/TK 
using SWIG. In Tcl/Tk, a simple G U I  was written to allow the user to manipulate images 
using the mouse in a manner similar to that found in a more conventional visualization 
package. I

Although this is a more complicated example, it illustrates the power of the scripting 
interface. The ILU network interface is implemented in less than 100 lines of Python and 
requires no modifications to any other parts of the S P a S M  system. Yet, by using such an 
interface it became possible to drive S P a S M  remotely using other languages such as C, 
C + + ,  Java, Tcl/Tk, and so forth.

7.6 Performance

Prior to adding the scripting interface. S P a S M  was a highly tuned application designed 
to achieve optimal performance on a variety of platforms [64, 15]. In Section 5.8.1, the 
performance of scripting interpreters was described. In this section, the performance 
impact of scripting languages on the S P a S M  code are described. In addition, the entry 
of S P a S M  in the 1998 Gordon Bell Prize competition is briefly discussed.

7.6.1 Scripting for Control, C  for P e r f o r m a n c e
In SPaSM, scripting languages arc primarily used as a control median ism while com

putationally intensive operations are written in C. W h e n  running a simulation, most 
C P U  is spent calculating interatomic forces-a task that typically requires billions to



hundreds of billions of floating point operations. Even less computationally intensive 
tasks such as numerical integration require hundreds of thousands to millions of floating 
point operations. The fact that such operations might have been initiated by a slow 
scripting language interpreter is of little consequence.

To illustrate the inconsequential performance impact of scripting* the outer loop of a 
simulation was written entirely in Python and compared to an equivalent implementation 
written in C. The performance impact was then measured for a small simulation as shown 
in Table 7.2. Even for a small number of atoms, the performance impact is observed to 
be less than 0.2%.

7.6.2 A  Recent P e r f o r m a n c e  S t u d y  
S P a S M  was recently entered into the 1998 Gordon Bell Prize competition for achieving 

a price performance of $15/Mflop on a 70 processor D E C  Alpha Linux cluster at Los 
Alamos National Laboratory [102], This represents a factor 3 improvement in price 
performance over the 1997 Gordon Bell Prize winner in this category [103].

To achieve this result, the scripted version of S P a S M  was used to perform a 60.8 
million atom molecular dynamics simulation of shock-induced plasticity in an fcc-crystal 
structure. This simulation ran on 68 nodes for 2000 timesteps and required approximately 
44 hours of simulation time. The simulation also included periodic computation of 
energies, used the visualization module to create GIF images, and saved 68 Gbytes of 
check-pointed simulation data to disk. For the entire simulation, S P a S M  performed 
1.56 x 1015 floating point operations over a wall clock time of 1.58 x 105 seconds. This 
corresponds to a sustained throughput of 9.9 Gflops over 44 hours.

Each processor in this system is a 533 Mh z  D E C  Alpha 21164A with a peak perfor
mance of 1.066 Gflops, The entire production simulation (including visualization and I/O) 
sustains a performance of approximately 146 Mflops whereas the raw force computation 
runs at 189 Mflops. These performance numbers compare favorably with prior results on 
a Cray T 3 D  in which an unscripted version of S P a S M  achieved a performance of 27-41

Table 7.2. Execution time (seconds) of C  versus C  with scripting
Atoms per processor C C  with Python
13950 98.7 98.9
45000 314.1 314.8
180000 1317.1 1319.0



7.7 Results

Scripting languages and S W I G  have revolutionized the use S P a S M  and made it pos
sible to perform large-scale molecular dynamics simulations on an everyday basis. By 
improving usability and integrating tasks that were traditionally decoupled, scientists 
have been able to run simulations and interpret results in a more efficient manner. In 
fact, it is now common for scientists to perform more simulations in a month than were 
performed in the first 3 years of the project combined! More importantly, the new system 
has had a direct impact on scientific results reported in peer-review journals including 
Physical Review Letters and Science f 1.10, 111, 58],

O n  the software side, S P a S M  has been transformed from an inflexible monolithic 
package to a highly modular and flexible component-based system. Along the way, the 
structure and reliability of the code improved greatly. This has simplified maintenance 
and allowed the code to be easily expanded in new directions. Finally, the power of 
scripting languages has even allowed S P a S M  to be used in ways not previously imagined.

S W I G  played an integral, but, unusual, role in the transformation process by greatly 
simplifying the creation of scripting language modules. S W I G  allowed the original ap
plication to be easily incorporated into a scripting environment and enabled users and 
developers to focus on the use and structure of the application, not the gory details 
of component construction. S W I G  also allowed incremental changes and improvements 
to be easily incorporated into the scripting interface. Even today S W I G  remains a 
simple mechanism that can be used to extend S P a S M ’s scripting environment with new 
capabilities.

M  flops  o n  a  150 M h z  D E C  A lp h a  (12).



CHAPTER 8 

USER STUDY

Versions of S W I G  have been available for public use since February 1996. Feed
back from users ha.s been instrumental in the development of SWIG, and many of its 
features have been implemented in direct response to user requests. As of Ma y  1998, 
approximately 360 users subscribed to a S W I G  mailing list (swig@cs.utah.edu). To 
find out more about how S W I G  is being used, two user surveys have been conducted. A u  
informal survey, conducted in August 1997, asked mailing list subscribers to describe the 
applications in which they were using SWIG. A  formal survey, conducted over a 7-week 
period from February to April 1998, asked users a series of questions regarding their use 
of S W I G  and background. This chapter describes the results of these surveys and hopes 
to provide a picture of how S W I G  is being used, who is using it. the benefits il: provides, 
and limitations.

8.1 Survey Methodology

A n  initial survey asked mailing list subscribers to describe the applications in which 
they were using SWIG. Approximately 25 responses were received via e-mail, but no 
statistical data were generated. However, responses to this survey provided some insight 
into how S W I G  is being used. A  second survey was conducted over a seven week period 
to collect statistical data and additional feedback. This survey was conducted through 
the use of a web-page and CGI script for data tabulation. Respondents were asked a 
series of questions regarding their use of S W I G  as well as their background so that a 
user-profile could be generated. A  full version of the survey can be found in Appendix C. 
Given the personal nature of many questions and to encourage participation, users were 
allowed to submit survey responses anonymously although Internet domain names were 
recorded so that duplicate submissions could be checked and eliminated from the survey 
if necessary. In addition, most questions were optional-allowing users to skip questions 
for which they had no opinion (or felt unqualified to offer a valid response). One hundred

mailto:swig@cs.utah.edu


nineteen responses were received from 114 unique Internet, domains. Responses were 
solicited from the S W I G  mailiug list and the web-page containing the S W I G  mailing list 
archives. 82% of the respondents subscribed to the mailing list, representing a response 
rate of approximately 30% for the number of subscribers at the time of the survey.

8.2 User Profile

Since S W I G  was originally developed for scientific applications, respondents were 
asked if they worked on scientific applications. Seventy-two respondents (60%) answered 
“yes,” 46 (39%) answered “no," and one offered no response. For the purposes of further 
discussion, survey results are divided into the categories of “all users,” “scientific users.” 
and “other users.”

To get a better idea of who is using SWIG, users were asked questions about their 
programming experience and background as shown in Table 8.1. A m o n g  ali users, more 
than 90% indicated five or more years of programming experience and that number vises 
to 98% for scientific users. Sixty-six percent of the users classified themselves as software 
engineers although a majority (57%) do not have a formal degree in computer science. 
In addition, nearly 70% of the users have, at one time, been a system administrator.

As an additional measure of programming experience, users were also asked about 
certain types of applications and tools as shown in Table 8,'2. The purpose of this table is 
to find out what kind of tools users might be using in the software development process 
and application building. From this table, we sec that a significant number of users 
are utilizing makefiles, revision control, configuration management, and other aspects 
of maintaining complex software packages. There is also a clear distinction between 
scientific and nonscientific users in a number of categories-especially those associated 
with distributed object systems and software development on the Windows platform.

Finally, users were asked a few questions about their background with S W I G  as shown 
in Table 8.3. Approximately 60% of respondents have been using S W I G  for more than 6 
months. Furthermore, nearly all users indicated that they were using scripting languages 
before using SWIG.

Based on the profile data, the current users of S W I G  could probably be categorized 
as experienced programmers or possibly “early adopters.” Most respondents have had 
.significant, prior programming experience and nearly all have used scripting languages 
prior to using SWIG. The fact that a majority of users have been s}rstem administrators



T a b le  8 .1 . U se r p ro g ra m m in g  e xp e rie n ce  a n d  b a c k g ro u n d

Question All Users 
(n=119)

Scientific
(n=72)

Other
(n=46)

H o w  long have you been programming?
0-5 years
5-10 years
10-15 years
15-20 years
>  20 years

10 (8%) 
39 (32%) 
35 (29%) 
18 (15%) 
16 (13%)

2 (2%) 
27 (37%) 
25 (35%) 
8 (11%) 
9 (12%)

8 (17%) 
12 (26%) 
10 (21%) 
10 (21%) 
6 (13%)

H o w  would you characterize your work? 
Commercial software development 
Acadcmic 
Government
Industrial research and development 
Self employed

40 (33%) 
45 (37%) 

7 (5%) 
24 (20%) 

2 (1%)

9 (12%) 
40 (55%) 

5 (6%) 
17 (23%) 

1 (1%)

31 (67%)
5 (10%) 
2 (4%)

6 (13%) 
1 (1%)

Arc you a software engineer?
Yes
No

79 (66%) 
40 (33%)

38 (52%) 
34 (47%)

40 (86%) 
6 (13%)

Do you have a computer science degree?
Yes
No

50 (42%) 
68 (57%)

27 (37%) 
44 (61%)

23 (50%) 
23 (50%)

Have you ever been a system administrator?
Yes
No

83 (69%) 
36 (30%)

47 (65%) 
25 (34%)

35 (76%) 
11 (23%)



T a b le  8 .2 . U se r p ro g ra m m in g  e xp e rie n ce  (a p p lic a t io n s )

Question All Users 
(n— 119)

Scientific 
(n— 72) (

Other
i— 46)

Have you ever written ,1 graphical user interface? 
Yes 103 86%) 66 (91%) 36 78%)
No 14 11%) 5 (6%) 9 19%)
Have you ever written a network application? 
Yes 79 66%) 40 (55%) 38 82%)
No 38 31%) 30 (41%) 8 17%)
W h a t  other packages/tools do you use? 
Make 107 89%) 62 (86%) 44 95%)
Revision control (e.g. RCS) 91 76%) 52 (72%) 38 82%)
Configuration tools (e.g. autoconf) 39 32%) 25 (34%) 13 28%)
Purify 43 36%) 24 (33%) 19 41%)
C O R B A 16 13%) 6 (8%) 10 21%)
C O M 19 15%) 5 (6%) 14 30%)
ILU 17 14%) 9 (12%) 8 17%)
Visual Basic 23 19%) 6 (8%) 17 36%)
Other scripting tools 16 13%) 10 (13%) 5 10%)
M A T L A B ,  Ma(.hematica; etc... 49 41%) 42 (58%) 7 15%)
Database packages 48 40%) 21 (29%) 26 56%)
M P I 10 (8%) 8 (11%) (4%)
Threads 44 36%) 23 (31%) 20 43%)
O p e n G L 34 28%) 29 (40%) 5 10%)
Java 52 43%) 31 (43%) 21 45%)

Table 8.3. S W I G  experience
Question All Users 

(n=119)
Scientific
(n=72)

Other
(n=46)

H o w  long have you been using S W I G ?
0-6 months
6-12 months
12-18 months
18-24 months
>  24 months

43 (36%) 
40 (33%) 
24 (20%) 

8 (6%) 
4 (3%)

21 (29%)
22 (30%) 
17 (23%)
8 (11%) 
4 (5%)

21 (45%) 
18 (39%) 
7 (15%) 
0 (0%) 
0 (0%)

Did you use scripting languages before S W I G ?
Yes
No

U 5  (96%) 
4 (3%)

70 (97%) 
2 (2%)

44 (95%) 
2 (4%)



also suggests that users are reasonably familiar with the. installation, maintenance, and 
use of various tools and packages.

It is questionable as to whether S W I G  is being used by “typical” computational 
scientists as described in Chapter 2. Generally speaking, scientists are reluctant to adopt 
unprovcn software technology and S W I G  is no exception. Thus, although 60% of S W I G  
users work on scientific applications, these users appeal' to be fairly experienced with 
rcspcct to programming tools and techniques.

8.3 Languages

Users were asked to indicate which compiled languages as well as scripting languages 
they were using with S W I G  as shown in Table 8.4. For these questions, users were allowed 
to select all languages that applied. Thus, the data suggest that many users arc working 
with both C  and C + +  code. Ten percent of users are also working with Fortran even 
though S W I G  currently provides no native support for ForLran. Use of Perl, Python, and 
Tel is evenly split among users. The 5 %  of users using an "other” scripting language are 
using versions of S W I G  that have been extended with additional language modules.

8.4 Using SWIG

To find out how S W I G  is being used, users were asked the questions in Table 8.5. 
Approximately 80% of users are using S W I G  to work with C  programs containing fewer 
than 250 functions. This indicates that most users are working with small to moderately 
sized systems (as a point of reference, the S P a S M  code described in Chapter 7 contains 
approximately 250 C  functions). In addition, 50% of users report using S W I G  frequently 
(daily or weekly) and 50% appear to use S W I G  only occasionally (monthly or rarely). 
This split may represent two common ways in which S W I G  can be used. One common use 
is to provide a scripting interface to software that is under development. In this case, the 
scripting interface is a useful mechanism for debugging, prototyping, and working with the 
codc. Sincc the interface to such applications would be likely to change frequently, S W I G  
would be used on a regular basis. A  second application of S W I G  is the construction 
of scripting interfaces to existing software packages. For example, a user might build 
a scripting interface to O p e n G L  to have an interactive graphics tool. Since O p e n G L  
wouldn’t change much at all (if ever), there is little need to run S W I G  frequently. 
Therefore, S W I G  might only be used once in awhile to build interfaces to existing packages



T a b le  8 .4 . Languages b e in g  used w ith  S W IG

Question All Users 
(n— 119)

Scientific
(n=72)

Other
(n=46)

What compiled languages do you use with S W I G ?  
C
C +  +
Objective C  
Fortran

05 (79%) 
76 (63%) 

2 (1%) 
13 (10%)

58 (80%) 
53 (73%) 

1 (1%) 
12 (16%)

36 (78%) 
22 (47%) 

1 (2%) 
1 (2%)

W h a t  scripting languages do you use with S W I G ?
Perl
Python
Tel
Guile
Other

45 (37%) 
50 (42%) 
54 (45%) 

4 (3%) 
6 (5%)

22 (30%)
35 (48%)
36 (50%) 

3 (4%) 
5 (6%)

22 (47%,) 
15 (32%) 
17 (36%) 

1 (2%) 
1 (2%)

Table 8.5. S W I G  usage
Question All Users 

(ii=119)
Scientific
(n=72)

Other
(n=46)

Approximately how large arc your interfaces?
0-49 functions
50-99 functions
100-249 functions
250-499 functions
500-999 functions
More than 1000 functions

52 (43%) 
24 (20%) 
18 (35%) 
14 (11%) 
7 (5%) 
3 (2%)

32 (44%) 
11 (15%) 
15 (20%) 
9 (12%) 
4 (5%) 
1 (1%)

20 (43%) 
13 (28%)

3 (6%)
4 (8%) 
3 (6%) 
2 (4%)

W h a t  input do you give to S W I G ?  
Separate interface files 
Header files only
A  mix of interface and header files

72 (60%) 
1 (0%) 

46 (38%)

41 (56%) 
1 (1%) 

30 (41%)

30 (65%) 
0 (0%) 

16 (35%)
H o w  do you run S W I G ?  
Prom the command line 
From a makefile 
Development environment

22 (18%) 
89 (74%) 

7 (5%)

11 (15%) 
57 (70%) 

4 (5%)

11 (23%) 
31 (67%) 

3 (6%)
H o w  often do you use S W I G ?
Daily
Weekly
Monthly
Rarely

24 (20%) 
36 (30%) 
27 (22%) 
32 (26%)

12 (16%) 
26 (36%) 
17 (23%) 
17 (23%)

11 (23%) 
10 (21%) 
10 (21%) 
15 (32%)



as necessary.
Table 8.6 shows the usage of various S W I G  features. Although the use of various 

features is not particularly relevant for the purposes of this discussion, the data provides 
some information about the parts of S W I G  that are actually being used.

Finally, users were asked about the process of compiling S W I G  generated modules 
as shown in Table 8.7. A n  increasingly common problem with many modern software 
systems is that of long compilation times. Sixty-five percent of users report that it takes 
less than a minute to run S W I G  and compile the wrapper code into a module. However, 
a small percentage of users report times longer than 10 minutes and some of these users 
report cases in which S W I G  has produced wrapper modules that were too large to be 
compiled by the C or C + +  compiler. In addition, 43% of users reported that they have 
had to modify the output of S W I G  at some time. This statistic will be discussed later in 
this chapter.

8.5 Evaluation

The statistical survey also included an evaluation section. In this section, users were 
asked to evaluate various statements and assign points on a scale of 1 (disagree) to 5 
(agree). The results of the evaluation section are shown in Table 8.8. Although it is 
difficult to read much into the evaluation results since the survey is biased (users who 
hate S W I G  were unlikely to spend time filling out a survey), the evaluation section does 
indicate relative weaknesses and strengths of the current implementation. In particular, 
users generally feel that S W I G  is easy to use and install. However, the documentation 
generation system and the claim that S W I G  requires no modification to underlying code 
receive relatively low marks. O n  the positive side, users strongly agree that S W I G  and 
scripting have had a positive impact on their programming projects and have given this 
statement the highest average score.

8.6 Application Areas

To find out what S W I G  is being used for, users were risked about a number of general 
software development activities shown in Table 8.9. In addition, users were asked for a 
short description of their application area. Table 8.10 provides a short summary of the 
application areas received in the survey.

A  majority of S W I G  users are involved in research and development projects. Further
more, there seem to be three primary areas of applicability. First there are applications



T a b le  8 .6 .  S W IG  fe a tu re  usage

Question All Users 
(n=119)

Scientific
(n=72)

Other
(n=46)

What S W I G  features do you regularly use?
File inclusion
Typemaps
Wrapper classes
Documentation generation
Class extension
Renaming
Runtime libraries
Exception handling

80 (67%) 
76 (63%) 
56 (47%) 
46 (38%) 
43 (36%) 
43 (36%) 
30 (25%) 
20 (16%)

54 (75%) 
42 (58%) 
34 (47%) 
30 (41%)
28 (38%)
29 (40%) 
18 (25%) 
11 (15%)

26 (56%) 
33 (71%) 
22 (47%) 
16 (34%) 
15 (32%) 
14 (30%) 
12 (26%) 
9 (19%)

W h a t  S W I G  library files do you regularly use?
Typemaps
Pointers
Exception
Constraint

60 (50%) 
37 (31%) 
14 (11%) 

4 (3%)

37 (51%) 
27 (37%) 
8 (11%) 
4 (5%)

22 (47%) 
10 (21%) 
6 (13%) 
0 (0%)

W h a t  S W I G  documentation formats do you use?
H T M L
ASCII
LaTeX
None

48 (40%) 
22 (18%) 
10 (8%) 

38 (31%)

29 (40%) 
10 (13%) 
9 (12%) 

23 (31%)

19 (41%) 
12 (26%) 

1 (2%) 
14 (30%)

Have you used S W I G  with more than one 
scripting language?
Yes
No

30 (25%) 
88 (73%)

21 (29%) 
50 (69%)

8 (17%) 
38 (82%)

Have you ever created a new language module 
or modified the S W I G  source code?
Yes
No

18 (15%) 
99 (83%)

8 (11%) 
63 (87%)

10 (21%) 
35 (76%)



T a b le  8 .7 . C o m p ila t io n  o f  S W IG  g e n e ra te d  e x te n s io n s

Question All Users 
(n=119)

Scientific
(n=72)

Other 
(n— 46)

Approximately how long does if; take to build 
a S W I G  extension on your machine?
0-30 seconds 
30-60 seconds
1-2 minutes
2-5 minutes 
5-10 minutes
More than 10 minutes

53 (44%) 
26 (21%) 
22 (18%) 

9 (7%) 
1 (0%) 
5 (4%)

32 (44%) 
19 (26%) 
11 (15%) 
5 (6%) 
1 (1%) 
1 (1%)

20 (43%) 
7 (15%) 
11 (23%) 
4 (8%) 
0 (0%) 
4 (8%)

Have you ever generated an extension module 
that was too large to be compiled?
Yes
N o

G (5%) 
111 (93%)

2 (2%) 
68 (94%)

4 (8%) 
42 (91%)

H o w  do you typically link modules? 
Shared libraries and dynamic loading 
Static linking

92 (77%) 
27 (22%)

56 (77%) 
16 (22%)

35 (76%) 
11 (23%)

Have you ever modified the wrapper code 
generated by S W I G ?
Yes
No

52 (43%) 
67 (56%)

29 (40%) 
43 (59%)

22 (47%) 
24 (52%)

Table 8.8. S W I G  evaluation
Question All Users 

(n— 119)
Scientific
(n=72)

Other
(n=46)

S W I G  is easy to install 4.42 (,7=0.84) 4.51 (a=0.77) 4.30 (<7=0.93)

It was easy to build your first 
S W I G  example

3.97 (<7=1.09) 4.08 (ct=0.97) 3.83 (<7=1.20)

In practice, S W I G  is easy to use 4.11 ((7— 0.90) 4.19 (<7=0.84) 4.00 (<7=0.96)

The scripting interfaces creatcd by 
S W I G  are easy to use

4.30 (<7— 0.73) 4.43 (<7=0.70) 4.11 (<7=0.73)

S W I G  generated modules can be 
quickly compiled

4.04 (a=1.02) 4.09 (a=0.92) 3.96 (cr=l. 16)

S W I G  requires no modifications to 
the underlying C / C + +  code

3.72 ((7=1.06) 3.74 (a=0.97) 3.74 (<7=1.17)

Parsing ANSI C / C + +  declarations 
makes S W I G  easier to use

4.26 (<7=1.04) 4.36 (a=0.97) 4.11 (<7=1.13)

S W I G  allows you to build interlaces 
without worrying about the details

4.28 (a=0.89) 4.32 ((7=0.89) 4.22 ((7=0.89)

The documentation files created by 
S W I G  are useful

3.55 (<7=1.07) 3.59 (a=1.04) 3.51 ( < 7 = 1 .11)

SWIG/Scripting has had a positive 
impact on your projects

4.63 ((7=0.64) 4.67 (cr=0.58) 4.60 (<t=0.68)
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T a b le  8 .9 . G e n e ra l uses o f  S W IG
Question All Users 

(n=119)
Scientific
(n=72)

Other 
(n— 46)

Personal use
In-house application development, 
Software testing and debugging 
Research and development projects 
Rapid prototyping 
Commercial software development 
Other

63 (52%) 
53 (44%) 
27 (22%) 
62 (52%) 
42 (35%) 
31 (26%) 

2 (1%)

42 (58%) 
31 (43%) 
15 (20%) 
49 (68%) 
31 (43%) 
14 (19%) 

1 (2%)

21 (45%)
22 (47%) 
11 (23%) 
13 (28%) 
11 (23%) 
17 (36%)

1 (2%)

Table 8.10. S W I G  application areas
Animation Astrophysics
Automotive R & D C A D  tools
C A S E  tools C O M
C O R B A Chemical information systems
Climate modeling Computational chemistry
Database Defibrillation modeling
Document management Drawing
Economics Education
Electronic Design Automation Electronic commerce
Financial Fortran
Games Groupware
I lard ware control/monitoring Image processing
Integrated Development Environments Lotus Notes
Materials modeling Medical imaging
Meteorological imaging Microprocessor design
Military visualization Molecular dynamics
Natural language processing Network management
Neural nets Oil exploration
Palm Pilot Polarization microscopy
Protein sequence analysis Ray tracing
Realtime automation Robotics
Software testing Spectrographic analysis
Speech recognition Testing of telecom software
Virtual reality Vision
Visual simulation Weather forecasting
X-ray astrophysics analysis



of an inherently exploratory nature. In this ease, S W I G  is being used to add a scripting 
interface to improve Llie flexibility and usability of these applications. A  second area 
is in the area of systems integration and the use of scripting languages as a means for 
integrating existing software components into a common framework. Finally, a number 
of users indicated that they are using S W I G  for testing and diagnostic applications. In 
this case, scripting languages are added to systems for the purposes of in-house testing 
and debugging but arc not delivered with the final product.

8.7 Benefits of Using SWIG

Unfortunately, it is difficult to quantitatively measure the success of S W I G  using 
traditional software engineering metrics. Given that the primary users of S W I G  are 
scientists and that most applications are of a research and experimental variety, users are 
unlikely to record quantitative information about the development process. Furthermore. 
S W I G  is largely concerned with improving the usability of applications— an important 
task, but one that is not easily measured. Although the user survey provides some insight 
into how S W I G  is being used and who is using it. it provides little insight into why a user 
might use SWIG.

This section provides antedotal evidence about why users are using S W I G  and the ad
vantages that ir. offers. This information was collected from the user surveys, messages on 
the S W I G  mailing list, and through personal communications with users. The following 
testimonials should be viewed with a degree of caution as there is no way to measure if the 
opinions expressed are representative of everyone who has tried to use S W I G  (especially 
since people who have tried and failed are unlikely to provide any feedback).

To protect the identity of respondents, each respondent has been assigned two letter 
code. A  mapping of codes to respondent names exists, but is not included in the 
dissertation.

8.7.1 Ease of U s e
A  number of users are using S W I G  because it simplifies the process of building scripting 

language interfaces. The following quotes are typical.
D M  writes,

S W I G  has helped us minimize the hassle of writing manual wrappers. Since 
S W I G  has proven to be rather easy to use, I find I can carry out the types



of wrapping activities which would otherwise have been the responsibility of a 
computer scientist.

M M  writes,

I really love the fact that the learning curve is short and flat. I don’t need to 
use this facility very often, hut when I absolutely have to link in external C  
routines, or when I have to get the last drop of speed from something previously 
written in Perl, I can count on S W I G  to be there. W h e n  I do use SWIG, I 
don’t need to spend hours learning and debugging the system. This is the 
closest thing to cut-and-pasle I’ve ever seen in inter-language library creation.

A A  writes,

W e  are a research group that develops medical imaging software. W e  are 
interested in image processing/visualization research, and for our software, 
we want a simple and portable tool to generate user interfaces. For this, we 
currently use Tcl/Tk, and S W I G  which provides a nice way to connect our 
software (in C + + )  to the tcl-scripts.

M E  writes,

Very quick first results.

JS writes,

Easy to use, no need to worry about, language internals. It is a boon for 
application developers, like me.

IIR writes,

I like the fact that it automates much of the tedious work in building an 
interface C / C + +  functions. This makes development easier.

A B  writes,

S W I G  is by far the easiest way I have found to generate scripting interfaces for 
scientific software. S W I G  makes it practical to use a single, powerful scripting 
language for all projects rather than writing a custom interface to each. It also 
encourages a consistent and modular form for a program, and makes it easier 
to add contributions to m y  programs from other users/programmers.

H H  writes,

I like the ease with which scripting languages can be extended. The fact that 
we could so easily interface with Lotus Notes 011 N T  using Python was just 
amazing.

JH writes,

S W I G  makes linking my application to a scripting language easy enough that 
it is worthwhile.



.IK writes,

I came, I saw, I wrapped. And it ran. W o o  hoo!

8.7.2 Productivity
By automating the generation of wrappers, S W I G  allows developers to focus on the 

problems at hand. The following quotes address the improved productivity of using 
SWIG.

M R  writes,

Without S W I G  it would have taken much, much longer for our group to use 
Python as an extension language. Our whole application was written mostly 
in C + + .  W e  wanted to look into using Python for portions of it in order to 
make it easier to extend. Python has a fairly nice interface for doing this sort 
of thing. The, trouble was that we needed to make hundreds of C + +  classes 
available to Python. This would have taken a very long time (to write the 
wrapper code). S W I G  allowed us to spend a minimal amount of time with the 
wrapper codc and most of our time moving stuff to Python (which was the big 
point in the first place).

R D  writes,

S W I G  is a huge t.ime-saver. I have approximately 30,000 lines of C and 
Python code that have been generated by S W I G  that 1 didn’t have to write 
by hand, don't have to fix syntax and fumble-finger errors in, and don’t have 
to aggressively test.

H S  writes,

S W I G  helps us in taking away part of the error-prone task of making the C  
routines accessible from Python and has considerably improved our efficiency.

A C  writes,

I like all the time I have saved by not writing the interfaces myself.

B H  writes,

S W I G  saves a lot of m y  energy in interfacing with many free C / C + +  libraries 
in m y  project.

A D  writes,

S W I G  handles the gory details and allows m e  to concentrate on the important 
things.

G M  writes,



Using S W I G  is really fun, because it saves yon from a lot of mechanical work 
and it takes care of all the details you don’t want to bother with letting you 
concentrate on the real problem.

R B  writes,

Thanks again for SWIG... It’s fun and allows great productivity while avoiding 
much tedium.

A D  writes,

[I like] the ability to write extensions basically without having to think too 
hard about what I’m  doing.

P D  writes,

S W I G  allows me to get on with scripting and writing C + +  code without 
having to worry about the (usually considerable) issues involved in extending 
the scripting language with my custom components.

8.7.3 Software D e v e l o p m e n t
The use of scripting and S W T G  can have a dramatic impact on the software de

velopment process by encouraging modularity and providing a powerful debugging and 
diagnostic capability. The following quotes address some of the software development 
benefits of using SWIG.
J W  writes,

[SWIG has impacted m y  software development process as follows.1

• Increased productivity. I no longer do edit, compile, link, and debug but 
I build a S W I G  interface and compile and then use an interpreter. This 
change of work styles lets me be much more productive when I a m  doing 
exploratory programming. If the code that uses the interpreter is too slow,
I rewrite a very small portion.

• More bugs are found. Since I can quickly assemble new programs in 
different ways. I find bugs sooner. At [company], I found a critical bug that 
had existed in the software for over 5 years. (The bug was that if a single 
process opened the same file twice for reading, the file was corrupted.)

• I was a happier programmer. I don’t have to deal with lots of the low 
level data structures when I a m  prototyping. If I need a list of widgets, 
just, wrap m y  widget with S W I G  and use Python’s list.

P D  writes,

Using a scripting language as glue between C + +  components is a powerful 
paradigm for combining flexibility with robustness and efficicncy. S W I G  en
ables this model by providing a solid bridge between the C + +  component and 
the scripting language.



A F  writes,

The ability to “follow” the development of the core application without con
stantly rebuilding the interface is very effective. The developments of the kernel 
and its interface are mutually protected to a large degree.

C W  writes,

S W I G  allows us to rccycle a lot of ugly old C  code and put it into a reasonable 
module structure and snazzy new user interfaces.

K L  writes,

It allows us to leverage the advantages of the scripting language, especially 
when so many other scripts are already being written to glue programs together 
and some of our other tools have their own scripting language interface. Using 
S W I G  will allow us to properly integrate each of the parts directly into the 
language instead of a collection of system() calls.

K R  writes,

Before I had to use C + +  for m y  “rapid” prototyping. N o w  I can script it!

A F  writes,

M y  code is cleaner and more compact which makes it easier to read and un
derstand. S W I G  also encourages modularize code-allowing one to test/debug 
modules independently. This makes connecting everything together a breeze.

J M  writes,

The very idea of scripting programming on the one hand and systems pro
gramming on the other is quite nice, the most important feature of S W I G  is 
to make this approach practical on a day-by-day basis.

A G  writes,

O n  the whole, S W I G  is m y  most important development tool after gcc!

8.7.4 Usability
Finally, by using S W I G  to build scripted applications, those applications can become 

more flexible and usable.
M W  writes,

S W I G  has enabled our customers to interact with our toolkits in fundamentally 
new ways.

B T  writes,

W e  are using Tel scripts as the data files driving our simulations. Once the data 
is defined using a program (which is pretty cool in itself), we can actually run



the simulation from script commands. In our experimental environment, that 
saves rewriting a lot of ’’main” programs that exercise the same basic objects.
This isn’t exactly computational steering, but it does give our engineers a lot 
of Hexibility.

M B  writes,

All (well most) of my C + +  code ( M C  simulations of proteins and sequence 
analysis) is now driven by a Python interface thanks to SWIG. Once I have 
decided on an interface, the process of building it is usually trivial.

L B  writes,

S W I G  is an integral part of a user environment I a m  creating for a Molecular 
Dynamics company. They have F O R T R A N  modules that require a steering 
language (Python) to enable flexible computational research.

Y Z  writes,

S W I G  plays a critical role to automate the generation of Perl client interfaces 
from the O M G  IDLs for a C O R B A  ORB. The Perl clicnt. interface is essential 
in script driven testing.

f_,S writes,

1 a m  enjoying rapidly developing complex projects using 0 0  and Python, 
but coming from a numerical background, I like that I can get fast number 
crunching performance when I need it from C  modules wrapped up by SWIG.

8.8 Limitations

Even though S W I G  is being successfully used in a wide variety of applications, it 
still has a number of limitations. This section describes some of these limitations and 
workarounds.

8.8.1 Survey Results
The user survey asked respondents to pick one area for future S W I G  improvement 

from a list of possibilities shown in Table 8.11. Respondents could also provide written 
comments to elaborate on S W I G  limitations. The most significant limitations of S W I G  
appear to fall into a number of categories. P’irst, there are problems handling certain 
datatypes such its arrays, pointers to functions, and so forth. Second, there are parsing 
difficulties because S W I G  is not a full C / C + +  compiler. Additionally, there are seman
tic difficulties due to differences between what is possible in C / C + +  and what S W I G  
supports. Finally, there are conceptual difficulties with using certain parts of the S W I G  
compiler. Several of the more common limitations are now described.
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Table 8.11. Areas in which S W I G  cou d be improved
Category All Users 

(m — 119)
Scientific
(n=72)

Other
(n=4G)

Better support for arrays 
Support for overloaded functions 
Better C / C + +  parsing 
Support for Java 
Optimized output 
A n  extension mechanism 
Support for Fortran 
More S W I G  library files

26 (21%) 
26 (21%) 
16 (13%) 
14 (11%) 
11 (9%) 

8 (6%) 
7 (5%) 
4 (3%)

18 (25%) 
17 (23%) 
9 (12%) 
6 (8%) 
7 (9%) 
2 (2%) 
7 (9%) 
3 (4%)

8 (17%)
9 (19%) 
7 (15%) 
7 (15%)
4 (8%) 

6 (13%) 
0 (0%) 
1 (2%)

8.8.2 A r r a y  Handling
By default, S W I G  treats all arrays as simple pointers. Since there is a close re

lationship between arrays and pointers in C, this is a generally effective management 
technique. Where many difficulties arise is in the interface between arrays and lists in 
a scripting language and arrays in C. For example, lists of objects can be easily defined 
and manipulated in Python as follows:

Python 1.5 (#1, Jan 1 1998, 11:26:26) [GCC 2.7.2.1] on linux2 
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam 
» >  a = [1,2,3,4,5,6]
>>> print a [3]
4
>>> print a [0:3]
[1, 2, 3]
>>> ... etc ...

Thus, a natural inclination of users is to use a Python list us input to a C  function 
expecting an array. Unfortunately this is not possible because C  arrays and Python lists 
are represented in an entirely different manner and are not interchangeable. Because of 
this, users often have to manufacture a C  array, fill it with values, and pass it to a C  
function as follows:

a = ptrcreate("double",0.0,4) 
value = [1,2,3,4] 
for i in range(0,4):

ptrset(a,value[i],i)
foo(a) 
ptrfree(a)

# Create a double[4]

# a[i] = value[i]
# Call a C function
# Destroy the array

Sincc this can be somewhat awkward, many users prefer to write a typemap for 
converting scripting arrays to C. Although the typemap approach solves some of the



problems using scripting language arrays, additional problems arise especially when func
tions expect size arguments. For example, some C  functions operating on array data are 
structured as follows:

void foo(double *array, int size);

Although a typemap rule can be given for the first argument, there is no way for 
S W I G  to expand a single object (such as a Python list) into a pair of function argument 
values. Thus, the function has to be used as follows:

# Call foo, but explicitly specify the array length 
foo([l,2,3,4],4)

# An alternative approach 
a = [10,11,12,13,14,15,16] 
foo(a,len(a))

# An error, no length specified 
foo( [1,2,3])

To automatically fill in size parameters, users can recast functions using a containers 
and helper function as described in Chapter 5. Unfortunately, doing so can require 
a substantial amount of extra work if many functions need to be transformed in this 
manner.

Finally, there seems to be no one representation of arrays that will be sufficient for use 
with all applications. In scientific applications, users often work with huge amounts of 
data and arrays involving millions of data points. In these cases, it would be impractical 
to convert this data to and from a scripting representation in the same manner as might 
be done for small arrays. Not only would this conversion process be computationally 
expensive, it would also incur a serious memory penalty since scripting languages require 
more memory to represent basic objects than C  (for example, a double precision floating 
point number in C  requires 8 bytes of storage compared to 1C bytes for Python).

Most of the problems with arrays arc due to the huge variety of ways in which arrays 
can be defined, used, and represented in both C  and the target scripting language. It 
appears to be impossible to devise one single approach that will serve all situations. 
Therefore, the S W I G  approach is to minimally represent arrays as pointers (which is 
always possible) and to allow the user the ability to customize S W I G  as appropriate for 
an application. Unfortunately, this minimalistic approach leaves array processing largely



8.8.3 Overloaded Functions
S W I G  currently provides no support for overloaded functions, but such functions 

appear frequently in C + +  applications. For example,

void foo(double); 
void foo(int); 
void foo(char *);

To access all of these functions from scripting, it is necessary to rename them witli unique 
names as follows:

// SWIG interface to overloaded functions 
'/.name(foo_double) void foo(double);
‘/.name(foo_int) void foo(int);
‘/.name(foo_char) void footchar *);

Even though this approach works, it makes S W I G  awkward to use with some C + +  

programs. Support for overloading also presents a number of challenges. The most 
difficult, challenge is that of developing a type disambiguation scheme that selects and 
executes the appropriate C + +  function based on Llie arguments passed to a wrapper 
function. In C + + ,  type-signatures are used to resolve overloaded functions, but most 
scripting languages utilize types in an entirely different manner. In fact, languages 
such as Tel might represent all data as strings. Therefore, the Tel function call “foo 
4:’ could legally invoke all three versions of the underlying C + +  function since “4” is 
simultaneously a string, a float, and integer in the Tel. As a result, overloading can be 
difficult to support in full generality. However, a number of specialized extension building 
tools such as the interface builder for V T K  have shown that overloading can be supported 
for certain applications [89].

8.8.4 Better C + +  Support
Although S W I G  supports a simple subset of C + +  and can build interfaces to C + +  

programs, it has trouble with more advanced C + +  features. Templates are only sup
ported in a limited manner, operator overloading is entirely unsupported as are C + +  

namespaces. As a result, the process of building S W I G  interfaces to C + +  programs can 
be considerably more time consuming than for C  programs.

u p  to  th e  user (w h e re  c o n fu s io n  can re s u lt) .



The survey asked C + +  users fco indicate winch C + +  features they were using. These 
results are shown in Table 8.12. Based on these results, it is clear that improving S W I G ’s 
C + +  support will be beneficial. However, doing so is no easy task. Not only will better 
C + +  parsing be required, many C + +  features are not easily integrated in a scripting 
environment. For example, templates make no sense to a scripting interface, but a 
scripting interface to a specific template instantiation might prove useful. The variations 
between C + +  compilers also complicate matters {however this situation appears to be 
improving now that an ANSI C + +  standard has been approved).

8.8.5 C o d e  Optimization 
Although S W I G  is relatively easy to use, it can sometimes produce a substantial 

amount of wrapper code. In the case of the S P a S M  codc described in Chapter 7, 
approximately 30000 lines of wrapper code are generated to build the Python interface. 
For large applications, the amount of wrapper code can he staggering (hundreds of 
thousands of lines of code). Compiling this code cam be problematic and can even push 
the limits of existing compilers. A  few users reported compile times of greater than 10 
minutes when creating a S W I G  module. A  few other users reported that the S W I G  
generated wrappers were too largo to be compiled (and resulted in an internal compiler 
error).

Given that most users are building small to moderately sized interfaces, the size of 
the wrapper code does not yet appear to be a widespread problem. However, there is 
significant interest in improving S W I G  to make it produce less wrapper code. If the 
amount of wrapper code can be reduced, it will decrease compile times and increase 
S W I G ’s applicability to larger applications.

Table 8.12. C + +  features being used by S W I G  C + +  users
Category All Users 

(n=76)
Scientific
(n=53)

Other
(n=22)

Templates
Namespaces
Exceptions
Operator overloading
Standard template library (STL)
"Smart1’ pointers
Expression templates

58 (76%) 
14 (18%) 
32 (42%) 
53 (70%) 
40 (53%) 
14 (18%) 
4 (5%)

40 (75%) 
7 (13%) 
19 (36%) 
38 (72%) 
29 (38%) 
10 (19%) 
4 (8%)

18 (82%) 
7 (32%) 

13 (59%) 
15 (68%) 
11 (50%) 
4 (18%) 
0 (0%)



8.8.6 Is S W I G  A u t o m a t i c ?

In the survey, 43% of users indicated that they have modified the wrapper code 
generated by SWIG. This is a rather surprising result considering that one of S W I G ’s 
goals is to completely automate the interface construction process. Based on mailing 
list discussions, it appears that users often attempt to customize S W I G ’s behavior by 
hand editing the resulting wrapper code. However, these users are often surprised to 
find out that the exact same modifications can be implemented using typemaps or 
some other S W I G  customization option. Therefore, the high number of users making 
modifications may be due to confusion and conceptual difficulties regarding S W I G ’s 
current customization options and internal operation (it may also just be an issue of 
documentation).

8.8.7 Conceptual Barriers
Certain aspects of SWIG, especially those pertaining to customization, have created 

a considerable amount of confusion among certain S W I G  users. One such area is the 
implementation and use of typemaps. Using typemaps, a user can customize S W I G ’s 
processing in any almost any imaginable manner. However, doing so requires an intimate 
knowledge of C, the original application, SWIG, and the target scripting language. To 
further complicate matters, errors in typemap definitions can result in bizarre errors and 
scripting interfaces that are impossible to use. Thus, user sentiment seems to range from 
“I hate typemaps, but I like their functionality” to “typemaps are wonderful!”

The other conceptual problem is related to the use of SWIG, scripting, and C  in 
general. Many users have not used C / C + +  code in this manner before. As a result, there 
is a learning process involving in figuring out how to compile and link modules, how the 
scripting interface works, and how all of the pieces of the system interact with each other. 
This is not necessarily a limitation of SWIG, but indicative of the fact that building 
scripted applications is quite different than building simple stand-alone programs.

8.9 Summary

The survey indicates that a majority of S W I G  users are fairly experienced and sophis
ticated programmers. In fact, it is quite likely that many of the users could be considered 
to be “early adopters” and not necessarily representative of the scientific computing 
community as a whole. The survey also indicates that S W I G  is generally easy to use 
and that it has had a positive impact on productivity, software development, and the



usability of applications. However, the survey also points out a number of limitations in 
S W l G ’s implementation and design. Although these limitations do not appeal' to be a 
serious impediment to vising S W I G  (since workarounds are available), they offer many 
opportunities for future improvements and development.



CHAPTER 9 

RESULTS AND CONCLUSIONS 

9.1 Evaluation of SWIG

The case-study and user survey provide strong evidence that S W I G  is being success
fully used in a variety of applications. Although it is difficult to quantify the reasons why 
a scientist might use S W I G  over other tools and techniques, the following success criteria 
may hold much of the answer.

Ease of use. Traditionally, the process of creating scripting interfaces has required the 
development of wrapper code or the use of quirky extension building tools (many 
of which use special interface definition formats or are limited in capabilities). 
SWIG, on the other hand, can quickly build scripting interfaces to existing C / C +  + 
programs with very little work. As a result, users are often able to utilize the power 
of scripting languages almost immediately. This is perhaps best said by one of 
SWIG's users who writes, “S W I G  really helped me get the system off the ground 
in the shortest amount of time. I never would have believed how easy it was until 
I wrapped Sun's rpe.cmsd daemon (at least 50 thousand lines of C) with about 20 
lines of interface code. Mind-blowing.”

Applicability to real software. To be useful, tools need to work with real software 
packages. Furthermore, they need to be highly adaptable in order to accommodate 
different programming styles and software designs. In the case-study, S W I G  was 
effectively used with a high-performance application consisting of approximately 
25000 lines of code and developed for massively parallel supercomputing systems. 
In the survey, users indicated that they were using S W I G  with a wide variety of 
scicntific packages and commercial systems. Furthermore, several users indicated 
that they were using S W I G  to develop commercial software products. Finally, a 
number of applications where S W I G  has been utilized arc starting to appear in the 
literature [19, 107, 73, 91].



Productivity. S W I G  improves productivity by eliminating the need to write scripting 
extensions by hand and allowing developers to focus on the problem at hand. In fact, 
a number nf survey respondents indicated that S W I G  was a tremendous productivity 
and time-saving tool. One user even wrote, “Without SWIG, it would be almost 
impossible for m e  to keep up with m y  projects."

Performance. Performance is often a deciding factor in the choice to use various tools 
in the scientific computing community. In the case of SWIG, it has been shown that 
the use of scripting languages can have a minimal impact on the performance of 
compiled applications. In the case-study, the performance of the S P a S M  code was 
minimally affected by the addition of a scripting interface. In fact, S P a S M  was even 
recently entered in the 1998 Gordon Bell prize competition for sustaining 10 Gfiops 
performance 011 Linux cluster [102]. In addition, no survey respondents reported 
that the use of S W I G  and scripting languages had a serious performance impact 011 

their projects.

9.2 The Impact of Scripting Environments

Scripting languages have a huge impact 011 improving the usability of scientific software 
because they provide an interpreted high-level environment that simplifies the control and 
specification of complex problems. This environment allows scientists to use applications 
in an interactive and exploratory manner. Furthermore, the ability of scripting languages 
to manage and combine software components allows different packages and tools to be 
integrated in a shared environment. This integration streamlines the problem-solving 
process and makes scientists more productive.

In Chapter 7, the dramatic changes and improvements to the S P a S M  molecular 
dynamics code were described. Before the addition of scripting languages, this application 
was extremely difficult to use and had only been utilized in a small handful of test 
simulations. Scripting languages made this application usable and enabled scientists to 
explore large-scale molecular dynamics problems on a daily basis. Today, the S P a S M  
code is in almost constant use. Furthermore, simulations performed with S P a S M  have 
directly led to a number of results published in peer-review scientific journals. Without 
S P a S M ’s scripting language environment and its exploratory capabilities, it is unlikely 
that these results would have been obtained.

Scripting languages had a tremendous impact on the S P a S M  code and the user survey



in Chapter 8 suggests that scripting has had a large impact on other applications. In 
particular, scripting improves the way in which applications arc controlled; provides a 
mechanism for gluing different software components together, and simplifies application 
development.

9.3 The Role of SWIG

Although scriptable applications can be built by hand, S W I G  greatly simplifies the 
construction of such applications and makes the use of scripting languages practical on 
a daily basis. In fact, S W I G  allows scripting languages to be used in situations where 
they might otherwise have not been considered. This is possible because S W I G  almost 
completely automates the process integrating scripting languages with compiled code. 
As a result, users can exploit scripting languages while concentrating their efforts on the 
problem at hand (not the nasty coding issues associated with creating scripting language 
extensions).

9.4 Scientific Software Development
Finally, S W I G  and scripting languages have a dramatic impact on the development 

and organization of scientific software. First, S W I G  makes it trivial to add a very powerful 
user interface to most programs as shown in Figure 9.1. In fact, even for simple programs, 
S W I G  allows a scripting interface to be built with less effort than hacking an interface 
together with input files or command line options. As a result, S W r G  can be used 
effectively with programs large and small as well as with programs at all stages of their 
development.

The second major area of improvement is in the structure and reliability of scien
tific software. Since S W I G  automatically encapsulates applications in a highly flexible 
environment, developers can focus their attention to the overall structure and use of an 
application. W h e n  working with existing applications, those applications may undergo an 
evolutionary process of improvement. In fact, scientists may even implement exceptions, 
assertions, and other aspects of more advanced software packages. Furthermore, when 
S W I G  is used to develop new applications, scientists can often avoid the pitfalls associated 
with traditional scientific software development.

Finally, scripting languages encourage the development, of modules and software com
ponents. Rather than creating huge monolithic applications, packages can be broken up 
into independent modules. This simplifies application development by dividing appli-
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Easy Ease o f Implementation

Figure 9.1. User interface ease of use versus implementation difficulty with S W I G

cations into smaller units of functionality that are easier to write and maintain. Fur
thermore, the component approach also allows different, packages to be combined and 
utilized in a manner not previously possible. For example, the combination of simulation 
and visualization modules in the S P a S M  code allowed scientists to explore data in a 
substantially more flexible and efficient manner than previously possible.

9.5 Future Challenges

S W I G  has proven to be highly effective at building scriptablc software. However, there 
are many areas for future improvement.

Improved Language Support. Given the use of Fortran in the scientific community, 
adding Fortran support to S W I G  would likely be a boon to scientific software 
developers looking to breathe new life into legacy systems (in fact, some users are 
using S W I G  with Fortran codes even though no native Fortran support currently 
exists). There are also many opportunities to improve S W I G ’s support for C +  +  
systems. Unfortunately, many aspects of C + +  are particularly difficult to integrate 
into a scripting environment. However, with improvements to the S W I G  parser and 
code generator, it may be possible to greatly improve C + +  in the future.



Component-based Scientific Software. Scripting languages and S W I G  allow scien
tists to create component-based systems. However, the use of software component, 
architectures represents an entirely different methodology of constructing scientific 
programs. As a result, there are a number of open questions. For example, how do 
scientists guarantee reproducibility of results in an environment of constantly chang
ing software modules? Likewise, what are the scaling properties of component-based 
systems? Would the informality and flexibility of S W I G  break down as the number 
of software components increases?

User Studies. S W I G  and scripting languages clearly affect the way in which scientific 
software is developed and used. However, it has proven to be extraordinarily 
difficult to quantify and measure the overall impact of these techniques. Therefore, 
there is a considerable need for more case-studies and more detailed usei-studies. 
Unfortunately, this is a difficult task since scientific projects rarely lend themselves 
to the same analysis techniques that might be used to measure success of a large 
software engineering effort.

Education. S W I G  and scripting languages allow scientific software to be constructed 
and used in an entirely different manner than that traditionally found in most 
scientific programs. As a result, there is a considerable need for education among 
the scientific community. Although the creation of scriptable applications is rarely 
difficult, it requires a different set of tools and mindset for thinking about the nature 
of scientific programs.

9.6 Conclusion

Scripting languages offer a flexible environment that can be used to manage complexity 
and greatly improve the usability of scientific software. S W I G  enables scientists f;o 
effectively use scripting languages by simplifying the integration of existing code written 
in compiled languages. This makes it practical for scientists to utilize scripting languages 
with a wide range of scientific projects on an everyday basis. This, in turn, results in 
botli beHer scientific software and an a greatly improved environment for solving scientific 
problems.



APPENDIX A 

SCRIPTING LANGUAGE EXTENSIONS

This section shows three scripting-language extension modules for the following C  
declarations

/* A C function */
int foo(int a, double b, char *c);

/* A global variable */ 
double A ;

/* A constant */ 

ftdefine PI 3.141592654

The purpose of this section is to show what scripting languages modules look like and to 
give a better idea of the codc produced by SWIG.

A .l A Perl Extension Module
/ *

* A Perl5 extension module * /

* /

#include "EXTERN.h"
#include "perl.h"
#include "XSUE.h"

/* Application specific headers */
^include "example.h"

/* Wrapper function for foo(int a, double b, char *c) */

XS(urap_foo) { 
int result; 
int argO; 
double argl; 
char * arg2; 
dXSARGS ;



if (items != 3)
croak("Usage: foo(a,b,c);"); 

argO = (int )SvIV(ST(0)); 
argl = (double ) SvNV(ST(l)); 
arg2 = (char *) SvPV(ST(2),na); 
result = (int )foo(argO,argl,arg2);
ST(O) = sv_newmortal(); 
sv_setiv(ST(0),(IV) result);
XSRETURN(l);

>

/* Wrapper functions for variable linking */
static int wrap_set_A(SV* sv, MAGIC *mg) {

A = (double ) SvNV(sv); 
return 1;

static int wrap_get_A(SV *sv, MAGIC *mg) { 
sv_setnv(sv, (double) A); 
return 1;

>

/* Module initialization function */
XS(boot_example) { 

dXSARGS;
char *file = _FILE__;
MAGIC *mg;
SV *sv;
newXS("example::foo" , wrap_foo, file);

/* Create a link to the variable A */ 
sv = perl_get_sv("example::A".TRUE); 
sv_setnv(sv,A); 
sv_magic(8v,sv,’U ’,"A",1); 
mg = mg_find(sv,’U ’);
mg->mg_virtual = (MGVTBL *) malloc(sizeof(MGVTBL)); 
mg->mg_virtual->svt_get = urap_get_A; 
mg->mg_virtual->svt_set = urap_set_A; 
mg->mg_virtual->svt_len = 0; 
rag->mg_virtual->svt_clear = 0; 
mg->mg_virtual->svt_free = 0;

/* Create a constant */ 
sv = perl_get_sv("PI''.TRUE); 
sv_setuv(sv,PI);
SvREADONLY_on(sv);
ST(0) = £sv_yes;
XSRETURN(1);

>



A.2 A Python Extension Module

* A simple Python extension module 
* /

^include "Python.h"

/*  Application specific headers */ 

tfinclude "example.h"

/* Wrapper for int foo(int a, double b, char *c) */ 
static
PyObject *wrap_foo(PyObject *self, PyObject +args) { 

PyObject * resultobj; 
int result; 
int argO; 
double argl; 
char * arg2;

if(!PyArg_ParseTuple(args,"ids:foo",&argO.fcargl,&arg2)) 
return NULL; 

result = foo(argO,argl,arg2); 
resultobj = Py_BuildValue("i",result); 
return resultobj;

>

/ *  Wrappers for setting and getting A */ 
static
PyObject *wrap_A_get(PyObject *self, PyObject *args) { 

if(!PyArg_ParseTuple(args,":A_get")) 
return NULL; 

return Py_BuildValue("d",A);
>

static
PyObject *urap_A_set(PyObject *self, PyObject *args) { 

double value;

if(IPyArg_ParseTuple(args,"d:A_set",&value));
return NULL;

A = value;
return Py_BuildValueC’d " ,A);

>

/* Methods table */
static PyMethodDef exampleMethodsQ = {
{ "foo", wrap_foo, 1 >,

{ "A_get", wrap_A_get, 1>,
{ "A_set", wrap_A_set, 1},

/ *



/+ I n i t i a l i z a t i o n  fu n c tio n  * / 
vo id  in itex am p leO  {

PyObject *m, *d;
m = Py_InitM odule( “exam ple", exam pleM ethods); 
d = PyModule_GetDict(ro);

/*  C reate a co n s tan t * / 
P y D ic t_ S e tI te m S trin g (d ,"P I" , PyFloat_From D ouble(PI);

>

{ NULL, NULL >

A .3 A Tel Extension Module
/ *

* A sim ple Tel ex ten sio n  module 
*/

# in c lu d e  < tc l.h >
# in c lu d e  < s trin g .h >

/*  Header f i l e s  from th e  o r ig in a l  a p p l ic a t io n  * /
# in c lu d e  "example .h."

/*  Wrapper f o r  fooC int a , double c , char *) * /

w rap_foo(C lien tD ata  c lie n tD a ta , T c l_ In te rp  * in te rp , 
in t  a rg c , char * a rg v [])

in t  r e s u l t ;  
in t  argO ; 
double a rg l ;  
char * a rg 2 ;

i f  (argc  != 4) {
T c l_ S e tR e s u l t( in te rp , "Wrong # a rg s . foo a b c " ,TCL_STATIC); 
r e tu rn  TCL_ERROR;

>
argO = ( in t )  a to l ( a r g v [1 ]) ;
a rg l  = (double) a to f ( a rg v [2 ] );
arg2 = a rg v [3 ];
r e s u l t  = fo o (a rg O ,a rg l ,a rg 2 ) ;
s p r in t f  ( i n t e r p - > r e s u l t , "4/,d", r e s u l t ) ;
r e tu rn  TCL_0K;



i n t  E xam p le_ In it(T c l_ In te rp  * in te rp )  { 
i f  ( ! in te rp )

re tu rn  TCL_ERR0R;
Tcl_CreateCom m and(interp, "foo", wrap_foo, (C lien tD ata ) MULL, 

(Tcl_CmdDeleteProc *) NULL);

/*  Link to  th e  g lo b a l v a r ia b le  * /
T cl_ L in k V ar(in te rp , "A", (char *) &A, TCL_LINK_DQUBLE);

/*  C reate  a co n s tan t as a read  only v a r ia b le  */

s t a t i c  double wrap_PI = P I;
T c l_ L in k V ar(in te rp , ‘'P I" , (char *) &urap_PI,

TCL_LINK_DOUBLE I TCL_LINK_READ_ONLY);
>
re tu rn  TCL_QK;

/*  Module i n i t i a l i z a t i o n  fu n ctio n  * /



A PPEN D IX B 

SWIG DIRECTIVES

SWIG has a number of special directives that are used to guide the interface generation 

process. This section briefly describes a number of the most common directives.

B .l  Code Insertion
The output files of SWIG are divided into three sections. A header section section 

contains header files and other support code, a wrapper section contains the wrapper 

code generated by SWIG, a, the initialization section contains the module initialization 

function. The following directives can be used to insert supporting C /C + +  code into the 

output file generated by SWIG.

*/.{ ...  7.}
All of the code enclosed in the braces is copied verbatim into the header section of 

the output file. This is typically used to includc header files and other support code. 

The SWIG parser ignores all of the included code.

"/.{ . . .  */.}

Copies the code, enclosed in the braces into the module initialization function. The 

included code is ignored by the SWIG parser.

‘/ . in l in e  */,{ . . . ’/.}

Copies the code enclosed in the braces into the header section of the output file, 

but also passes the enclosed code to the SWIG parser. This directive is described 

in more detail in Section 5.3.

'/,w rapper “/,{ . . .  '/.}

Copies the code enclosed in the braces into the the wrapper section of the output 

file. The parser ignores the contents of the included code.



B.2 File Inclusion
SWIG interfaces can be broken up into multiple files and assembled to form an 

interface. The following directives are used to include files and gather iuterface building 

information.

'/.include filenam e

Inserts the contents of a file into the current interface specification. The included 

file may be a special SWIG interface file, a C /C + +  header file, or a C /C + +  source 

file.

‘/.ex te rn  filenam e

Loads a file and extracts type information (including structure and class definitions). 

However, uo scripting language wrappers are generated. This directive is primarily 

use to provide SWIG with information about the underlying C /C + +  program 

without generating any wrapper code.

7,im port filenam e

Loads information about the contents of another SWIG generated module without, 

generating any wrapper code. This directive is used when working with collection 

of modules and in cases where one module may depend on the contents of another 

module.

B.3 Renaming
Sometimes the name of a C function conflicts with a keyword or built-in function 

in the target scripting language. To resolve these conflicts, the name of functions and 

variables used in the scripting interface can be changed using the following directives.

*/»name(nevmame) d ec l

This directive can be placed in front of any C /C +  + declaration to change the name 

used in the scripting language interface.

'/.rename oldname newname

This directive performs a global renaming operation. It operates like the */,name 

directive except that it applies to all occurrences of the old name.



B.4 Access Control
The following directives cau be used to control the access to global variables and 

structure members. Using these directives, a user can be prevented from modifying data 

from the scripting interface.

’/.readonly

This enables read-only mode. All global variables and data members of classes 

will be processed so that they can not be modified from the scripting language 

interpreter. This mode stays in effect until it is explicitly disabled.

'/.read v rite

This directive disables the read-only mode.

B.5 Customization
The following directives are used to customize SWIG’s processing. More detailed 

descriptions about these directives are provided later in this chapter.

‘/.excep t(lan g ) { . . .  }

This directive defines a new exception handler as described in section 4.11.

‘/.typemap ( la n g , met hod) d a ta ty p e  { - • - }

Defines a new typemap as described in section 4.L0.

’/,apply  d a ta ty p e  { type l i s t  };

Applies a typemap to a list of new datatypes as described in section 4.10.1.

B.6 Documentation
The following directives are used to control the documentation generation capability 

of SWIG.

‘/ . t i t l e  " te x t"

Sets the title of the documentation file.

‘/.se c tio n  " te x t"

Starts a new documentation section.



'/.subsec tion  " te x t"

Starts a new documentation subsection.

'/.subsubsection  " te x t"

Starts a new documentation subsubsection.

'/.d isabledoc

Disables the documentation system.

*/,enabledoc

Enables the documentation system.

B.7 Miscellaneous Directives
'/module name

Sets the name of the SWIG extension module. Usually this directive appears once 

at the beginning of an interface description.

V.native(name) fu n c tio n ;

This directive can be used to add au existing scripting language wrapper function 

to a SWIG interface, name is the name of the scripting language command to be 

created and fu n c tio n  is the name of the wrapper function.

‘/.new d ec l

This directive gives a hint to the compiler that a function is returning newly allocated 

memory. SWIG can sometimes use this to eliminate memory leaks.

*/«addmethods classnam e { . . . }

Adds new methods to C + +  classes and C structures as described in section 4.9.4.



A PPEN D IX C 

USER SURVEY  

C .l Languages and Operating Systems
1. W hat script,ing languages do you use with SWIG? (check all that apply)

• Guile, Perl, Python, Tel, Other

2. W hat compiled languages do you use with SWIG? (check all that apply)

• ANSI C, C + + , Objective-C, Fortran, Other

3. W hat operating systems are you using with SWIG? (check all that apply)

• Linux. Solaris, SunOS, Irix, HPUX. AIX, Digital Unix, BSD, Macintosh, Windows

NT, Windows-95, Windows-3.1, Other

C.2 SWIG Usage
4. W hat Version of SWIG are you using?

5. Approximately how many functions do you typically include in your SWIG interfaces 

(This includes C functions, C + +  member functions, etc...)

• 0-49, 50-99, 100-249, 250-499, 500-999, 1000 up

6. W hat kind of input do you usually give to SWIG?

• Separate interface files, Header files, Both

7. W hat SWIG features do you use regularly? (check all that apply)

• File inclusion (%include). Exception handling (%except), Shadow classes, Typemaps, 

Class extension (%addmethods), Documentation generation, The %import directive, 

The %apply directive, The %uame directive. Runtime libraries



8. Do you use any of the following SWIG library files?

• pointer.i, typemaps.i, exception.i, constraint.!

9. W hat SWIG documentation format do you use?

•  ASCII, HTML, LaTeX, None

10. How is SWIG installed on your system?

• In your own directory, In a system directory

11. How do yon run SWIG?

• Directly from the command line, Using a Makefile, From a development environment

12. How often do you use SWIG?

• Daily, Weekly, Monthly, Rarely

13. Have you ever used SWIG with more than one scripting language?

14. Have you ever modified I,he wrapper code generated by SWIG?

15. Have you ever modified the SWIG source code or written a new language module?

16. How you do typically build scripting extensions?

• Dynamic Loading, Static linking

17. Have you ever generated an extension module that was too large to be compiled by 

your C /C + +  compiler?

18. Approximately how long does it take to build a SWIG extension on your machine 

(running SWIG and compiling the wrapper codc with the C /C + +  compiler)?

• 0 - 30 seconds, 30 - 60 seconds, 1 - 2  minutes, 2 - 5 minutes, 5 - 1 0  minutes, More 

than 10 minutes



C.3 Evaluation
These questions ask you to evaluate various aspects of SWIG and statements about 

its use. Score each question on a scale of 1-5 with (1 — Disagree) and (5 — Agree).

19. SWIG is easy to install.

20. It was easy to build your first SWIG example.

21. In practice, SWIG is easy to use.

22. The scripting interfaces created by SWIG are easy to use.

23. How would you rate the quality and accuracy of the SWIG documentation?

24. (Question withdrawn).

25. SWIG geuerated modules can be quickly compiled.

26. SWIG requires no modifications to the underlying C /C + +  code.

27. Parsing ANSI C /C + +  declarations makes SWIG easier to use (as opposed to using 

a special interface definition language).

28. SWIG allows you to build scripting interfaces without having to know all of the gory 

underlying details.

29. The documentation files created by SWIG are useful.

30. Typemaps are an effective customization mechanism.

31. SW IG/Scripting has had a positive impact on your programming projects.

32. Using SWIG is fun.



C.4 Future Features
33. Which one of the following features would you most like l,o see? (check only one)

• Support for Fortran, Better C /C + +  parsing, Support for overloaded functions, 

Optimized output. An extension mechanism, Support for Java, More library files, 

Better support for arrays

34. If you use C+ + , do you use any of the following features

• Templates, Namespaces, Exceptions, Operator overloading, Standard template li

brary (STL), Smart pointers, Expression templates, Other (please specify)

C.5 User Profile
35. How long have you been using SWIG?

• 0-6 months, 6-12 months, 12-18 months, 18-24 months, > 24 months

36. How long have you been programming?

• 0-5 years, 5-10 years, 10-15 years, 15-20 years, > 20 years

37. How would you characterize your work environment?

• Commercial software development, Academic, Government, Industrial Research and 

Development, Self employed

38. How do you or your organization use SWIG?

• Personal use, In-house application development, Software testing and debugging, 

Research and development projects, Rapid prototyping, Commercial software de

velopment

39. How did you hear about SWIG?

• Prom an article, At a conference, USENET. From a search engine, From a colleague, 

From Dave

40. Do you subscribe to the SWIG mailing list?

41. W hat other software packages, libraries, and tools have you used?



• Java, CORBA, COM, ILU, Visual Basic, Other scripting tools, Purify, Make, Revi

sion control, Configuration tools, MATLAB, Mathematica, etc., Database packages, 

MPI, Threads, OpenGL

42. Did you use any scripting languages before using SWIG?

43. Do you work on scientific applications?

44. Have you ever written a graphical user interface?

45. Have you ever written a network application? (sockets, RPC, CGI scripts, etc...)

46. Have you ever been a system administrator?

47. Do you consider yourself to be a professional software engineer (i.e. your primary job 

is software development).

48. Do you have a degree in computer sciencc?

C.6 Comments
49. W hat do you like about SWIG?

00. W hat limitations have you encountered?

51. Can I quote you?

52. How would you improve SWIG?

53. W hat kiuds of applications are you developing with SWIG?

54. Do you have any comments about this survey?



A PPEN D IX D 

SOFTW ARE AVAILABILITY

SWIG is freely available and can be downloaded at

f t p . c s .U tah . edu/pub/beazley/SW IG .

SWfG can also be found on a variety of software distributions including FreeBSD and 

certain Linux distributions- A SWIG weh-site is also available at V7uw.swig.org.

The following web-pages contain information about the Perl, Python, and Tel scripting 

languages.

• w w w .perl.org

• www.python.org

• w w w .scrip tics.com

Information about the SPaSM molecular dynamics code described in chapter 7 is 

available at b i f r o s t . l a n l . gov/MD/MD .html.

ftp://ftp.cs.Utah.edu/pub/beazley/SWIG
http://www.perl.org
http://www.python.org
http://www.scriptics.com
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