
Journal of Software Engineering and Applications, 2012, 5, 62-68

doi:10.4236/jsea.2012.52010 Published Online February 2012 (http://www.SciRP.org/journal/jsea)

Copyright © 2012 SciRes. JSEA

Laboratory Driven, Lean-to-Adaptive Prototyping in

Parallel for Web Software Project Identification and

Application Development in Health Science Research

Zachary Dwight, Alexa Barnes

Department of Pathology, University of Utah, Salt Lake City, USA.

Email: zach.dwight@path.utah.edu, alexabarnes@msn.com

Received December 21st, 2011; revised January 24th, 2012; accepted February 3rd, 2012.

ABSTRACT

Clinical research laboratories, bioinformatics core facilities, and health science organizations often rely on heavy plan-

ning based software development models to propose, build, and distribute software as a consumable product. Projects in

non-agile software life cycles tend to have rigid “plan-design-build” milestones, increasing the amount of time needed

for software development completion. Though the classic software development approach is needed for large-scale and

organizational projects, clinical research laboratories can expedite software development while maintaining quality by

using lean prototyping as a condition of project advancement to a committed adaptive software development cycle.

Software projects benefit from an agile methodology due to the active and changing requirements often guided by expe-

rimental data driven models. We describe a lean to adaptive method used in parallel with laboratory bench work to de-

velop quality software quickly that meets the requirements of a fast-paced research environment and reducing time to

production, providing immediate value to the end user, and limiting unnecessary development practices in favor of re-

sults.

Keywords: Agile Software Development; Bioinformatics; Lean; Prototyping; Adaptive

1. Introduction

Clinical research laboratories often use rapid application

development and agile software methods [1,2] for com-

putationally intensive tasks related to health science and

biological data analysis, collection, modeling and simula-

tion. These tasks, however, are often done ad hoc and the

development process is selected in a similar manner, in-

creasing the amount of time needed to complete the pro-

ject, limiting user feedback, and producing poor docu-

mentation. Laboratories, often with funding and/or pub-

lishing deadlines, are inefficient with the planning, deve-

lopment, and documentation of chosen software projects

in an attempt to develop software due to internal and ex-

ternal constraints. Expertise is often lost in transition

between the laboratory end users and the software de-

velopment team and many research laboratories prefer to

develop in-house using available programming skill sets,

which may not include the best technology for the com-

putational task.

Though many health science researchers are unfami-

liar with the best practices of agile software development,

previous work suggest a core set of practices does exist

that can be adopted by similar biomedical, bioinformatics,

and health science professionals to produce quality soft-

ware in a reasonable time frame [2-6]. From this previous

work, our software development team has implemented

an agile methodology that has been successful [7] in crea-

ting, distributing, and improving internal and external

software projects.

2. Methods

The agile method in use in our research environment aids

in the development of quality software in parallel with

health science research. Lean-to-adaptive prototyping in

parallel (L2APP) focuses software efforts on results ra-

ther than features or tasks. Quality experiments produce

quality results and quality software produces quality ana-

lyses, predictions, simuations, and modelling. When ap-

plied to health science research, L2APP is successful due

to its flexibility to change, conditional lean phase for pro-

ject commitment, emphasis on results, and delivery of

value in parallel.

2.1. Discovery

With each experiment performed, laboratory staff and re-

searchers should track and identify redundant tasks, pro-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276284651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Laboratory Driven, Lean-to-Adaptive Prototyping in Parallel for Web Software Project Identification
and Application Development in Health Science Research

63

cesses, analyses, calculations and novel methods/and or
results that could benefit from software or be transitioned
into a system of software services. The ideas for software
projects are then presented or pitched to the software
team. Though a high percentage of software will be la
boratory driven, it is not uncommon for software teams
to observe opportunities for projects, which could also be
considered with consultation with the laboratory staff and
researchers.

2.2. Lean Prototyping

Lean proto typing or lean software development is an
attempt at developing quality software of value with the
least amount of effort [8]. Software teams following lean
guidelines are exempt from producing documentation
and processes that do not add value to the current project.
Developers are asked to focus on quality, value, and reu
sability and deliver only the software product. The lean
ideal lends itself well to web development projects that are
less computationally intensive than many desktop app
lications due to processing constraints.

2.3. Adaptive Software Development (ASD)

Though a variety of agile software methodologies exists
that reduce time to project completion, the adaptive soft
ware development model is organized in a three-phase
cycle that can best be applied to our laboratory driven re
quirements, results, and analyses. In this model, as seen
in Figure 1, the three primary phases of adaptive soft
ware development are speculation, collaboration, and lear
ning [1]. Speculation is the ability of the development team
and end users' to formulate a development direction for
each iteration through the software process. Applied to
research laboratories and software teams, speculation is
the agreement between a laboratory member (end user)
and the software development team describing the general,
but not complete, idea for a prototype or prototype itera
tion. Once this agreement or speculative idea has been
presented, the software team can continue developing the
prototype. The next phase in the cycle is collaboration.
Collaboration is the cooperation of the end user and the
software team. Change, requirements, and limitations can
evolve from either laboratory results or computational set
backs. Collaboration between the two parties, laboratory
and software, can ease and/or overcome limitations, bet
ter adapt to change, and better define requirements. The
third phase in the cycle is learning. One of the strengths
of the adaptive development model is the learning phase.
The learning phase allows both software and laboratory
teams to identify and acknowledge issues, changing re
quirements, and research opportunities that were disco
vered in the previous cycle of both laboratory work and/or

Copyright © 2012 SciRes.

software development cycle. This three-phase development
environment places emphasis on quality benchmarking re
sults between the software and laboratory rather than tasks,
features, or scheduled development milestones.

3. Lean-to-Adaptive Model

A frequent complaint of agile software development is
the lack of a structured and concrete project timeline. In
this effort, our model at the least contains a definable be
ginning and a reasonable end point. A laboratory need or
opportunity is the focus for both the beginning and the
end of a software project. A need arises in a research en
vironment and once that need has been fulfilled with de
veloped software, the software project is considered com
plete. Often, smaller software projects are fulfilled simp
ly by the development of the lean prototype, never enter
ing the adaptive phase. However, research environments are
constantly changing software requirements based on ex
perimental outcomes especially in the case of computa
tional and simulation model development. To account for
both smaller, tasks oriented projects and model based
research requirements, the lean-to-adaptive model relies
on the following phases: need/opportunity identification,
lean prototype development, lean evaluation, and the adap
tive software development cycle. The adaptive software
development life cycle follows an agile methodology
consisting of development, production, quality assurance,
and experimental assurance within the larger context of
previously mentioned phases of speculation, collabora
tion, and learning. Figure 1 displays overall flow of de
velopment of model.

3.1. Opportunity Identification

Laboratory work and clinical environments are burdened
with repetitive tasks, much of which can be automated to
allow laboratory staff and researchers more time to eva
luate quality results and help reduce processes prone to
error. The opportunity identification phase is the commu
nication to the software developer(s) of a need, opportu
nity, or requirement of the laboratory that could be aided
by either automated or user driven software.

3.2. Lean Prototype Development

A lean prototype is developed in an easily accessed form,

Lean Condition Adaptive Development

Figure 1. Flow chart of development for lean-to-adaptive
prototyping in parallel model.

]SEA

Laboratory Driven, Lean-to-Adaptive Prototyping in Parallel for Web Software Project Identification

and Application Development in Health Science Research

Copyright © 2012 SciRes. JSEA

64

such as a web application or script according to the fol-

lowing standards and conditions:

� Lean development efforts focus on value to the custo-

mer. The lean prototype only has value if it fulfills or

partially fulfills the requirement or need identified by

the research group.

� Ignore documentation, organization, and performance.

The value stream, or the effort needed to develop a pro-

totype of value, requires only that a prototype be deli-

vered.

� In lean software development, no individual upstream

(the software group) can build and/or code without a

downstream request (research staff). The end users

should champion (also known as “pull”) their own re-

quests, not the software team.

� Use local resources and expertise to build the proto-

type. The technology requiring the least amount of effort

to initiate, develop, and distribute should be used.

� Developers should save/store all reusable code for fu-

ture prototypes and/or projects. Reusable code is va-

luable for the current prototype and possibly for future

prototypes/projects.

� Distribute the prototype in the most accessible form

available. End users should not have to compile source

code or run complicated install procedures.

Once the prototype is complete (can demonstrate or

partially demonstrate value), a walkthrough is performed

with the end user or research group for evaluation.

3.3. Evaluation of Lean Prototype

The evaluation of the lean prototype is an important step

in this model. The evaluation has three possible outcomes

as decided by the end user(s). The first outcome is com-

mitment. If the lean prototype presents enough value to

the research group that it could be immediately used, the

lean software project moves into the adaptive develop-

ment phase in collaboration with the laboratory staff. The

second outcome is a renewal. Renewal indicates the pro-

totype has value but not enough to commit to as is. Value

that is missing should be communicated to the software

team and the prototype renews its lean development cycle.

The last possible outcome is suspension. If the prototype

has little value the prototype is suspended and archived

appropriately. Many factors can reduce value of a lean

prototype including changing requirements, external re-

sources, commercial software, and poor timing.

3.4. Adaptive Software Development

Once a prototype has the commitment of both the end

user and software team, the prototype enters a larger, ite-

rative development cycle referred to as adaptive software

development (ASD). The three guiding principles or pha-

ses of ASD are speculation, collaboration, and learning

as described previously [1]. The three phases divide the

components of the software development life cycle ap-

propriately while being descriptive enough to remind de-

velopers and customers alike of the goal of the phase and

the cycles contained. Figure 2 details the steps of deve-

lopment and the parent phases.

3.4.1. Speculate

Speculation describes the initial or repeated identification

of software goals and direction during the development

process.

3.4.1.1. Prototype Commitment

Prototype commitment is the de facto beginning of a so-

ftware project. By commiting to the prototype, the adap-

tive software development life cycle begins and the lean

prototype phase ends. Without commitment from both end

users and software team, the project should not begin.

3.4.1.2. Laboratory Cycle Plan

A whiteboarding session, presentation, quick conversation

or document can all be used to identify the goal of the

current software development cycle. In the laboratory-

driven model however, a continued lean approach to re-

quirements gathering defines the current cycle objectives.

The goal of all development iterations is to add value and

fulfill the laboratory requirement and/or need. A list of

features with their resulting value descriptions substitute

for mockups, documentation, and software object model-

ling. The software team does not need to know what the

feature consists of, but rather what result the feature will

deliver. Results based development allows software pro-

fessionals more creativity in how they choose to acquire

a result. Once the software team has their feature list, so-

ftware development begins.

3.4.2. Collaborate/Development

Collaboration during the development life cycle involves

the parallel development of software and experimental

results. The software being developed, in its current form,

may be used as soon as it has value to the laboratory staff

and researchers. Reusable code stored in a repository could

also quicken the current development cycle. Developers

should also be aware of code being written that has pos-

sible future use and archive it accordingly [3,9]. Colla-

boration also promotes the continued discussion of requi-

Figure 2. Adaptive software development model.

Laboratory Driven, Lean-to-Adaptive Prototyping in Parallel for Web Software Project Identification

and Application Development in Health Science Research

Copyright © 2012 SciRes. JSEA

65

rements and results as both are being developed. The la-

boratory and software staff communicate any advances,

changes, limitations, and needs during this cycle so that

either may react accordingly and adjust the cycle plan or

experimental design. Collaboration and knowledge-share

allow for developers to ignore dated practices such as UML

and technical specification documentation [9]. If softwa-

re developers and researchers understand their require-

ments, results, and science well enough, creating “middle-

man” documents is unnecessary and considered non-agile.

3.4.3. Learn

The learning phase consits of software validation and

assurance of both quality and experimental results. If the

software proves to be useful and meet all current re-

quirements (has substantial value), the software project

becomes a software product and is moved into produc-

tion in an easily installed form or via web application or

service.

3.4.3.1. Experimental Assurance

Experimental results are used to validate the software.

Predictive computational modelling, simulations, and de-

sign tools should produce results that are reproducable,

valid, and applicable in a laboratory environment. Data

analysis software and calculators should reproduce quan-

titative values calculated by hand, automated testing, or

ad hoc in statistical software such as Microsoft Excel or

STATA. Workflow management software should ensure

data provenance, delivery, and accuracy as it moves through

a system. If the software does not produce, simulate, or

deliver quality data, predictions, or laboratory aid than

the software must reenter the development cycle. One ca-

veat to this review is poor experimental data quality. Mo-

dels are only as good as the data they are built upon. In

this review, both the software team and the laboratory

staff should identify possible issues stemming from ei-

ther effort and the review should involve validation of

not only the software but of the experimental results.

3.4.3.2. Quality Assurance

Quality assurance is the process of cleaning code, debu-

gging, and ensuring efficiency and performance for the

software being developed. Review of the software in co-

ntext of computational best practices can often identify

mistakes that lead to a failure of the experimental assu-

rance review. If a bug has caused a calculation error, the

software developer should rerun the experimental ben-

chmark before returning the software to the beginning of

the development cycle.

Using automated testing and “test as written” approach

is highly recommended and can save valuable time [3],

yet manual testing done by the end user can be more va-

luable in instances of GUI driven calculations. Test cases

make assumptions about the end users’ actions which

works well for command-line style processes, but is li-

mited for event-driven applications or rich web applica-

tions requiring real-time interaction.

3.4.3.3. Production

Once the software and experimental results agree or the

software is useful for laboratory consumption, the soft-

ware is moved into production. In an adaptive environ-

ment, it is easier to use web-based applications or ser-

vices for the production environment. Any updates to the

software are made in a single server location and users

would not have to reinstall or possibly fall behind the

current software version, patches, fixes, or updates as

commonly seen in desktop installations.

4. Model Assessment

The L2APP model is an agile software development mo-

del focused on providing quality software quickly by

working in parallel with a laboratory or research group.

Working in parallel can lead to knowledge transfer based

solely on proximity that reinforces the project goal and

helps both groups understand the context of their work

[10]. This parallelism promotes one of the core phases of

adaptive software development: learning.

4.1. Focus on Results, Not Plans

A solid software plan in a classic SDLC can solidify a

project and provide all involved a shared vision for the

project. Unfortunately, changes to the plan can have disa-

strous effects on the project as a whole. In our experience

using this model, experimental results continually change

or update software requirements. In a research environ-

ment, software development must be driven by the end

result and not by overly embellished planning. With each

iteration, the collaborative nature of the software deve-

lopment cycle and the learning focus of the reviews put

forth a model that promotes improvement of the results

through iteration rather than a heavier initial planning

phase. Focusing on the result, rather than planning the

path to acquire the result, saves time and effort.

4.2. Time to Production

Using this model, time to production for software ulti-

mately depends on quality experimental and software pra-

ctices working in parallel. By working in parallel, set-

backs in the laboratory can also setback software deve-

lopment. However, being an agile software methodology,

those setbacks, changes, failures have a small impact on

the overall time to completion for a software project. An

error made in the laboratory is communicated and known

Laboratory Driven, Lean-to-Adaptive Prototyping in Parallel for Web Software Project Identification

and Application Development in Health Science Research

Copyright © 2012 SciRes. JSEA

66

to the software team and the software can re-enter ano-

ther iteration of development, thus protecting the overall

project timeline. Using other methods of software engi-

neering, the software team would wait until the experi-

mental results were gathered, analyzed and validated be-

fore even planning a software product. The L2APP mo-

del rewards the quality development of experiments and

software in parallel by reducing the time to production.

When the experimental data is gathered and validated,

the software should be ready to move into production.

4.3. Value during Development

Since a project cannot enter the adaptive development

life cycle until it has value to the laboratory or research

group, the software can be used immediately upon com-

mitment. Constant use of the software, in any form, is va-

luable to both the researchers and the software team. The

researcher or laboratory staff member can continuall vali-

date the software with each iteration and the software

team receives valuable feedback. The L2APP model is a

real-time trade off of value: the software team provides tools

to aid the researcher and the researcher provides feed-

back/validation.

4.4. Projects and Portfolio Have Value

Any project in this model begins as a lean prototype and

is immediately discarded if it lacks or loses value. By us-

ing a conditional lean prototyping phase, the model in-

troduces its own project portfolio quality control. Soft-

ware teams rarely work on a single project at a time and

often have a portfolio of current projects. It is important

to only add projects that add value to the portfolio just as

it is important to add only features to software that have

value. The conditional lean prototyping phase allows the

software and research groups to protect the project port-

folio from losing value and wasting resources on soft-

ware that has little value. Using this model, the software

team’s project portfolio is protected from poor project se-

lection.

4.5. Lean Prototypes Are Often Enough

An interesting outcome of this model in some instances is

the acceptance of the lean prototype as a production

worthy application. End users have a difficult time rea-

lizing and identifying their needs, thus the choice of agile

methods of software development. With each iteration, the

end user and software team work together to better define

the needs and eventually build a solid software product.

However, we’ve seen cases where end users find enough

value in the prototype and its placed into production for

use. At first the end user may have had grandiose re-

quirements, but quickly realized a prototype containing

partial requirements was all that was truly needed.

4.6. Lean Methods Continue Throughout

A side effect of the initial lean prototyping phase that

we’ve experienced is continuation of lean ideas and goals

throughout the adaptive development as well. Though the-

re is a clear distinction made between the lean prototyp-

ing phase and the adaptive development phase, we’ve

seen smooth transition between the two, as the lean me-

thodology fits well with the adaptive methodology. Soft-

ware teams often have difficulty switching between soft-

ware development methods such as SCRUM, classic SD-

LC, and XP because the relationships of stakeholders,

coding standards, and development organization are quite

diverse [11]. The L2APP model promotes a transition be-

tween a very lean prototype and what could be consi-

dered a less lean (adaptive) prototype.

4.7. People

The individuals involved are very important to the suc-

cess of a project and application of a software methodo-

logy [2,10]. Some individuals do not conform well to an

agile software environment and any methodology used

would have to be adjusted to accommodate. It is possible

to educate individuals on the best practices of agile de-

velopment [12] but education and the willingness to

adopt do not go hand-in-hand. Adoption of an agile me-

thod is easiest for those who are lean by nature and dif-

ficult for those who thrive on planning, meetings, and

paperwork. This is also true for the method presented in

this publication.

4.8. Speed vs Results

Experimental results are often slow to acquire, organize,

and analyze in hopes of ensuring the upmost quality and

reproduciability. Web development however has been seen

to focus merely on speed [9]. In our experience using an

agile method for web software in a research environment,

timing can be an issue as quality is non-negotiable in ex-

perimental design but seen as negotiable in prototyping.

5. Discussion

Previous research consolidated the characteristics of agile

software projects as incremental, cooperative, straight-

forward, and adaptive [1]. The L2APP model shares these

characteristics with other agile methodologies by pro-

moting cyclical development, collaboration between re-

search and software during development, being easy to

understand and modify, and flexible to changing requi-

rements without disastrous effects to the project or time-

line. It is not recommended however that our interpreta-

Laboratory Driven, Lean-to-Adaptive Prototyping in Parallel for Web Software Project Identification

and Application Development in Health Science Research

Copyright © 2012 SciRes. JSEA

67

tion of an agile methodology is better than those with

less or more definition, but rather an interpretation that

we find useful in our research environment.

Our model modifies the adaptive development soft-

ware model by introducing parallelism, lean principles

and a conditional lean prototyping step. Parallelism can

reduce resource slack, improve collaboration, increase

stakeholder understanding of project context, and con-

stantly align the timelines of the experimental and soft-

ware groups. Parallelism is however dependent upon qua-

lity in this model. Quality experimental results can define

requirements for software development or be used to

assess the software product. Quality software can be used

to aid in experimental design, prediction and visualiza-

tion. In either case, a lack of quality could continually

return the software project to the development cycle.

Lean principles are introduced to reduce time to pro-

duction. By not providing documentation, mockups, or

object models during development, the software team

can focus on the result and research requirements. In

health science research, assays are only as good as their

outcome and the same is true for software projects. In

contrast, some very important details are left out of the

development cycle including quality objectives, risk ma-

nagement, and detailed specifications of software [9].

A concern for many bioinformatics teams is the ability

to manage and funnel projects into the development envi-

ronment. Academia promotes collaboration and this is al-

so true in decision-making. As more groups, researchers,

and staff become involved in a project, the ability to ma-

nage the portfolio of projects is crucial in prioritizing re-

sources. The initial lean prototype condition introduced

in this model helps preserve the project portfolio’s value.

Most projects received by our team have value in their

intent, yet a small percentage quickly lose value due to

changing requirements, limitations of technology, and the

discovery of external software. The lean prototype pro-

vides validation of the proposed software project by 1)

ensuring technological feasibility and 2) asserting project

value.

Bioinformatics groups and research laboratories have a

large reference set in which to learn software methods that

best fit their expertise, talent, motivation, and managent

style. Unfortunately, very few of the references are cre-

ble, rigorous or detailed enough for academic acceptance

[11,13-15] or adoption and only recently has software de-

lopment been a focus for bioinformatics environments

[3].

Interesting future work would include a survey of not

only agile software practices in bioinformatics, but adop-

tion success, project management techniques [16], and

organizational optimization for successful research driven

software projects. In this publication, we’ve described an

agile method of software development that fits well with

smaller, research driven environments lacking in dedicated

project management resources in hopes of spurring re-

search into the best practices of bioinformatics, health

sciences, and laboratory driven software projects.

6. Conclusion

The lean-to-adaptive prototyping in parallel method is a

useful agile software methodology that can be used by

teams in research environments to build quality software

quickly and manage the value of the projects committed

to.

7. Acknowledgements

We would like to thank the Wittwer DNA Lab at the

University of Utah, Canon US Life Sciences Inc., and

Idaho Technology Inc. for their consistent feedback in the

development of internal and public software, which led

to the creation of the L2APP model.

REFERENCES

[1] J. Highsmith, A. Cockburn and B. Boehm, “Agile Soft-

ware Development: The Business of Innovation,” Com-

puter, Vol. 34, No. 9, 2001, p. 3.

doi:10.1109/2.947100

[2] D. W. Kane, M. M. Hohman, E. G. Cerami, et al., “Agile

Methods in Biomedical Software Development: A Mul-

ti-Site Experience Report,” BMC Bioinformatics, Vol. 7,

2006, p. 273. doi:10.1186/1471-2105-7-273

[3] K. Rother, W. Potrzebowski, T. Puton, et al., “A Toolbox

for Developing Bioinformatics Software,” Brief Bioin-

form, 29 July 2011.

[4] J. Pitt-Francis, M. O. Bernabeu, J. Cooper, et al., “Chaste:

Using Agile Programming Techniques to Develop Com-

putational Biology Software,” Philosophical Transactions

of the Royal Society A, Vol. 366, No. 1878, 2008, pp.

3111-3136.

[5] R. S. Sadasivam, K. Delaughter, K. Crenshaw, et al.,

“Development of an Interactive, Web-Delivered System

to Increase Provider-Patient Engagement in Smoking

Cessation,” Journal of Medical Internet Research, Vol.

13, No. 4, 2011, p. e87. doi:10.2196/jmir.1721

[6] K. Gary, A. Enquobahrie, L. Ibanez, et al., “Agile Me-

thods for Open Source Safety-Critical Software,” Soft-

ware: Practice and Experience, Vol. 41, No. 9, 2011 pp.

945- 962. doi:10.1002/spe.1075

[7] Z. Dwight, R. Palais and C. T. Wittwer, “uMELT: Pre-

diction of High-Resolution Melting Curves and Dynamic

Melting Profiles of PCR Products in a Rich Web Appli-

cation,” Bioinformatics, Vol. 27, No. 7, 2011, pp. 1019-

1020. doi:10.1093/bioinformatics/btr065

[8] S. Raman, “Lean Software Development: Is It Feasible?”

Proceedings of the 17th Digital Avionics Systems Confe-

rence, Vol. 1, 1998, pp. C13/1-C13/8.

Laboratory Driven, Lean-to-Adaptive Prototyping in Parallel for Web Software Project Identification

and Application Development in Health Science Research

Copyright © 2012 SciRes. JSEA

68

[9] R. Baskerville, B. Ramesh, L. Levina, et al., “Is Inter-

net-Speed Software Development Different?” IEEE

Software, Vol. 20, No. 6, 2003, pp. 70-77.

doi:10.1109/MS.2003.1241369

[10] A. Cockburn, J. Highsmith and B. Boehm, “Agile Soft-

ware Development: The People Factor,” Computer, Vol.

34, No. 11, 2001, pp. 131-133.

doi:10.1109/2.963450

[11] J. Erickson, K. Lyytinen and K. Siau. “Agile Modeling,

Agile Software Development, and Extreme Programming:

The State of Research,” Journal of Database Manage-

ment, Vol. 16, No. 4, 2005, pp. 88-100.

doi:10.4018/jdm.2005100105

[12] V. Devedzic, S. Milenkovic, et al., “Teaching Agile

Software Development: A Case Study,” IEEE Transac-

tions on Education, Vol. 54, No. 2, 2011, pp. 273-278.

doi:10.1109/TE.2010.2052104

[13] T. Dyba and T. Dingsøyr, “Empirical Studies of Agile

Software Development: A Systematic Review,” Informa-

tion and Software Technology, Vol. 50, No. 9-10, 2008,

pp. 833-859. doi:10.1016/j.infsof.2008.01.006

[14] T. Dyba and T. Dingsoyr, “What Do We Know about

Agile Software Development?” IEEE Software, Vol. 26,

No. 5, 2009, pp. 6-9. doi:10.1109/MS.2009.145

[15] M. Aoyama, “Web-Based Agile Software Development,”

IEEE Software, Vol. 15, No. 6, 1998, pp. 56-65.

doi:10.1109/52.730844

[16] D. Karlstrom and P. Runeson, “Combining Agile Me-

thods with Stage-Gate Project Management,” IEEE Soft-

ware, Vol. 22, No. 3, 2005, pp. 43-49.

doi:10.1109/MS.2005.59

