
2010 Fourth ACM/IEEE International Symposium on Networks-on-Chip

C o m p a r in g E n e rg y a n d L a te n c y o f A sy n c h ro n o u s
a n d S y n c h ro n o u s N o C s fo r E m b e d d e d S o C s

Daniel Gebhardt Junbok You Kenneth S. Stevens
School of Computing Dept, of Electrical and Com puter Engineering

University of Utah University of Utah
gebhardt@ cs.utah.edu { jy°u » kstcvcns}@ ccc.utah.edu

Abstract—Power consumption of on-chip interconnects is a
primary concern for many embedded system-on-chip (SoC) appli
cations. In this paper, we compare energy and performance char
acteristics of asynchronous (clockless) and synchronous network-
on-chip implementations, optimized for a number of SoC designs.
We adapted the COSI-2.0 framework with ORION 2.0 router and
wire models for synchronous network generation. Our own tool,
ANetGen, specifies the asynchronous network by determining
the topology with simulated-annealing and router locations with
force-directed placement. It uses energy and delay models from
our 65 nm bundled-data router design. SystemC simulations
varied traffic burstiness using the self-similar b-model. Results
show that the asynchronous network provided lower median and
maximum message latency, especially under bursty traffic, and
used far less router energy with a slight overhead for the inter
router wires.

1. In t r o d u c t io n

Embedded, energy-constrained SoC- designs can be roughly
separated into two classes: platform-based and fixcd-function
(also called application-specific). The former is concerned with
being able to perform a wide variety of tasks, many of which
cannot be foreseen at design time. The latter is targeted towards
a particular function, or a few functions, that have known
properties. A fixcd-function design might consist o f a number
of highly specialized cores and memories, and fewer general-
purpose processors. The network-on-chip (NoC) o f both these
classes should be optimized for minimal energy usage while
meeting the predicted performance requirements; however, the
application-specific NoC may be more specialized as it has
a priori knowledge of the communication patterns between
cores. This is in contrast to general-purpose interconnects that
are often evaluated with traffic patterns such as spatially-
uniform, bit-transpose, etc.. The domain of this work is the
fixed-function, rather than the platform-based SoC.

Some globally-asynchronous locally-synchronous (GALS)
interconnect solutions rely on a clock, either with standard
synchronous clock distribution, or a mesochronous method.
However, an asynchronous (also called clockless) network has
a number of potential advantages over a clocked network in a
GALS environment. Standard arguments for asynchronous cir
cuit design include robustness to process/voltage/temperature
variation, avcrage-casc instead of worst-case performance, and
other such points. However, there are also many NoC-specific
arguments. In a synchronous NoC, the clock tree for all routers
and pipeline buffers can consume significant power as shown in

a heterogeneous network [11, and in a large CMP (chip multi
processor) 33% of router power [2], Many SoC designs have
quite bursty and “reactive” traffic. In this case, asynchronous
methods are beneficial in that they consume little dynamic
power during periods of low traffic without relying on clock
gating techniques.

Available bandwidth on each asynchronous link can be
independently set, to some extent, by wirelength between
routers, link pipeline depth, or by varying the physical wire
properties (metal layer, width, and spacing). This is potentially
useful when bandwidth requirements on core-to-core paths vary
considerably. This is in contrast to clocked networks which
commonly use a single frequency for all routers and is wasteful
to those paths not requiring high bandwidth. A clocked NoC
can use discrete “islands” of differing clock speeds to achicvc
a similar effect, but in a much coarser-grained fashion.

Design automation techniques are commonly used to gen
erate a NoC for a specific SoC design. These methods can
decrease time of development in commercial products or
allow a researcher to explore a larger design space. The NoC
solution is chosen based on some metric, usually a function of
energy and performance. In the optimization process, potential
solutions must be evaluated for quality, and this often requires
an abstracted model of the SoC characteristics.

This abstraction can be done at a variety of levels depending
upon completeness or availability o f the SoC design and NoC
components. Ideally, one could simulate the exact functionality
o f the various cores composing the design, and the NoC would
be fully implemented to model the communication. Unfortu
nately, this method is labor and simulation-time intensive, and
not a good choice for early-exploration of the NoC design
space. As usual, tradeoffs must be made as function becomes
more abstracted.

A commonly used abstraction used in the literature has been
titled a communication trace graph [3] (CTG) or a core graph.
A path describes pairs o f source and destination cores, and the
particular links and routers a packet traverses. The CTG has a
n-tuple of values per path, but often includes average expected
traffic rate per path and sometimes a latency requirem ent o f a
packet. An example CTG is shown in Figure 1 that we use in
our evaluation.

To our knowledge, there does not exist published methods to
aid in automating high-level asynchronous NoC optimization

978-0-7695-4053-5/10 $26.00 © 2010 IEEE
DOI 10.1109/N0CS.2010.21

115 _ IEEE
computer

society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276284622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:gebhardt@cs.utah.edu

Figure 1: Example CTG graph. Edge weights are in MBytes/s.

for fixed-function SoCs. This is in contrast to techniques
that utilize synchronous tools for implementing a specific
network [4], In this work, we give an overview of our circuits
and design automation techniques, and compare the resulting
asynchronous NoC to a synchronous one generated by an
existing tool. We also show that adding a measure of bursty
traffic to a CTG design abstraction leads to a more conclusive
NoC evaluation. Also unique is our SystemC simulator that
models asynchronous routers, and importantly, the link delay
as a function of wire length between routers.

This paper is organized as follows. Section II gives an
overview of related work. The synchronous network genera
tion framework is discussed in Section III. Our asynchronous
router is discussed in Section IV at a circuit level. Section V
describes our methodology for asynchronous NoC generation
and simulation. Our evaluation methodology and setup is given
in Section VI, with the results discussed in Section VII. We
conclude in Section VIII.

II. R e l a t e d W o r k

The COSI framework [5] generates an application-specific
NoC and floorplan, taking as input such constraints as core
areas and average bandwidth between cores. While it is exten
sible with new algorithms and components, it does not consider
asynchronous network components and, as future work, cites
the need for integrating traffic burstiness. For the Xpipes
library, a heuristic search determines the topology and router
configuration [6]. It uses floorplan information, router energy
models, and core communication requirements. The results
indicate a significantly reduced power and hop-count versus
the best mesh topologies for a variety of SoC designs. It is
part of a complete workflow to automatically synthesize a NoC
down to chip layout [7]. A linear programming based method
is presented in [3], For the QNoC routers, application-specific
optimization is discussed in [8], but it focuses on mapping
logical resources of a mesh-style topology rather than physical
concerns.

Previous research on asynchronous interconnects is rich,
but these designs are either hand-designed for a particular
application, or general in design but possibly having over
provisioned resources for a power-constrained SoC. All but one
of these existing routers use quasi delay-insensitive protocols
between routers, rather than bundled-data. Fulcrum Microsys
tems created a large asynchronous crossbar to interconnect
cores of a SoC [9]. The commercial startup Silistix, based on
earlier academic research [10], sells EDA software and circuits
that provide an customized asynchronous NoC, but has no

published methods for the optimization process. The MANGO
router [11] provides both best-effort and guaranteed-service
traffic. FAUST [12] is a platform and fabricated chip used in 4G
telephony development, and uses an asynchronous mesh-based
NoC [13], The QNoC group has developed an asynchronous
router that provides multiple service levels and dynamically
allocated virtual channels per level [14], A mesh-of-trees
network was constructed from simple, bundled-data routers for
a CMP [15], A comparison between the asynchronous network
ANOC, and the mesochronous clocked network DSPIN, was
performed in [1], For both designs, a physical layout and
functional traffic simulation was done for analysis. While
DSPIN had 33% less area and 33% higher bandwidth than
ANOC, ANOC had shorter packet latency and at least 37%
lower power consumption. DSPIN was also compared against
its asynchronous analog, ASPIN [16], Average power, latency,
and saturation threshold are superior in ASPIN with similar
die area.

Traffic modeling for NoCs is one of the major outstanding
problems in the field [17]. The fc-model [18] provides a simple
method to produce and analyze the burstiness of self-similar
traffic with a single value. The fc-model has been adapted to
study burstiness effects in the Nostrum NoC [19]. Evidence
of traffic self-similarity and burstiness in MPEG-2 video ap
plications has been shown [20], Several analytic models of
network performance have been developed for NoC design.
A model has been developed to capture spatial and temporal
characteristics of traffic for regular, homogeneous NoCs [21],
A generalized analytic router model was developed in [22],
It provides detailed statistics during expected traffic, and is
applicable to heterogeneous, irregular networks, but relies on
the Poisson arrival process and a synchronously-clocked router.

III. S y n c h r o n o u s N e t w o r k G e n e r a t i o n

The baseline network used for comparison purposes is
generated by a research tool called COSI 2.0, a source-code
release that incorporates much of the functionality of COSI-
NoC (v. 1.2) [5]. COSI takes as input a SoC design abstraction
consisting of core dimensions or area, and a set of communi
cation constraints between those cores, which are called flows.
This is a more generalized concept than the CTG mentioned
in Section I, and COSI can consider temporal properties
between flows, such as mutual exclusion. Given these flows, its
optimization algorithms try to find the network and floorplan
that meets the constraints while minimizing power based on
router and wire models. As output, COSI produces a floorplan,
topology, and a SystemC-based simulator. Included with the
software release are algorithms for generating a mesh and a
min-cut partitioning method (hierarchical star) similar to that
of [6]. We modified COSI to incorporate the Orion 2.0 router
and wire models [23], and also made a number of other changes
to COSI to improve its operation and result reporting.

In order to explore the performance characteristics of the
network, we moved away from the Poisson traffic models
commonly used for evaluations and instead use a model more
representative of application traffic. We implemented the b-

116

model traffic generator [18], suggested as a key feature in
future NoC benchmark sets [24]. The SystemC simulator
produced by COSI was modified to use this bursty traffic
generator.

Our model is parameterizable with the following inputs:
• Source and destination cores.
• A b-value in the range [0.5,1.0) indicating burstiness.
• Simulation duration.
• Average bandwidth, i.e. desired total traffic volume.
• The smallest time-resolution of the burstiness.
• Number of packets per message.
Self-similar traffic, down to the time resolution, is generated

recursively with an algorithm closely following the origi
nal [18]. However, there are a number of interesting details to
note. The b-model determines the total volume of data to send
in each window determined by the specified time resolution.
Within a window, a message is probabilistically sent each cycle
such that over the time window the proper amount of data is
sent. An entire message consisting of multiple packets is sent
at once to emulate application-level data needs. It may be the
case that the desired volume of traffic per window exceeds the
capacity of the link or output buffer, or the previous window
has not finished sending its data yet. In these cases the packets
are queued up in an “infinite” buffer. Therefore, the model’s
output is the ideal, desired data transmissions, but the actual
achieved data is subject to network limitations as expected.
This design uses a SystemC transaction level model (TLM)
for its interface, and thus it is portable and relatively easy to
connect to other tools’ outputs, as we did here with COSI.

IV. A s y n c h r o n o u s R o u t e r D e s ig n

A. Overview

This asynchronous router is designed for efficiency and
simplicity. Each switch directs a flit to one of two output
ports. With bi-directional channels, this results in a three-
ported “T” router. The packet format consists of a single flit
containing source-routing bits in parallel, on separate wires,
with the data bits. The packet is switched through a simple
demultiplexer controlled by the most-significant routing bit.
The bits are simply rotated, or swizzled, for the output packet.
The number of required routing bits is determined by the
maximum hop count of a network generated for a specific SoC
design. The width of each flit must be determined based on
required throughput or power and area constraints. This format
has the overhead of requiring routing bits with every flit.

fOVjtS
Switch

1 latch! 1 latch [~
T PortB T

Figure 2: Architecture of a 3-port asynchronous router.

The router is implemented with three components: a switch
module, merge module, and a buffer. The switch module steers
data on an incoming channel to one of the other two outgoing
channels. The merge module arbitrates between two input
channels to an output channel, granting access to the first-to-
arrive request signal. This effectively alternates between the
two input channels, assuming each provides the next packet
within an output channel’s cycle-time. A router is composed
of three switch modules and three merge modules, as shown in
Figure 2. Each switch and merge module has one set of latches
providing 1-flit buffers on each input and output port.

B. Router Circuit Design

Asynchronous protocols normally fall into two categories:
quasi delay-insensitive (QDI) and bundled-data (BD). Gen
erally, QDI is more robust to variations while BD allows
simpler circuits. BD has a lower wire count compared to
QDI’s common encodings (e.g. l-of-4 and dual-rail). This is
potentially more energy-efficient due to reduced wire repeater
leakage, especially with wide links [25]. The choice of 4-
phase or 2-phase protocol impacts performance and circuit
complexity. The throughput across long links is limited by
wire latency, thus a 2-phase protocol achieves almost twice the
throughput as a 4-phase protocol. However, a 4-phase, level-
sensitive protocol typically allows more simple circuits.

With this in mind, we designed the router to internally
operate using a BD 4-phase protocol since it directly works
with a level-sensitive 4-phase MUTEX element [26] used for
arbitrating the shared output channels. We employ a BD 2-
phase protocol on the channels between routers.

The design of the router’s switch module is shown in
Figure 3a. A 2-to-4 phase converter is implemented on the
input control channel (signals Ir and la). This handshakes with
a BD 4-phase burst-mode asynchronous controller to pipeline
the data. The linear controller has the same specification and
timing assumptions as the one used in [27]. The output request
is steered to one of two channels (rrl or rr2) based on the most
significant route bit with a DEMUX. The route-bits are rotated
and passed to the merge module of the router. The routing
logic occurs concurrently with the handshake.

The merge module is composed of the arbitration circuit and
merge controller shown in Figure 3b. It contains the arbiter that
serializes requests to the shared output channel. The output
of the arbiter controls a MUX that selects which input data
to store in the output latch. Each arbiter transaction requests
a data transfer via the 4-phase handshake signal lr_m. This
request passes through the merge controller to generate the 2-
phase network link handshake on signals rr and ra, as well as
store the data in a pipeline latch.

All of the circuits were designed with the static, regular
Vth, Artisan cell library on IBM’s 65nm lOsf process except
the MUTEX element in the merge module. We designed
and characterized a separate library cell for the MUTEX
element through manual layout and HSPICE simulation. This
asynchronous circuit design process used a clocked CAD
flow in a methodology similar to [28]. We synthesized our

117

(b) merge

Figure 3: Schematics of Switch and Merge modules.

asynchronous controllers by hand or using Petrify, synthesized
the full asynchronous structural router design including data
path with Synopsys Design Compiler, and physically placed
and routed with SOC Encounter. Functionality and perfor
mance were validated in the design with ModelSim using back
annotated pre- and post-layout delays. Asynchronous circuits
were verified by Analyze [29] and using static timing analysis.

C. Evaluation
We have constructed a number of routers with varying flit

widths, but for this paper use one with 32-bits of data and
8-bits for routing. The resulting area is 2740//m2, dynamic
energy/flit is 1.56pJ, and leakage power is 0.009 mW.

The area is dominated by data storage latches and the data
MUXes used in the merge modules. The controllers (linear
controllers in switch modules and merge controllers in merge
modules) make a very small contribution to the total area.
Dynamic energy is consumed when one data word passes a
router from an input port to an output port. Energy is measured
using HSPTCE simulations with the spice netlist generated from
the design using parasitic extraction from Mentor Graphics
Calibre PEX. The same simulation was used in both HSPTCE
and ModelSim. The HSPTCE control file was generated by
converting a vcd file generated from the ModelSim simulation.
This allowed us to more easily validate switching activity on
the data and control paths. A 50% data switching activity factor
was applied to the data bits for our power simulations.

The maximum throughput of the router is 2.38Gflits/s.
This was measured by inserting data into the input ports at
maximum rate and allowing the output port to communicate
with another router with no wire delay.

We define the backward latency of our routers as the delay
from a request on an incoming channel to the acknowledgment
on that channel, completing the handshake of the two-phase
protocol. Fast backward latency is desirable because it frees the
previous router’s output port for another transaction. We define
forward latency as the delay from a request on an incoming
channel of a router to the associated request on an output
channel assuming no contention or stalling in the arbitration

circuit. This is determined by the delay to buffer the data,
arbitrate control, and switch to the outbound channel. Our
router design has 250ps backward latency and 460ps forward
latency

Our router’s low power and area are due to its simple
architecture and the use of latches, rather than flip-flops, for
the storage elements. Latches are about half the size and use
less power than flip-flops. Since much of the area and power
of many router architectures derives from memory elements,
this advantage makes a significant difference. Furthermore,
the simplicity of the control circuits also contributes to high
throughput. This router employs a bundled data protocol rather
than delay insensitive codes which results in fewer wires per
channel and efficient use of standard cell libraries. However,
the cost to this is that the circuit timing must be carefully
specified and controlled, similar to clocked design, to ensure
correct operation.

V. A s y n c h r o n o u s N e t w o r k G e n e r a t io n

We built a tool, ANetGen, that has goals similar to COST’s,
but operates with our router model and its asynchronous
considerations. ANetGen takes an input format that defines the
CTG edges and expected traffic bandwidth, as well as the core
dimensions. The core floorplan is specified prior to ANetGen,
which then determines physical placement of the routers and
their logical topology. The objective function is to minimize
wirelength and hop counts for high traffic paths. Tt does this
with a combination of simulated annealing (SA) and force-
directed movement techniques.

A. Topology and Placement

Asynchronous circuits have unique properties that can be
leveraged to optimize the network. Specifically, the physical
path length between endpoints directly affects packet latency,
not just the number of routers and pipeline buffers a packet
must travel through, assuming an uncongested path. This is in
contrast to a synchronous system, where each network element
constitutes at least one required clock cycle. Also, link energy

118

usage can be significant [30] and will grow, relatively, with
shrinking process technology.

With this in mind, the physical placement of routers needs
to be determined such that wirelength is minimized, especially
on highly trafficked paths. For these experiments, we assume
soft IP (intellectual property) blocks which have cells placed
and routed by the SoC developer, rather than a single hard
macro block. This enables us to consider more options for
router locations. In an actual design flow, the router placement
our tool generates will provide input to the hierarchical placer,
or floorplacer [31] that will legalize the placement of cells and
macros composing each core.

The problem of finding the optimal tree topology is similar
to the NP-hard quadratic assignment problem of mapping cores
to a mesh topology [32], For this, we utilized a simulated
annealing method. The fitness to be minimized is based on
a topology’s router hop-count and wirelength, each weighted
by the volume of traffic expected over the path. In the current
tool implementation we limit the topology to a tree, which has
a minimal number of three-port routers. We save a detailed
analysis and comparison with other topologies to future work,
but this method produces good results, as seen in Section VII.

Within the SA process, topology choices are explored by
perturbing the topology and re-placing routers. We used a
method extended from [33] that uses force-directed movement
to provide router locations and link lengths to the SA process.
Force vectors are applied to routers that are proportional to: (a)
bandwidth requirements and (b) physical distances between the
router and its attached core or router. The process is iterative,
where a router moves a distance proportional to the sum of
its force vectors. This movement will reduce wire lengths of
paths that carry high traffic.

B. Simulator

We chose to build an asynchronous network simulator using
the SystemC library. The following modules were developed:
an arbiter, an inport to the router, an outport from the router,
and input and output port FIFOs. The SystemC Transaction
Level Modeling (TLM) library is used for inter-router links
and traffic generation. We chose this method to allow easier
extensibility of the channels if needed, and TLM provides a
convenient way to model link and protocol delays.

The traffic generator and router ports use a s im p le
s o c k e t to receive a g e n e r i c p a y lo a d transaction object
that contains packet and routing information. When a TLM
object is received by the inport's socket, a w a i t is performed
to model the wire delay. This delay is calculated from an
interpolation of HSPICE simulations of various wirelengths
in IBM’s 65nm technology. The wire energy per transfer is
calculated using the Orion 2.0 model. The router waits an
additional time period to model forward logic delay. The flit is
written to the FIFO, which triggers the arbiter. Another w a i t
models the acknowledgment delay to the sender.

Within the arbiter, a d o S w itc h in g SC_METHOD is
called whenever a packet is received by an input FIFO or
acknowledged by an output FIFO. The arbitration mechanism

is that described in Section IV. At each switching operation,
the appropriate energy is logged. This energy was measured
from transistor-level router simulations.

Each outport operates in its own thread, waiting for a packet
to be passed to it by the arbiter, or for a TLM response
indicating that the channel is free. When there is data in
the FIFO and the channel is free, it sends a new TLM
g e n e r i c p a y lo a d . The outport also records wire energy
of the transmitting link.

VI. E v a l u a t i o n M k t i i o d o l o g y

The evaluation of all network solutions was done with the
SystemC simulators generated by the tools. In this section, we
present the benchmarks and simulation parameters.

A. SoC Designs and NoC Generation

We used two SoC design abstractions of the CTG format
described in Section I for our evaluations. One is titled ADSTB
and is from the public COSI 2.0 distribution. The other is
an MPEG4 decoder originally described by [34] and used in
several other NoC research projects. Bandwidth requirements
were modified from those originally provided, and are shown
in Figure 1 for MPEG4 and Table I for ADSTB. The die areas
after router placement for the ADSTB and MPEG4 designs
were 35.7 m m 2 and 78.7 m m 2, respectively. These floorplans
were from the COSI tool’s output.

TABLE I: Average bandwidths for the ADSTB design.
Sender Receiver MBytes/s Sender Receiver MBytes/s
CPU AuclioDec I CPU DDR 3
CPU Demux I CPU MPEG2 1
DDR CPU 3 DDR HDTVEnc 314
DDR MPEG2 593 Demi Demux 31
Dem2 Demux 31 Demux AuclioDec 5
Demux MPEG2 7 HDTVEnc DDR 148
MPEG2 DDR 424

We generated a network for each design using the COSI and
ANetGen tools. We also manually created an asynchronous
network for the ADSTB design that is based on the topology
of the COSI solution. For each radix-4 and radix-5 router,
we manually replaced it with a construction of our radix-3
asynchronous routers, shown in Figure 4. The paths which
carry the most traffic were mapped to ports with the least
number of routers between them, such as ports A and B . This
construction is not a true radix-N switch, as it can have internal
contention (e.g. A —> C contends with B —>■ D).

We configured COSI to generate a hierarchical star network
with N / 3 — I partitions (N is number of cores), chosen based
on empirical experimentation for low energy. The floorplanner

fA C .A X c

B D B D
(a) Radix-4 (b) Radix-5

Figure 4: Asynchronous router constructions replacing those
of ra d ix > 3. External ports are labeled with letters.

119

was constrained to a square aspect ratio outline. The input to
ANetGen was the same floorplan and communication proper
ties as COSI.

B. Simulation Parameters

We instrumented the SystemC router and wire models from
COSI and ANetGen to record energy usage, packet latency,
and message latency over the course of a simulation. Orion
2.0 is used for the wire energy model in both frameworks, and
also for the synchronous router leakage power and switching
energy models. Energy for the asynchronous routers comes
from circuit simulation described in Section IV. The link model
assumes 50% of the wires switch per flit transfer. This is a
worst case model because real data will have a lower fraction of
changing bits. Additionally, the asynchronous router’s source-
route wires will change less than this as subsequent flits
often carry similar routing paths. Thus, the overhead of these
additional routing wires is likely less than what is represented
in the results.

We chose parameters for the Orion router model to be near as
possible to our asynchronous configuration in both energy and
performance. These are shown in Table II. Clock tree power
estimation was excluded from these models.

TABLE II: Orion 2.0 Model Parameters.
Router Ereq. 2 GHz Router I/O bull's 2 / 1 llit
Tech. Library 65 mu NVT Crossbar Multitree
Voltage 1.0 v Flit width 32 bits

VII. R e s u l t s

In this section we present results that show the asynchronous
networks provided lower message latency and used less power
than the synchronous networks.

Recall that a message is composed of a number of packets,
and is typically managed at the transport layer. Message latency
is defined as the time the first packet of the message leaves
the sending core’s output buffer and enters the network to
the time the tail packet leaves the network and enters the
destination core. The following results were generated with a
message size of 256 bytes, not counting flits carrying address
information. Simulations were run at three burstiness fo-values
{0.5,0.65,0.8}. We assume that packets are not dropped, and
that the destination cores do not stall, blocking its input port.

A. Message Latency Distribution

Histograms of message latency are shown in Figure 5 for
the ADSTB design, and a summary of both is presented in
Table III. An increase in latency as traffic burstiness rises shows
that traffic paths contend for switch and link resources for
longer periods of time. At 0.5 burstiness, all networks operate
with low latency of 150-190 ns for nearly all traffic. At 0.8
burstiness, the asynchronous networks have more messages
arriving in under 200ns, and a lower “re-peak” on the right
side of the chart.

TABLE III: Observed message latencies (ns); absolute maxi
mum and latency bound of 99%.

Network Burstiness
99% less than 0.5 0.65 0.8

ADSTB sync. 158 231 531
manual async 188 262 274

ANetGen 192 291 304
MPEG4 sync. 838 1395 1903

Maximum
ANetGen 275 431 697

ADSTB sync. 1130 51077 126480
manual async 510 580 914

ANetGen 510 762 912
MPEG4 sync. 11722 56041 158264

ANetGen 704 2520 5288

B. Per-path Message Latency

An understanding of latency and congestion within the
network cannot be fully understood by the overall delay alone.
Due to the heterogeneity and diverse path properties in an
application-specific SoC, there is benefit to analyzing each path
through the network separately.

For each path, or pair of communicating cores. Figure 6
shows the maximum latency for the ADSTB design and the
median latency for the MPEG4 design. With few exceptions,
the asynchronous network provides lower latency, at both low
and high burstiness values. This is a combination of a number
of factors. COSI’s synchronous routers operate with wormhole
switching in which a blocked header flit stalls up to two trailing
flits that in turn block other packets in other routers. Second,
the asynchronous network can take advantage of short wires
between routers and not delay a packet an entire cycle. Lastly,
the COSI-based router design has the overhead of an extra flit
carrying address information.

Despite the large variation in some paths, other paths show
little difference between change in burstiness or between
median and max delay. This is due to the network topology,
where some paths have fewer hops and a lower chance of
congestion, and others must traverse more routers. Both COSI
and ANetGen map paths carrying more traffic such that they
have fewer router hops.

C. Output Buffer Delay

Another metric of measuring the network performance is the
output buffer delay, which is from the time the traffic generator
places a packet in the output buffer to the time the packet
enters the network. The buffer entry time is set for each packet
by the traffic generator when it pushes an entire message to
the buffer at once. Therefore, the last packet of a 64-packet
message would have a minimum delay of 64 sender-cycles.
The traffic generator operates detached from the network flow
control so an infinite buffer is needed to accept its traffic at
any time. The network then empties that buffer as quickly as
possible. As burstiness increases, the additional delay comes
not only from contention within the network, but also from the
local traffic generator’s attempt to send more data in a shorter
time period. This grows the buffer more rapidly, increasing
delay, even if the network was uncongested. From the results in

120

Message Defay Histogram - Various Burstiness
100
80
60
40
20
0

J b-0.50 —I—b-0.65 ..*.. "b-0.80 - a - .

- 11V _ i _ _ i.-Q
200 300 400
Message Defay (ns)

(a) COSI-generated synchronous

Message Defay Histogram - Various Burstiness

b=0.50 — i—
b=0.65 ...-x—
b=0.80 —a — .

100 150 200 250
Message Defay (ns)

(b) Manual asynchronous

100
80
60
40
20
0

 ̂ b=0.50 -!-t—
b=0.65
b=0.80 —a— .

Message Defay Histogram - Various Burstiness

50 100 150 200 250 300
Message Defay (ns)

(c) ANetGen asynchronous

Figure 5: Histograms of message latency for the ADSTB design.

Message Delay Per Path

0)o

2000

1500

1000

500

o nflH B
Synchronous

n n DO B
Path ID

(a) Maximum latency for ADSTB
Message Delay Per Path

Asynchronous
a

2000

1500

1000

500

Synchronous |p Asynchronous

(b) Median latency for MPKG4

Figure 6: Observed latencies per patli for 256-bytc messages.
Results arc shown for the synchronous and asynchronous
network, and traffic of two burstiness amounts.

Median
Network

0.5
Burstiness

0.65 0.8
ADSTB sync. 96 730 390065

manual async. 90 508 320018
ANetGen 90 500 319818

MPKC.4 sync. 274 170336 1.1 e6
ANetGen 84 250 171496

Maximum
ADSTB sync. 1274 261112 1.3e6

manual async. 952 215908 1.2e6
ANetGen 912 231242 1.2e6

MPKC.4 sync. 11683 1.2e6 2.99e6
ANetGen 1036 171358 1.1 e6

values: { V , T } , where V is in bytes and T is in seconds. This
might be used in validating an interconnect of, say, a real-time
spccch recognition SoC, where 18MB must be processed in
0.1 s [35],

For example, the maximum synchronous network latency
seen in simulation between the upsamp and sdram cores of the
MPEG4 was 2525 ns. Suppose this path had an IB requirement
of {256 bytes, lOOOn.s} (equating to 256 MBytcs/s). This
network would be a poor choicc bccausc the application would
occasionally not rcccivc proper communication throughput,
despite the fact that the network did support its average
bandwidth.

E. Rower Consumption and Area

Wc present the power consumption in Tabic V, broken down
into the following areas: dynamic power of routers, leakage
power of routers, dynamic power of wires, and leakage power
of wires. These measurements do not includc the power of
clock distribution, and assume clock gating at the router. The
wire power includes that from drivers and repeaters (large
inverters).

TABLE V: Power consumption (mW) of routers and wires.

Table IV, wc see that the asynchronous networks consistently
have a lower delay for both median and maximum values.

D. Instantaneous Bandwidth

A measure of network performance related to message
latency is the instantaneous bandwidth (IB) available to a path
at any given time. This is in contrast to the average bandwidth
that an application produces over a long period. Wc define
an IB requirement for a sourcc-dcstination path by a pair of

TABLE IV: Source output buffer packct delay (ns).

r tr dyn r tr leak wire dyn
ADSTB sync 5.5 5 7.86
manual asvnc 0.95 0.072 12

ANetGen 0.95 0.054 6.3

wire leak TOTAL
4.6 23

8 21
4.5 11

MPF.G4 sync
ANetGen

12.3
2.4

15.7
0.09

28
20.5

15
16.7

71
40

In both eases, the dynamic power of the asynchronous
routers is rcduccd to about onc-fifth the power of the syn
chronous routers. The leakage power of the asynchronous
routers is negligible. The manual asynchronous network for
the ADSTB design has a noticcablc increase in wire power.
One reason is the additional links needed to form the cluster
of 3-port routers in placc of a highcr-radix router. Second, the
routing bits arc on separate wires, rather than an address on the
head flit. Third, our routers and tools use bi-dircctional ports,
with links instantiated in both directions. COSI, meanwhile,
considers uni-directional router ports, and may producc a
solution with fewer links.

Overall, the asynchronous networks use less power than the
synchronous networks. The majority of savings comcs from
significantly lower router power, both dynamic and leakage.
These results also point to the need for wire resources to be
carcful utilized, especially with cncrgy-cfficicnt routers.

121

The ANetGen networks have an area advantage over the
synchronous ones as well. Router areas are 15630/.tm2 (ANet
Gen) vs. 99704 /.tm2 (COSI) for ADSTB, and 26050/.tm2 vs.
138822/.tm2 for MPEG4.

VIII. C o n c l u s i o n

In this paper we provided an examination of performance
and energy of synchronous and asynchronous NoCs that are
customized for a number of SoC designs. The asynchronous
network formed by our tool ANetGen and our energy-efficient
routers only consumed half as much power as the synchronous
case. Wires consumed the largest fraction due to repeater
energy. Our asynchronous network also had lower latency,
significantly so for bursty traffic, for 256-byte messages. For
the ADSTB design, ANetGen yielded a lower-energy solution
and slightly lower latency than a manually-designed network
based on the synchronous topology. The evaluation suggests
that the common abstraction of SoC requirements using only
average bandwidth may not be sufficient. The addition of a
single-valued burstiness to the tuple representing a network
flow’s properties should be considered in other NoC evalua
tions. In future work, we will refine ANetGen to consider a
wider range of topologies and more closely integrate it with
the floorplanning tool.

A c k n o w l e d g m e n t s

This research is supported by the National Science Founda
tion under grant CCF-0702539 and Semiconductor Research
Corporation under task 1817.001. We would like to thank ARM
and IBM for providing the 65nm library cells and process
technology.

R k f k r k n c k s

[1] I. M. Panacies, F. Clerrnidy, P. Vivet, and A. Greiner, “Physical implemen
tation of the dspin network-on-chip in the faust architecture,” in Proc.
hit'I Symp. on Networks-on-Chips, 2008, pp. 139-148.

[2] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-ghz
mesh interconnect for a teraflops processor,” IEEE Micro, vol. 27, no. 5,
pp. 51-61, 2007.

[3] K. Srinivasan, K. S. Chatha, and G. Konjevod, “Linear-programming-
based techniques for synthesis of network-on-chip architectures,” IEEE
Trans. Very Large Scale Integr. Syst., vol. 14, no. 4, 2006.

[4] B. R. Quinton, M. R. Greenstreet, and S. J. E. Wilton, “Practical
asynchronous interconnect network design,” IEEE Trans. Very Large
Scale Integr. Syst., vol. 16, no. 5, pp. 579-588, 2008.

[5] A. Pinto, L. P. Carloni, and A. L. S. Vincentelli, “A methodology for
constraint-driven synthesis of on-chip communications,” IEEE Transac
tions on Computer Aided Design, vol. 28, no. 3, pp. 364—377, 2009.

[6] S. Murali, P. Meloni, F. Angiolini, D. Atienza, S. Carta, L. Benini,
G. D. Micheli, and L. Raffo, “Designing application-specific networks
on chips with floorplan information,” in Proc. Int'I Conf. on Computer-
Aided Design, 2006, pp. 355-362.

[7] D. Atienza, F. Angiolini, S. Murali, A. Pullini, L. Benini, and
G. De Micheli, “Network-On-Chip Design and Synthesis Outlook,”
Integration-The VLSI Journal, vol. 41, no. 2, Feb. 2008.

[8] Z. Guz, I. Walter, E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny,
“Network delays and link capacities in application-specific wormhole
nocs,” VLSI Design, vol. 2007, 2007.

[9] A. Lines, “Asynchronous interconnect for synchronous soc design,” IEEE
Micro, vol. 24, no. 1, pp. 32-41, 2004.

[10] W. J. Bainbridge and S B. Furber, “CHAIN: A Delay Insensitive CHip
Area INterconnect,” IEEE Micro special issue on Design and Test o f
System on Chip, vol. 142, No.4., pp. 16-23, Sept. 2002.

[11] T. Bjerregaard and J. Spars0, “A router architecture for connection-
oriented service guarantees in the MANGO clockless network-on-chip,”
in Proc. Design, Automation, and Test in Europe, 2005, pp. 1226—1231.

[12] D. Lattard, E. Beigne, C. Bernard, C. Bour, F. Clermidy, Y. Durand,
J. Durupt, D. Varreau, P. Vivet, P. Penard, A. Bouttier, and F. Berens, “A
telecom baseband circuit based on an asynchronous network-on-chip,”
Solid-State Circuits Conference, Digest o f Technical Papers, Feb. 2007.

[13] E. Beigne, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin, “An asyn
chronous noc architecture providing low latency service and its multi
level design framework,” in Proc. Int'I Symposium on Asynchronous
Circuits and Systems, 2005, pp. 54-63.

[14] R. R. Dobkin, R. Ginosar, and A. Kolodny, “Qnoc asynchronous router,”
Integr. VLSI J., vol. 42, no. 2, pp. 103-115, 2009.

[15] M. N. Horak, “A high-throughput, low-power asynchronous mesh-of-
trees interconnection network for the explicit multi-threading (xmt)
parallel architecture,” Master’s thesis, Univ. of Maryland, August 2008.

[16] A. Sheibanyrad, I. M. Panades, and A. Greiner, “Systematic comparison
between the asynchronous and the multi-synchronous implementations
of a network on chip architecture,” in Proc. Design, Automation, and
Test in Europe, 2007, pp. 1090-1095.

[17] R. Marculescu, U. Ogras, L.-S. Peh, N. Jerger, and Y. Hoskote, “Out
standing research problems in noc design: System, microarchitecture, and
circuit perspectives,” Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 28,
no. 1, pp. 3-21, 2009.

[18] M. Wang, T. Madhyastha, N. H. Chan, S. Papadimitriou, and C. Falout-
sos, “Data mining meets performance evaluation: fast algorithms for
modeling bursty traffic,” in Proc. International Conference on Data
Engineering, 2002.

[19] R. Thid, I. Sander, and A. Jantsch, “Flexible bus and noc performance
analysis with configurable synthetic workloads,” in Proc. EUROMICRO
Conf. on Digital System Design, 2006, pp. 681-688.

[20] G. V. Varatkar and R. Marculescu, “On-chip traffic modeling and
synthesis for mpeg-2 video applications,” IEEE Trans. Very Large Scale
Integr. Syst., vol. 12, no. 1, pp. 108-119, 2004.

[21] V. Soteriou, H. Wang, and L.-S. Peh, “A statistical traffic model for
on-chip interconnection networks,” in Proc. Int'I Symp. on Modeling,
Analysis, and Simulation, 2006, pp. 104-116.

[22] U. Y. Ogras and R. Marculescu, “Analytical router modeling for
networks-on-chip performance analysis,” in Proc. o f Design, Automation
and Test in Europe, 2007, pp. 1096-1101.

[23] A. Kahng, B. Li, L.-S. Peh, and K. Samadi, “Orion 2.0: A fast
and accurate noc power and area model for early-stage design space
exploration,” in DATE, April 2009, pp. 423-428.

[24] Z. Lu, A. Jantsch, E. Salminen, and C. Grecu, “Network-on-chip bench
marking specification part 2: Micro-benchmark specification,” Technical
Report, OCP International Partnership Association, Inc., 2008.

[25] K. S. Stevens, P. Golani, and P. A. Beerel, “Energy and Performance
Models for Synchronous and Asynchronous Communication,” IEEE
Tran, on VLSI Systems, March 2010.

[26] C. Seitz, System timing. Addison-Wesley, 1980, ch. 7, in C.A. Mead
and L.A. Conway, editors, Introduction to VLSI Systems.

[27] K. S. Stevens, R. Ginosar, and S. Rotem, “Relative timing,” IEEE Trans,
on VLSI Systems, vol. 11, no. 1, pp. 129-140, 2003.

[28] K. S. Stevens, Y. Xu, and V. Vij, “Characterization of asynchronous
templates for integration into clocked cad flows,” in Int'I Symp. on
Asynchronous Circuits and Systems, May 2009, pp. 151-161.

[29] K. S. Stevens, “Practical verification and synthesis of low latency
asynchronous systems,” Ph.D. dissertation, Univ. of Calgary, Sept. 1994.

[30] A. Pullini, F. Angiolini, P. Meloni, D. Atienza, S. Murali, L. Raffo,
G. D. Micheli, and L. Benini, “NoC design and implementation in 65nm
technology,” in Proc. Int'I Symp. on Networks-on-Chip, May 2007.

[31] J. A. Roy, D. A. Papa, s f N. Adya, H. H. Chan, A. N. Ng, J. F.
Lu, and I. L. Markov, “Capo: robust and scalable open-source min-cut
floorplacer,” in Proc. Int'I Symp. on Physical Design, 2005, pp. 224—226.

[32] J. Hu and R. Marculescu, “Energy-aware mapping for tile-based noc
architectures under performance constraints,” in Proc. Asia and South
Pacific Design Automation Conference, 2003, pp. 233-239.

[33] D. Gebhardt and K. S. Stevens, “Elastic flow in an application specific
network-on-chip,” Electron. Notes Theor. Comput. Sci, vol. 200, no. 1,
pp. 3-15, 2008, Proc. Int’l Workshop on Formal Methods for GALS.

[34] E. B. V. D. Tol and E. G. T. Jaspers, “Mapping of mpeg-4 decoding on
a flexible architecture platform,” in Media Processors, 2002, pp. 1—13.

[35] B. Mathew, A. Davis, and Z. Fang, “A low-power accelerator for the
sphinx 3 speech recognition system,” in Proc. on Compilers, Architecture
and Synthesis for Embedded Systems. ACM, 2003, pp. 210-219.

122

