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Abstract—Power consumption of on-chip interconnects is a 
primary concern for many embedded system-on-chip (SoC) appli
cations. In this paper, we compare energy and performance char
acteristics of asynchronous (clockless) and synchronous network- 
on-chip implementations, optimized for a number of SoC designs. 
We adapted the COSI-2.0 framework with ORION 2.0 router and 
wire models for synchronous network generation. Our own tool, 
ANetGen, specifies the asynchronous network by determining 
the topology with simulated-annealing and router locations with 
force-directed placement. It uses energy and delay models from 
our 65 nm bundled-data router design. SystemC simulations 
varied traffic burstiness using the self-similar b-model. Results 
show that the asynchronous network provided lower median and 
maximum message latency, especially under bursty traffic, and 
used far less router energy with a slight overhead for the inter
router wires.

1. In t r o d u c t io n

Embedded, energy-constrained SoC- designs can be roughly 
separated into two classes: platform-based and fixcd-function 
(also called application-specific). The former is concerned with 
being able to perform a wide variety of tasks, many of which 
cannot be foreseen at design time. The latter is targeted towards 
a particular function, or a few functions, that have known 
properties. A fixcd-function design might consist o f a number 
of highly specialized cores and memories, and fewer general- 
purpose processors. The network-on-chip (NoC) o f both these 
classes should be optimized for minimal energy usage while 
meeting the predicted performance requirements; however, the 
application-specific NoC may be more specialized as it has 
a priori knowledge of the communication patterns between 
cores. This is in contrast to general-purpose interconnects that 
are often evaluated with traffic patterns such as spatially- 
uniform, bit-transpose, etc.. The domain of this work is the 
fixed-function, rather than the platform-based SoC.

Some globally-asynchronous locally-synchronous (GALS) 
interconnect solutions rely on a clock, either with standard 
synchronous clock distribution, or a mesochronous method. 
However, an asynchronous (also called clockless) network has 
a number of potential advantages over a clocked network in a 
GALS environment. Standard arguments for asynchronous cir
cuit design include robustness to process/voltage/temperature 
variation, avcrage-casc instead of worst-case performance, and 
other such points. However, there are also many NoC-specific 
arguments. In a synchronous NoC, the clock tree for all routers 
and pipeline buffers can consume significant power as shown in

a heterogeneous network [11, and in a large CMP (chip multi
processor) 33% of router power [2], Many SoC designs have 
quite bursty and “reactive” traffic. In this case, asynchronous 
methods are beneficial in that they consume little dynamic 
power during periods of low traffic without relying on clock 
gating techniques.

Available bandwidth on each asynchronous link can be 
independently set, to some extent, by wirelength between 
routers, link pipeline depth, or by varying the physical wire 
properties (metal layer, width, and spacing). This is potentially 
useful when bandwidth requirements on core-to-core paths vary 
considerably. This is in contrast to clocked networks which 
commonly use a single frequency for all routers and is wasteful 
to those paths not requiring high bandwidth. A clocked NoC 
can use discrete “islands” of differing clock speeds to achicvc 
a similar effect, but in a much coarser-grained fashion.

Design automation techniques are commonly used to gen
erate a NoC for a specific SoC design. These methods can 
decrease time of development in commercial products or 
allow a researcher to explore a larger design space. The NoC 
solution is chosen based on some metric, usually a function of 
energy and performance. In the optimization process, potential 
solutions must be evaluated for quality, and this often requires 
an abstracted model of the SoC characteristics.

This abstraction can be done at a variety of levels depending 
upon completeness or availability o f the SoC design and NoC 
components. Ideally, one could simulate the exact functionality 
o f the various cores composing the design, and the NoC would 
be fully implemented to model the communication. Unfortu
nately, this method is labor and simulation-time intensive, and 
not a good choice for early-exploration of the NoC design 
space. As usual, tradeoffs must be made as function becomes 
more abstracted.

A commonly used abstraction used in the literature has been 
titled a communication trace graph [3] (CTG) or a core graph. 
A  path describes pairs o f source and destination cores, and the 
particular links and routers a packet traverses. The CTG has a 
n-tuple of values per path, but often includes average expected 
traffic rate per path and sometimes a latency requirem ent o f a 
packet. An example CTG is shown in Figure 1 that we use in 
our evaluation.

To our knowledge, there does not exist published methods to 
aid in automating high-level asynchronous NoC optimization
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Figure 1: Example CTG graph. Edge weights are in MBytes/s.

for fixed-function SoCs. This is in contrast to techniques 
that utilize synchronous tools for implementing a specific 
network [4], In this work, we give an overview of our circuits 
and design automation techniques, and compare the resulting 
asynchronous NoC to a synchronous one generated by an 
existing tool. We also show that adding a measure of bursty 
traffic to a CTG design abstraction leads to a more conclusive 
NoC evaluation. Also unique is our SystemC simulator that 
models asynchronous routers, and importantly, the link delay 
as a function of wire length between routers.

This paper is organized as follows. Section II gives an 
overview of related work. The synchronous network genera
tion framework is discussed in Section III. Our asynchronous 
router is discussed in Section IV at a circuit level. Section V 
describes our methodology for asynchronous NoC generation 
and simulation. Our evaluation methodology and setup is given 
in Section VI, with the results discussed in Section VII. We 
conclude in Section VIII.

II. R e l a t e d  W o r k

The COSI framework [5] generates an application-specific 
NoC and floorplan, taking as input such constraints as core 
areas and average bandwidth between cores. While it is exten
sible with new algorithms and components, it does not consider 
asynchronous network components and, as future work, cites 
the need for integrating traffic burstiness. For the Xpipes 
library, a heuristic search determines the topology and router 
configuration [6]. It uses floorplan information, router energy 
models, and core communication requirements. The results 
indicate a significantly reduced power and hop-count versus 
the best mesh topologies for a variety of SoC designs. It is 
part of a complete workflow to automatically synthesize a NoC 
down to chip layout [7]. A linear programming based method 
is presented in [3], For the QNoC routers, application-specific 
optimization is discussed in [8], but it focuses on mapping 
logical resources of a mesh-style topology rather than physical 
concerns.

Previous research on asynchronous interconnects is rich, 
but these designs are either hand-designed for a particular 
application, or general in design but possibly having over
provisioned resources for a power-constrained SoC. All but one 
of these existing routers use quasi delay-insensitive protocols 
between routers, rather than bundled-data. Fulcrum Microsys
tems created a large asynchronous crossbar to interconnect 
cores of a SoC [9]. The commercial startup Silistix, based on 
earlier academic research [10], sells EDA software and circuits 
that provide an customized asynchronous NoC, but has no

published methods for the optimization process. The MANGO 
router [11] provides both best-effort and guaranteed-service 
traffic. FAUST [ 12] is a platform and fabricated chip used in 4G 
telephony development, and uses an asynchronous mesh-based 
NoC [13], The QNoC group has developed an asynchronous 
router that provides multiple service levels and dynamically 
allocated virtual channels per level [14], A mesh-of-trees 
network was constructed from simple, bundled-data routers for 
a CMP [15], A comparison between the asynchronous network 
ANOC, and the mesochronous clocked network DSPIN, was 
performed in [1], For both designs, a physical layout and 
functional traffic simulation was done for analysis. While 
DSPIN had 33% less area and 33% higher bandwidth than 
ANOC, ANOC had shorter packet latency and at least 37% 
lower power consumption. DSPIN was also compared against 
its asynchronous analog, ASPIN [16], Average power, latency, 
and saturation threshold are superior in ASPIN with similar 
die area.

Traffic modeling for NoCs is one of the major outstanding 
problems in the field [17]. The fc-model [18] provides a simple 
method to produce and analyze the burstiness of self-similar 
traffic with a single value. The fc-model has been adapted to 
study burstiness effects in the Nostrum NoC [19]. Evidence 
of traffic self-similarity and burstiness in MPEG-2 video ap
plications has been shown [20], Several analytic models of 
network performance have been developed for NoC design. 
A model has been developed to capture spatial and temporal 
characteristics of traffic for regular, homogeneous NoCs [21], 
A generalized analytic router model was developed in [22], 
It provides detailed statistics during expected traffic, and is 
applicable to heterogeneous, irregular networks, but relies on 
the Poisson arrival process and a synchronously-clocked router.

III. S y n c h r o n o u s  N e t w o r k  G e n e r a t i o n

The baseline network used for comparison purposes is 
generated by a research tool called COSI 2.0, a source-code 
release that incorporates much of the functionality of COSI- 
NoC (v. 1.2) [5]. COSI takes as input a SoC design abstraction 
consisting of core dimensions or area, and a set of communi
cation constraints between those cores, which are called flows. 
This is a more generalized concept than the CTG mentioned 
in Section I, and COSI can consider temporal properties 
between flows, such as mutual exclusion. Given these flows, its 
optimization algorithms try to find the network and floorplan 
that meets the constraints while minimizing power based on 
router and wire models. As output, COSI produces a floorplan, 
topology, and a SystemC-based simulator. Included with the 
software release are algorithms for generating a mesh and a 
min-cut partitioning method (hierarchical star) similar to that 
of [6]. We modified COSI to incorporate the Orion 2.0 router 
and wire models [23], and also made a number of other changes 
to COSI to improve its operation and result reporting.

In order to explore the performance characteristics of the 
network, we moved away from the Poisson traffic models 
commonly used for evaluations and instead use a model more 
representative of application traffic. We implemented the b-
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model traffic generator [18], suggested as a key feature in 
future NoC benchmark sets [24]. The SystemC simulator 
produced by COSI was modified to use this bursty traffic 
generator.

Our model is parameterizable with the following inputs:
• Source and destination cores.
• A b-value in the range [0.5,1.0) indicating burstiness.
• Simulation duration.
• Average bandwidth, i.e. desired total traffic volume.
• The smallest time-resolution of the burstiness.
• Number of packets per message.
Self-similar traffic, down to the time resolution, is generated 

recursively with an algorithm closely following the origi
nal [18]. However, there are a number of interesting details to 
note. The b-model determines the total volume of data to send 
in each window  determined by the specified time resolution. 
Within a window, a message is probabilistically sent each cycle 
such that over the time window the proper amount of data is 
sent. An entire message consisting of multiple packets is sent 
at once to emulate application-level data needs. It may be the 
case that the desired volume of traffic per window exceeds the 
capacity of the link or output buffer, or the previous window 
has not finished sending its data yet. In these cases the packets 
are queued up in an “infinite” buffer. Therefore, the model’s 
output is the ideal, desired data transmissions, but the actual 
achieved data is subject to network limitations as expected. 
This design uses a SystemC transaction level model (TLM) 
for its interface, and thus it is portable and relatively easy to 
connect to other tools’ outputs, as we did here with COSI.

IV. A s y n c h r o n o u s  R o u t e r  D e s ig n

A. Overview

This asynchronous router is designed for efficiency and 
simplicity. Each switch directs a flit to one of two output 
ports. With bi-directional channels, this results in a three- 
ported “T” router. The packet format consists of a single flit 
containing source-routing bits in parallel, on separate wires, 
with the data bits. The packet is switched through a simple 
demultiplexer controlled by the most-significant routing bit. 
The bits are simply rotated, or swizzled, for the output packet. 
The number of required routing bits is determined by the 
maximum hop count of a network generated for a specific SoC 
design. The width of each flit must be determined based on 
required throughput or power and area constraints. This format 
has the overhead of requiring routing bits with every flit.

fOVjtS
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1 latch! 1 latch [~ 
T PortB T

Figure 2: Architecture of a 3-port asynchronous router.

The router is implemented with three components: a switch 
module, merge module, and a buffer. The switch module steers 
data on an incoming channel to one of the other two outgoing 
channels. The merge module arbitrates between two input 
channels to an output channel, granting access to the first-to- 
arrive request signal. This effectively alternates between the 
two input channels, assuming each provides the next packet 
within an output channel’s cycle-time. A router is composed 
of three switch modules and three merge modules, as shown in 
Figure 2. Each switch and merge module has one set of latches 
providing 1-flit buffers on each input and output port.

B. Router Circuit Design

Asynchronous protocols normally fall into two categories: 
quasi delay-insensitive (QDI) and bundled-data (BD). Gen
erally, QDI is more robust to variations while BD allows 
simpler circuits. BD has a lower wire count compared to 
QDI’s common encodings (e.g. l-of-4 and dual-rail). This is 
potentially more energy-efficient due to reduced wire repeater 
leakage, especially with wide links [25]. The choice of 4- 
phase or 2-phase protocol impacts performance and circuit 
complexity. The throughput across long links is limited by 
wire latency, thus a 2-phase protocol achieves almost twice the 
throughput as a 4-phase protocol. However, a 4-phase, level- 
sensitive protocol typically allows more simple circuits.

With this in mind, we designed the router to internally 
operate using a BD 4-phase protocol since it directly works 
with a level-sensitive 4-phase MUTEX element [26] used for 
arbitrating the shared output channels. We employ a BD 2- 
phase protocol on the channels between routers.

The design of the router’s switch module is shown in 
Figure 3a. A 2-to-4 phase converter is implemented on the 
input control channel (signals Ir and la). This handshakes with 
a BD 4-phase burst-mode asynchronous controller to pipeline 
the data. The linear controller has the same specification and 
timing assumptions as the one used in [27]. The output request 
is steered to one of two channels (rrl or rr2) based on the most 
significant route bit with a DEMUX. The route-bits are rotated 
and passed to the merge module of the router. The routing 
logic occurs concurrently with the handshake.

The merge module is composed of the arbitration circuit and 
merge controller shown in Figure 3b. It contains the arbiter that 
serializes requests to the shared output channel. The output 
of the arbiter controls a MUX that selects which input data 
to store in the output latch. Each arbiter transaction requests 
a data transfer via the 4-phase handshake signal lr_m. This 
request passes through the merge controller to generate the 2- 
phase network link handshake on signals rr and ra, as well as 
store the data in a pipeline latch.

All of the circuits were designed with the static, regular 
Vth, Artisan cell library on IBM’s 65nm lOsf process except 
the MUTEX element in the merge module. We designed 
and characterized a separate library cell for the MUTEX 
element through manual layout and HSPICE simulation. This 
asynchronous circuit design process used a clocked CAD 
flow in a methodology similar to [28]. We synthesized our
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(b) merge

Figure 3: Schematics of Switch and Merge modules.

asynchronous controllers by hand or using Petrify, synthesized 
the full asynchronous structural router design including data 
path with Synopsys Design Compiler, and physically placed 
and routed with SOC Encounter. Functionality and perfor
mance were validated in the design with ModelSim using back 
annotated pre- and post-layout delays. Asynchronous circuits 
were verified by Analyze [29] and using static timing analysis.

C. Evaluation
We have constructed a number of routers with varying flit 

widths, but for this paper use one with 32-bits of data and 
8-bits for routing. The resulting area is 2740//m2, dynamic 
energy/flit is 1.56pJ, and leakage power is 0.009 mW.

The area is dominated by data storage latches and the data 
MUXes used in the merge modules. The controllers (linear 
controllers in switch modules and merge controllers in merge 
modules) make a very small contribution to the total area. 
Dynamic energy is consumed when one data word passes a 
router from an input port to an output port. Energy is measured 
using HSPTCE simulations with the spice netlist generated from 
the design using parasitic extraction from Mentor Graphics 
Calibre PEX. The same simulation was used in both HSPTCE 
and ModelSim. The HSPTCE control file was generated by 
converting a vcd file generated from the ModelSim simulation. 
This allowed us to more easily validate switching activity on 
the data and control paths. A 50% data switching activity factor 
was applied to the data bits for our power simulations.

The maximum throughput of the router is 2.38Gflits/s. 
This was measured by inserting data into the input ports at 
maximum rate and allowing the output port to communicate 
with another router with no wire delay.

We define the backward latency of our routers as the delay 
from a request on an incoming channel to the acknowledgment 
on that channel, completing the handshake of the two-phase 
protocol. Fast backward latency is desirable because it frees the 
previous router’s output port for another transaction. We define 
forward latency as the delay from a request on an incoming 
channel of a router to the associated request on an output 
channel assuming no contention or stalling in the arbitration

circuit. This is determined by the delay to buffer the data, 
arbitrate control, and switch to the outbound channel. Our 
router design has 250ps backward latency and 460ps forward 
latency

Our router’s low power and area are due to its simple 
architecture and the use of latches, rather than flip-flops, for 
the storage elements. Latches are about half the size and use 
less power than flip-flops. Since much of the area and power 
of many router architectures derives from memory elements, 
this advantage makes a significant difference. Furthermore, 
the simplicity of the control circuits also contributes to high 
throughput. This router employs a bundled data protocol rather 
than delay insensitive codes which results in fewer wires per 
channel and efficient use of standard cell libraries. However, 
the cost to this is that the circuit timing must be carefully 
specified and controlled, similar to clocked design, to ensure 
correct operation.

V. A s y n c h r o n o u s  N e t w o r k  G e n e r a t io n

We built a tool, ANetGen, that has goals similar to COST’s, 
but operates with our router model and its asynchronous 
considerations. ANetGen takes an input format that defines the 
CTG edges and expected traffic bandwidth, as well as the core 
dimensions. The core floorplan is specified prior to ANetGen, 
which then determines physical placement of the routers and 
their logical topology. The objective function is to minimize 
wirelength and hop counts for high traffic paths. Tt does this 
with a combination of simulated annealing (SA) and force- 
directed movement techniques.

A. Topology and Placement

Asynchronous circuits have unique properties that can be 
leveraged to optimize the network. Specifically, the physical 
path length between endpoints directly affects packet latency, 
not just the number of routers and pipeline buffers a packet 
must travel through, assuming an uncongested path. This is in 
contrast to a synchronous system, where each network element 
constitutes at least one required clock cycle. Also, link energy
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usage can be significant [30] and will grow, relatively, with 
shrinking process technology.

With this in mind, the physical placement of routers needs 
to be determined such that wirelength is minimized, especially 
on highly trafficked paths. For these experiments, we assume 
soft IP (intellectual property) blocks which have cells placed 
and routed by the SoC developer, rather than a single hard 
macro block. This enables us to consider more options for 
router locations. In an actual design flow, the router placement 
our tool generates will provide input to the hierarchical placer, 
or floorplacer [31] that will legalize the placement of cells and 
macros composing each core.

The problem of finding the optimal tree topology is similar 
to the NP-hard quadratic assignment problem of mapping cores 
to a mesh topology [32], For this, we utilized a simulated 
annealing method. The fitness to be minimized is based on 
a topology’s router hop-count and wirelength, each weighted 
by the volume of traffic expected over the path. In the current 
tool implementation we limit the topology to a tree, which has 
a minimal number of three-port routers. We save a detailed 
analysis and comparison with other topologies to future work, 
but this method produces good results, as seen in Section VII.

Within the SA process, topology choices are explored by 
perturbing the topology and re-placing routers. We used a 
method extended from [33] that uses force-directed movement 
to provide router locations and link lengths to the SA process. 
Force vectors are applied to routers that are proportional to: (a) 
bandwidth requirements and (b) physical distances between the 
router and its attached core or router. The process is iterative, 
where a router moves a distance proportional to the sum of 
its force vectors. This movement will reduce wire lengths of 
paths that carry high traffic.

B. Simulator

We chose to build an asynchronous network simulator using 
the SystemC library. The following modules were developed: 
an arbiter, an inport to the router, an outport from the router, 
and input and output port FIFOs. The SystemC Transaction 
Level Modeling (TLM) library is used for inter-router links 
and traffic generation. We chose this method to allow easier 
extensibility of the channels if needed, and TLM provides a 
convenient way to model link and protocol delays.

The traffic generator and router ports use a s im p le  
s o c k e t  to receive a g e n e r i c  p a y lo a d  transaction object 
that contains packet and routing information. When a TLM 
object is received by the inport's socket, a w a i t  is performed 
to model the wire delay. This delay is calculated from an 
interpolation of HSPICE simulations of various wirelengths 
in IBM’s 65nm technology. The wire energy per transfer is 
calculated using the Orion 2.0 model. The router waits an 
additional time period to model forward logic delay. The flit is 
written to the FIFO, which triggers the arbiter. Another w a i t  
models the acknowledgment delay to the sender.

Within the arbiter, a d o S w itc h in g  SC_METHOD is 
called whenever a packet is received by an input FIFO or 
acknowledged by an output FIFO. The arbitration mechanism

is that described in Section IV. At each switching operation, 
the appropriate energy is logged. This energy was measured 
from transistor-level router simulations.

Each outport operates in its own thread, waiting for a packet 
to be passed to it by the arbiter, or for a TLM response 
indicating that the channel is free. When there is data in 
the FIFO and the channel is free, it sends a new TLM 
g e n e r i c  p a y lo a d .  The outport also records wire energy 
of the transmitting link.

VI. E v a l u a t i o n  M k t i i o d o l o g y

The evaluation of all network solutions was done with the 
SystemC simulators generated by the tools. In this section, we 
present the benchmarks and simulation parameters.

A. SoC Designs and NoC Generation

We used two SoC design abstractions of the CTG format 
described in Section I for our evaluations. One is titled ADSTB 
and is from the public COSI 2.0 distribution. The other is 
an MPEG4 decoder originally described by [34] and used in 
several other NoC research projects. Bandwidth requirements 
were modified from those originally provided, and are shown 
in Figure 1 for MPEG4 and Table I for ADSTB. The die areas 
after router placement for the ADSTB and MPEG4 designs 
were 35.7 m m 2 and 78.7 m m 2, respectively. These floorplans 
were from the COSI tool’s output.

TABLE I: Average bandwidths for the ADSTB design.
Sender Receiver MBytes/s Sender Receiver MBytes/s
CPU AuclioDec I CPU DDR 3
CPU Demux I CPU MPEG2 1
DDR CPU 3 DDR HDTVEnc 314
DDR MPEG2 593 Demi Demux 31
Dem2 Demux 31 Demux AuclioDec 5
Demux MPEG2 7 HDTVEnc DDR 148
MPEG2 DDR 424

We generated a network for each design using the COSI and 
ANetGen tools. We also manually created an asynchronous 
network for the ADSTB design that is based on the topology 
of the COSI solution. For each radix-4 and radix-5 router, 
we manually replaced it with a construction of our radix-3 
asynchronous routers, shown in Figure 4. The paths which 
carry the most traffic were mapped to ports with the least 
number of routers between them, such as ports A  and B . This 
construction is not a true radix-N switch, as it can have internal 
contention (e.g. A  —> C  contends with B  —>■ D).

We configured COSI to generate a hierarchical star network 
with N / 3 — I partitions ( N  is number of cores), chosen based 
on empirical experimentation for low energy. The floorplanner

fA C  .A X  c

B D B D
(a) Radix-4 (b) Radix-5

Figure 4: Asynchronous router constructions replacing those 
of ra d ix  >  3. External ports are labeled with letters.
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was constrained to a square aspect ratio outline. The input to 
ANetGen was the same floorplan and communication proper
ties as COSI.

B. Simulation Parameters

We instrumented the SystemC router and wire models from 
COSI and ANetGen to record energy usage, packet latency, 
and message latency over the course of a simulation. Orion 
2.0 is used for the wire energy model in both frameworks, and 
also for the synchronous router leakage power and switching 
energy models. Energy for the asynchronous routers comes 
from circuit simulation described in Section IV. The link model 
assumes 50% of the wires switch per flit transfer. This is a 
worst case model because real data will have a lower fraction of 
changing bits. Additionally, the asynchronous router’s source- 
route wires will change less than this as subsequent flits 
often carry similar routing paths. Thus, the overhead of these 
additional routing wires is likely less than what is represented 
in the results.

We chose parameters for the Orion router model to be near as 
possible to our asynchronous configuration in both energy and 
performance. These are shown in Table II. Clock tree power 
estimation was excluded from these models.

TABLE II: Orion 2.0 Model Parameters.
Router Ereq. 2 GHz Router I/O bull's 2 / 1 llit
Tech. Library 65 mu NVT Crossbar Multitree
Voltage 1.0 v Flit width 32 bits

VII. R e s u l t s

In this section we present results that show the asynchronous 
networks provided lower message latency and used less power 
than the synchronous networks.

Recall that a message is composed of a number of packets, 
and is typically managed at the transport layer. Message latency 
is defined as the time the first packet of the message leaves 
the sending core’s output buffer and enters the network to 
the time the tail packet leaves the network and enters the 
destination core. The following results were generated with a 
message size of 256 bytes, not counting flits carrying address 
information. Simulations were run at three burstiness fo-values 
{0.5,0.65,0.8}. We assume that packets are not dropped, and 
that the destination cores do not stall, blocking its input port.

A. Message Latency Distribution

Histograms of message latency are shown in Figure 5 for 
the ADSTB design, and a summary of both is presented in 
Table III. An increase in latency as traffic burstiness rises shows 
that traffic paths contend for switch and link resources for 
longer periods of time. At 0.5 burstiness, all networks operate 
with low latency of 150-190 ns for nearly all traffic. At 0.8 
burstiness, the asynchronous networks have more messages 
arriving in under 200ns, and a lower “re-peak” on the right 
side of the chart.

TABLE III: Observed message latencies (ns); absolute maxi
mum and latency bound of 99%.

Network Burstiness
99% less than 0.5 0.65 0.8

ADSTB sync. 158 231 531
manual async 188 262 274

ANetGen 192 291 304
MPEG4 sync. 838 1395 1903

Maximum
ANetGen 275 431 697

ADSTB sync. 1130 51077 126480
manual async 510 580 914

ANetGen 510 762 912
MPEG4 sync. 11722 56041 158264

ANetGen 704 2520 5288

B. Per-path Message Latency

An understanding of latency and congestion within the 
network cannot be fully understood by the overall delay alone. 
Due to the heterogeneity and diverse path properties in an 
application-specific SoC, there is benefit to analyzing each path 
through the network separately.

For each path, or pair of communicating cores. Figure 6 
shows the maximum latency for the ADSTB design and the 
median latency for the MPEG4 design. With few exceptions, 
the asynchronous network provides lower latency, at both low 
and high burstiness values. This is a combination of a number 
of factors. COSI’s synchronous routers operate with wormhole 
switching in which a blocked header flit stalls up to two trailing 
flits that in turn block other packets in other routers. Second, 
the asynchronous network can take advantage of short wires 
between routers and not delay a packet an entire cycle. Lastly, 
the COSI-based router design has the overhead of an extra flit 
carrying address information.

Despite the large variation in some paths, other paths show 
little difference between change in burstiness or between 
median and max delay. This is due to the network topology, 
where some paths have fewer hops and a lower chance of 
congestion, and others must traverse more routers. Both COSI 
and ANetGen map paths carrying more traffic such that they 
have fewer router hops.

C. Output Buffer Delay

Another metric of measuring the network performance is the 
output buffer delay, which is from the time the traffic generator 
places a packet in the output buffer to the time the packet 
enters the network. The buffer entry time is set for each packet 
by the traffic generator when it pushes an entire message to 
the buffer at once. Therefore, the last packet of a 64-packet 
message would have a minimum delay of 64 sender-cycles. 
The traffic generator operates detached from the network flow 
control so an infinite buffer is needed to accept its traffic at 
any time. The network then empties that buffer as quickly as 
possible. As burstiness increases, the additional delay comes 
not only from contention within the network, but also from the 
local traffic generator’s attempt to send more data in a shorter 
time period. This grows the buffer more rapidly, increasing 
delay, even if the network was uncongested. From the results in
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Figure 5: Histograms of message latency for the ADSTB design.
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Figure 6: Observed latencies per patli for 256-bytc messages. 
Results arc shown for the synchronous and asynchronous 
network, and traffic of two burstiness amounts.

Median
Network

0.5
Burstiness

0.65 0.8
ADSTB sync. 96 730 390065

manual async. 90 508 320018
ANetGen 90 500 319818

MPKC.4 sync. 274 170336 1.1 e6
ANetGen 84 250 171496

Maximum
ADSTB sync. 1274 261112 1.3e6

manual async. 952 215908 1.2e6
ANetGen 912 231242 1.2e6

MPKC.4 sync. 11683 1.2e6 2.99e6
ANetGen 1036 171358 1.1 e6

values: { V , T } ,  where V  is in bytes and T  is in seconds. This 
might be used in validating an interconnect of, say, a real-time 
spccch recognition SoC, where 18MB must be processed in 
0.1 s [35],

For example, the maximum synchronous network latency 
seen in simulation between the upsamp and sdram  cores of the 
MPEG4 was 2525 ns. Suppose this path had an IB requirement 
of {256 bytes, lOOOn.s} (equating to 256 MBytcs/s). This 
network would be a poor choicc bccausc the application would 
occasionally not rcccivc proper communication throughput, 
despite the fact that the network did support its average 
bandwidth.

E. Rower Consumption and Area

Wc present the power consumption in Tabic V, broken down 
into the following areas: dynamic power of routers, leakage 
power of routers, dynamic power of wires, and leakage power 
of wires. These measurements do not includc the power of 
clock distribution, and assume clock gating at the router. The 
wire power includes that from drivers and repeaters (large 
inverters).

TABLE V: Power consumption (mW) of routers and wires.

Table IV, wc see that the asynchronous networks consistently 
have a lower delay for both median and maximum values.

D. Instantaneous Bandwidth

A measure of network performance related to message 
latency is the instantaneous bandwidth (IB) available to a path 
at any given time. This is in contrast to the average bandwidth 
that an application produces over a long period. Wc define 
an IB requirement for a sourcc-dcstination path by a pair of

TABLE IV: Source output buffer packct delay (ns).

r tr  dyn r tr  leak wire dyn
ADSTB sync 5.5 5 7.86
manual asvnc 0.95 0.072 12

ANetGen 0.95 0.054 6.3

wire leak TOTAL
4.6 23

8 21
4.5 11

MPF.G4 sync 
ANetGen

12.3
2.4

15.7
0.09

28
20.5

15
16.7

71
40

In both eases, the dynamic power of the asynchronous 
routers is rcduccd to about onc-fifth the power of the syn
chronous routers. The leakage power of the asynchronous 
routers is negligible. The manual asynchronous network for 
the ADSTB design has a noticcablc increase in wire power. 
One reason is the additional links needed to form the cluster 
of 3-port routers in placc of a highcr-radix router. Second, the 
routing bits arc on separate wires, rather than an address on the 
head flit. Third, our routers and tools use bi-dircctional ports, 
with links instantiated in both directions. COSI, meanwhile, 
considers uni-directional router ports, and may producc a 
solution with fewer links.

Overall, the asynchronous networks use less power than the 
synchronous networks. The majority of savings comcs from 
significantly lower router power, both dynamic and leakage. 
These results also point to the need for wire resources to be 
carcful utilized, especially with cncrgy-cfficicnt routers.
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The ANetGen networks have an area advantage over the 
synchronous ones as well. Router areas are 15630/.tm2 (ANet
Gen) vs. 99704 /.tm2 (COSI) for ADSTB, and 26050/.tm2 vs. 
138822/.tm2 for MPEG4.

VIII. C o n c l u s i o n

In this paper we provided an examination of performance 
and energy of synchronous and asynchronous NoCs that are 
customized for a number of SoC designs. The asynchronous 
network formed by our tool ANetGen and our energy-efficient 
routers only consumed half as much power as the synchronous 
case. Wires consumed the largest fraction due to repeater 
energy. Our asynchronous network also had lower latency, 
significantly so for bursty traffic, for 256-byte messages. For 
the ADSTB design, ANetGen yielded a lower-energy solution 
and slightly lower latency than a manually-designed network 
based on the synchronous topology. The evaluation suggests 
that the common abstraction of SoC requirements using only 
average bandwidth may not be sufficient. The addition of a 
single-valued burstiness to the tuple representing a network 
flow’s properties should be considered in other NoC evalua
tions. In future work, we will refine ANetGen to consider a 
wider range of topologies and more closely integrate it with 
the floorplanning tool.
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