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Abstract .—Evolutionary biologists increasingly have become interested in the factors determin
ing the structure of phylogenetic trees. For example, highly asymmetric trees seem to suggest 
that the probability of extinction and/or speciation differs among lineages. Before looking for 
the cause of such differences, one must establish that the structure of the trees differs signifi
cantly from results of an appropriate null model. A commonly invoked null model assumes that 
speciation is equally probable along all branches of a diversifying tree and predicts that highly 
asymmetric trees are not unexpected. However, this model of diversification assumes more 
than equality of rates among lineages. We demonstrate theoretically and via simulations that 
relaxation of the hidden assumptions that speciation is essentially instantaneous and occurs 
independently in separate lineages leads to qualitatively different expectations concerning the 
expected phylogenetic topology. In particular, highly asymmetric trees are considerably less 
likely to arise by chance when the speciation process takes up a significant fraction of the 
expected time between initiation of speciation events or when lineages tend to speciate simulta
neously. As with most null models in ecology and evolution, the assumptions encoded in the 
model play an important role in determining the null expectation.

Recent years have seen a resurgence in efforts to explicitly incorporate phylo
genetic information into studies of evolutionary phenomena (see, e.g., Brooks 
and McLennan 1991; Harvey and Pagel 1991 and references therein). One applica
tion of this approach is to questions of evolutionary diversification. Biologists 
have long noted that some lineages are more diverse than others and have pro
posed causal explanations for such observations. Before asking such a question, 
however, one must determine whether a group is more (or less) diverse than 
would be expected by chance. To appropriately investigate this question, one 
might compare a group with its sister taxon and ask what is the probability that 
a clade should be composed of two subclades, one with more than x species and 
the other with fewer than n -  x species (Slowinski and Guyer 1989).

Such questions require a null model of evolutionary diversification. Null models 
have proven to be useful tools for investigating whether ecological, evolutionary, 
or biogeographical patterns differ from random expectations (Harvey et al. 1983).
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Nonetheless, null models themselves are based on particular assumptions. Conse
quently, it is important to critically examine what processes are subsumed within 
the null model so as to avoid using a null model that is biased (Colwell and 
Winkler 1984).

One possible null model for evolutionary diversification assumes that as a clade 
diversifies from one to n species, speciation is equally probable along all branches 
in the growing clade (Yule 1924; Harding 1971). This model (hereafter referred 
to as the Markovian model) is Markovian with respect to the number of species 
because transition probabilities depend only on the current number of species 
(Karlin and Taylor 1975); it has been used as the basis for a variety of tests of 
evolutionary and biogeographical phenomena (Simberloff et al. 1981; Savage 
1983; Simberloff 1987; Slowinski and Guyer 1989, 1993; Guyer and Slowinski 
1991, 1993; Maddison and Slatkin 1991; Heard 1992; Hey 1992; Harvey and Nee 
1993; Kirkpatrick and Slatkin 1993; Brown 1994). The Markovian expectation 
provides a null model for the likelihood of different phylogenetic topologies when 
speciation is equally probable in all lineages. The alternative hypothesis might 
seem to be that speciation (and/or extinction) rates differ among clades, which 
leads some clades to diversify to a greater or lesser extent than others. Our goal 
in this article is to show that the Markovian model incorporates a number of 
other assumptions as well as the assumption that speciation is equally probable 
on all branches. We construct an alternative model of the speciation process that, 
without assuming different speciation rates on different branches, produces a 
distribution of phylogenetic topologies different from those produced by the Mar
kovian model.

Slowinski and Guyer’s (1989) examination of the Markovian model is the most 
detailed to date. Their most surprising conclusion is that asymmetric or unbal
anced topologies (i.e., those in which some lineages are considerably more di
verse than their sister lineages) are considerably more likely than one might ex
pect. For example, one might think that if probability of speciation were constant 
among lineages, then it would be unlikely for an eight-species phylogeny to arise 
in which one species is the sister taxon to a clade containing the other seven 
(note that we are interested in the topology of unlabeled trees and are not con
cerned with the particular arrangement of taxa on that topology). Such a result 
might suggest that probabilities of speciation and/or extinction differ considerably 
between the two clades. However, the null probability of such a topology with 
the Markovian model is 2/7 (Slowinski and Guyer 1989). Even a tree in which one 
species is the sister taxon to a clade of 39 species is not significantly nonrandom at 
the P  = .05 level (P >  .051). More generally, the probability of generating a 1 
+ (n -  1) tree is 2/(n -  1), which is equal to the probability of any division of 
n species into lineages of unequal size (Slowinski and Guyer 1989); the probability 
is 1 /(« -  1) when the species are evenly divided.

ASSUMPTIONS OF THE MARKOVIAN MODEL

The Markovian model assumes that speciation in each lineage is initiated at a 
rate independent of the history of that lineage. This requires instantaneous specia-
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tion, because any duration to the process introduces memory or lag. Noninstanta- 
neous speciation would violate the assumptions of the Markovian model because a 
population in the process of speciating would not be capable of initiating another spe
ciation event. Consequently, for the duration of the speciation process, the prob
ability of the next speciation event would not be equal on all branches of the tree.

It is not hard to imagine scenarios in which the speciation process must be 
completed before another speciation event can be initiated. For example, suppose 
that speciation in a clade occurs primarily via genetic revolutions occurring in 
small and isolated populations located on the periphery of the species’ range 
(peripatric speciation; Mayr 1963). Species that arose as peripheral isolates are 
probably not likely to be involved in subsequent speciation events until after 
genetic restructuring has stabilized and the species has expanded in geographical 
range and numbers to the extent that it can produce its own peripheral isolates. 
Similarly, daughter species in a vicariance speciation model will have smaller 
geographical ranges than their ancestors and thus should be less likely to experi
ence a subsequent vicariant event until their range expands.

Processes that promote speciation in all lineages, such as major vicariant 
events, may also violate the assumptions of the Markovian model. Imagine, for 
example, a piece of land breaking off from a continent. If all members of a clade 
occur both on the continent and on the new island, then each species is likely to 
split into two species. Such an occurrence would be inconsistent with the Marko
vian model because speciation events would be more evenly distributed among 
lineages relative to the distribution that would have resulted if each subsequent 
speciation event had occurred independently (Kirkpatrick and Slatkin 1993).

We suggest two conditions under which a Markovian model of tree topology 
generation may be inappropriate. The first occurs when the time between initia
tion and termination of a speciation event (i.e., the length of time during which 
daughter species are themselves incapable of speciating, which we term the “re
fractory period”) is long relative to the expected time between initiation of a 
subsequent speciation event. The second occurs when lineages tend to speciate 
simultaneously, as when vicariant events promote speciation in all lineages. 
Modes of speciation vary across taxa, time, and geography, so it is not possible 
to come to conclusions about the generality of these caveats. Perhaps more im
portantly, even now so little is known about speciation that we do not have the 
data to evaluate how important these circumstances may be. We do know, how
ever, that except for speciation via polyploidy and hopeful monsters, speciation 
is generally not instantaneous. Further, it is clear that in at least some cases, 
speciation may occur quite rapidly (see, e.g., Mayr 1963; Stanley 1979), but in 
others it probably takes a considerable period of time. For example, the length 
of the speciation process averages 1.5-3 million yr in Drosophila (Coyne and Orr
1989) and 2 million yr in some salamanders (Larson and Chippindale 1993).

A SIMULATION MODEL

Given the paucity of relevant data, we developed a simulation to assess the 
extent to which violation of the Markovian assumptions leads to alteration in the
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distribution of tree topologies. By changing the parameters affecting speciation 
refractory period and rate, one can determine the effect of the concerns just 
discussed. To the extent that the simulations produce topologies differing from 
expectations under a Markovian hypothesis, the Markovian model is not a robust 
null hypothesis. At the outset, however, we must stress that these simulations 
were conducted for heuristic purposes. Before simulations such as these can be 
compared to real phylogenetic topologies, information on rates, refractory period, 
and mode of speciation must be obtained. Here we investigate the use of Marko
vian models in addressing the question of whether the basal subdivision of a clade 
into two subclades is more unbalanced (or balanced) than expected by chance 
(Slowinski and Guyer 1989). However, the results should apply analogously to 
other uses of a Markovian model to investigate tree topology (see, e.g., Heard 
1992; Hey 1992; Kirkpatrick and Slatkin 1993).

As in the Markovian model, our simulation is based on a speciation rate \ ,  
meaning that a species has a probability of \A  t of initiating speciation in any 
short interval of time At (app. A lists all parameters and variables used in the 
model). Unlike the Markovian model, when a lineage in our simulation speciates, 
one of the descendants cannot speciate for an interval of time T. This model 
is akin to peripatric or stasipatric models of speciation (Mayr 1963; White 
1977) in that one descendant population undergoes marked changes whereas the 
ancestral population remains unchanged. A scenario in which both descen
dant populations evolve (and are not capable of speciating again for a period) 
produces distributions of tree topologies that agree even less with the Markovian 
model. A more precise model might have the probability of speciation in a lineage 
be a function of time since the previous speciation event. Although we did not 
explore this possibility, we suspect that it would yield qualitatively similar 
results.

To simulate the model, we discretized time into short intervals of equal length 
and picked a small probability of speciation of 0.001 in each interval. The length 
T of the speciation process, the refractory period, is expressed in units of time 
intervals. We tested 7”s of 10, 50, 100, 500, and 1,000. The simulations begin 
with two species and proceed until the clade reaches a predetermined number of 
species. Clades exceeding the predetermined size (because of multiple speciation 
events within a single time interval) were discarded. We used these simulations 
to investigate the effect of T on the likelihood of obtaining various tree topologies. 
For each parameter value, we created 1,000 trees of 5, 7, 10, 20, and 40 species. 
For the small five- and seven-species trees, there are only three and 11 possible 
topologies, respectively, and the relative frequency of each was scored. For the 
larger trees, we scored only the proportion of trials in which one species was the 
sister taxon to a clade composed of the remaining n — 1 species, denoting this 
fraction by P(l, n -  1).

In addition, we modified the simulations to assess the effect of infrequent inter
vals of increased probability of speciation. We set the speciation refractory period 
to be 10 intervals and the background probability of speciation to be 0 .001/inter
val, a combination that yields results consistent with the Markovian model. How-



UNBALANCED TREES 333

ever, in each interval a chance existed that the probability o f speciation would 
be increased to a higher value in every lineage. We tested the effects o f varying 
both the chance o f increased speciation probability per interval and the value to 
which the probability increased. Higher probabilities o f speciation were main
tained for 10 intervals before returning to the background level. We present re
sults for clades o f 20 species.

THE SIMULATION APPROXIMATED

Simulations, particularly to produce large trees, can be very slow. We therefore 
developed a method to approximate P(l, n -  1). This fraction can be compared 
with the results from the Markovian model to give an estimate of the deviation 
between the two models. The approximation proceeds in two stages. We first 
find the asymptotic rate of growth of a clade speciating at a rate X with a speciation 
refractory period of T. This rate, denoted by jx, is less than X. We then compute 
the probability that a single species will not speciate in the time it takes an average 
species to diversify into n — 1 species.

The asymptotic rate of growth can be found using results of continuous-time 
branching processes (Karlin and Taylor 1975). In appendix B, we show that the 
asymptotic growth rate (i satisfies

\  = \xe'LT . (1)

We find that X = |x if T = 0, as expected, and that |x becomes smaller as T 
becomes larger. Assuming that one lineage increases in species number at this 
asymptotic rate of |x and reaches a size of n -  1, we can compute the probability 
that another lineage will not divide at all. We do this by calculating the density 
function for the time it takes a lineage to produce n — 1 species and then averag
ing over the probability exp( -  \ t )  that a single species has failed to speciate. This 
procedure is done explicitly in appendix C, where we find that

P(l, n — I) = 2 • (n — 2)B^~  + 1, n — 2  ̂ , (2)

where B is the beta function (Abramowitz and Stegun 1965). For example, if T 
= 0, we find that P(l, n -  1) = 21(n -  1), which is identical to the exact result.

Note that equation (1) can be solved for |xT given only the value of XT and 
thus that P(l, n -  1) depends on a single parameter. Because the mean time 
between speciation events is 1/X, the parameter XT’ is the ratio of the refractory 
period to the mean time between speciation events. We term it the “relative 
refractory period.” The Markovian model has a relative refractory period of zero. 
When the relative refractory period is small, the process is similar to the Marko
vian model but deviates more and more as the relative refractory period becomes 
larger. Increasing the rate of the whole process by simultaneously increasing X 
and decreasing T while keeping the relative refractory period XT constant does
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F ig . 1 .—Comparison of probabilities of exhibiting a 1 + (n -  1) topology (P[l, n -  1]) 
for the simulation and the approximation for three values of n (10, 20, and 40). The error 
bars show one standard deviation from the mean of 500 simulations. The connected lines 
show the results of the approximation.

not alter the distribution of topologies but only the time it takes to generate 
them.

Figure 1 compares the fraction of 1 + (n — 1) trees produced by the simulation 
with the fraction predicted by the approximation. Clearly, the approximation does 
very well over a wide range of parameter values.

As predicted, as the length of the speciation process increases, the distribution 
of tree topologies diverges from the predictions of the Markovian model. In all 
the simulations, topology proportions are essentially Markovian when the relative 
refractory period XT is less than 0.01, but they become increasingly non- 
Markovian with an increased frequency of more symmetric trees as the relative 
refractory period increases. For small trees of size five and seven (figs. 2 and 3, 
respectively), we illustrate the distribution of all possible topologies. When the 
speciation refractory period is long, the difference from the Markovian prediction 
can be large, but noticeable deviations appear even with shorter speciation refrac
tory periods, particularly in the seven-species simulation.

Figure 4 illustrates the effect of the relative refractory period on the topology 
of trees containing 10-100 species. In this figure, we measure the deviation from 
the Markovian predictions as

RESULTS AND DISCUSSION

= P (l,n  -  1) 
PM0 ,«  - 1 ) ’

(3)
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Refractory Period Following Speciation

Fig. 2.—Proportion of five-species trees exhibiting each of the three possible topologies. 
Probability of speciation in all simulations is 0.001 per interval. The dashed line is the 
Markovian expectation.

D u r a t i o n
l a r k o v i a n 4.4 8 .9 6.7 2.2 4 .4

10 3.4 9.1 6.1 1.4 3.4
5 0 2.9 6 .4 4.8 1.8 3.3

1 0 0 2.9 8 .6 5.7 2.1 5.1
5 0 0 2.4 3.3 2.6 0.8 2.0

1 0 0 0 2.9 2 .7 0 .8 0.1 0 .5

6.7 11.1 5.6 1 6 .7 2 2 .2 11.1
5.3 12 .5 4.8 2 0 .8 2 1 .6 1 1 .6
6.7 1 2 .4 4 .5 1 7 .5 28.1 1 1 .6
6.1 1 1 .6 4 .4 1 8 .6 2 3 .2 1 1 .7

2.1 16 .5 3 .2 14 .3 39.1 1 3 .7
1.8 2 2 .2 2.1 11.1 4 5 .5 1 0 .3

Fig. 3.—Proportion of trees in each of the 11 topologies possible in a seven-species tree. 
Speciation refractory period varies from 0 (the Markovian case) to 1,000 time intervals.

where PM(1, n — 1) represents the Markovian expectation of 2l(n -  1). Recall 
that for T = 0 we found that P(l, n — 1) = PM(1, n -  1), so that the error is 
equal to zero. We show the values that produce errors of 10%, 30%, and 50% 
for trees of size ranging from 10 to 100.

As with the simulation, deviation from the Markovian model increases with 
the relative refractory period. Note, too, that larger trees produce the same rela
tive error with a smaller relative refractory period. Consequently, all else being 
equal, the larger the tree, the less likely it is that Markovian expectations will 
provide a suitable null model for clade diversification.

The simulations with occasional increased probabilities of speciation indicate
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Fig. 4.—The value of the relative refractory period (XT') producing errors (fractional devia

tion from the Markovian model) of three given sizes for a range of clade sizes (i.e., number 
of species, ri).

that such rare events can have a large effect on tree topologies (fig. 5). Tree 
topologies become increasingly non-Markovian with increases in either the proba
bility of such intervals occurring or the degree to which speciation probability is 
increased. The effect of intervals of increased speciation probability is first notice
able when the probability of such intervals occurring is the same as the back
ground probability of speciation. When such intervals occur at higher probabili
ties than the background speciation rate, the impact on resulting tree topologies 
can be quite large.

These results clearly indicate that predictions based on a Markovian branching 
process may significantly overestimate the likelihood of asymmetric trees when 
speciation takes an appreciable length of time relative to the rate at which specia
tion occurs or when circumstances, such as vicariant events, increase probabili
ties of speciation for all species. This finding would be irrelevant if the rate and 
length of speciation in nature fell within the range of applicability of the Marko
vian model. Unfortunately, we know of no data sufficient to estimate all of the 
relevant parameters. Further, we reemphasize that these results are unique to a 
particular mode of speciation and set of parameters. We need information on 
probabilities of speciation, whether (or to what extent) a speciation event must 
be completed before a lineage can begin to split again, and how likely are various 
modes of speciation. In addition, we need to know whether most speciation 
events are concentrated in relatively brief intervals of time when events lead to 
greatly enhanced probabilities of speciation, as, for example, vicariant biogeogra
phers might suggest (see also Vrba 1985). To the extent that such periods are 
relatively important, Markovian models are particularly likely to be inaccurate.

Thus, we do not conclude from these analyses that a Markovian model is an 
inappropriate means of estimating a null hypothesis for lineage diversification.
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Fig. 5.—Proportion of trees exhibiting a 1 + 19 topology. The background speciation rate 
is 0.001 with a speciation refractory period of 10 intervals. In some intervals, however, 
speciation probability was increased. The X-axis indicates the level to which the speciation 
probability was increased, whereas the numbers in the figure indicate the probability that 
the speciation rate would be increased from the background rate in any given interval (once 
increased, the speciation rate did not revert to background levels for 10 generations).

Rather, our analyses are useful in two ways. First, they focus attention on what 
are the important parameters that need to be known before the applicability of 
the Markovian model can be evaluated. Given that this information is available 
for few, if any, lineages, the acceptance of a single robust null hypothesis may 
be unlikely. Alternatively, our approach can serve as a sensitivity analysis to 
determine how robust a particular result is to alteration in various parameters. If 
the likelihood of generating a particular observed tree topology is less than 0.05 
or greater than 0.50 (or some other large value) regardless of what parameters 
are used, then it probably does not matter which parameters are actually correct.

A second approach to evaluate the applicability of the Markovian model is 
possible when the age and size of a lineage are known. In such cases, we can 
identify the range of speciation refractory periods that are consistent with the 
Markovian model. We show that in some cases differentiation could have fol
lowed a Markovian model only if speciation refractory periods were extremely 
short, a finding that might imply that diversification has not been Markovian.

Suppose a radiation has produced n species in time t. Assume a speciation 
refractory period of J. The realized rate of increase |i of the population then 
satisfies

or

log(fl)
=
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F ig . 6 .—The error (deviation from the Markovian expectation) as a function of speciation 
refractory period for the three clades discussed in the text.

The deviation from a Markovian process is a function of the ratio of A. to (x (see 
eq. [2]), which is equal to exp(^r) from equation (1). Therefore,

h .  =  g lo g  (n)T/t  ^

This is sufficient information to compute the error e as a function of the assumed 
speciation time T using equation (3). As before, if 7  = 0, we have e = 0 and no 
deviation from the Markovian process.

Figure 6 shows the results of this calculation based on three well-studied clades: 
Lake Victoria cichlids, Miocene grazing horses, and anoline lizards. In Lake 
Victoria, a monophyletic clade of cichlid fishes has produced more than 200 
species in less than 1 million yr (Meyer et al. 1990). For the results of the specia
tion process to be within 10% of the Markovian prediction, the speciation refrac
tory period T would have to be less than 4,000 yr. To even be within 50% of the 
Markovian prediction, the speciation refractory period would have to be less than
29,000 yr. Thus, unless speciation is completed rapidly in these fishes, the high 
rate of speciation in the Lake Victoria cichlid radiation is probably inconsistent 
with a Markovian model of diversification.

By contrast, for the radiation of anoline lizards over the past 60 + million yr 
(250+ species, following figures in Slowinski and Guyer 1989), speciation refrac
tory periods need only be less than 230,000 yr for results to be within 10% of the 
Markovian prediction. To the extent that this is a reasonable speciation time, the 
Markovian model may be an appropriate null model. The radiation of Miocene 
grazing horses (19 species in 3 million yr; MacFadden and Hulbert 1988) is inter
mediate between the other two examples.

More generally, figure 7 shows various levels of deviation from the Markovian 
model as a function of the number of species in a clade and the speciation time 
relative to the age of the clade. When the speciation refractory period is even a
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Fig. 7.—A contour plot of error as a function of the size of a clade and the refractory 
period of a single speciation event (J) relative to the age of the clade (t).

few  percentage points of the age o f a moderately sized clade, the Markovian 
model will be inaccurate.

The calculations for these cases may overestimate the applicability o f  the Mar
kovian model because they consider neither extinction nor the possibility o f pe
riods o f increased rates o f speciation. Periods o f increased probability o f  specia
tion could be consonant with the Markovian model only if speciation refractory 
periods decreased simultaneously. In addition, because we cannot account for 
extinct species, the number o f speciation events may have been considerably 
greater than inferred based solely on knowledge o f extant taxa, and thus the 
probability of speciation estimated from extant taxa might be an underestimate. 
Claims that extinction would not alter the results of Markovian null m odels (Sim- 
berloff et al. 1981; Slowinski and Guyer 1989) are correct only when both specia
tion and extinction occur in a Markovian manner.

As with most null models in ecology and evolution, the Markovian model of 
branching diversification encodes many biological assumptions. When these as
sumptions are met, the Markovian model provides an easy way to estimate the 
null probability o f generating a given tree topology. To the extent that these 
assumptions are not met, however, a Markovian model will not accurately indi
cate the likelihood o f obtaining a particular topology when speciation rates are 
equal across all lineages and thus will not be an appropriate null model to contrast 
with deterministic explanations of species diversity within a clade. Our analyses 
are a first step in evaluating under what circumstances the Markovian model is 
likely to prove robust as a null hypothesis.
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APPENDIX A 

T A B L E  A l 

V ariables  a n d  T h e ir  M ea n in g s

Symbol Description

n Number of species in lineage
X Speciation rate
T Refractory period
)x Asymptotic growth rate of lineage
P(l, n -  1) Probability of a 1 + (n -  1) tree topology
PM(1, n — 1) Probability of a 1 + (n -  1) tree topology (Markovian case)

e Fractional deviation from Markovian prediction
t Lineage age

APPENDIX B

E f f e c t s  o f  S p e c ia t io n  R e f r a c t o r y  P e r io d  o n  C l a d e  S i z e

In this appendix, we compute the asymptotic growth rate of a clade speciating at intrinsic 
rate X with speciation refractory period T. The density function describing the time at 
which a new type initiates speciation after creation is denoted by f(-r) and satisfies

f  ( t) =

i fT <  T.

This is an average of the time to initiate speciation by the ancestral and descendent popula
tions. Defining

F(f) = f  f(T)</T,
Jo

we have that the expected number of species at time t, m(t) satisfies (Karlin and Taylor 
1975, p. 435)

m(t) = 2 [ m(t  -  T)f(T)cfT + 1 -  F(r)
JO

f t  f t  t -L
= km(t  — j )e~K'’dT + \m ( t  — T)e~x^ ~ T)d7 + — ----- e~Xl.

J  0 J T  2

Multiplying both sides by ex>, we find that

m(t)eXt =  [ \m ( t  — T)ex('“T)<iT + ekT f km(t — T)ex('~T)afT +
Jo J T

1 + ek

f t  f t - T
\m (u )e x“du + eXT \m (u )e x“du 

Jo Jo

1 + ex
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Differentiating gives
e x'[\m (?) +  m ’(t)] =  \ m ( t ) e xi +  e^T\ m ( t  — r ) e x('_T),

APPENDIX C
A p p r o x im a t e  E f f e c t s  o f  S p e c ia t io n  R e f r a c t o r y  P e r io d  

o n  t h e  P r o b a b il it y  o f  H i g h l y  U n b a l a n c e d  T r e e s

In this appendix, we compute the probability that a single species, with the potential to 
speciate at rate X, fails to do so by the time that a clade increasing in size at rate |x reaches 
n — 1 species. We pretend that the growing clade follows exactly a pure birth process, 
so that the probability of exactly k species at time t satisfies (Karlin and Taylor 1975, p. 
122)

The probability that the singleton has not speciated in time t is e x'. Thus, the probability 
of a 1 + (n — 1) tree, 11(1, n — 1), is

— {n — 2 +  1, n — 2),
where we substituted u for e"^', and B denotes the standard beta function (Abramowitz 
and Stegun 1965). As used in the text, the probability P(l, n — 1) of a 1 + (n — 1) tree 
includes both the chance of a 1 + (n -  1) tree as computed above and the identical 
probability of an (n — 1) + 1 tree and is thus twice 11(1, n -  1). This gives equation (2).
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