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This paper presents an overview of several gradient
type recursive algorithms for adaptive nonlinear filters 
equipped with bilinear system models. Bilinear models 
are attractive because they can approximate a large class of 
nonlinear systems with great parsimony in the use of 
coefficients. Two algorithms of complexity O(N3) (N is 
the memory span of the bilinear system model used in the 
adaptive filter) multiplications per sample and two other 
algorithms of complexity o (N2) multiplications per 
sample are presented in this paper. The results of several 
computer experiments show that at least one of the O(N2) 
complexity algorithms works almost as well as the more 
complex algorithms. 

1 Introduction 

This paper introduces and compares several adaptive 
nonlinear filters that employ the bilinear system model. 
The input-output relationship for a bilinear system is 
given by 

N-1 N-1 N-1N-1 

yen) =LajX(n-i) + Lb;y(n-i) + LLci.;«n-i)y(n-j) 
1=0 i=l i=Oj=l 

(1) 

where x(n) and yen) are the input and output signals, 
respectively, of the system. This model is attractive 
because it can adequately approximate a large class of 
nonlinear systems with good parsimony in the use of 
coefficients, much like linear infinite-impulse-response 
(IIR) filters can approximate a large class of linear 
systems with good parsimony. Bilinear system models 
have been used in a wide class of problems in engineering, 
biology, socia-economics, and ecology [2], [7]. 

In spite of the potential benefits of bilinear system 
models, the theory of adaptive nonlinear filters employing 
nonlinear feedback structures is still very much in its 
infancy. Some very recent work in adaptive bilinear 
filtering employ recursive least-squares (RLS) adaptation 
algorithms or its variations [1], [5]. Among the 
teChniques that are available, even the most 
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comput,ulOnally efficient schemes require O(N3) 
multiplications per sample. It is the purpose of this paper 
to introduce several LMS type adaptive bilinear filters. 
Among these filters are two simplified structures which 
need O(N2) multiplications per sample and still performs 
reasonably well. 

The remainder of this paper is organized as follows. 
The following section describes several LMS-type 
adaptive bilinear filtering algorithms. Section III contains 
simulation results that demonstrate and compare the 
performances of the algorithms. Finally, the concluding 
remarks are made in Section IV. 

2 Derivations of the Adaptive Bilinear 
Filters 

We will first derive an output-error LMS-type adaptive 
bilinear filtering algorithm. For convenience, let us 
denote it as ABFl. This algorithm has a computational 
complexity of N3+3N2-N. We also present a simplified 
version (ABF2) of the ABFl. ABF2 requires 5N2-N 
computations per sample. A further simplified version 
(AFB3) that needs 2N2+2N computations per sample only 
will then be introduced. Finally, we will present bilinear 
filtering algorithm (ABF4) which is the extension to 
Fan's work [3]. The computational complexity of ABF4 
is the same as that of ABFl. It must be noted that all the 
algorithms are extensions of adaptive IIR filters available 
for linear system models to the nonlinear case. Our 
objective is to study the usefulness of such techniques in 
adaptive nonlinear filtering problems. 

2.1 Derivation of ABFl 

Let den) and x(n) represent the desired response signal 
and ;he input signal, respectively, to the adaptive filter. 

Let den) denote the a priori output of the adaptive filter at 
time n, i.e., 



N-l N-l 
d(n) =2.ain-l)x(n-i) + I,bln-l)d(n-i) 

i=O ;",1 

N-IN-l 
+ I,I,cijn-l )x(n-i)d(n-j) 

i=Oj",1 (2) 

In (2), aln-l), bi(n-l) and Ci..(n-1) are the coefficients at 
time n-l of the adaptive bilinear filter. 

For simplicity, vector representation will be 

employed. The input vector X(n) at time n, which has 
W+N-l elements, is defined as 

X(n) = [x(n), xin)d(n-l), ... , x(n)de~-N+ 1), den-I), 

x(n-l)d(n-l), ... , x(n:N+l)d(n-l), ... , 

x(n-N+2),l. x(n-N+2)d(n-N+ 1), d(n-N+ 1), 

x(n-N+ l)d(n-N+ 1), x(n-N+ 1) ]T , (3) 

where the superscript T denotes transposition. Also, the 
N2+ 2N-l coefficient vector W n at time n is defined as 

Wn = [iio(n), CO,I (n), ... , Co,N-I(n), bl (n), c1,1 (n), .... Cr.-l,1 (n) 
- - " - - T .... , aN_2(n), ~-2,N-I(n), bN_I(n), eN_I.N_I (n), ~_I(n)] (4) 

The problem is then to find a gradient descent solution for 
the coefficients of the adaptive filter which attempts to 
minimize the cost function 

A 2 
J(n) = (d(n) - den) ) 

T~ 2 
= (d(n) - W n-IX(n) ) (5) 

at each time. The gradient descent solution is given by 

where Jl is a small positive constant that controls the rate 

at which the adaptive filter converges. Note that den) and 

therefore X(n) are functions of WO-I. The gradient in (6) 
may be obtained from 

N-IN-J ad(n-j) 
+ ?-I,ci.in-l)x(n-i)aw-

,;Q )=1 n-I (7) 
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Note that (7) indicates the necessity of reevaluation of the 

derivatives of past values of a with respect to W n-l' An 

assumption commonly employed in the adaptive IIR 
filtering literature is that Jl is sufficiently small such thaI 

Wn-I == Wn-2 == ... == Wn-N [6]. Using this approximation 
and the fact that den) is not a function of W n-lo we may 
write (7) as 

A ~I A 

aden) ~ " aden-i) 
aw n-I =X(n) + ~bln-l)aw n-l-i + 

Let 

N-IN-I_ . ad(n-j) 
I,I,ci.in-l)x(n-l)aW . 
i;Qj=1 n-I-) 

\j!(n) = aden) 
aWn-1 

Then, (8) simplifies to 

N-I 
\j!(n) = X(n) + I,b;(n-l)\j!(n-i) 

i=1 

N-IN-l 
+ I,2.cdn-l)x(n-i)\j!(n-j) 

i;Qj=l 

Finally, we summarizes ABFl as follows. 

T~ 

fen) = d(n) - W n-lX(n) 

N-I N-l 

(8) 

(9) 

(10) 

(11) 

\j!(n) = X(n) + I,\j!(n-j){b in-I) + 2.ciJn-l)x(n-i)} (12) 
j",1 i;Q 

W n = W n-I + Jl£(n)\j!(n) (13) 

The above algorithm is an adaptation of [6] to the bilinear 
case. As discussed earlier, the computational complexity 
of ABFl is N3+3N2-N multiplications per sample and it 
needs to store N-l past values of the N2+N-l element 
vector 'If. By employing arguments similar to those used 
in [6], the computational burden of the adaptive filter can 
be reduced. This will result in algorithm ABF2. 

2.2 Derivation of ABF2 

The key to the derivation of ABF2 is the fact that the 

last N2-N-l elements of X(n) in (3) are delayed versions of 



the first 2N elements of X(n). This motivates the 
approximation of replacing the last N2-N-l elements of 'I' 
with appropriate delayed versions of the first 2N elements 
of '1'. Instead of (12), ABF2 uses 

'I' ~n) = X2t-.\n) + 

N-! N·! 
2,'I':zJn-j) {bin-l)+ 2,ci,fn-l)x(n-i)}, (14) 
j=! i=O 

where 'I' 2l' and X2l' denote the vectors that contain the first 

2N entries of 'I' and X, respectively. The N2+N-l element 
vector '1', which is needed for (13), is constructed from the 
current and past values of 'I' :?N. Note that ABF2 needs to 
store N-l past values of the 2N element vector 'I' 2l' and 
requires only SN2-N multiplications per sample. 

2.3 Derivation of ABF3 

In 1976, Feintuch proposed a highly simplified linear 
adaptive recursive LMS filtering algorithm [4]. He 
proposed to use 

'I'(n) = X(n) (15) 

for the gradient vector. This can be viewed as a simplified 
version obtained by neglecting the second term on the 
right hand side of (12). Adaptation of this idea will result 
in an adaptive bilinear filter that needs only 2N2+2N 
multiplications per sample. 

2.4 Derivation of ABF4 

Recently, Fan proposed some adaptive IIR filters [3] 
which are based on the Steiglitz-McBride scheme. We 
have also extended Fan's filters to adaptive bilinear filters. 
The resulting algorithms are similar to ABF1 and ABF2, 
depending on whether 'I' or'l'2N is employed. We will 

discuss the scheme (ABF4) involving 'I' here. The only 
difference be-tween ABFl and ABF4 is that the latter uses 
d, in comparison with d used by ABF1, in (12). That is 

N·! N·! 
'I'(n) = X(n) + 2,'I'(n-j){b in-I) + 2,ci,fn-l)x(n-i)}, (16) 

j=! i=O 

where X(n) is defined in a similar way as X(n) with the 

exception that d is used in place of d in the definition. 
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3 Simulation Results 

In this section, we present the results of several 
experiments. The problem considered here is that of 
identifying a bilinear system with N=3. The coefficients 
of the unknown bilinear system can be found in Table I. 
The input signal x(n) was a white, zero-mean and 
pseudorandom Gaussian noise. The variance of x(n) was 
0.18, and the power of yen) was about unity. We first 
considered a white, Gaussian, zero-mean measurement 
noise with variance ~o. Two different noise levels were 

studied: ~o=O.OOI and ~o=O.l. We also conducted the 
experiments where the measurement noise was colored. 
The colored noise was obtained through the equation 

Yen) = T\(n) - O.lv(n) + 0.8v(n-2), (17) 

where T\ (n) belonged to a zero-mean white Gaussian 
process. The variance of T](n) was adjusted such that the 
variance of Yen) (for convenience, denote it as ~o again) 
was either 0.1 or 0.001 approximately. The adaptive filter 
was implemented with the same structure and the same 
number of coefficients as that of the unknown system. 
The step-size ~ was set to 0.009. All of the results 
presented were obtained from ensemble averages over fifty 
independent runs. 

Tables II and III contain the mean and the variance 
values of selected filter coefficients when the measurement 
noises were white and colored, respectively. These values 
were obtained by time averaging the corresponding 
ensemble averaged sequences in the range [9000,10000]. 
The steady-state a priori mean-squared error values 
obtained in a similar manner are given in Table IV. All 
the algorithms seem to work reasonably well. It appears 
that the performances of ABF1 and ABF2 are very similar 
even though ABF2 is an order of magnitude less complex 
than ABFl. ABF3 also works quite well when the 
measurement noise is white. The coefficient trajectories, 
which are not presented here, indicated that AFB4 has a 
slower convergence rate than the other algorithms. Also, 
AFB4 does not work well when the measurement noise is 
colored and the noise level is relatively high. 

4 Concluding Remarks 

This paper presented an overview of several LMS type 
adaptive bilinear filtering algorithms. The results of a 
large number of experiments showed that the algorithms 
work well in several situations. While it is too early to 
draw definitive conclusions, it is possible that the more 
efficient algorithms perform as well as the others in 
adaptive identification of bilinear systems. On the basis 



of the experiments presented, it appears that ABF2, 
because of its simplicity and good performance, may be a 
compromise choice in many applications. However, 
much more analytical and empirical works need to be done 
to further evaluate the performance of these algorithms. 

One significant problem that we did not address in this 
paper is that of the stability of the identified systems. In 
general, the stability conditions for bilinear systems 
depends on the characteristics of the input signal also, and 
this complicates the problem. While there are several 
works on the stability of bilinear systems [8]. [9] 
available in the literature, the on-line implementation of 
such schemes to monitor the stability of the systems is 
very computationally intense. We are currently 
investigating simplified algorithms for real-time stability 
monitoring. 
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Coefficients of the Unknown Bilinear System 
Used in the Experiments 

ao= 1.0 al= 1.0 

Co 1= 0.3 Co 2= 0.1 

ABFl 

~o=O.OOI ~o=O.1 

White Noise 1.029xlO-3 0.1050 

Colored Noise 1.056xlO-3 0.1031 

a2= 1.0 b1 = 0.5 

cl 1= - 0.2 Cl 2= - 0.2 

Table IV 
Mean-Squared Error 

b2= - 0.5 

c2 1= 0.1 c2 2= 0.3 

ABF2 ABF3 ABF4 

~o=O.OOI ~o=O.1 ~o=O.OOI ~o=O.1 ~o=O.OOI ~o=O.l 

1.029xlO-3 0.1051 1.014xlO-3 0.1036 1.032xl0-3 0.1054 

1.056xlO-3 0.1030 1.059xlO-3 0.1034 1.057xlO-3 0.1109 
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al Mean 

Variance 

b i Mean 

Variance 

c2,2 Mean 

Variance 

al Mean 

Variance 

bl Mean 

Variance 

cz Z Mean 

Variance 

Table II 
Mean and Variance of Filter Coefficients 

(Measurement Noise is White) 

ABFl ABF2 ABF3 

~o=O.OOI 

0.9999 

4.78x1O-6 

0.5004 

4.79x1O-6 

0.3001 

5.15x1O-6 

~o=O.1 ~o=O.OOI ~o=O.1 ~o=O.OOI ~o=O.1 

1.0057 1.0001 1.0089 0.9994 1.0077 

3.80xlO-4 5.12x10-6 4.64x1O-4 4.85xlO-6 4.77x10-4 

0.4943 0.5003 0.4914 0.5001 0.4957 

5.93xlO-4 5.02x10-6 5.97x1O-4 3.23x10-6 3.98x1O-4 

0.2941 0.2996 0.2927 0.2999 0.2949 

5.77xlO-4 5.74xlO-6 7.63x1O-4 6.57xlO-6 4.80xlO-4 

Table III 
Mean and Variance of Filter Coefficients 

(Measurement Noise is Colored) 

ABFl ABF2 ABF3 

~o=O.OOI ~o=O.l ~o=O.OOI ~o=O.1 ~o=O.OOI ~o=O.1 

1.0002 1.0027 1.0002 1.0047 0.9995 1.0044 

1.78x10-6 2.09xlO-4 2.23xlO-6 2.28x10-4 4.53x10-6 5.31xlO-4 

0.5006 0.4989 0.5006 0.4975 0.5005 0.4988 

1.59xlO-6 1.53xlO-4 1.89xlO-6 1.84x1O-4 2.43xlO-6 2.12x10-4 

0.3007 0.3018 0.3004 0.3006 0.3004 0.3032 

2.56x1O-6 2.33xlO-4 3.43xlO-6 2.85xlO-4 7.67xlO-6 5.50x10-4 
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ABF4 

~o=O.OOI ~o=O.1 

0.9999 1.0074 

4.73x10-6 4.77x1O-4 

0.5016 0.4923 

4.86xlO-6 6.48x1O-4 

0.3015 0.2956 

5.22xlO-6 9.18xlO-4 

ABF4 

~o=O.OOI ~o=O.1 

1.0011 LlOOO 

1.86xlO-6 5.07xlO-4 

0.5010 0.4027 

1.65xlO-6 9.74x10-4 

0.3014 0.2220 

2.58xlO-6 6.09xlO-4 


