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Effect of Electron-Electron Interactions on the Conductivity of Clean Graphene

E. G. M ishchcnko
Department o f  Physics, University o f  Utah, Salt Ixike City, Utah 84112, USA 

(Received 27 December 2006; published 21 May 2007)

Minimal conductivity of a single undoped graphene layer is known to be of the order of the conductance 
quantum, independent of the electron velocity. We show that this universality does not survive electron- 
electron interaction, which results in nontrivial frequency dependence. We begin with analyzing the 
perturbation theory in the interaction parameter g for the electron self-energy and observe the failure of 
the random-phase approximation. The optical conductivity is then derived from the quantum kinetic 
equation, and the exact result is obtained in the limit when g 1 g| ln&)|.
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Introduction.—Rcccnt experiments on transport in gra
phene layers [1-31 have validated extensive thcorctical 
efforts dircctcd at understanding various properties of 
two-dimensional Dirac fermions. A lot o f this effort is 
devoted to the zero temperature dc conductivity which 
has a universal value of the order of the conductancc 
quantum  [4,51. Such a value is not uncxpcctcd from  the 
dimension analysis sincc the intrinsic (undoped) graphene 
lacks a characteristic momentum scalc. Two different m ini
mal conductivities arc conventionally defined. The dc limit 
o f an ac conductivity in clcan graphene O ” 1 =  0, ca —> 0) 
was shown to be cr =  e2/Ah  [61. Another possible defini
tion of a strict dc limit of impure graphene (ca =  0, t ” 1 —* 
0) gives a different, but numerically close, value a  =  
l e 2/ ir2h [61. Rcccnt calculations have largely confirmed 
[7-131 the results of Ref. [61, while others obtained differ
ent values [141. Conductivity in bilaycr graphene has also 
been a subject o f close thcorctical attention [15-181.

It is noteworthy that the minimal conductivity cr is very 
much analogous to the optical conductivity o f a tw o
dimensional electron system with spin-orbit-split band 
structure, where it is due to the "chiral resonance,” and 
the corresponding value e2/ i 6 h  [19,201 is exactly 4 times 
smaller than cr (which is the degree o f spin-nodal degen
eracy in graphene). This analogy is due to the similarity in 
the chiral properties of the eigenstates in the two systems.

In this Letter, wc demonstrate that the notable universal
ity of the values of cr and & docs not hold in the presence of 
clcctron-clcctron interactions, which results in a strong 
frequency dependence o f the conductivity. Here wc con
centrate on the optical conductivity cr(co) in strict disorder- 
free graphene ( t _1 =  0) and show that the optical con
ductivity is actually suppressed by interactions in com pari
son with its "universal” value.

A single intrinsic 2D graphene layer is described by the 
chiral Hamiltonian

H  = V ^ C T  ■ pc ', +  £  <p-q<klq V k ?p- 0  )
'P UPkq

where "ha ts” denote operators in pscudospin spacc (tr  
represents the usual set o f Pauli matrices); the sum over

Latin indices is taken over two nodal points and two (true) 
spin directions. The interaction potential is Vq =  
l i r e 2/ k \(\\, with k being the dielectric constant of a sub
strate, and v 0 is the "bare” electron velocity. Hereinafter 
wc denote = f  c12p / ( 1 tt)2 and set h =  I throughout 
the text, except in the final result (20).

Let us begin with the perturbation theory, in powers of 
the dimcnsionlcss interaction constant g =  e2/ k v 0, for the 
electron self-energy (at T  =  0). Wc find that the random- 
phase approximation (RPA) fails  for the system described 
by the Hamiltonian (1), as the non-RPA contributions arc 
generally not small.

Perturbation theory.—The first- and second-order inter
action corrections to the electron self-energy arc shown in 
Fig. 1. The solid line corresponds to the electron G reen’s 
function

I
v 0p& p +  /r;sgne

■ I
1 +  p
(3(v0p  -  i-rj)’

(2)

where frp =  & ■ n is the projection of the pscudospin 
operator onto the direction of the electron momentum n = 
p / p .  The first-order contribution [Fig. 1 (a)l is independent 
o f the energy variable

Xi
r de

=  /V  I -  ^p-p 'G
/ J 277P J

eP' 2 ” 'pX ' /p_p'*'n ’ n ^ ‘ ^  
p'

The integral here diverges logarithmically at p '  »  p. This 
divergence is cut off at the inverse lattice spacing 5C, 
leading to the logarithmic correction

S p  =  p d - p — M X / p ) . (4)

Such logarithmic renormalization of the electron velocity 
was first discussed in Ref. [211 within the scope o f the 
renormalization group approach.

The second-order correction consists o f three contribu
tions [Figs. 1 (b)—1 (d)l, of which the last one is identically 
zero. This fact can be understood upon noticing that the
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FIG. 1. (a) First- and (b),(c),(d) sccond-ordcr corrections to the 
clcctron sclf-cncrgy. The solid line represents the electron 
Green's function (2); the dashed line stands for the bare inter
action potential Vq. The closed loop implies summation over 
nodal and spin degeneracy.

diagram  Kd) is responsible for the renorm alization of the 
Fermi level [221 and is absent in clean graphene due to 
electron-hole symmetry. The other two graphs give non
zero contributions. The RPA-type diagram  [Fig. l(b )l gives

I l( io .q ) .  (5)

where the coefficient 4 comes from  the summation over the 
nodal points and (real) spin states in the internal loop, 
which represents the polarization operator

MD.p'̂ q̂ -'e'p' (6)

here the trace is taken in the pseudospin space. To evaluate 
the integrals, it is convenient to use the following integral 
representation for the polarization operator:

II(w , q)
877

dx
o co2 — q 2v i (1 +  x 2) +  i V

(7)

The integral over frequency in Eq. (5) can now be easily 
calculated. Restricting for simplicity to the e =  0 case here 
[231, we obtain

■ y  r
rre

KVq ' J - J o V T

dx cr,p - q

x~ qvr (8)
ql

The main (logarithmic) contribution to this integral comes 
from  large values o f transferred m omentum q. Expanding 
to the linear order in p / q  and evaluating first the integral 
over the angle between p and q, then the integral over dx, 
and finally over the absolute value of q, we arrive at

p d p 7—  H O C / P).
1 6  K V r

(9)

The last con tribu tion  [Fig. 1(c)! is given by (e  =  0)

— y  v,
4 Vr ^

X

0p,p„ 

cr„> -

, V » p - p  v P -P

cr„ cr,P ■ P ~P ^p '^p '^p" ptTp"
IP' + P" -  Pi

(10)

The leading logarithmic contribution into this expression 
comes from  large / / ,  p"  »  p. To this leading order, it is 
sufficient to expand the integrand to the linear power in p. 
As the relevant terms appear from  the interaction potentials 
as well as from the expansion of both the numerator and the 
denominator, the calculations are too cumbersome to be 
presented here. Finally,

P o  p
e4 /  2 

KV0 V 3
ln2 In(X/ p) .  (11)

The expressions (4), (9), and (11) determine the renorm al
ization of the electron velocity up to the second order in the 
electron-electron interaction

—  =  1 
vq

O ( f ') In (X/ p) .  (12)

Two im portant conclusions can be drawn from  this result.
(i) The contribution (11) from  the non-RPA diagram 

with intersecting interaction lines is not parametrically 
small  compared with the RPA term (9). Resulting in an 
overestimation of about —20% in the second order, the 
neglect of non-RPA corrections to the electron self-energy 
becomes an uncontrollable approximation in the higher 
orders in g for undoped graphene. Our findings, thus, do 
not support the conjecture of Ref. [241 (where it was used 
for the calculation of the electron lifetime) that RPA is an 
exact approximation in the lim it g «  1. Experimentally, 
the value of the velocity is v 0 =  1.1 X 106 m /s  [21. For a 
typical dielectric substrate k ~  6, which yields g ~  0.3, 
indicating that g <K 1 is a reasonable approximation.

(ii) It is essential that the higher orders do not produce 
higher powers o f ln (X / p ) .  This is m ost simply verified for 
the RPA terms [211. On the other hand, the diagrams with 
intersecting interaction lines are not more singular than the 
RPA ones, as is clear from  the power counting (but also not 
parametrically smaller than RPA terms). As the conse
quence, in the lim it g <K 1 it is sufficient to restrict to the 
lowest order o f the perturbation theory. Still, the product 
g h i ( X / p )  can be arbitrarily large without violating the 
perturbation expansion.

Kinetic equation. —We now apply the obtained under
standing to the analysis of the ac conductivity cr(co). Free- 
electron conductivity follows directly from  the polarization 
operator (7) and the particle conservation condition. 
Taking into account nodal and spin degeneracy.

cr(co) 41im
ie2co

II(w , q) (13)

In order to calculate the homogeneous ac conductivity in 
the presence o f electron-electron interactions, we apply a 
quantum kinetic equation. This will allow us to take into
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account the leading terms ~ g \n { 3 C /p )  in the exact way 
(but still assuming g <5C 1). The density matrix f p should 

be defined as a matrix in a pseudospin space =  

{{cp  ̂Cp)), where a  and /3 are the pseudospin indices. 
U sing the equations of motion for the operators cp deter
mined by the Hamiltonian (1), and assuming a hom oge
neous in space (but time-dependent) external electric field 
E , it is straightforward to write a closed equation for the 
density matrix / p to the linear order in the electron- 
electron interactions:

^  +  i v p [ f r p, f p] +  e E  • =  i ^ V p - p i f p i ,  f pl

(14)

We emphasize that the kinetic equation for graphene
(14) does contain the terms linear in the interaction. This 
is in contrast to the conventional system with parabolic 
dispersion for which nontrivial contributions (collision 
integral) appear in the second order in Vq [251. This 
difference is due to the chiral structure of the electron 
eigenstates in graphene. The kinetic equation needs to be 
solved to the linear order in the applied electric field / p =  
/p0) + /p U around the equilibrium distribution /p 0) =  1 — 
o-p/2 (at zero temperature). The contribution resulting 
from  the term [ / ^ ’. /p 11] represents simply the electron 
self-energy 2p  to the first order in the interaction. The 
remaining term Lfpi \ /j,01] describes vertex corrections. For 
the periodic electric field, the linearized kinetic equation 
takes the form

a /p

i a ) f lp i +  i u p p [ & p , f lp i ]  =  ^ - ( E  X n) • (& X n)
e

V

P'

(15)

where the renormalized velocity up is given by the ex
pression (12) taken to the first order in g. With the follow
ing substitution:

/ “ ’ =  /(E  X n ) • (o- X n)A(p) + E  • (d- X n)B(p),

(16)

the matrix integral equation (15) reduces to a pair of 
coupled scalar integral equations:

coA(p) + 2 up pB (p)  =  ^ -  +  Y y p-p>B(p')cos8pp>,

P p' (17)
2 u p pA(p) + a>B{p) =  y V p -p iA (p ' ) c o s 20ppi, 

p'

where 0ppi is the angle between the vectors p  and p '. The 
system of Eqs. (17) can be solved by means of the con
secutive approximations in Vp- p'. Figure 2 illustrates dia
grammatically the meaning of these consecutive orders. In

-X- -X- -x -

FIG. 2. Graphic representation of the density matrix given by 
the integral equation (15). The dashed line represents the inter
action potential Vq; the solid line stands for the clcctron propa
gator corrcctcd by the sclf-cncrgy Sp. The cross denotes the 
applied external field. The first-order term brings a logarithmic 
contribution into the optical conductivity * J d p / v pp. The 
higher-order terms contain higher power of the small coupling 
constant g but do not result in higher powers of logarithms.

the lim it g <5C 1, it is sufficient to stop at the first-order term 
(see the discussion at the end of this section):

A { p ) = ~
OJ

2p  &r — 4 t c / r

e(o
up p  COS20ppi +  Vptp' COS0pp

p - p p'(a>2 — 4 v 2pp 2){(d2 4 v ^ p /2Y  

(18)

Here, as usual, the frequency should be understood as 
possessing the iiifiiiitesimally small positive imaginary 
part a) —> a) +  ir]. Knowledge of the function A(p)  
allows one to determine the electric current j  =  
4<?TrXp !/0/ pa- =  o-(&>)E, which yields the conductivity

2e i
cr(a)) =  —  j d p v 0pA(p).  (19)

77

r  oo
I d p u 0pA(p) .

The real part o f the conductivity is due to the zeros of the 
denominators of Eq. (18). In the second term in Eq. (18), 
the leading logarithmic contribution comes from  the im agi
nary part that arises due to the second singularity (\a>\ =  
2 v ptp').  It is im portant that the second-order term in the 
expansion equation (18), which is not explicitly written, 
does  not  yield any g 2]n2p  contribution, being only 
~ £ 2 ln/7, and, thus, by virtue of g <5C 1 resulting only in 
a small correction to the first term, similar to the situation 
already encountered in the self-energy [cf. Eq. (12)1. Upon 
extracting this imaginary part, one should first evaluate the 
integral over the angle 0pp> and then over the momentum 
p.  Straightforward calculation leads to the low-frequency 
optical conductivity

K \ e “ uo(r(O)) = ---------
; 4h v r„

1 +  Inf — (20)

where v (0 =  !/0[1 + g ln(i/03C/\a>\)/4\ is the renorm al
ized electron velocity, corresponding to frequency w. In 
deriving Eq. (20), it is utilized that d p / v p p  =

41n(i'ft»/v0) / g  u0.
Equation (20) is the main result o f this Letter. The 

conductivity depends only  on the combination of the fre
quency and the coupling constant g ln(i/0!K/\o)\). We 
illustrate the dependence of the optical conductivity on 
the frequency for different values of the coupling constant 
g in Fig. 3. W hen frequency increases, the optical con-
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FIG. 3 (color online). The dcpcndcncc (20) of the real part of 
the optical conductivity (measured in units of the nonintcracting 
conductivity e2/Ah) on the dimcnsionlcss frcqucncy O =  
co/ vqJC for different values of the coupling constant: g =  0.5 
(dotted green line), g =  0.7 (dashed red line), and g =  1.0 (solid 
black line). The suppression of the conductivity is pronounccd in 
the low-frcqucncy domain.

ductivity approaches its value e2/4fi, but at lower frequen
cies its magnitude is significantly reduced.

Restricting the perturbation expansion (18) to the 
lowest-order vertex correction requires some justification. 
In particular, one has to make sure that this expansion does 
not lead to higher-order logarithms in the discarded terms, 
i.e., that 110 x-ray (Mahan) singularity [22] takes place. 
Indeed, the second-order contribution into A{p)  can be 
easily derived and analyzed. The corresponding expression 
is cumbersome, but the conclusion is straightforward. The 
higher-order terms still feature single-logarithmic diver
gencies but arrive with higher powers of g. The situation 
here is sim ilar to the one already encountered above in the 
calculation of the electron self-energy; see Eq. (12).

Summary and conclusions. —Optical conductivity in un
doped graphene is the result of the "ch ira l” resonance, i.e., 
resonant creation of an electron-hole pair. The chiral 
Hamiltonian leads to nonzero matrix elements of the ve
locity operator for the intersubband transitions, resulting in 
a finite conductivity in a homogeneous electric field [26].

Effects of electroii-electroii interaction are twofold. 
First, the logarithmic renormalization of the electron ve
locity at low energies leads to the decrease in the density of 
states, which suppresses the probability of inters ubband 
transitions. This effect is accounted for by the electron self
energy and is revealed in the appearance of the factor 
v q / v u) in expression (20). Second, the excited electron 
and hole interact in the final state. This interaction is 
attractive and results in the relative enhancement of the 
optical conductivity. Such final-state interactions are 
analogous to the excitonic effect in conventional sem i
conductors and are accounted for by the vertex corrections 
(Fig. 2), yielding the factor 1 +  \n{vw/ v (y) into Eq. (20). 
U tilization of the quantum kinetic equations allows one to 
consider both of these effects on equal footing and account 
for the leading logarithmic terms in the lim it when g 
1 ln (u0^C /|tti|). Note that, in order to be able to study 
homogeneous conductivity, one should be able to neglect 
charge accumulation at the boundaries and associated with

its electric field. It is easy to estimate that the system size 
should be large enough, L  »  gv^/ca.
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