
Linguistic Support for Unit Testing

UUCS-07-013

Kathryn E. Gray Matthias Felleisen

University of Utah Northeastern University

kathyg@cs.utah.edu matthias@ccs.neu.edu

Abstract

Existing systems for writing unit tests exploit built-in lan-

guage constructs, such as reflection, to simulate the addi-

tion of testing constructs. While these simulations provide

the minimally necessary functionality, they fail to support

testing properly in many instances. In response, we have

designed, implemented, and evaluated extensions for Java

that enable programmers to express test cases with language

constructs. Not surprisingly, these true language extensions

improve testing in many different ways, starting with basic

statical checks but also allowing the collection of additional

information about the unit tests.

1. Testing Failure

Stories of catastrophic software failure due to a lack of suffi-

cient testing abound. Proponents of test-driven development

regale audiences with these stories to encourage developers

to write adequate test suites. These stories, and the availabil-

ity of testing frameworks such as JUnit, have motivated pro-

grammers across the board to develop basic unit test suites.

In writing unit tests, individual test cases should check

that applicative methods (also known as observers) com-

pute the expected results and that imperative methods (aka

commands) affect the proper parts of the object’s state (and

nothing else). In addition, programmers need to be con-

cerned with failures due to exceptions, especially ensuring

that methods fail gracefully and as expected. While setting

up tests for applicative methods tends to be straightforward,

testing imperative methods and exceptional situations tends

to require complex work. Specifically, it often demands call-

ing a specific sequence of methods, and may benefit from

performing a number of specific tests in sequence.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00.

As a result, even with the wide-spread support for test-

ing, programmers still don’t develop sufficiently rigorous

test suites, because creating and maintaining them remains

a large burden. A thorough study of publicly accessible test

suites (such as those in sourceforge) suggests that program-

mers construct few tests that check for modified state and

even fewer (practically none) that exercise failure condi-

tions.

We conjecture that a part of the problem in creating test

suites lies with the lack of direct linguistic support for test-

ing. This lack of testing constructs in the programming lan-

guage itself has several symptoms, including silent failures

and overly complex test case formulations. More precisely,

our analysis shows that programmers fail to adhere to the

protocol of the test suite, forgetting to prefix a method name

with “test” or specifying formal parameters for testing meth-

ods when they take none. In such cases, the unit testing

framework often simply ignores the tests without informing

the programmer. Similarly, few (if any) programming lan-

guages allow the simulation of constructs that make it easy

to set up exception handlers for tests of “exceptional” meth-

ods. Hence, programmers often don’t test such scenarios or,

if they do, it becomes difficult to maintain such tests due to

the syntactic clutter.

A consequence of the lack of specific testing constructs is

that compilers don’t understand tests. Reflection constructs—

the basis of JUnit—are simply too impoverished to com-

municate with compilers (properly). As a result, compilers

don’t gather enough information about the testing process.

For failed test cases, information gathering makes testing

truly rewarding; in contrast, lack of information makes it

difficult to locate the source of bugs and to fix them. Put dif-

ferently, on failure, testing tools should provide meaningful

information on the actual vs desired behavior, the source of

the failure, and information regarding the state of the pro-

gram for the test. This kind of compiler-informed feedback

from the testing tool would assist programmers in correcting

errors quickly and economically.

To test our conjecture, we have designed and imple-

mented an extension for Java, called TestJava, that includes

constructs for testing. The compiler/IDE for TestJava gath-

ers simple pieces of additional information to support error-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276284493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Def = . . .

| test Name [extends Name] [tests Name, . . .] {
Member . . .}

Member = . . .

| testcase Name() { Statement . . .}

Expr = . . .

| check Expr expect Expr [within Expr]

| check Expr expect Expr by Comp

| check Expr catch Name

| Expr -> Expr

Figure 1. TestJava extensions

correction activities directly. Using TestJava, we can confirm

that programmers can specify the intent of their test more

concisely than in JUnit, meaning that the resulting program

directly expresses the intent of the test. In turn, a compiler

can statically analyze and extract information automatically,

which users of JUnit must supply in strings or do without.

More importantly still, our compiler also demonstrates how

other analyses can be correlated to specific tests. Our Test-

Java compiler automatically inserts calls to a coverage anal-

ysis tool for each individual test call. This coverage analysis

can then provide per-test coverage information without ef-

fort from the programmer. We believe that other analyses

could benefit from similar information with limited effort,

although we have not yet confirmed this part of our hypoth-

esis.

In this paper, we present the design of TestJava, a compar-

ison between TestJava and JUnit, preliminary experiences

with the tool in undergraduate courses, and implementation

guidelines. Section 2 presents the design of TestJava, along

with emblematic examples. Section 3 presents a compari-

son of composing tests in TestJava versus JUnit, using exam-

ples based on deployed test cases (although the examples are

not directly taken from any particular program). Section 5

presents a guide for implementing this language extension

in Java. Section 6 presents our experience in implementing

TestJava and providing expression-level coverage analysis.

2. TestJava

Supporting testing within the language requires two features:

a means of writing testcases, and a means of grouping these

testcases to form a rigorous test suite. We extend Java with

four expressions that provide support for checking the results

of individual computations, and with a new top-level form

and new method-like form to group individual checks into

unit tests with compile-time guarantees, seen in figure 1.

check e1 expect e2 ::

evaluate e2 to v2

safe-evaluate e1 to v1

compare v1 to v2 (using deep equality)

check e1 expect e2 within e3 ::

evaluate e2 to v2, evaluate e3 to v3

safe-evaluate e1 to v1,

compare v1 to v2, using v3 for tolerance

check e1 expect e2 by == ::

evaluate e2 to v2

safe-evaluate e1 to v1

evaluate v1 == v2

check e1 expect e2 by Name ::

evaluate e2 to v2

safe-evaluate e1 to v1

safe-evaluate v1.Name(v2)

check e1 catch name ::

evaluate e1 in catch Throwable e

return e instanceof name

return false

e1 -> e2 ::

evaluate e1 to v1

evaluate e2 to v2,

return if (v2 instanceof boolean) v2 else true

Figure 2. Informal operational semantics

2.1 Expression forms

The four new expressions assess the correct behavior of

evaluating one expression. In the three check expressions,

the Expr immediately following the check keyword is the

tested expression. The first expression, check ... expect,

supports an optional third argument. The Comp item in the

second expression, check ... by, is either a name or ==.

In the final expression, ->, neither expression receives spe-

cialized treatment during evaluation, but information is ex-

tracted from both.

In all of the expressions, the test expression evaluates

after all the other subexpressions. The check expression

catches any exception thrown when evaluating the test ex-

pression or the comparison performed in a check ... by

expression, while all other exceptions halt execution as nor-

mal. No throws clause or catch clauses are required due to

test expressions. Figure 2 presents an informal semantics for

each expression, using the function compare, which is ex-

plained in subsection 2.1.2, and the evaluator safe-evaluate,

which catches all exceptions and returns an appropriate

(non-expected) value.

Each check expression returns a boolean value, while

placing different requirements on the types of the input ex-

pressions. Figure 3 presents the type rules for these expres-

Γ ⊢ e1 : t1 Γ ⊢ e2 : t2 t2 ⊲ t1 t1 6= double, float

Γ ⊢ check e1 expect e2 : boolean

Γ ⊢ e1 : t1 Γ ⊢ e2 : t2 Γ ⊢ e3 : t3 t2 ⊲ t1 t3 ∈ Num

Γ ⊢ check e1 expect e2 within e3 : boolean

Γ ⊢ e1 : t1 Γ ⊢ e2 : t2 t2 ⊲ t1

Γ ⊢ check e1expect e2 by == : boolean

Γ ⊢ e1 : t1 Γ ⊢ e2 : t2 t1 : [boolean Name(t3)] t2 ⊲ t3

Γ ⊢ check e1 expect e2 by Name : boolean

Γ ⊢ e1 : t1 n ≻ Throwable

Γ ⊢ check e1 catch n : boolean

Γ ⊢ e1 : t1 Γ ⊢ e2 : t2

Γ ⊢ e1-> e2 : boolean

Figure 3. Type rules. ≻: subtype. ⊲: castable.

sions. Since check expressions return booleans, tests can be

logically connected using standard boolean operations.

2.1.1 Example expressions

The check expressions specify assessments of individual

properties. In this section, we present example tests of a farm

module for a hypothetical board game.
The basic check expression compares any two non-

floating point values, as in the following expression.

check myFarm.harvestCrop() expect new Corn()

The call to the harvestCrop method is the test and the con-

structed corn object is the expected value. The harvestCrop

method must return an object, where Corn can be cast to the

specified return type. Evaluating this expression performs a

built-in comparison of the returned object and corn, check-

ing each field of the two objects. In this comparison, two

objects with the same type and no fields are always equiva-

lent.
Comparing floating point values requires the within sub-

clause, so that an acceptable tolerance can be specified.

check myFarm.size() expect 5000.0 within .01

The within sub-clause can also specify an acceptable tol-
erance for fields with floating point values when comparing
two objects. In this example, we store the size of a farm in a
double field initialized by the constructor.

check myFarm.doubleAcerage()

expect new Farm(10000.0) within .01

When comparing these farm objects, the floating point fields

of the two objects must be within .01 of each other.
When neither the strict comparison of the straight check

expression nor the tolerance of within suffice, the by sub-

clause allows the programmer to specify a different compar-
ison metric.

check myFarm.keepUp()

expect myFarm.neighbors() by eqSize

The by clause must name either a method within the class of
the tested expression or ==. In this example, the Farm class
contains a method accepting another Farm and comparing the
two objects only by size. Standard methods, such as equals

or equalsIgnoreCase, can also appear where appropriate.
Object identity can be tested with ==, as well as any values
that == can traditionally compare.

check mybank.lookup(myid) expect myFarm by ==

In a check ... expect ... expression, if a test termi-
nates in an exception, the cooperating test engine records the
exception and the check produces false. When testing for
intentional exceptions, the check ... catch ... expres-
sion records this expected behavior as well as the expected
exception type.

check myFarm.sell() catch IllegalActionExn

This test produces true only if the sell method fails with an

IllegalActionExn exception; normal termination or failing

with a different exception type both produce false.
When a specific check relies on a sequence of actions,

the -> operator reports this dependence to the cooperating
test engine, which includes the information in error reports.
For example, a method that mutates a field can be checked
with a comparison after the mutation.

myFarm.water() ->

check myFarm.waterSupply expect 100

After performing the test, if the waterSupply does not match
the expected level, the error report indicates that the call to
water may have been faulty. The -> operator can also specify
tests that violate an expected protocol.

check (myFarm.rent() -> myFarm.sell())

catch IllegalActionExn

This records that calling sell after rent should produce an

exception, and if it does not, the error report indicates the

specified protocol that is erroneously allowed.
Related tests can be grouped using standard conditional

operators, allowing related tests that do not necessarily rely
on one another to be grouped without impacting the error
report.

check myFarm.sell() expect 100000) &&

check myFarm.owner() expect "Bank"

2.1.2 check . . . expect . . . [within . . .] details

This form compares two values using a built-in comparison

function. Evaluation requires a value in the expected position

(and within position where applicable) before evaluating the

test. The types of the test value and expected value must be

castable to each other, as otherwise the two values cannot be

equivalent. Floating point values may not appear without the

within clause, although objects may contain floating point

fields.

Comparison of primitive values uses ==, while compari-

son of object values (including arrays) uses a function added

to the runtime system. This operation deeply compares all

fields of the two values, regardless of access privilege. Float-

ing point fields are compared with a default tolerance of

0.0001.[15]

Using == to compare floating point numbers is prob-

lematic; a minuscule rounding discrepancy can cause the

test value to differ from the expected value. The differ-

ence between the two values may be acceptable for any

given test; however, the allowable difference varies by ap-

plication. Therefore, we require the programmer to specify

this range using within when comparing only floating point

values. The comparison of two floating point values uses

Math.abs(test-expected) < range. The range is capped

only by the numeric representation.

2.1.3 check . . . expect . . . by . . . details

This form supports the specification of the comparison op-

eration, which must either be a method within the test ob-

ject’s class or ==. Any values comparable with == may occur

when == is specified, in all other cases the values must be

objects. The test expression’s compile-time class must con-

tain a visible method with the given name, which accepts

the expected expression’s compile-time type. As previously

mentioned, exceptions thrown while evaluating the compar-

ison are caught and the check expression produces false.
While the base check . . . expect form could encode the

behavior of this expression

check a.color().equalsIgnoreCase("blue")

expect true

the encoding loses valuable information about the actual and

expected values when the test fails. Further, the test engine

cannot distinguish between an exception raised by the actual

test and an exception raised by the comparison method as

both appear to be the test.

2.1.4 check . . . catch . . . details

This form anticipates that a tested expression throws the

specified exception. Neither the type nor the value of the test

expression impact evaluation. A method call without a re-

turned value (void methods) can appear in this position. The

argument to catch must specify a visible class descended

from Throwable.

When the test expression throws an exception, the thrown

value must be a subtype of the declared exception type for

the test to return true. Otherwise, including when the test

expression completes evaluation normally, the test returns

false.

2.1.5 . . . -> . . . details

This final expression represents a sequencing action. The

items to the left of -> are expected to change the state, and

the evaluation of the expression on the right depends on

these effects. The types of the left and right-hand side of

the expression are unconstrained, and any value on the left-

hand side is ignored. The result of the -> expression depends

on the result of the right-hand expression. Any non-boolean

value produces true, while a boolean result is immediately

returned. Exceptions are not caught.
In the event the right-hand expression contains failed

checks, the test engine knows that these computations de-
pend on the left-hand expression. For example in

f.add(’a’) -> check f.next() expect ’a’

the compiler extracts information about the call to add as
well as the call to next to report to the test engine. While
this program is extensionally equivalent to

f.add(’a’);

return check f.next() expect ’a’;

this second program fails to specify that the check test de-

pends on the call to add. With this knowledge, the test engine

can generate an error report that automatically informs the

programmer that a failure in f.next may have occurred due

to a failure in f.add. In the second program—a typical JU-

nit program—the programmer must manually generate this

information in the form of print statements, adding to the

already high burden of constructing test cases.

2.2 Unit test forms

A check expression tests the behavior of one expression

against one desired outcome. To form a coherent test case,

several check expressions may need to be grouped together.

Similarly, a test suite consists of a group of test cases.

Existing unit testing implementations such as JUnit pro-

vide such grouping mechanisms by reusing existing lan-

guage constructs, especially methods and classes. Due to this

reuse, these testing systems cannot provide static guaran-

tees about tests, test cases, and test suites and have difficul-

ties relating information gathered at run-time to the source

code of tests. In contrast, we provide linguistic grouping

mechanisms for testing (see figure 1) that resemble classes

and methods but come with restrictions beneficial to testing

and test analysis. This section discusses the two major con-

structs.

2.2.1 Unit test examples

The top-level test form resembles a class and can contain
any member. A test can specify the class (or classes) that it
tests.

test Ownership tests Farm, Bank {

Bank myBank = ...;

Farm myFarm = ...;

testcase purchase() {

return myBank.buy(myFarm,"me") ->

check myFarm.owner() expect "me";

}

}

The new testcase member form resembles a method. The

testcase declaration requires that the method returns a

boolean and expects no arguments. No modifiers may ap-

pear on either form. If a test contains any constructors, it

must contain a public constructor expecting no arguments.

Forcing the test constructor and all testcases to expect no

arguments assures that the test engine can instantiate and run

all appropriate tests.
A test can extend an existing test.

test OwnerIdentity extends Ownership {

boolean ownCheck(Bank b, Farm f) {

return check b.lookup(f.id) expect f;

}

testcase ownership() {

return ownCheck(myBank,myFarm) &&

ownCheck(newBank,myFarm);

}

}

As in standard inheritance, OwnerIdentity can access all

visible fields and methods of Ownership, including testcases.

The subclass can override both methods, which can be used

to abstract tests, and testcases. A test also inherits all

classes listed in a tests clause as classes it tests.

2.2.2 test Name { ... } details

The test form encapsulates a test suite, testing one or more

classes. A test is not required to declare any tested classes

or extend an existing test. Inheritance of tests is analogous

to implementation inheritance for classes. Every test inher-

its two public methods, as well as the standard methods from

Object. The two methods, init and breakdown, accept no

arguments and return no values. During test execution, these

methods are called before (init) and after (breakdown) run-

ning.

A test cannot specify any attributes, such as abstract,

nor implement any interfaces. Tests comprise an inheritance

hierarchy separate from those of both classes and interfaces.

The standard new expression can construct an object from a

test, and the resulting value acts like a standard object. A

test can appear in any position that a class can appear, and

follows standard visibility rules.

Visible classes and interfaces specified by a tests clause

inform the test report system of the extent of the test. Our

coverage analysis uses this information to report which

methods of the specified classes are (and are not) covered

by the current test.

2.2.3 testcase Name() ... details

The testcase form provides a collection point for individ-

ual check expressions, and follows the form of a method.

A testcase may not specify any attributes nor any throws

declarations. While check expressions automatically catch

exceptions generated by test expressions, it is the program-

mer’s responsibility to catch all other exceptions. These ex-

ceptions indicate a failure in the implementation of the test

suite as opposed to a failure in the tested program, and as

such should be brought immediately to the programmer’s at-

tention.

A testcase may only appear within a test body. Each

testcase can be manually called following the standard

method call procedure. Inheritance of a testcase is like im-

plementation inheritance. A testcase may call its overrid-

den predecessor using super.Name(); as in standard inher-

itance, without such a call, the overridden test case has no

impact.

2.3 Information from testing

In order to provide information other than strict pass/fail

results, our modified Java compiler (see Section 6) closely

co-operates with the test execution engine. Specifically it

provides three pieces of information to the test execution

engine: first, it informs the test engine which test specifi-

cations to instantiate; second, it informs the engine which

testcases to execute; and third, it provides in-depth details

about each individual check.

After the compiler provides the initial information, the

test engine uses the default constructor to instantiate each

test in turn. The test engine can use the instantiated class

to access testcase specific information encoded during

compilation. The test engine then causes each testcase

to execute. Inherited testcases run first, followed by the

testcases of the current test. The sequence of test cases

within a test determines the order of execution. An overrid-

den testcase call occurs during calls to the parent methods,

where the original method call appears. As the tests run, the

generated code gathers information about check expressions

and communicates it to the test engine.

A test succeeds when all its testcases succeed, which

in turn succeed when the test case returns true. On suc-

cess, the test report specifies the tests run, the successful test

cases, as well as the results of coverage analysis when col-

lected.

For failed check expressions, the test engine provides ad-

ditional information. More precisely, the compiler provides

the test engine with the source of the check expression, the

expected and actual values and behavior, and the nature of

the comparison. Additionally, the compiler sends along con-

text information, including the method called, the fields ac-

cessed or mutated, the constructors called, etc. We are con-

sidering an additional extension so that the compiled code

also gathers intermediate values generated during the test

computation.

3. TestJava vs JUnit

Our linguistic approach to testing has several advantages

over testing frameworks that use programming protocols in-

stead. Most importantly, a linguistic approach improves both

readability and maintainability, simply by reducing some

of the mundane labor. Furthermore, the compiler can sup-

port testing with static checks and with run-time monitoring,

which is especially important when a check fails.

In this section we present support for our thesis. Subsec-

tion 3.1 explains our data gathering method. The remain-

ing subsections compare testing in our world with testing

in a JUnit world on a point-by-point basis, a summary of

this comparison is in figure 4. We believe that this com-

parison applies to other reflection-based systems, too. Only

macro-based systems are comparable in quality with a test-

ing framework based on language extensions [13, 16].

3.1 Methodology

In developing our TestJava extensions, we studied existing

test suites in sourceforge to understand common practice.

Our investigation only considered libraries written in Java

that contained an open test suite of unit tests. Libraries meet-

ing this simple criteria were chosen from different categories

including puzzle games, board games, educational tools, in-

terpreters, numerical analysis, internet support, and text edit-

ing. Test suites ranged in extent from those testing only one

or two methods to those that appeared to cover 90% or more

of the program.

During this investigation, we noticed that only 25% of

tests for exception-throwing methods included calls causing

the exception. And nearly half of these tests in our sample

contained small errors that would obscure failure.

To analyze the benefits of TestJava, we present a set of

emblematic tests in JUnit and then in TestJava. For readabil-

ity, our tests cover a hypothetical board game implementa-

tion. All examples are presented using Java 1.4 and the cor-

responding JUnit version, as the examined libraries use these

tools. Where more modern techniques address the problems

encountered in a test, we additionally present a more modern

JUnit implementation.

3.2 Test organization

Conceptually, a unit test system provides two levels of or-

ganization, first grouping individual tests that check one be-

havior (i.e. a function, method, or protocol) and then group-

ing these tests into larger suites that test related behaviors.

This section presents the current practice of such organiza-

tion, using JUnit test methods and test classes for the two

levels, contrasted with the organization possible within Test-

Java, using test and testcase.

3.2.1 Test class organization

In most libraries, all test classes exist off a main test pack-

age directory. This package’s internal hierarchy mirrors the

package hierarchy of the implementation. Typically, one test

class mirrors one implementation class. A few test classes

implement tests that span multiple implementation classes,

including tests over abstract base classes as well as concep-

tually similar but separate classes.

Using the test organization of TestJava, programmers

can continue using the same test organization as before. The

current practice provides a convenient means of indicating

the (primary) tested class through the name of the test class.

The JUnit system can extract the name of the test class, and

thus inform the programmer, via reflection. Our system spec-

ifies tested classes directly, freeing the programmer to select

a more informative naming convention or more convenient

organization without losing information.1 While the seman-

tics of JUnit do not prohibit these changes, the lack of con-

nection between the test and the implementation seems to

discourage them.

3.2.2 Test method organization and abstraction

A typical test method contains either several different calls

to one method, or a sequence of calls to several methods.

In both circumstances, the name of the test method follows

the pattern testNAME, where NAME refers to the primary

method tested. The leading test dynamically alerts JUnit

that the method is a test. In a more modern implementation,

the prefix can be replaced with the @Test attribute although

the information is still collected through reflection.

Often, the first line of a test method contains a call to

display the name of the tested method in a string. These

displays contain no information not found in the name of

the method; however, their frequent presence indicates that

the display provides information over that provided by the

standard test run.

Using the testcase form, a test method can perform the

same tests and follow a similar naming convention as in

the updated JUnit form. The source of the test method is

noted by the compiler to be included in the error report;

this information may alleviate the need for the extra display

information observed.

With the testcase form, the modifier and method signa-

ture are statically checked to ensure correct behavior while

executing the test. It is possible for a misspelling to prevent

a JUnit test case from running; however, less than 1% of ob-

served methods contained obvious misspellings.

Non-test methods allow programmers to abstract com-

mon test calls. In both JUnit and TestJava these methods

are unrestricted and can contain assertions or checks respec-

tively. In many libraries, such methods were tagged with a

Test prefix, and in one-third of these libraries at least one

such method may have been intended to be an actual test.

When a method prefixed with test accepts parameters

(which indicate it is not a JUnit test case), or when a method

prefixed with Test accepts no parameters but appears to fol-

low the convention for a test case, a programmer must ana-

lyze the code to deduce the original intent of the method (po-

tentially requiring information from the original author). The

testcase form statically distinguishes test methods from

support methods, causing a compiler to signal violations that

may have otherwise led to confusion.

1 While a separate test package can simplify the process of bundling soft-

ware, the specific test form can also inform a bundling process.

Test Organization JUnit TestJava Benefits

Test class placement Separate package hierarchy

that mirrors implementation.

One test class per implemen-

tation class.

Test classes in same package

as implementation.

One test class per task or im-

plementation class.

tests have package access.

Names describe conceptual

organization.

Test method organization Rely on unchecked name (or

attribute) and type signature.

Often included print out for

identification aid.

Checked modifier and signa-

ture.

Source automatically indi-

cated.

Reduce static mistakes due to

checking, and names can fol-

low any style.

Pinpoint source of failure.

Test abstraction Typically identified using

’Test’, potentially causing

trouble with mistaken roles.

No restrictions, use of ’check’

identifies source of method.

No possibility of confusion

between support methods and

tests.

Test Call Style JUnit TestJava Benefits

Comparing primitives Use assertEquals with identi-

fying string.

Use check ... expect ... Gain context information

without additional work.

Comparing objects

Full equality

Write equals, use assertE-

quals with identifying string.

Use check ... expect ... Use equals for program-

appropriate comparisons,

gain context information

without additional work.

Comparing objects

No equals (arrays)

Write comparison, use assert-

True with identifying string

Use check ... expect ... No comparison method to

write. Error report contains

actual and expected values.

Checking mutation Write mutation call, some-

times with display.

Compare mutated value using

assertEquals with identifying

string

Connect mutation to appro-

priate check with ->

Mutation directly mentioned

in error report. Tested calls in-

dicated in source.

Checking for exceptions Throw exception within try

... catch ..., use fail

with identifying string.

In modern JUnit, add excep-

tion information using class

field to attribute property.

Use check ... catch ... Concise call that indicates ex-

pectation.

Interacts with sequences of

tests.

Checking after exception Throw exception within try

block, check follow-up con-

dition using assert and an

identifying string in appropri-

ate catch block.

Connect check ... catch

... and follow-up check

with ->

Explicit connection between

expectation and check, gain

context information without

additional work.

Figure 4. Current Practice (JUnit) vs TestJava

3.3 Test call style

Individual tests either directly compare two values, or re-

quire a sequence of actions to prepare and execute the test. In

performing individual components of a unit test, generated

values should be checked, mutation should be confirmed,

side-effects confirmed, and exceptional behavior guarded

against as well as triggered.

3.3.1 Comparing primitives

Comparing primitive values in JUnit uses the assertEquals

method, typically with a string given to provide information
about the particular call.

assertEquals("size of farm", myFarm.size(), 500);

Due to overloading, an appropriate assertEquals method

occurs for all primitive values as well as strings. An addi-

tional argument can be provided when comparing floating

point values to set the tolerance between the two numbers.
Comparing primitive values in TestJava uses check ...

expect ..., including the within clause where required.

check myFarm.size() expect 500

In the event this test fails, the error report contains infor-

mation provided by the compiler to specify that the check

called the Farm’s size method with no arguments, as well as

the source of the expression.

In both systems when an individual test fails, an error re-

port announces the actual value received contrasted with the

expected value and (conditionally in JUnit2) the source of

the call. If an optional string is present, JUnit reports the

value of the string as well, whereas TestJava always reports

context information about the test call. This additional in-

formation provided by TestJava alleviates work for the pro-

grammer in specifying their test, in modification as well as

creation, while providing assurance that each test will be

identifiable on failure.

3.3.2 Comparing objects

When comparing two objects whose class contains an ap-

propriate equals implementation, JUnit tests use the same

assertEquals method described above, with the same re-

sulting behavior.

Within our TestJava extension, the same test can either

use the standard check ... expect ... expression or add

the by clause if the default comparison does not perform

the desired computation. The same benefits apply to this

situation as with primitive values.

On occasion, the built-in equals method does not perform

an appropriate comparison for the purpose of the test. In

these circumstances (arising with arrays and classes without

available source), the programmer cannot insert an appropri-

ate comparison into the class. Therefore, the test call either

2 JUnit relies on a source trace using the exception handler, if the Java

compiler has not been configured to provide the source, the test will not

report the location.

uses a locally written comparison method or compares indi-

vidual portions of the object one at a time.
For frequent comparisons, programmers create special-

ized local methods to perform a comparison and then use
the assertTrue method to assess the response.

boolean comp(Crop[] a1, Crop[] a2) {

boolean res = a1.length == a2.length;

if (res)

for(int i; i< a1.length; i++)

res &= a1[i].equals(a2[i]);

return res;

}

void testGetCrops() {

System.out.println("getCrops");

assertTrue(comp(myFarm.getCrops(3),

new Crop[]{new Rice(), ...}));

}

The comp method correctly assess whether the two Crop

arrays are equivalent, and the assertion passes the result to

the test report. On failure, the error report does not contain

information regarding the actual and expected values, since

these are not provided to JUnit. This implementation pattern

typically contains a string explaining that comp is comparing

an array created by the getCrops method.
Since the standard check expression does not rely on

equals, the comp method above is unnecessary.

testcase getCrops() {

return (check myFarm.getCrops(3)

expect new Crops[]{new Rice(), ...})

}

The ability to leverage the default comparison saves the ef-

fort of writing specialized comparison methods for different

objects.

Trying to compare two objects with private fields further

highlights the default comparison’s benefit. The programmer

cannot write a method within their test to adequately com-

pare two such objects; however, the default comparison is

not limited by such restrictions.
Occasionally, when comparing two objects that do in-

clude an equals method, programmers still resort to check-
ing individual pieces of two objects. Consider a method that
instantiates a field value to a random number within a spec-
ified range, a typical comparison using equals may still re-
quire an exact match for this value while a test of the instan-
tiation method cannot. Programmers use the floating-point
comparison tolerance to specify a test for this situation.

Farm b = g.makeFarm();

assertEquals(b.area, 100.0, 50.0);

While the makeFarm method performs the relevant computa-

tion, the individual checks determine the subsequent appro-

priate values. Following this style, in contrast to writing a

separate comparison method, the test report includes some

of the expected and actual values.
The within sub-clause supports this comparison directly.

check g.makeFarm()

expect new Farm(100.0) within 50.0;

The range value of the within carries into the fields of the

Farm object and performs the comparison to the area field.

Following the piece-by-piece pattern, programmers risk

omitting crucial fields from the local assertions. The risk of

omission grows during a program’s lifetime. If a program-

mer later adds a relevant field to the farm, they must remem-

ber to add an appropriate comparison into this test (and all

tests that compare farms with individual field tests). By us-

ing the check expression, the programmer cannot omit a field

even if the field did not exist when the test was originally

written.

3.3.3 Checking mutation

A typical test of a mutation operation follows the same
comparison style as that of the random farm generation
described above.

Farm f = new Farm(500);

f.divide(100);

assertEquals(f.area, 400);

This test ascertains the performance of the divide method.

If other method calls are necessary to properly establish the

conditions before calling divide, it may become unclear

whether those calls form part of the test or are tested in other

places and form part of the framework.
A typical mutation method does not produce a value, and

so does not produce anything visible to compare against. We
address the lack of connection between the source of the
mutation and tests concerning it through the use of the ->

operator.

Farm f = new Farm(500);

return f.divide(100) -> check f.area expect 400;

This usage of -> provides a connection between the method

that modifies the relevant value and the check of the relevant

value. The auxiliary call to the farm constructor is not part

of the test, as otherwise the assignment would be connected

with an ->.

3.4 Checking exceptions

Typically, when testing a method that may throw an excep-

tion, programmers declare a throws clause for the method.

Some test suite implementations specifically place method

calls with a potential to throw exceptions inside of a try

block to explicitly catch the exception and fail with a more

informative error string.

Each check expression suppresses the need to catch or

throw exceptions caused by the test position, so calling such

a method requires no additional programming. Further, if

several calls to such a method exist within one test, the

specific call that caused the undesired exception is noted

in the error report and subsequent calls may be able to

continue (depending on the program logic connecting the

expressions). This benefits programmers by providing the

specific failure cite without requiring the addition of a try

block.
In the libraries we studied, intentionally causing and

checking for an exception requires the use of a try branch,
which occurred with very low frequency. The body of the
test call appears within the try, and appropriate checks or
returns appear in the body of the appropriate catch. A fail
appears in the remainder of the method.

try {

myFarm.sell();

} catch IllegalAct(e) {

return;

} fail("Exception not thrown");

A straight-forward usage of the check ... catch ...

form produces the same effect without requiring that the pro-

grammer remember the return or provide the error message

within the fail call.
The introduction of attributes with Java 1.5 also removes

the necessity for a try statement in this situation.

@Test(expected = IllegalAct.class) void sell() {

myFarm.sell();

}

This annotation informs the JUnit system to expect an ex-

ception to halt the execution of this test method, and that

any other behavior is an error. However, for the best results

in this interaction, the programmer is limited to one excep-

tion call per method.
Some protocols require that multiple exceptions be tested

within one method, to ensure that proper side-effects occur
during exception handling. To illustrate, the following code
tests a protocol about tile placement on a game board.

Tile t1 = ..., t2 = ...; Coord c = ...;

b.placeTile(t1,c);

b.placeTile(t2,c);

try {

b.placeTile(t1,c);

} catch(ContestedCoord e) {

try {

b.tileLoc(t2);

} catch(UnplacedTile e) {

return;

}

fail("UnplacedTile not thrown");

}

fail("ContestedCoord not thrown");

When a previously overplayed tile attempts to be placed in

the same location, an exception occurs that then causes other

interactions to fail. The original code this sample is based on

placed the return statement at the end of the method instead

of within the catch, but otherwise followed this protocol.

The test written in a modified JUnit can avoid the inner try

... catch block, but must contain the first.
An equivalent test using a combination of check ...

catch ... and -> avoids the use of try blocks at all.

Tile t1= ..., t2= ...; Coord c = ...;

b.placeTile(t1,c);

return b.placeTile(t2,c) ->

(check b.placeTile(t1,c) catch ContestedCoord

-> check b.tileLoc(t2) catch UnplacedTile);

The implementation using check ... catch ... elimi-

nates the need to provide errors in the event of exceptions not

occurring, eliminates the need for try blocks (thus eliminat-

ing the need for an oddly placed return), and can also con-

tinue to perform further checks within the method if needed

or desired.

4. Preliminary Experience

In order to gather experience with TestJava, we have re-

cruited two instructors—Viera Proulx at Northeastern Uni-

versity and John Clements at California Polytechnic State

University (CalPoly)—of Java courses to introduce the test-

ing constructs and to observe the reactions of the students.

Both instructors teach students in second-term courses using

the standard check ... expect ... form and the within

sub-clauses for tests.3 Both have used alternative constructs,

including JUnit in prior semesters.

Overall both instructors enthusiastically reported im-

provements in students’ behavior. Proulx used to use a

graphical test specification system before progressing to JU-

nit specifications. In Fall ’06, when she taught 30 students

in a “catch-up” course, the graphical testing system was re-

placed with TestJava. She noted that students in this course

wrote more tests than in previous years and wrote them with

far fewer difficulties than before. Because of this success,

she used the system again for the Spring ’07 mainstream

course. She continued to teach JUnit only because of its

status in the rest of the Northeastern curriculum.

The CalPoly course presented Java programming to 25

second-quarter students. Like at Northeastern, the course be-

gan with students specifying their tests using TestJava and

concluded with them writing JUnit specifications. Clements

reported that the use of the check expressions worked well

within the course and that the error reports students received

using the TestJava extension significantly simplified the pro-

cess of correcting errors when compared to the JUnit reports.

5. Implementation Guide

Implementing TestJava requires augmenting a Java compiler

as well as integrating the resulting program with a test ex-

ecution harness. The language requirements allow either a

source-to-source compilation or a compilation to a tradi-

tional back-end. Any pairing of a test-engine with the com-

pilation requires hooks connecting the compiled tests and

the test-engine, as well as support for comparisons of any

objects, regardless of access permissions.

This section outlines the general concerns of compiling

the TestJava language, with specific attention to targeting

3 In accordance with our philosophy of restricting a programming language

for introductory students [6, 10], only these forms are presented to the

students.

Test Engine Interface

addToTest TestClass → void

runningCheck → void

reportFailure check, fail, call-info, SRC → void

reportDepends SRC-l, call-l, SRC-r, call-r → void

check = One of ”expect”, ”within”, ”by”, ”catch”, ”->”

fail = <Obj with actual, expected, range, thrown>

thrown: boolean; range: Number or Boolean.

TestClass Interface

name → String

tests → String[]

testsSrcInfo → SRC[]

testCaller → CallIterator

CallIterator Interface

callNext → boolean

nextName → String

nextSrc → SRC

Figure 5. Test Engine interfaces

Java source. This includes a discussion of both the test en-

gine and comparison function, as well as implementing the

different language features. We also outline the steps nec-

essary to target JUnit as the test engine back-end. In sec-

tion 6, we discuss our actual implementation, which targets

the Scheme programming language.

5.1 Connecting to a test engine

To obtain the full benefit of the TestJava extensions, the

compiled version of each extension must connect to a test

engine that drives execution and presents the results, and

the compiled sources must provide call backs to support the

engine. Figure 5 presents a suitable interface for both the test

engine and the call backs.

The test engine contains four exposed methods; a method

to register the test classes, a method to register that a check

executed, a method to register a dependence between checks,

and a method to register that a check has failed. Using the

information provided to the first method, the test engine can

instantiate and interact with each of the test objects.

Each test class must contain methods, not exposed for

ordinary use, that the test engine can use to invoke the test

methods and extract information regarding the current test

class. This information includes, at a minimum, the name of

the test class and the names of all classes declared in a tests

clause. Calls to each testcase occur through the use of an

iterator-like object. The test engine first extracts the name

and source location of a test case and then executes the test,

accumulating the number of tests that pass versus fail.

Calls to the check-related methods occur within the gen-

erated code for each check expression. These calls inform

the test engine of the number of checks performed and, in

the event of failure,

• where the check appeared,

• why the check failed,

• what form of check was tested,

• and the syntax of the initial test call.

An appearance of the -> form causes a call to register the

dependence, which can be used in generating reports of

individual check failures.

5.2 How to compare values

Comparing all fields of two objects requires access privi-

leges greater than are available in general. Two implemen-

tation techniques can provide a suitable means to write this

comparison method. For security reasons, use of the com-

parison can be restricted to use within a check expression,

which is already restricted to occurring within a test.

One technique relies on the compiler augmenting each

compiled class with an additional method that performs the

comparisons. The compiler ensures that each field in the cur-

rent class is compared, and defers inherited fields using a

super call. Each object field is compared using the same

method. Primitive values are compared either with == or

an appropriate comparison using tolerance. The base imple-

mentation of this comparison method, located in Object will

first compare two values using ==, it will also store identify-

ing information for previously encountered values to allow

the comparison to terminate in the presence of cyclic data

structures.

The compare method must not be given a name that can

conflict with programmer specified methods. We make use

of the different set of reserved words between the extended

language and basic Java, namely test or check, to safely

name the comparison method.

While the first technique assumes that all compiled Java

classes have passed through an augmented compiler, a par-

ticular implementation may not be able to assure this due

to legacy binaries interoperating with the program. To ac-

commodate these cases, a comparison implementation using

reflection or written natively may be required. With suitable

JVM settings, even private fields may be exposed through

reflection, and thus compared. Using this implementation,

programmers may not be able to fully test their implemen-

tation on the JVM that the program will ultimately run on;

however, this solution should be adequate in cases where the

program source is unavailable.

5.3 Compiling tests

Since a test closely resembles a public class and a

testcase closely resembles a method, these standard Java

forms are the prime targets for compilation. At first glance,

these translations are straightforward. A test translates di-

rectly into a class, and a testcase translates into a public

method that declares a boolean return.

Each test includes two inherited methods that do not

appear in Object. Therefore, each compiled test should

inherit from one class containing the base implementations

of these methods. This class should not be available for

programmers to access in the pre-compiled Java system, so

that while running a test suite, non-test classes cannot appear

to be tests without the proper information. Additionally, each

test class implements the interface outlined in figure 5. Each

method from the interface must first call the super version of

the overridden method.

5.4 Compiling checks

Each compiled check expression requires a translation that

delays evaluation of the test expression, handles exceptions

opaquely, and calls the engine’s report methods. For the

rest of this section, we assume the existence of a top level

compare method that performs a deep comparison.

Wrapping the test subexpression for each check in a

method call within an anonymous inner class implements

the appropriate evaluation delay, while allowing the imple-

mentation of the remaining check expression to occur in a

separate method implementation that is itself testable. Due

to the treatment of exceptions within standard Java, the im-

plementation must declare and handle the widest possible

assortment of thrown exceptions.4

For the simplest check expression

check testExpr expect expExpr

the translation results in an anonymous inner class wrapped
around the testExpr that extends a checkExpect nested
class from the base testing class implementation. The test
is conducted through a method within this base class and the
compared value, expExpr is passed in as an argument. So
the expression becomes

new test.checkExpect() {
Object test() throws Throwable {
return testExpr; }

String context() { ... testExpr ... }
}.run(expExpr, srcLoc)

Within this translation, references in the first testExpr may

require redirection if they are either (implicit or explicit)

references to the original this or references to local vari-

ables that cannot be declared final. In the latter case, such

variables can be lifted into an inner class referenced within

the method. This reference can be declared final, and ac-

cess to the variables within the remainder of the method and

within the translation can be pointed to the correct indirec-

tion through the new local variable. Lifting these variables

into their own class can permit easier memory separation

between different test actions if desired with particular anal-

yses.

4 This section ignores the problem of discarding exceptions concerning

JVM problems, such as out-of-memory exceptions, to keep the presentation

focused on the principles.

The second appearance of testExpr within the context

method represents the extraction of the syntactic expression

for error reporting. This can either be the exact call the pro-

grammer wrote, a summary of the final method or construc-

tor called along with the types of the arguments, or infor-

mation regarding the initial values of objects and parameters

located in this position. This information replaces the user-

generated string often accompanying a JUnit assertion.
The definition of run calls the test method within a

try block and then compares the values while reporting its
activities to the test engine.

boolean run(Object expect, SRC src) {

testEng.runningCheck();

Object res = new Failure();

try {

res = this.test()

} catch (Throwable t) {

testEng.reportFailue(e,

fail(t, expect), ...);

}

boolean answer = compare(res, expect);

testEng.reportFailure(e,

fail(res, expect), ...);

return answer;

}

Where Failure is a private local class definition, and fail is

a method that appropriately packages result information.

The translations for check ... within and check ...

by close-ly follow the translation for the simple expression,

with similar run definitions. For check ... within, the run

method can be overloaded with suitable numeric second

arguments including int, float, etc., where this argument

is passed on to compare. The inner class for check ... by

Name requires two additional methods, to call and identify

the provided comparison. In addition, the class must contain

two implementations of run, the first using == to compare the

values and the second calling the comparison method within

a try block in case the comparison throws an exception.
The check ... catch expression requires a translation

that generates the run method, since Java does not support
passing in types. So the translation for

check testExpr catch givenThrowable

produces an inner class with three methods, one to return the
context, one to return a string of the expected exception’s
name, and one to perform the computation. The translation
produces a call to the latter method.

new test.checkCatch() {
boolean run() {

testEng.runningCheck();

try { testExpr; }
catch (givenThrowable e) {return true;}
catch (Throwable e) {

testEng.reportFailure(c,

fail(e, name()),...);

return false; }
testEng.reportFailure(...);

return false;

}.run()

Finally, translating -> requires wrapping the calls to both

expressions in an inner class. The run method within this

inner class declares any appropriate throws clauses, and calls

the reportDepends method. This method must be called

twice, once to register the current dependence and once to

indicate that the -> expression terminated.

As an alternate implementation approach, that does not

utilize anonymous inner classes, subexpressions involved in

executing a check expression can be lifted to the first state-

ment position above the expression’s position. Each expres-

sion value can be stored in a temporary variable, with appro-

priate surrounding try statements around the initializations.

Such an implementation technique has the advantage of lim-

iting class allocations and inner class creation, but cannot

be separately tested and cannot be used to isolate memory

affects related to testing.

5.5 Targeting JUnit

One possible target for the test engine is the JUnit system,

where the compiler generates appropriate JUnit assertion

calls. This would allow programs to mingle TestJava test

suites with older JUnit test suites, as well as focus graphical

support on one system.

In order to properly target JUnit, the base testing class

must extend a proper JUnit testing class instead of Object.

This base class must act as both the standard base class and

as the integrated test engine, with a modified interface due to

the reliance on JUnit. Within the JUnit setup and breakdown

methods, the base class must display initial and summary

information from the current class as well as contain a call

to provide a full report on check behavior up to the current

point. Each testcase method must append a @test attribute

to the declaration site, but must return a boolean.

In implementing the check expressions, each run method

must direct information to JUnit using string generation and

assertTrue. The generated string must contain an appropri-

ately formatted representation of the actual and expected be-

haviors. As this method operates by raising exceptions that

halt execution when the actual value is false, these calls

must be wrapped in a try statement allowing the program to

return and produce false.

6. Available Implementation

Our implementation of TestJava extends ProfessorJ, our Java

compiler for the DrScheme development environment [6,

11]. In this implementation, the Java constructs and the test

additions are translated directly into Scheme code, which

performs the role of Java bytecode; the translation is based

on the design of section 5, though using closures instead of

inner classes. Since all compiled code entering our system

formation about the tests into a test suite class. A graphical

user interface allows testers to control the execution of in-

dividual tests and to monitor the execution and results. The

JUnit library employs reflection throughout to accomplish

its goals. Specifically it extracts all methods of the test class

and examines their names and attribute fields to select the ap-

propriate methods. Then, it uses reflection to execute the test

methods and, where applicable, to check for the appropriate

exception value instance. Programmers may document test

cases with String-valued fields.

Three xunit testing libraries stand out from the rest:

SchemeUnit for Scheme [16]; HUnit for Haskell [12]; and

Lisp’s LIFT system [13]. All of them contain features not

found elsewhere and use a distinct implementation technol-

ogy.

All three systems do closely resemble JUnit. Each pro-

vides a set of assertion functions to compare values, fail-

ure conditions result in exceptions, and programmers pro-

vide additional information in strings or symbols. Both the

SchemeUnit and LIFT systems use macros to extend the lan-

guage with a test form, eliminating the problem of failing

to execute a test due to a typo in the name. In addition, in

LIFT a new test expression can be dynamically added to a

specific deftest at any time, allowing programmers to sup-

port a combination of grouped tests and tests located near

function definitions. However, this feature can increase the

difficulty in understanding and maintaining a test suite. Un-

like the other xunits, LIFT supplies a form that anticipates

an error, although it does not distinguish between different

kinds of errors.

HUnit uses Haskell’s lazy-evaluation to its advantage.

Expressions in test positions are not forced to evaluate until

evaluation of the test function has begun. This allows hUnit

to provide more specific information in the event of excep-

tions. Additionally, laziness allows tests and executing code

to exist within the same Haskell module without causing ad-

ditional overhead — tests evaluate only when an external

call forces them to.

Assertions provide a means of determining whether pro-

cedures are performing according to expected parameters.

Pre and post condition assertions provide support for check-

ing these conditions at the entry and exit points of a proce-

dure or method. While neither assertions nor pre and post

conditions necessarily provide a means of testing, they can

be used to assist in developing a test suite, especially when

tools provide support to facilitate testing.

The Jass Java-extension [2] embeds a pre and post con-

dition language into Java comments. If users provide a set

of data, and a set of method calls to execute, the assertions

confirm that the methods conform to the programmers ex-

pectations. Cheon and Leavens [5] also present an assertion

language embedded into Java comments. This system uses

the Java Modeling Language [14] to specify the method con-

ditions, and then generates JUnit classes to check these prop-

erties around method calls. Users must still supply specific

data, added into the JUnit classes.

Both of these systems, like hUnit, allow tests to appear

with the tested procedures without negatively impacting

standard execution. With the language extension embedded

in comments, programmers do not get traditional editor sup-

port for writing their tests, and it becomes more difficult to

abstract common testing behavior due to the placement and

scope of the assertions. Further, as assertions are general

conditions of a method behavior, using these properties to

drive tests can exclude checks of specific program behavior

on particular input. This can increase the difficulty in check-

ing behavior on corner cases and conditional specific output

based on input. The JML-JUnit system supports some con-

ditions based on exceptions; however, these assertions suffer

from the same problems for checking general output behav-

ior.

The Fortress programming language [1] provides lan-

guage support for specifying test procedures. An individ-

ual test case is marked using a test modifier, and a built-in

library function provides functions to report and terminate

failure conditions. A specific subset of tests can be combined

into a test suite by using a library TestSuite object and insert-

ing specific test procedures into this test suite. The body of

a test may use an assert call, to verify that a specific test

has produced a valid condition. While this language sup-

port provides static guarantees to programmers, similar to

our testcase and test forms, the extension does not pro-

vide language-level support for representing the individual

comparisons of a test, so that similar problems in specifying

comparisons and considering exceptions arise.

The above systems provide means for developing test

suites but they do not provide support for connection to

additional testing analysis, such as coverage. The work of

Gaffney et al. [7] demonstrates the difficulties in combining

a traditional test execution tool with a coverage analysis tool,

namely JUnit and Clover. One problem encountered was that

the coverage tool did not distinguish between test execution

coverage and program execution coverage. This led to more

difficulty in interpreting the results. Such work illustrates the

potential benefits of automatically providing information to

an analysis tool via statically detectable differences between

test calls and the actual program.

8. Conclusion

TestJava is only a first step toward a true and proper inte-

gration of testing with programming. The language provides

constructs for expressing unit tests directly. Still, the exper-

iment has demonstrated that such direct linguistic support

for testing helps programmers with testing. Specifically, it

facilitates writing down test cases, helps formulate them in

a concise manner, and thus increase the chances that main-

tenance programmers can understand them and keep them

up-to-date.

A good part of the increased value is due to increased

compiler and run-time support that truly integrated testing

constructs can enjoy. With a language extension, the com-

piler can detect (without speculation) which portions of a

program are tests and can thus build in hooks for test anal-

yses and other tools without requiring annotations or other

external intervention. Our current implementation explores

connecting a per-expression coverage analysis with the test

language,

In the near future we intend to continue the exploration

of TestJava in several directions. Most importantly, we wish

to study how the programming environment—compiler, run-

time library, and IDE—can take advantage of the integration

but also what the benefits of this integration are.

One analysis that appears easy to add based on integrated

testing constructs concerns mechanisms for tracing the ex-

ecution of the methods of the tested classes. The check ex-

pressions already indicate where a particular call produces

the correct or incorrect results. The tracing analysis could

use this information to specifically target correct or incorrect

traces.

Furthermore, simple instrumentation could determine

those portions of a tested class that are exercised by a partic-

ular test. Storing this dependency information with which

test-suites would then help the IDE select and compile test

suites for regression testing when a particular class is modi-

fied.

Similarly, instrumentation from check and -> could in-

form the IDE about the memory accesses of each test, which

in turn could help the compiler roll back any effects for sub-

sequent tests. With reflection-based libraries, such as JUnit,

this kind of cross-phase information gathering and optimiza-

tion is impossible. The programmer would have to supply

significant amounts of information, which naturally isn’t as

reliable as automatically gathered information.

In summary our work has shown that extending the lan-

guage to support testing does reduce the difficulties in writ-

ing test cases, permits easier reading of tests, and provide

hooks for beneficial analyses based on test-suites. Profes-

sorJ, our version of Java with support for TestJava, is freely

available at www.drscheme.org as part of the DrScheme

development environment.

Acknowledgments

We thank Viera Proulx (Northeastern) and John Clements

(CalPoly) for providing feedback on their experiences using

TestJava in their courses. And we thank Robert Findler,

Matthew Flatt, and the Cambridge CPRG for their helpful

discussions.

References

[1] Eric Allen, David Chase, Joe Hallett, Victor Luchangco,

Jan-Willem Maessen, Sukyoung Ryu, Guy L. Steele Jr., and

Sam Tobin-Hochstadt. The fortress language specification.

Technical report, Sun Microsystems, Inc., 2007.

[2] Detlef Bartezko, Clemens Fischer, Michael Moller, and Heike

Wehrheim. Jass — Java with assertions. In Workshop

on Runtime Verification, 2001. Held in conjunction with

CAV’01.

[3] Kent Beck. Simple smalltalk testing with patterns. The

Smalltalk Report, 1994. http://www.xprogramming.com/

testfram.htm.

[4] Kent Beck. JUnit Pocket Guide. O’Reilly Media, 2004.

[5] Yoonsik Cheon and Gary T Leavens. A simple and practical

approach to unit testing: The JML and JUnit way. In Proc.

European Conference on Object-Oriented Programming,

2002.

[6] Robert Bruce Findler, John Clements, Cormac Flanagan,

Matthew Flatt, Shriram Krishnamurthi, Paul Steckler, and

Matthias Felleisen. DrScheme: A programming environment

for Scheme. Journal of Functional Programming, March

2002.

[7] Chris Gaffney, Christian Trefftz, and Paul Jorgensen. Tools

for coverage testing: necessary but not sufficient. Journal of

Computing Sciences in Colleges, 20(1), 2004.

[8] Erich Gamma and Kent Beck. Junit, testing resources for

extreme programming. www.junit.org.

[9] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The

Java Language Specification. Addison-Wesley, third edition,

2005.

[10] Kathryn E. Gray and Matthew Flatt. ProfessorJ: a gradual

introduction to Java through language levels. In Companion

of the 18th annual ACM SIGPLAN conference on Object-

oriented programming, systems, languages, and applications,

pages 170–177, October 2003.

[11] Kathryn E. Gray and Matthew Flatt. Compiling Java to PLT

Scheme. In Proc. Scheme Workshop, September 2004.

[12] D. Herington. hUnit. hunit.sourceforge.net.

[13] Gary King. LIFT — the lisp framework for testing. Technical

Report 01-25, University of Massachusetts Computer Science

Department, 2001.

[14] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A

Notational for Detailed Design, chapter 12. 1999.

[15] William Press, Brian Flannery, Saul Teukolsky, and William

Vetterling. Error, Accuracy and Stability, chapter 1.3.

Cambridge University Press, 1988.

[16] Noel Welsh, F. Solsona, and I. Glover. SchemeUnit and

SchemeQL: Two little languages. In Proc. Scheme Workshop,

2002.

