Molecular reorientations in the ordered phases of KCN and NaCN studied by NMR

Harold T. Stokes*
Department of Physics and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801
David C. Ailion and Thomas A. Case
Department of Physics, University of Utah, Salt Lake City, Utah 84112
(Received 7 March 1984; revised manuscript received 25 June 1984)

Abstract

We have measured ${ }^{13} \mathrm{C}$ and ${ }^{23} \mathrm{Na}$ NMR spin-lattice relaxation times as a function of temperature in KCN and NaCN in order to study the head-to-tail reorientations of the CN^{-}molecules in the two low-temperature ordered phases. We have combined our data with those of dielectric-response and ionic-thermal-conductivity measurements and have determined the correlation time τ_{c} of the reorientations over more than five decades. We found τ_{c} to be continuous through the electricordering phase transition with the same activation energy in both phases. In the elastically ordered phase of KCN , we detected small-angle CN^{-}reorientations about directions nearly parallel to the orthorhombic b axis, leading to a small disorder in the CN^{-}orientation along that axis. We found the rms average of the angle between the $\mathbf{C}-\mathrm{N}$ and b axes to be 3.9°. Our experiments resulted in the first direct observations of NMR relaxation arising from chemical-shift anisotropy in a solid.

I. INTRODUCTION

Potassium cyanide (KCN) and sodium cyanide (NaCN) both exhibit an elastically ordered phase (below 168 K in KCN and 288 K in NaCN) in which the CN^{-}molecules are aligned parallel to the b axis in an orthorhombic crystal structure ${ }^{1,2}$ (Fig. 1). In this phase, the CN^{-}molecules are disordered with respect to head-and-tail alignment and undergo random head-to-tail reorientations. ${ }^{3}$ At a lower temperature, both KCN and NaCN undergo a secondorder phase transition (at 83 K in KCN and 172 K in NaCN) in which the CN^{-}molecules are ordered with respect to head and tail in an antiparallel fashion. ${ }^{3-5}$ This is an electrically ordered phase.

The structure and dynamics of these two phases have been of considerable interest in recent years. The reorientational motions of the CN^{-}molecules have been studied by dielectric response, ${ }^{6,7}$ ionic thermal conductivity ${ }^{8,7}$ (ITC), EPR, ${ }^{9}$ and NMR. ${ }^{10} \mathrm{We}^{11,12}$ have studied these motions by NMR of ${ }^{13} \mathrm{C}$ in KCN and NaCN and by NMR of ${ }^{23} \mathrm{Na}$ in NaCN . Combining our results with dielectric-response ${ }^{6,7}$ and ITC measurements, ${ }^{8,7}$ the correlation time of the reorientations has been obtained over a wide range of temperature, extending into both phases. We find that the correlation time is continuous through the electric-ordering phase transition and follows an Arrhenius relationship with the same activation energy on both sides of the phase transition.

Furthermore, we have also detected a small-angle reorientational motion of CN^{-}molecules in the elastically ordered phase of KCN. We propose that this motion arises from interactions between the CN^{-}molecules, so that a given CN^{-}not only reorients head-to-tail itself, but also reacts to the head-to-tail reorientations of its CN^{-} neighbors by changing its own orientation by some small angle. This model leads us to conclude that in the elasti-
cally ordered phase, the CN^{-}molecules are slightly disordered with respect to alignment along the b axis.

II. THEORY

Nuclear spins, when placed in an external dc magnetic field $\overrightarrow{\mathbf{H}}_{0}$, develop a macroscopic magnetization along $\overrightarrow{\mathrm{H}}_{0}$. The time evolution of this nuclear magnetization towards its thermal-equilibrium value is often exponential with a time constant T_{1}, the spin-lattice relaxation time. Here, we develop some expressions for T_{1} due to mechanisms present in KCN and NaCN. Reorientational motions of the CN^{-}molecules cause fluctuations in various nuclearspin interactions. These fluctuations in turn cause spinlattice relaxation. The interactions considered here are (1) the nuclear spin-spin dipolar interaction, (2) the chemical shift, and (3) the nuclear-quadrupolar interaction. In the cases discussed here, we consider only polycrystalline samples, thus allowing us to simplify our expressions for T_{1} by averaging over Ω, the direction of $\overrightarrow{\mathrm{H}}_{0}$ with respect to the crystalline axes.

A. Dipolar interaction

Molecular reorientations cause the nuclear spin-spin dipolar interaction to fluctuate, thus giving rise to spinlattice relaxation. For interactions between unlike spins (I and S spins), we obtain the dipolar contribution $1 / T_{1, \text { dip }}$ to the I spin-lattice relaxation rate ${ }^{13}$ of the I spins,

$$
\begin{align*}
1 / T_{1, \mathrm{dip}}=2 \gamma_{I}^{2} \gamma_{S}^{2} \hbar^{2} S(S+1) & {\left[\frac{1}{12} J^{(0)}\left(\omega_{I}-\omega_{S}\right)+\frac{3}{2} J^{(1)}\left(\omega_{I}\right)\right.} \\
& \left.+\frac{3}{4} J^{(2)}\left(\omega_{I}+\omega_{S}\right)\right] \tag{1}
\end{align*}
$$

where ω_{I} and ω_{S} are the NMR frequencies, $\gamma_{I} H_{0}$ and $\gamma_{S} H_{0}$, of the I and S spins, respectively, and $J^{(p)}(\omega)$ are
spectral density functions of the motion. In a powder sample, we have ${ }^{14}$

$$
\begin{equation*}
J^{(0)}(\omega): J^{(1)}(\omega): J^{(2)}(\omega)=6: 1: 4 \tag{2}
\end{equation*}
$$

and, accordingly,

$$
\begin{align*}
1 / T_{1, \mathrm{dip}}=\frac{1}{3} \gamma_{I}^{2} \gamma_{S}^{2} \hbar^{2} S(S+1) & {\left[\frac{1}{2} J^{(0)}\left(\omega_{I}-\omega_{S}\right)+\frac{3}{2} J^{(0)}\left(\omega_{I}\right)\right.} \\
& \left.+3 J^{(0)}\left(\omega_{I}+\omega_{S}\right)\right] \tag{3}
\end{align*}
$$

The spectral density function is given by

$$
\begin{equation*}
J^{(0)}(\omega)=\int_{0}^{\infty} d \tau \cos (\omega \tau) \sum_{k} G_{j k}^{(0)}(\tau) \tag{4}
\end{equation*}
$$

where $G_{j k}^{(0)}(\tau)$ is a correlation function,

$$
\begin{equation*}
G_{j k}^{(0)}(\tau)=\left\langle\delta F_{j k}^{(0)}(t) \delta F_{j k}^{(0)}(t+\tau)\right\rangle_{t, \Omega} \tag{5}
\end{equation*}
$$

The symbol $\left\rangle_{t, \Omega}\right.$ denotes an average over time t and solid angle Ω. The summation in Eq. (4) is over all S spins (labeled k) which interact with some given I spin (labeled j). The term $\delta F_{j k}^{(0)}$ is the fluctuating part of the dipolar coupling function,

$$
\begin{equation*}
F_{j k}^{(0)}=-2 r_{j k}^{-3} P_{2}\left(\cos \theta_{j k}\right), \tag{6}
\end{equation*}
$$

where $\overrightarrow{\mathrm{r}}_{j k}$ is the vector from the I spin to the S spin, $\theta_{j k}$
is the angle between $\vec{r}_{j k}$ and $\overrightarrow{\mathrm{H}}_{0}$, and P_{2} is the Legendre polynomial $P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$.

By fluctuating part of $F_{j k}^{(0)}$, we mean

$$
\begin{equation*}
\delta F_{j k}^{(0)}(t) \equiv F_{j k}^{(0)}(t)-\left\langle F_{j k}^{(0)}(t)\right\rangle_{t} \tag{7}
\end{equation*}
$$

Consequently, we have

$$
\begin{equation*}
\left\langle\delta F_{j k}^{(0)}(t)\right\rangle_{t}=0 \tag{8}
\end{equation*}
$$

and, if the motion is uncorrelated for large τ,

$$
\begin{equation*}
\lim _{\tau \rightarrow \infty} G(\tau)=0 \tag{9}
\end{equation*}
$$

Thus, we write the correlation function as

$$
\begin{equation*}
G_{j k}^{(0)}(\tau)=\left\langle F_{j k}^{(0)}(t) F_{j k}^{(0)}(t+\tau)\right\rangle_{t, \Omega}-\left\langle\left[\left\langle F_{j k}^{(0)}(t)\right\rangle_{t}\right]^{2}\right\rangle_{\Omega} \tag{10}
\end{equation*}
$$

If the correlation function is assumed to be exponential, i.e.,

$$
\begin{equation*}
G_{j k}^{(0)}(\tau)=G_{j k}^{(0)}(0) \exp \left(-\tau / \tau_{c}\right) \tag{11}
\end{equation*}
$$

where τ_{c} is the correlation time of the motion, we then obtain from Eqs. (3) and (4),

$$
\begin{equation*}
1 / T_{1, \mathrm{dip}}=\frac{1}{3} \gamma_{I}^{2} \gamma_{S}^{2} \hbar^{2} S(S+1)\left[\sum_{k} G_{j k}^{(0)}(0)\right]\left[\frac{1}{2} \frac{\tau_{c}}{1+\left(\omega_{I}-\omega_{S}\right)^{2} \tau_{c}^{2}}+\frac{3}{2} \frac{\tau_{c}}{1+\omega_{I}^{2} \tau_{c}^{2}}+3 \frac{\tau_{c}}{1+\left(\omega_{I}+\omega_{S}\right)^{2} \tau_{c}^{2}}\right] \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{j k}^{(0)}(0)=\left\langle\left[F_{j k}^{(0)}(t)\right]^{2}\right\rangle_{t, \Omega}-\left\langle\left[\left\langle F_{j k}^{(0)}(t)\right\rangle_{t}\right]^{2}\right\rangle_{\Omega} \tag{13}
\end{equation*}
$$

1. C-Na dipolar interaction

The major source of fluctuations in the ${ }^{13} \mathrm{C}^{2}{ }^{23} \mathrm{Na}$ dipolar interaction is the head-to-tail reorientations of the CN^{-}molecules. Each ${ }^{13} \mathrm{C}$ nucleus can occupy one of two positions, and the time averages in Eq. (13) can be calculated using statistical averages over these two positions.

Assuming the occupation of each position to be equally probable, we obtain

$$
\begin{equation*}
\left\langle\left[F_{j k}^{(0)}(t)\right]^{2}\right\rangle_{t, \Omega}=\frac{2}{5}\left(r_{1, j k}^{-6}+r_{2, j k}^{-6}\right) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\left[\left\langle F_{j k}^{(0)}(t)\right\rangle_{t}\right]^{2}\right\rangle_{\Omega}=\frac{1}{5}\left[r_{1, j k}^{-6}+r_{2, j k}^{-6}+2 r_{1, j k}^{-3} r_{2, j k}^{-3} P_{2}\left(\hat{r}_{1, j k} \cdot \hat{r}_{2, j k}\right)\right], \tag{15}
\end{equation*}
$$

where $\overrightarrow{\mathrm{r}}_{1, j k}$ and $\overrightarrow{\mathrm{r}}_{2, j k}$ are the vectors from the ${ }^{13} \mathrm{C}$ nucleus to the ${ }^{23} \mathrm{Na}$ nucleus for the two positions of the ${ }^{13} \mathrm{C}$ nucleus, respectively. Setting these expressions into Eq. (13), we obtain

$$
\begin{equation*}
G_{j k}^{(0)}(0)=\frac{1}{5}\left[r_{1, j k}^{-6}+r_{2, j k}^{-6}-2 r_{1, j k}^{-3} r_{2, j k}^{-3} P_{2}\left(\hat{r}_{1, j k} \cdot \hat{r}_{2, j k}\right)\right] . \tag{16}
\end{equation*}
$$

Usually, expressions for $T_{1 \text {, dip }}$ are written in terms of ΔM_{2}, the motionally "averaged out" part of the dipolar second moment. We can write $\Delta M_{2, \mathrm{C}-\mathrm{Na}}$ in terms of $G_{j k}^{(0)}(0)$:

$$
\begin{equation*}
\Delta M_{2, \mathrm{C}-\mathrm{Na}}=\frac{1}{3} \gamma_{I}^{2} \gamma_{S}^{2} \hbar^{2} S(S+1) \sum_{k} G_{j k}^{(0)}(0) . \tag{17}
\end{equation*}
$$

Combining this with Eq. (12), we obtain the expression of Albert and Ripmeester, ${ }^{15}$

$$
\begin{align*}
& 1 / T_{1, \mathrm{C}-\mathrm{Na}}=\Delta M_{2, \mathrm{C}-\mathrm{Na}}\left[\frac{1}{2} \frac{\tau_{c}}{1+\left(\omega_{I}-\omega_{S}\right)^{2} \tau_{c}^{2}}+\frac{3}{2} \frac{\tau_{c}}{1+\omega_{I}^{2} \tau_{c}^{2}}\right. \\
&\left.+3 \frac{\tau_{c}}{1+\left(\omega_{I}+\omega_{S}\right)^{2} \tau_{c}^{2}}\right] \tag{18}
\end{align*}
$$

2. \mathbf{C} - \boldsymbol{N} dipolar interaction

In the case of ${ }^{13} \mathrm{C}-{ }^{14} \mathrm{~N}$ interactions, we can greatly simplify Eq. (10) since only the interaction with the ${ }^{14} \mathrm{~N}$ nu-
cleus in the same CN^{-}molecule as the ${ }^{13} \mathrm{C}$ nucleus needs to be considered. The dipolar interaction between ${ }^{13} \mathrm{C}$ and ${ }^{14} \mathrm{~N}$ of different CN^{-}molecules is negligible in comparison because of the much greater separation in distance.

Let \hat{r}_{1} and \hat{r}_{2} be the directions of $\overrightarrow{\mathbf{r}}_{j k}$ for two different orientations of the molecule. Using Eq. (6), we obtain

$$
\begin{equation*}
\left\langle F_{j k}^{(0)}\left(\hat{r}_{1}\right) F_{j k}^{(0)}\left(\hat{r}_{2}\right)\right\rangle_{\Omega}=\frac{2}{5} r_{0}^{-6}\left[3\left(\hat{r}_{1} \cdot \hat{r}_{2}\right)^{2}-1\right] \tag{19}
\end{equation*}
$$

where $r_{0}=r_{j k}$, the $\mathbf{C}-\mathrm{N}$ distance, which we assume to be constant under reorientation. From Eqs. (9) and (10), we see that

$$
\begin{equation*}
\left\langle\left[\left\langle F_{j k}^{(0)}(t)\right\rangle_{t}\right]^{2}\right\rangle_{\Omega}=\lim _{\tau \rightarrow \infty}\left\langle F_{j k}^{(0)}(t) F_{j k}^{(0)}(t+\tau)\right\rangle_{t, \Omega} \tag{20}
\end{equation*}
$$

Combining Eqs. (10), (19), and (20), we finally obtain

$$
\begin{align*}
G_{j k}^{(0)}(\tau)= & \frac{6}{5} r_{0}^{-6}\left\{\left\langle[\hat{r}(t) \cdot \hat{r}(t+\tau)]^{2}\right\rangle_{t}\right. \\
& \left.-\lim _{\tau^{\prime} \rightarrow \infty}\left\langle\left[\hat{r}(t) \cdot \hat{r}\left(t+\tau^{\prime}\right)\right]^{2}\right\rangle_{t}\right\} \\
= & \frac{6}{5} r_{0}^{-6} G_{R}(\tau) \tag{21}
\end{align*}
$$

where we have introduced here a "rotational" correlation function $G_{R}(\tau)$, given by
$\boldsymbol{G}_{R}(\tau)=\left\langle[\hat{r}(t) \cdot \hat{r}(t+\tau)]^{2}\right\rangle_{t}-\lim _{\tau^{\prime} \rightarrow \infty}\left\langle\left[\hat{r}(t) \cdot \hat{r}\left(t+\tau^{\prime}\right)\right]^{2}\right\rangle_{t}$.

Using an exponential correlation function as in Eq. (11), we obtain from Eq. (12),

$$
\begin{align*}
1 / T_{1, \mathrm{C}-\mathrm{N}}=\frac{2}{5} & \gamma_{I}^{2} \gamma_{S}^{2} \hbar^{2} S(S+1) r_{0}^{-6} G_{R}(0) \\
& \times\left[\frac{1}{2} \frac{\tau_{c}}{1+\left(\omega_{I}-\omega_{S}\right)^{2} \tau_{c}^{2}}+\frac{3}{2} \frac{\tau_{c}}{1+\omega_{I}^{2} \tau_{c}^{2}}\right. \\
& \left.+3 \frac{\tau_{c}}{1+\left(\omega_{I}+\omega_{S}\right)^{2} \tau_{c}^{2}}\right] \tag{23}
\end{align*}
$$

where

$$
\begin{equation*}
G_{R}(0)=1-\lim _{\tau \rightarrow \infty}\left\langle[\hat{r}(t) \cdot \hat{r}(t+\tau)]^{2}\right\rangle_{t} \tag{24}
\end{equation*}
$$

The information about the type of reorientations taking place is contained in $G_{R}(0)$, as we will demonstrate below.
a. Head-to-tail reorientations. First, let us evaluate $G_{R}(0)$ for simple head-to-tail reorientations of the CN^{-} molecules. Since $[\hat{r}(t) \cdot \hat{r}(t+\tau)]^{2}=1$ for all values of t and τ in this case, we see from Eq. (24) that $G_{R}(0)$ is zero. Simple head-to-tail reorientations cannot cause relaxation in this case. This is due to the fact that the intramolecular dipolar energy is invariant under 180° rotations. As a result, $T_{1, \mathrm{C}-\mathrm{N}}$ is very sensitive to other types of reorientations which might otherwise be masked by the large head-to-tail reorientations.
b. Intermediate orientations. von der Weid et al. ${ }^{9}$ suggested that CN^{-}molecules in KCN reorient head-to-tail via intermediate orientations along the orthorhombic〈111〉 directions. This model would give ten possible directions for the CN^{-}molecule: the orthorhombic [010] and [$0 \overline{1} 0]$ directions (the b axis) and the eight intermediate $\langle 111\rangle$ directions. The time average in Eq. (24) can be expressed as a statistical average using occupation probabilities Q_{i} (direction $\overrightarrow{\mathrm{r}}_{i}$ is occupied with probability Q_{i}):

$$
\begin{equation*}
G_{R}(0)=1-\sum_{i=1}^{10} \sum_{k=1}^{10}\left(\widehat{r}_{i} \cdot \widehat{r}_{k}\right)^{2} Q_{i} Q_{k} \tag{25}
\end{equation*}
$$

The occupation probability Q_{i} of the $\langle 111\rangle$ directions is less than that of the [010] and [0 $\overline{10} 0$ directions by the Boltzmann factor $\epsilon=\exp (-\Delta / k T)$, where Δ is the difference in energy for the two types of orientations. Imposing the normalization requirement

$$
\begin{equation*}
\sum_{i=1}^{10} Q_{i}=1 \tag{26}
\end{equation*}
$$

we easily obtain $Q_{i}=(2+8 \epsilon)^{-1}$ for the [010] and [0 $\overline{1} 0$] directions, and $Q_{i}=\epsilon(2+8 \epsilon)^{-1}$ for the (111) directions. Setting this into Eq. (25), we obtain

$$
\begin{equation*}
G_{R}(0)=1-(1+4 \epsilon)^{-2}\left[1+4 \epsilon^{2}+\frac{8 \epsilon b^{2}}{a^{2}+b^{2}+c^{2}}+4 \epsilon^{2} \frac{\left(-a^{2}+b^{2}+c^{2}\right)^{2}+\left(a^{2}-b^{2}+c^{2}\right)^{2}+\left(a^{2}+b^{2}-c^{2}\right)^{2}}{\left(a^{2}+b^{2}+c^{2}\right)^{2}}\right] \tag{27}
\end{equation*}
$$

where a, b, c are the orthorhombic lattice constants (Fig. 1).
c. Small-angle orientations. For reasons to be discussed in a later section, we also want to consider the possibility

FIG. 1. Orthorhombic crystal structure of KCN and NaCN .
of small-angle reorientations about the b axis. For this case, we consider a continuum of possible CN^{-}directions \hat{r} with an associated probability density function $Q(\widehat{r})$ such that the probability of finding a CN^{-}molecule oriented in a direction within the solid angle $d \hat{r}$ is given by $Q(\hat{r}) d \hat{r}$. Similar to Eq. (25), we write

$$
\begin{equation*}
G_{R}(0)=1-\int d \hat{r} \int d \hat{r}^{\prime}\left(\hat{r} \cdot \hat{r}^{\prime}\right)^{2} Q(\hat{r}) Q\left(\hat{r}^{\prime}\right) \tag{28}
\end{equation*}
$$

To evaluate this expression, let us choose the x, y, z axes to be along the orthorhombic c, a, b axes, respectively. Also, let us use polar coordinates, r, θ, ϕ with their usual meaning. In terms of ϕ and θ, we have

$$
\begin{align*}
\hat{r} \cdot \hat{r}^{\prime}= & \cos \phi \sin \theta \cos \phi^{\prime} \sin \theta^{\prime} \\
& +\sin \phi \sin \theta \sin \phi^{\prime} \sin \theta^{\prime}+\cos \theta \cos \theta^{\prime} \tag{29}
\end{align*}
$$

and

$$
\begin{equation*}
d \hat{r}=\sin \theta d \theta d \phi \tag{30}
\end{equation*}
$$

By symmetry, we have

$$
\begin{aligned}
& Q(-\theta, \phi)=Q(\theta, \phi) \\
& Q(\theta,-\phi)=Q(\theta, \phi)
\end{aligned}
$$

and

$$
\begin{equation*}
Q(\pi-\theta, \phi)=Q(\theta, \phi) \tag{31}
\end{equation*}
$$

Using these relations, we obtain from Eq. (28),

$$
\begin{align*}
& G_{R}(0)= 1-4\left[\int_{0}^{\pi / 2} d \theta \sin \theta \int_{0}^{2 \pi} d \phi Q(\theta, \phi) \cos ^{2} \phi \sin ^{2} \theta\right]^{2} \\
&--4\left[\int_{0}^{\pi / 2} d \phi \sin J_{0}^{2 \pi} d \phi Q(\theta, \phi) \sin ^{2} \phi \sin ^{2} \theta\right]^{2} \\
&-4\left[\int_{0}^{\pi / 2} d \theta \sin \theta \int_{0}^{2 \pi} d \phi Q(\theta, \phi) \cos ^{2} \theta\right]^{2} \tag{32}
\end{align*}
$$

Now, for small-angle reorientations about the b axis (z axis), $Q(\theta, \phi)$ is nonzero only near $\theta=0$ and π. Since the integrals in Eq. (32) include only values of $Q(\theta, \phi)$ between $\theta=0$ and $\pi / 2$, we can expand the expression about $\theta=0$. Keeping only the lowest-order term in θ, we have

$$
\begin{align*}
G_{R}(0) & =4 \int_{0}^{\pi / 2} d \theta \sin \theta \int_{0}^{2 \pi} d \phi Q(\theta, \phi) \theta^{2} \\
& =2\left\langle\theta^{2}\right\rangle \tag{33}
\end{align*}
$$

If we replace θ by α which is also defined to be the angle between the $\mathbf{C}-\mathrm{N}$ axis and the macroscopic b axis, then

$$
\begin{equation*}
G_{R}(0)=2 \alpha_{\mathrm{rms}}^{2}, \tag{34}
\end{equation*}
$$

where α_{rms} is the root-mean-square average of α over all the CN^{-}molecules in the crystal.

B. Chemical shift

Molecular reorientations cause nuclei with an anisotropic chemical shift (CS) to experience a fluctuating magnetic field. This in turn causes spin-lattice relaxation. ${ }^{16}$ From Soda and Chihara, ${ }^{14}$ we obtain

$$
\begin{align*}
1 / T_{1, \mathrm{CS}}=2 \omega_{I}^{2} \int_{0}^{\infty} & d \tau \cos \left(\omega_{I} \tau\right) \\
& \times\left\langle\delta \sigma_{x z}(t) \delta \sigma_{x z}(t+\tau)\right\rangle_{t, \Omega}, \tag{35}
\end{align*}
$$

where $\delta \sigma_{x z}(t)$ is the fluctuating part of any off-diagonal element of the chemical shift tensor σ. The choice of off-diagonal element is arbitrary in this case since we average over all orientations Ω of σ.

Consider a chemical shift with axial symmetry. Let \hat{r}_{1} and \widehat{r}_{2} be the axes of symmetry for two different orientations of the tensor σ. We show in the Appendix that

$$
\begin{equation*}
\left\langle\sigma_{x z}\left(\hat{r}_{1}\right) \sigma_{x z}\left(\hat{r}_{2}\right)\right\rangle_{\Omega}=\frac{1}{30}(\Delta \sigma)^{2}\left[3\left(\hat{r}_{1} \cdot \hat{r}_{2}\right)^{2}-1\right], \tag{36}
\end{equation*}
$$

where $\Delta \sigma$ is the anisotropy of σ. Noticing the similarity between this expression and Eq. (19), we can immediately obtain

$$
\begin{equation*}
1 / T_{1, \mathrm{Cs}}=\frac{1}{5} \omega_{I}^{2}(\Delta \sigma)^{2} G_{R}(0) \frac{\tau_{c}}{1+\omega_{1}^{2} \tau_{c}^{2}} \tag{37}
\end{equation*}
$$

where $G_{R}(\tau)$ here is the same correlation function as that given in Eq. (22), assuming that the axis of symmetry for σ lies along the $\mathrm{C}-\mathrm{N}$ axis. ${ }^{17}$

If we use the approximation $\omega_{S} \ll \omega_{I}$ in Eq. (23), we obtain

$$
\begin{equation*}
1 / T_{1, \mathrm{C}-\mathrm{N}} \cong 2 \gamma_{I}^{2} \gamma_{S}^{2} \hbar^{2} S(S+1) r_{0}^{-6} G_{R}(0) \frac{\tau_{c}}{1+\omega_{I}^{2} \tau_{c}^{2}} \tag{38}
\end{equation*}
$$

Note that $\omega_{S} \cong 0.35 \omega_{I}$, so this approximation is very rough. Combining Eq. (38) with Eq. (37), we obtain a very useful relation between $T_{1, \mathrm{Cs}}$ and $T_{1, \mathrm{C}-\mathrm{N}}$:

$$
\begin{equation*}
\frac{T_{1, \mathrm{C}-\mathrm{N}}}{T_{1, \mathrm{CS}}} \cong \frac{\omega_{I}^{2}(\Delta \sigma)^{2} r_{0}^{6}}{10 \gamma_{I}^{2} \gamma_{S}^{2} \hbar^{2} S(S+1)} \tag{39}
\end{equation*}
$$

Note that this ratio does not depend on $G_{R}(\tau)$, i.e., it does not depend on the nature of the reorientations.

C. Quadrupolar interaction

Nuclei with spin $I>\frac{1}{2}$ possess electric quadrupole moments and thus interact with electric field gradients. Motions of electric charges (such as CN^{-}reorientations) cause fluctuating electric field gradients and thus spinlattice relaxation. From O'Reilly, ${ }^{18}$ we obtain for the case $I=\frac{3}{2}\left(\right.$ as in $\left.{ }^{23} \mathrm{Na}\right)$,

$$
\begin{equation*}
\left.\left.1 / T_{1, Q}=\frac{1}{16} e^{2} Q^{2} \hbar^{2}\left[\langle | \delta V_{x z}(t)+\left.i \delta V_{y z}(t)\right|^{2}\right\rangle_{t, \Omega} \frac{\tau_{c}}{1+\omega_{I}^{2} \tau_{c}^{2}}+\langle | \delta V_{x x}(t)-\delta V_{y y}(t)+\left.2 i \delta V_{x y}(t)\right|^{2}\right\rangle_{t, \Omega} \frac{\tau_{c}}{1+4 \omega_{I}^{2} \tau_{c}^{2}}\right] \tag{40}
\end{equation*}
$$

where e is the electronic charge, Q is the nuclear quadrupole moment, and $\delta V_{x z}(t), \delta V_{y z}(t)$, etc. are the fluctuating parts of $V_{x z} \equiv \partial^{2} V / \partial x \partial z, V_{y z} \equiv \partial^{2} V / \partial y \partial z$, etc., respectively, and V is the electric potential at the I spin. Here, correlation functions are again assumed to be exponential.

III. SAMPLES

The ${ }^{13} \mathrm{C}$ NMR measurements were made on isotopically enriched (90 at. $\%{ }^{13} \mathrm{C}$) samples of KCN and NaCN (obtained from Prochem (Summit, NJ). The ${ }^{23} \mathrm{Na}$ NMR
measurements were made on a sample of NaCN (nonenriched) obtained from the University of Utah Crystal Growth Laboratory (Salt Lake City, Utah) as well as the enriched sample of NaCN mentioned above.

IV. EXPERIMENTAL RESULTS

A. KCN

We measured the T_{1} of ${ }^{13} \mathrm{C}$ in KCN as a function of temperature at three different fields (Fig. 2). At each field

FIG. 2. Spin-lattice relaxation time T_{1} of ${ }^{13} \mathrm{C}$ in KCN .
a minimum in T_{1} is observed. The field dependence of T_{1} exhibited here is very unusual. On the cold side of the minima ($1000 / T>9 \mathrm{~K}^{-1}$), T_{1} decreases with decreasing field, whereas on the hot side ($1000 / T<7 \mathrm{~K}^{-1}$), T_{1} increases with decreasing field, in contrast to the expected behavior for dipolar relaxation. Furthermore, the T_{1} minima at 10.5 and 56.65 MHz are both deeper than the minimum at 24 MHz .

This field dependence can be explained by considering T_{1} to be due to a combination of two different interactions, dipolar and chemical shift. The T_{1} due to the dipolar interactions usually decreases with decreasing field on the cold side of its minimum and is field independent on the hot side. On the other hand, the T_{1} due to chemical shift anisotropy usually increases with decreasing field on the hot side of its minimum and is field independent on the cold side. If both interactions are present in comparable strength, we might expect to see a field dependence like that exhibited by our data.

In KCN both such interactions are present: the ${ }^{14} \mathrm{~N}^{13} \mathrm{C}$ dipolar interaction and the ${ }^{13} \mathrm{C}$ chemical shift. Spinlattice relaxation, of course, is caused by fluctuations in these interactions. We propose that the mechanism in KCN which produces such fluctuations is molecular reorientations of the CN^{-}ion. The observed T_{1}, then, is given by

$$
\begin{equation*}
1 / T_{1}=1 / T_{1, \mathrm{C}-\mathrm{N}}+1 / T_{1, \mathrm{Cs}} \tag{41}
\end{equation*}
$$

where $T_{1, \mathrm{C}-\mathrm{N}}$ and $T_{1, \mathrm{Cs}}$ are given by Eqs. (23) and (37), respectively.

To test Eq. (41), we examine the ratio $T_{1, \mathrm{C}-\mathrm{N}} / T_{1, \mathrm{Cs}}$ given by Eq. (39). This ratio is independent of the nature of the reorientations, as long as the fluctuations in the dipolar and chemical-shift interactions are caused by the same reorientations, which, of course, they must be.

It is easy to show from Eqs. (41), (37), and (38) that T_{1} should have its most shallow minimum when $T_{1, \mathrm{C}-\mathrm{N}} \cong T_{1, \mathrm{CS}}$. If we set $T_{1, \mathrm{C}-\mathrm{N}}=T_{1, \mathrm{CS}}$ in Eq. (39) and use values of $\Delta \sigma$ and r_{0} published in the literature ($\Delta \sigma=290 \mathrm{ppm}$ in Ref. 17 and $r_{0}=1.13 \AA$ in Ref. 19), we predict that the most shallow minimum should occur
when $\omega_{I} / 2 \pi=23 \mathrm{MHz}$. [Note that this result is only approximately correct since it is based on Eq. (38) which is an approximation to Eq. (23).] At this frequency, the T_{1} minimum should have a value larger than the T_{1} minimum at frequencies above or below. This predicted result is in agreement with our $24-\mathrm{MHz}$ data which is intermediate between the two extremes where either $T_{1, \mathrm{C}-\mathrm{N}}$ or $T_{1, \mathrm{CS}}$ dominates T_{1}.

The above agreement strongly confirms our hypothesis that the observed relaxation is due to CN^{-}reorientations which cause fluctuations in the ${ }^{13} \mathrm{C}$ chemical shift and the ${ }^{14} \mathrm{~N}-{ }^{13} \mathrm{C}$ dipolar interactions. We emphasize that this conclusion does not depend on the type of reorientations, since $T_{1, \mathrm{CS}}$ and $T_{1, \mathrm{C}-\mathrm{N}}$ both depend in the same way on the correlation function $G_{R}(\tau)$ which is the only parameter dependent upon the details of the motion.

Now, in order to determine the nature of the reorientations present, we must investigate $G_{R}(\tau)$. From Eq. (37), we find the value of $T_{1, \mathrm{Cs}}$ at its minimum,

$$
\begin{equation*}
1 / T_{1, \mathrm{CS}, \min }=\frac{1}{10} \omega_{I}(\Delta \sigma)^{2} G_{R}(0) \tag{42}
\end{equation*}
$$

At $\omega_{I} / 2 \pi=24 \mathrm{MHz}$, we have already shown that $T_{1, \mathrm{CS}} \cong T_{1, \mathrm{C}-\mathrm{N}}$. From Fig. 2 we find that $T_{1, \min } \cong 40 \mathrm{~s}$ at 24 MHz , and thus, using Eq. (41), we obtain $T_{1, \mathrm{CS}, \min } \cong 80 \mathrm{~s}$. Solving Eq. (42) for $G_{R}(0)$, we finally calculate $G_{R}(0) \cong 0.01$. We determine $G_{R}(0)$ more accurately at the end of this section.

We can conclude that simple head-to-tail reorientations cannot cause our observed relaxation since such motions correspond to $G_{R}(0)=0$, as shown in Sec. II. Thus the relaxation exhibited by our data must be due to departures from this simple head-to-tail reorientation.

From the very small value of $G_{R}(0)$, we know that these departures must be small, i.e., the CN^{-}molecules spend most of their time oriented in directions near or along the orthorhombic b axis. The fact that $G_{R}(0)$ is nonzero, though, indicates that the CN^{-}molecules must spend at least part of the time oriented in directions not parallel to the b axis. This can be accomplished in two different ways: (1) The CN^{-1} molecules spend a very small fraction of their time oriented at large angles with the b axis, or (2) the CN^{-}molecules spend most of their time oriented at small angles with the b axis. The first possibility is the case of intermediate orientations, and the second is the case of small-angle reorientations. In Sec. II we calculated $G_{R}(0)$ for both of these cases. We now try to fit these calculations to the data for each case.

First, let us consider the case of intermediate orientations. von der Weid et al. ${ }^{9}$ made EPR measurements on HCN^{-}defects in KCN and found some of them in the orthorhombic 〈111〉 orientations as well as the [010] and [$0 \overline{1} 0$] directions, suggesting that a head-to-tail reorientation might proceed, for example, from [010] to [111] to [1 $\overline{1} 1$] and finally to [0 $\overline{1} 0]$. From the fractional occupation of these $\langle 111\rangle$ orientations detected by EPR, they determined that the minima of the $\langle 111\rangle$ potential wells were only 0.0074 eV greater than that of the [010] and [$0 \overline{1} 0$] potential wells. The similarity between HCN^{-}and CN^{-}molecules led them to suggest that the information obtained about the HCN^{-}reorientations from EPR might also be true for the CN^{-}reorientations.

We can rule out the model of von der Weid et al. ${ }^{9}$ for the CN^{-}reorientations in KCN . Using $\Delta=0.0074 \mathrm{eV}$ from Ref. 9 and $a=4.22 \AA, b=5.07 \AA$, and $c=6.13 \AA$ from Ref. 1, we evaluate our expression for $G_{R}(0)$, Eq. (27), at the temperature ($T=125 \mathrm{~K}$) of our T_{1} minimum for 24 MHz and obtain $G_{R}(0) \cong 0.6$, which is about 60 times larger than our experimental value. The model of von der Weid et al. would cause T_{1} to be less than 1 s at the minimum instead of the 40 s which we observed (Fig. 2).

In order for this model of intermediate orientations to fit our value of $G_{R}(0)$, a much larger value of Δ is required. For large Δ, we have $\epsilon \ll 1$, and Eq. (27) may then be written to first order in ϵ as

$$
\begin{equation*}
G_{R}(0)=8 \epsilon \frac{a^{2}+c^{2}}{a^{2}+b^{2}+c^{2}} \tag{43}
\end{equation*}
$$

In this case, the relaxation rate is decreased by a factor $\epsilon=\exp (-\Delta / k T)$, a feature which is typical of reorientational motion between unequal potential wells. ${ }^{20}$ Using $G_{R}(0)=0.01$, we find from Eq. (43) that $\Delta=0.07 \mathrm{eV}$.

One striking consequence of such a large Δ is an asymmetry of the slope of T_{1} on the two sides of the minimum. ${ }^{20}$ On a plot of $\ln T_{1}$ versus $1 / T$, the slope of the line on the cold side of the minimum would be $E_{A}+\Delta$ and on the hot side $-\left(E_{A}-\Delta\right)$. The difference in the absolute values of these slopes would be equal to $2 \Delta \cong 0.14$ eV . Such a great difference is clearly in disagreement with our data.

Thus although the value $\Delta=0.07 \mathrm{eV}$ may give the correct value for T_{1} at the minimum, it would produce too great an asymmetry in the slopes of T_{1}. We therefore conclude that our T_{1} data in KCN does not arise from reorientations between $\langle 111\rangle$ directions and [010] or [010] directions. If there are any intermediate orientations in $\langle 111\rangle$ directions, the resulting relaxation must be so weak so that it is masked by the relaxation which we do observe. We can thus place a lower limit on Δ in KCN. This limit is more than ten times the value measured by von der Weid et al. for HCN^{-}reorientation. Even though the CN^{-}and HCN^{-}are very similar, their reorientational motions here are strikingly different. Apparently, von der Weid et al. were not justified in suggesting that CN^{-}reorients similar to HCN^{-}in KCN .

Reorientations between other possible intermediate orientations which are at large angle with the b axis would give similar results: large Δ and asymmetric slopes in T_{1}, which disagrees with our data. We can simply rule out this type of mechanism as being responsible for the observed relaxation.

This leaves us with the other possibility: small-angle reorientations. In Sec. II we calculated $G_{R}(0)$ for this model. Using $G_{R}(0) \cong 0.01$ in Eq. (34), we obtain $\alpha_{\mathrm{rms}} \cong 4^{\circ}$. Later in this section we obtain more accurate values for $G_{R}(0)$ and α_{rms}. We discuss the possible origin of these small-angle reorientations in a following section.

The correlation time τ_{c} for the reorientations can be obtained from the positions of the T_{1} minima. We see from Eqs. (37) and (38) that the T_{1} minima occur when $\omega_{I} \tau_{c} \cong 1$, which allows us to determine the values of τ_{c} at the temperatures of the three T_{1} minima shown in Fig. 2.

We plot the resulting values of τ_{c} in Fig. 3.
Values of the correlations times τ_{c} obtained at lower temperatures from dielectric response ${ }^{6,7}$ and ITC measurements ${ }^{8,7}$ are also plotted in Fig. 3. As can be seen, a single straight line can be drawn through all the data. Thus we conclude that the correlation times obtained from dielectric response and ITC data describe the same motion as the correlation times obtained from our NMR data. Using the Arrhenius relation,

$$
\begin{equation*}
\tau_{c}=\tau_{0} \exp \left(E_{A} / k T\right) \tag{44}
\end{equation*}
$$

we obtain $E_{A}=0.154 \mathrm{eV}$ and $\tau_{0}=3.8 \times 10^{-15} \mathrm{~s}$ from a least-squares fit to the data. (These values are more accurate than our previously reported values ${ }^{12}$ due to improved dielectric response data. ${ }^{7}$) The activation energy $E_{A}=0.154 \mathrm{eV}$ which we obtain from data in Fig. 3 is consistent with the slopes of the T_{1} data in Fig. 2 if the background relaxation rate is first subtracted off. We note that τ_{c} is continuous through the electric-ordering phase transition and that the activation energy E_{A} appears to have the same value on both sides of the phase transition. Thus, the phase transition does not appear to have a measurable effect on the CN^{-}reorientational motion.

With an expression for τ_{c} we can now fit our data with

$$
\begin{equation*}
1 / T_{1}=1 / T_{1, \mathrm{C}-\mathrm{N}}+1 / T_{1, \mathrm{CS}}+1 / T_{1, \text { other }} \tag{45}
\end{equation*}
$$

where $T_{1, \mathrm{C}-\mathrm{N}}$ and $T_{1, \mathrm{Cs}}$ are given by Eqs. (23) and (37), respectively. [Here we used Eq. (23) instead of the approximate expression, Eq. (38).] The last term, $1 / T_{1, \text { other }}$, is the relaxation rate from other sources (such as paramagnetic impurities) which determine T_{1} at low temperatures. The form we choose for $T_{1, \text { other }}$ is rather arbitrary and does not affect the results of the fit significantly. We use

$$
\begin{equation*}
1 / T_{1, \text { other }}=A \exp \left(T_{0} / T\right) \tag{46}
\end{equation*}
$$

which is a straight line on a graph such as Fig. 2. We allow the coefficient A to take on different values for the three frequencies ω_{I}.

In the expressions for $T_{1, \mathrm{C}-\mathrm{N}}$ and $T_{1, \mathrm{Cs}}$ we allow only two adjustable parameters: $G_{R}(0)$ and $\Delta \sigma$. The resulting

FIG. 3. Correlation time τ_{c} of CN^{-}reorientations in KCN . Our NMR data (O). Dielectric response data ($\mathbf{\Delta}$) and ITC data (\triangle) from Ref. 7.
best fit is shown by the solid lines in Fig. 2 and yields $G_{R}(0)=0.0093$ and $\Delta \sigma=300 \mathrm{ppm}$. The value of $\Delta \sigma$ has not been directly measured in KCN, but in other compounds containing CN groups, similar values for $\Delta \sigma$ have been obtained: 280 ppm in HCN (Ref. 21) and 290 ppm in $\mathrm{K}_{2} \mathrm{Pt}(\mathrm{CN})_{4} \mathrm{Br}_{0.3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (Ref. 17). From the best fit value of $G_{R}(0)$, we obtain $\alpha_{\mathrm{rms}}=3.9^{\circ}$. (We reported earlier ${ }^{12}$ that $\alpha_{\mathrm{rms}}=2.6^{\circ}$ and subsequently found a numerical error in that calculation.)

In our analysis of the ${ }^{13} \mathrm{C}$ relaxation in KCN , we have neglected the ${ }^{13} \mathrm{C}-{ }^{13} \mathrm{C}$ dipolar interaction. To demonstrate the validity of this approximation, we measured T_{1} in a sample containing only $10 \mathrm{at} . \%{ }^{13} \mathrm{C}$ and found no significant difference in T_{1} from the data in Fig. 2. Since ${ }^{13} \mathrm{C}-{ }^{13} \mathrm{C}$ distances are very different in the two samples, our data shows that the ${ }^{13} \mathrm{C}-{ }^{13} \mathrm{C}$ dipolar interaction does not make any significant contribution to our relaxation data.

B. NaCN

We measured T_{1} for ${ }^{13} \mathrm{C}$ in NaCN as a function of temperature at two different fields (Fig. 4). The relaxation here is dominated by ${ }^{13} \mathrm{C}-{ }^{23} \mathrm{Na}$ dipolar interactions and is described by Eq. (18). Since the NMR frequencies of ${ }^{13} \mathrm{C}$ and ${ }^{23} \mathrm{Na}$ are very close to each other (about 1.2 MHz when $\omega_{I} / 2 \pi=24 \mathrm{MHz}$, for example), the first term in Eq. (18) should have a much larger value at its minimum than the other two terms. Thus T_{1} should have a rather prominent minimum when $\left|\omega_{I}-\omega_{S}\right| \tau_{c}=1$, which allows us to determine the values of τ_{c} at the two T_{1} minima shown in Fig. 4.

We plot in Fig. 5 these values of τ_{c} along with values obtained from dielectric response ${ }^{6,7}$ and ITC measurements. ${ }^{8,7}$ We see again that τ_{c} obeys the Arrhenius relation of Eq. (44) with $E_{A}=0.284 \mathrm{eV}$ and $\tau_{0}=9.4 \times 10^{-16} \mathrm{~s}$. As in KCN, τ_{c} is continuous through the electric ordering phase transition, and E_{A} has the same value in both phases.

Using these values, we can now fit the data to
$1 / T_{1}=1 / T_{1, \mathrm{C}-\mathrm{Na}}+1 / T_{1, \mathrm{C}-\mathrm{N}}+1 / T_{1, \mathrm{Cs}}+1 / T_{1, \text { other }}$.

FIG. 4. Spin-lattice relaxation time T_{1} of ${ }^{13} \mathrm{C}$ in NaCN .

FIG. 5. Correlation time τ_{c} of CN^{-}reorientations in NaCN . Our NMR data (O). NMR data (\bullet) from Ref. 10. Dielectric response data ($\mathbf{\Delta}$) and ITC data (\triangle) from Ref. 7.

Expressions for these terms are given by Eqs. (18), (23), (37), and (46), respectively. Equation (47) for T_{1} in NaCN is identical in form to Eq. (45) for T_{1} in KCN except for the addition of the $\mathrm{C}-\mathrm{Na}$ relaxation term. The ${ }^{13} \mathrm{C}$ - ${ }^{39} \mathrm{~K}$ dipolar interaction is very weak and can be neglected for ${ }^{13} \mathrm{C}$ relaxation in KCN . In contrast, the ${ }^{13} \mathrm{C}-{ }^{23} \mathrm{Na}$ dipolar interaction is very strong and in fact dominates ${ }^{13} \mathrm{C}$ relaxation in NaCN . Using the value of $\Delta \sigma$ determined for KCN , we allow only two adjustable parameters [$\Delta M_{2, \mathrm{C}-\mathrm{Na}}$ and $\boldsymbol{G}_{R}(0)$] in our expressions for $T_{1, \mathrm{C}-\mathrm{Na}}, T_{1, \mathrm{C}-\mathrm{N}}$, and $T_{1, \mathrm{Cs}}$.

The resulting best fit is shown by the solid lines in Fig. 4 and yields $\Delta M_{2, \mathrm{C}-\mathrm{Na}}=2.5 \times 10^{6} \mathrm{~s}^{-2}$ and $G_{R}(0)=0.006$. There is a much larger uncertainty in $G_{R}(0)$ here than for KCN since the effect of small-angle reorientations are now largely masked by the $1 / T_{1, \mathrm{C}-\mathrm{Na}}$ term. However, we do obtain a value which is approximately the same as in KCN , showing that the same small-angle reorientations which we observed in KCN are probably also present in NaCN with about the same amplitude.

We can calculate $\Delta M_{2, \mathrm{C}-\mathrm{Na}}$ from Eq. (17) assuming simple head-to-tail reorientations of the CN^{-}molecules along the b axis. We neglect the small-angle reorientations which make a relatively minor contribution to $\Delta M_{2, \mathrm{C}-\mathrm{Na} \cdot}$ Using this model, we obtain $\Delta M_{2, \mathrm{C}-\mathrm{Na}}$ $=5.0 \times 10^{6} \mathrm{~s}^{-2}$ which is twice as large as the value obtained from the data. This disagreement suggests either that this simple model used in calculating $\Delta M_{2, \mathrm{C}-\mathrm{Na}}$ from Eq. (17) does not completely describe our data or that we have made a computational error. At present, we cannot account for this disagreement.

We also measured the T_{1} of ${ }^{23} \mathrm{Na}$ in NaCN as a function of temperature (Fig. 6). The relaxation here is due to the quadrupolar interaction of ${ }^{23} \mathrm{Na}$ with fluctuating electric field gradients arising from CN^{-}reorientations. The strong nature of this interaction gives rise to a rather short T_{1} at the minimum. We see from Eq. (40) that the T_{1} minimum should be at $\omega_{I} \tau_{c} \cong 1$. Using this relation, we obtain $\tau_{c} \cong 7 \times 10^{-9} \mathrm{~s}$ at the minimum, and we plot

FIG. 6. Spin-lattice relaxation time T_{1} of ${ }^{23} \mathrm{Na}$ in NaCN .
this point in Fig. 5.
We fit the data to

$$
\begin{equation*}
1 / T_{1}=1 / T_{1, Q}+1 / T_{1, \text { other }} \tag{48}
\end{equation*}
$$

where we use, as an approximation for Eq. (40),

$$
\begin{equation*}
1 / T_{1, Q} \cong \frac{A_{Q} \tau_{c}}{1+\omega_{I}^{2} \tau_{c}^{2}} \tag{49}
\end{equation*}
$$

and treat $T_{1, \text { other }}$ as a constant. In the expression for $T_{1, Q}$, we have only one adjustable parameter, A_{Q}. The resulting best fit is drawn as a solid line in Fig. 6. We do not attempt to calculate A_{Q} here.

Buchheit et al. ${ }^{10}$ also measured T_{1} of ${ }^{23} \mathrm{Na}$ in NaCN and found the minimum to be at $1000 / T=4.4 \mathrm{~K}^{-1}$ for $\omega_{I} / 2 \pi=79.38 \mathrm{MHz}$. Using $\omega_{I} \tau_{c}=1$ at their minimum, we obtain $\tau_{c}=2.0 \times 10^{-9} \mathrm{~s}$. This point is also plotted in Fig. 5. They also measured $T_{1 \rho}$, the spin-lattice relaxation time in the rotating reference frame, and found a very shallow minimum at $1000 / T=7.5 \mathrm{~K}^{-1}$, using an rf field $H_{1}=2$ G. From the approximate relation $\gamma_{I} H_{1} \tau_{c} \cong 1$ at the minimum, we obtain $\tau_{c} \cong 7.1 \times 10^{-5} \mathrm{~s}$, in rough agreement with the data shown in Fig. 5. (Actually, this determination of τ_{c} is not rigorously correct in weak rf fields at a $T_{1 \rho}$ minimum. ${ }^{22}$ The effect of the local field should be included, in which case a smaller value of τ_{c} would be obtained, in better agreement with our data.)

v. DISCUSSION

We have shown from our data in KCN that the CN^{-} molecules reorient among directions which are very nearly parallel to the orthorhombic b axis. However, we can see from Fig. 3 that the observed reorientations cannot be simple librations of the CN^{-}molecules since the measured correlation times are much too long. The correlation times observed for these small reorientations are comparable in magnitude to those expected for the head-totail reorientations. Certainly, head-to-tail reorientations
are also taking place here although they do not affect the relaxation directly.

The observed values of τ_{c} lead us to propose the following model. These small-angle reorientations of any given CN^{-}molecule are caused by the head-to-tail reorientations of nearby CN^{-}molecules. In the elastically ordered phase, the CN^{-}molecules are disordered with respect to head-and-tail alignment. Since the CN^{-}molecule is slightly different with respect to head and tail, this disorder breaks the orthorhombic symmetry of the lattice on a microscopic scale and distorts the lattice randomly throughout the crystal. This distortion causes each CN^{-} molecule to be misoriented slightly from its otherwise equilibrium orientation along the b axis. This misorientation varies randomly from molecule to molecule such that, over macroscopic distances, the misorientation averages to zero and the lattice has overall orthorhombic symmetry as detected by x-ray and neutron diffraction.

Each time a CN^{-}molecule reorients head-to-tail, the local distortion of the lattice changes, thereby causing the CN^{-}molecules in the vicinity to change their orientations slightly so that they are now all misoriented in new directions. Thus, a given CN^{-}molecule reorients both in small-angle steps (due to head-to-tail reorientations of neighbors) as well as large-angle steps (180°, due to its own head-to-tail reorientations). The small-angle steps provide the mechanism for relaxation of ${ }^{13} \mathrm{C}$ in KCN . In contrast, the large-angle steps are not directly observable in the ${ }^{13} \mathrm{C}$ relaxation even though they are responsible for the smallangle steps of nearby CN^{-}molecules.

From this model, we see that the small-angle reorientations observed in our data are indirectly caused by head-to-tail reorientations. The frequency of the small-angle reorientations is much greater than that of the head-to-tail reorientations since a given CN^{-}undergoes a small-angle reorientation whenever any one of the neighboring CN^{-}'s reorients head-to-tail. Nevertheless, the correlation time of the small-angle reorientations is not equal to the mean time between such reorientations since each reorientation is very small and arises from the head-to-tail reorientations of any one of a number of neighboring CN^{-}'s. In fact, since the head-to-tail reorientations drive the smallangle reorientations, their correlation times must be equal. Thus the values of τ_{c} which we obtained from our data are identical to those for head-to-tail reorientations.

If these small-angle reorientations and resulting disorder are present in KCN, we would expect them to be present in NaCN as well. However, these effects are masked in NaCN largely by the strong ${ }^{13} \mathrm{C}-{ }^{23} \mathrm{Na}$ dipolar interactions which produce ${ }^{13} \mathrm{C}$ relaxation via head-to-tail CN^{-}reorientations directly and which are rather insensitive to the small-angle reorientations, if present. However, our ${ }^{13} \mathrm{C}$ relaxation data in NaCN does allow these small-angle reorientations to be present. In fact, we get a slightly better fit of our calculated relaxation to the data if we assume the presence in NaCN of small-angle reorientations of the same amplitude as in KCN.

ACKNOWLEDGMENTS

We wish to thank Professor F. Lüty and Professor C. P. Slichter for very useful discussions. This work was sup-
ported by the U.S. National Science Foundation under Grant No. DME-76-18966 and by the U.S. Department of Energy under Contract No. DE-AC02-67ER01198.

APPENDIX: CALCULATION OF $\left\langle\sigma_{x z}\left(\hat{r}_{1}\right) \sigma_{x z}\left(\hat{r}_{2}\right)\right\rangle_{\mathbf{n}}$

Consider a chemical-shift tensor σ with axial symmetry. Let \widehat{r}_{1} and \widehat{r}_{2} be the axes of symmetry for two different orientations of σ. Calculation of the powder average of $\sigma_{x z}\left(\hat{r}_{1}\right) \sigma_{x z}\left(\hat{r}_{2}\right)$ is accomplished by averaging over all possible orientations of the coordinate axes x, y, z. To do this, we use the transformation matrix $\underline{A}(\theta, \phi, \psi)$ which reorients the coordinate axes through Eulerian angles θ, ϕ, ψ. We have from Goldstein ${ }^{23}$

$$
\begin{aligned}
& A_{x x}=\cos \psi \cos \phi-\cos \theta \sin \phi \sin \psi \\
& A_{x y}=\cos \psi \sin \phi+\cos \theta \cos \phi \sin \psi
\end{aligned}
$$

$$
\begin{align*}
& A_{x z}=\sin \psi \sin \theta, \\
& A_{y x}=-\sin \psi \cos \phi-\cos \theta \sin \phi \cos \psi, \\
& A_{y y}=-\sin \psi \sin \phi+\cos \theta \cos \phi \cos \psi, \tag{A1}\\
& A_{y z}=\cos \psi \sin \theta, \\
& A_{z x}=\sin \theta \sin \phi \\
& A_{z y}=-\sin \theta \cos \phi \\
& A_{z z}=\cos \theta
\end{align*}
$$

Under a reorientation θ, ϕ, ψ of the coordinate axes, the components of σ become

$$
\begin{equation*}
\sigma_{i k} \rightarrow \sum_{m, n} A_{i m}(\theta, \phi, \psi) \sigma_{m n}\left[\underline{A}^{-1}(\theta, \phi, \psi)\right]_{n k} . \tag{A2}
\end{equation*}
$$

Thus, we write

$$
\begin{align*}
&\left\langle\sigma_{x z}\left(\hat{r}_{1}\right) \sigma_{x z}\left(\hat{r}_{2}\right)\right\rangle_{\Omega}=\frac{1}{8 \pi^{2}} \int_{0}^{2 \pi} d \psi \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \sin \theta \sum_{i, k} A_{x i}(\theta, \phi, \psi) \sigma_{i k}\left(\hat{r}_{1}\right)\left[\underline{A}^{-1}(\theta, \phi, \psi)\right]_{k z} \\
& \times \sum_{m, n} A_{x m}(\theta, \phi, \psi) \sigma_{m n}\left(\hat{r}_{2}\right)\left[\underline{A}^{-1}(\theta, \phi, \psi)\right]_{n z} \tag{A3}
\end{align*}
$$

Now, since we are averaging over all possible orientations of the coordinate axes, we are free to choose the original axes which define the components $\sigma_{i k}\left(\widehat{r}_{1}\right)$ and $\sigma_{i k}\left(\widehat{r}_{2}\right)$. Therefore, let us choose the z axis along \hat{r}_{1} and the x and y axes such that \widehat{r}_{2} lies in the $y-z$ plane. Then we have

$$
\underline{\sigma}\left(\widehat{r}_{1}\right)=\left(\begin{array}{ccc}
\sigma_{x x} & 0 & 0 \tag{A4}\\
0 & \sigma_{x x} & 0 \\
0 & 0 & \sigma_{z z}
\end{array}\right],
$$

and

$$
\begin{equation*}
\sigma_{i k}\left(\hat{r}_{2}\right)=\sum_{m, n} A_{i m}(\gamma, 0,0) \sigma_{m n}\left(\hat{r}_{1}\right)\left[\underline{A}^{-1}(\gamma, 0,0)\right]_{n k}, \tag{A5}
\end{equation*}
$$

where γ is the angle between \hat{r}_{1} and \hat{r}_{2}. In Eq. (A4), $\sigma_{x x}=\sigma_{y y}$ because of axial symmetry. Now, using $\left(\underline{A}^{-1}\right)_{i k}=\boldsymbol{A}_{k i}$ and Eqs. (A4) and (A5), we finally obtain

$$
\begin{align*}
\left\langle\sigma_{x z}\left(\hat{r}_{1}\right) \sigma_{x z}\left(\hat{r}_{2}\right)\right\rangle_{\Omega}= & \sum_{i, k, m, n} A_{m k}(\gamma, 0,0) A_{n k}(\gamma, 0,0) \sigma_{i i}\left(\hat{r}_{1}\right) \sigma_{k k}\left(\hat{r}_{1}\right) \\
& \quad \times \frac{1}{8 \pi^{2}} \int_{0}^{2 \pi} d \psi \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \sin \theta A_{x i}(\theta, \phi, \psi) A_{z i}(\theta, \phi, \psi) A_{x m}(\theta, \phi, \psi) A_{z n}(\theta, \phi, \psi) \tag{A6}
\end{align*}
$$

The evaluation of this expression is straightforward, though tedious, and we obtain

$$
\begin{equation*}
\left\langle\sigma_{x z}\left(\widehat{r}_{1}\right) \sigma_{x z}\left(\widehat{r}_{2}\right)\right\rangle_{\Omega}=\frac{1}{30}(\Delta \sigma)^{2}\left(3 \cos ^{2} \gamma-1\right), \tag{A7}
\end{equation*}
$$

where $\Delta \sigma=\sigma_{z z}-\sigma_{x x}$, the anisotropy of σ.
*Present address: Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602.
${ }^{1}$ J. M. Bijvoet and J. A. Lely, Recl. Trav. Chim. Pays-Bas 59, 908 (1940).
${ }^{2}$ A. Cimino, G. S. Parry, and A. R. Ubbelohde, Proc. Phys. Soc. London, Sect. A 252, 445 (1959); J. M. Bijvoet and H. J. Verweel, Recl. Trav. Chim. Pays-Bas 54, 631 (1935); H. J. Verweel and J. M. Bijvoet, Z. Kristallogr. 100, 201 (1939).
${ }^{3}$ H. Suga, T. Matsuo, and S. Seki, Bull. Chem. Soc. Jpn. 38,

1115 (1965); T. Matsuo, H. Suga, and S. Seki, ibid. 41, 583 (1968).
${ }^{4}$ J. M. Rowe, J. J. Rush, and E. Prince, J. Chem. Phys. 66, 5147 (1977).
${ }^{5}$ M. D. Fontaine, C. R. Acad. Sci. Ser. B 281, 443 (1975).
${ }^{6}$ M. Julian, Ph.D. thesis, University of Utah, 1976; M. Julian and F. Lüty, Ferroelectrics 16, 201 (1977).
${ }^{7}$ F. Lüty and J. Ortiz-Lopez, Phys. Rev. Lett. 50, 1289 (1983).
${ }^{8}$ J. Ortiz, M. Siu Li, and F. Lüty (unpublished).
${ }^{9}$ J. P. von der Weid, L. C. Scavarda do Carmo, R. R. do Santos, B. Koiller, S. Costa Ribeiro, and A. S. Chaves, J. Phys. (Paris) Colloq. 12, C7-241 (1976); J. P. von der Weid, L. C. Scavarda do Carmo, and S. Costa Ribeiro, J. Phys. C 12, 4927 (1979).
${ }^{10}$ W. Buchheit, S. Elschner, H. D. Maier, J. Petersson, and E. Schneider, Solid State Commun. 38, 665 (1981); S. Elschner and J. Petersson, Z. Phys. B 52, 37 (1983).
${ }^{11}$ D. C. Ailion, H. T. Stokes, and T. A. Case, in Proceedings of the XXth Congress AMPERE, edited by E. Kundla, E. Lippmaa, and T. Saluvere (Springer, New York, 1979), p. 399; H. T. Stokes, T. A. Case, and D. C. Ailion, Bull. Magn. Reson. 2, 231 (1980).
${ }^{12}$ H. T. Stokes, T. A. Case, and D. C. Ailion, Phys. Rev. Lett. 47, 268 (1981).
${ }^{13}$ A. Abragam, The Principles of Nuclear Magnetism (Oxford, London, 1961), p. 295.
${ }^{14}$ G. Soda and H. Chihara, J. Phys. Soc. Jpn. 36, 954 (1974).
${ }^{15}$ S. Albert and J. A. Ripmeester, J. Chem. Phys. 70, 1352 (1979).
${ }^{16}$ R. Blinc, E. Pirkmajer, J. Slivnik, and I. Zupancic, J. Chem. Phys. 45, 1488 (1966); H. W. Spiess, D. Schweitzer, U. Haeberlen, and K. H. Hausser, J. Magn. Reson. 5, 101 (1971).
${ }^{17}$ M. E. Stoll, R. W. Vaughn, R. B. Saillant, and T. Cole, J. Chem. Phys. 61, 2896 (1974).
${ }^{18}$ D. E. O'Reilly, J. Chem. Phys. 58, 3023 (1973).
${ }^{19}$ W. Dultz, H. H. Otto, H. Krause, and J, L. Buevoz, Phys. Rev. B 24, 1287 (1981).
${ }^{20}$ M. Polak and D. C. Ailion, J. Chem. Phys. 67, 3029 (1977); D. C. Look and I. J. Lowe, ibid. 44, 3437 (1966); J. E. Anderson, J. Magn. Reson. 11, 398 (1973).
${ }^{21}$ F. Millett and B. P. Dailey, J. Chem. Phys. 54, 5434 (1971).
${ }^{22}$ C. P. Slichter and D. Ailion, Phys. Rev. 135, A1099 (1964).
${ }^{23} \mathrm{H}$. Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley, Reading, 1980), p. 147.

