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We have measured 13C and 23Na NMR spin-lattice relaxation times as a function of temperature 
in KCN and NaCN in order to study the head-to-tail reorientations of the CN~ molecules in the 
two low-temperature ordered phases. We have combined our data with those of dielectric-response 
and ionic-thermal-conductivity measurements and have determined the correlation time rc of the 
reorientations over more than five decades. We found r c to be continuous through the electric- 
ordering phase transition with the same activation energy in both phases. In the elastically ordered 
phase of KCN, we detected small-angle C N _ reorientations about directions nearly parallel to the 
orthorhombic b axis, leading to a small disorder in the CN _ orientation along that axis. We found 
the rms average of the angle between the C—N and b axes to be 3.9°. Our experiments resulted in 
the first direct observations of NMR relaxation arising from chemical-shift anisotropy in a solid.

I. INTRODUCTION

Potassium cyanide (KCN) and sodium cyanide (NaCN) 
both exhibit an elastically ordered phase (below 168 K in 
KCN and 288 K in NaCN) in which the CN~ molecules 
are aligned parallel to the b axis in an orthorhombic crys
tal structure1,2 (Fig. 1). In this phase, the CN“ molecules 
are disordered with respect to head-and-tail alignment and 
undergo random head-to-tail reorientations.3 At a lower 
temperature, both KCN and NaCN undergo a second- 
order phase transition (at 83 K in KCN and 172 K in 
NaCN) in which the CN_ molecules are ordered with 
respect to head and tail in an antiparallel fashion.3-5 
This is an electrically ordered phase.

The structure and dynamics of these two phases have 
been of considerable interest in recent years. The reorien- 
tational motions of the CN“ molecules have been studied 
by dielectric response,6,7 ionic thermal conductivity8,7 
(ITC), EPR,9 and NMR.10 We11,12 have studied these 
motions by NMR of 13C in KCN and NaCN and by 
NMR of 23Na in NaCN. Combining our results with 
dielectric-response6,7 and ITC measurements,8,7 the corre
lation time of the reorientations has been obtained over a 
wide range of temperature, extending into both phases. 
We find that the correlation time is continuous through 
the electric-ordering phase transition and follows an Ar
rhenius relationship with the same activation energy on 
both sides of the phase transition.

Furthermore, we have also detected a small-angle 
reorientational motion of CN“ molecules in the elastically 
ordered phase of KCN. We propose that this motion 
arises from interactions between the CN“ molecules, so 
that a given CN_ not only reorients head-to-tail itself, but 
also reacts to the head-to-tail reorientations of its CN“ 
neighbors by changing its own orientation by some small 
angle. This model leads us to conclude that in the elasti

cally ordered phase, the CN molecules are slightly disor
dered with respect to alignment along the b axis.

II. THEORY

Nuclear spins, when placed in an external dc magnetic 
field H0, develop a macroscopic magnetization along H0. 
The time evolution of this nuclear magnetization towards 
its thermal-equilibrium value is often exponential with a 
time constant T\,  the spin-lattice relaxation time. Here, 
we develop some expressions for T { due to mechanisms 
present in KCN and NaCN. Reorientational motions of 
the CN“ molecules cause fluctuations in various nuclear- 
spin interactions. These fluctuations in turn cause spin- 
lattice relaxation. The interactions considered here are 
(1) the nuclear spin-spin dipolar interaction, (2) the chemi
cal shift, and (3) the nuclear-quadrupolar interaction. In 
the cases discussed here, we consider only polycrystalline 
samples, thus allowing us to simplify our expressions for 
Ti by averaging over fl, the direction of H0 with respect 
to the crystalline axes.

A. Dipolar interaction

Molecular reorientations cause the nuclear spin-spin di
polar interaction to fluctuate, thus giving rise to spin- 
lattice relaxation. For interactions between unlike spins 
(I  and S' spins), we obtain the dipolar contribution 
1/3^1,dip to the I  spin-lattice relaxation rate13 of the I  
spins,

1 / T itdip= 2 y f r% # S  (S +1)[ W / ■-cos ) + 1  J n J(©/)

+  1 , (1)

where coj and o)S are the NMR frequencies, YiH 0 and 
y sH 0, of the I  and S  spins, respectively, and J {p\co) are
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spectral density functions of the motion. In a powder 
sample, we have14

J i0\co):J{l\co):J{2\co )^6:1:4 , (2)

and, accordingly,

1 / I ’i,diP =  t YiYs&S (S + 1 ) [ \ J w (coj-<os ) +  )

+ 3 7 (0)(ft)/ +G)s)] .

The spectral density function is given by

J {0\co)=z j  drco^{(or)^Gjk\r)  ,
■ k

where Gj^\r) is a correlation function,

G ^ ( r ) = ( 8 F ^ ( m F ^ ( t + r ) ) ttCl. (5)

The symbol { ) tfil denotes an average over time rand  
solid angle H. The summation in Eq. (4) is over all 5  
spins (labeled k) which interact with some given I  spin 
(labeled j).  The term is the fluctuating part of the 
dipolar coupling function,

(3)

(4)

Fjk) = —2rfc3P2(cos6Jk) , (6)

is the angle between TJk and H0, and P2 is the Legendre 
polynomial P2(* )= t(3 .x 2— 1)- 

By fluctuating part of Fjk\  we mean

8 F p t ) = F p t )  -  <Fjg>(t))t .

Consequently, we have

(8F ^( t ) ) t =  0 ,

and, if the motion is uncorrelated for large r,

lim G (r )= 0 .
T—► 00

Thus, we write the correlation function as

G $ \ t )  =  + t ) ) t,a - < [ (F$Ht) >, ]2>fl

(7)

(8) 

(9)

(10)

If the correlation function is assumed to be exponential, 
i.e.,

gJ^(t ) =  Gj£'(0)exp( — t / t c ) ,.(0),
(11)

where 7)k is the vector from the I  spin to the S spin, Qjk
where rc is the correlation time of the motion, we then ob
tain from Eqs. (3) and (4),

1 / T  i;dip =  T r f r s r f S  (S +  l)
k

1 3 Tc
■ +  7 . , , +3 -2 1 +  (co j— a>s )2T% 2 1+g)2t 2 1+(<*>/+ < » s ) 2t 2

where

G $ \0 )  =  ( [ F f m 2)t,a- > , ] 2>n .

(12)

(13)

1. C-Na dipolar interaction

The major source of fluctuations in the 13C-23Na dipolar interaction is the head-to-tail reorientations of the CN“ mol
ecules. Each 13C nucleus can occupy one of two positions, and the time averages in Eq. (13) can be calculated using sta
tistical averages over these two positions.

Assuming the occupation of each position to be equally probable, we obtain

([F$\ t ) ]2) ,,n=T(rufk +r2jk) (14)

and

<l ( f ' jk(t ) ) t]2)a = j [ r hfk + r 2j k +2r lj kr2jkP2(^,jk'r2j k '>] > (15)

where T {j k and r2j k  are the vectors from the 13C nucleus to the 23Na nucleus for the two positions of the 13C nucleus, 
respectively. Setting these expressions into Eq. (13), we obtain

Gj^Ho)— 5 [ r i J k + r 2j k —2 r \ ] k r  •

Usually, expressions for T\tdip are written in terms of 
AM 2, the motionally “averaged out” part of the dipolar 
second moment. We can write AM2 c - N a  *n terms of
G$X 0): ’

AM2>c_ Na =  \ r } y 2s # S ( S  +1 )2Gj*0,(0) . (17)
k

Combining this with Eq. (12), we obtain the expression of 
Albert and Ripmeester,15

(16)

1 / I Y r -1 ,C —N a : = AAfrc-Na
1
2 1-f-(coj—cos)2̂   ̂ 1+cqjtI

+  3- (18)
1 -f- (CQj +  )2T2

2. C-N dipolar interaction

In the case of 13C-14N interactions, we can greatly sim
plify Eq. (10) since only the interaction with the 14N nu-
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cleus in the same CN~ molecule as the 13C nucleus needs 
to be considered. The dipolar interaction between 13C and 
14N of different CN“ molecules is negligible in compar
ison because of the much greater separation in distance.

Let r x and r2 be the directions of rjk for two different 
orientations of the molecule. Using Eq. (6), we obtain

< ^ ° )( n ) ^ 0 ) ( ^ 2 ) > i i = T ' - o “ 6 [ 3 ( r 1 ^ 2 ) 2 - l ]  , ( 1 9 )

where r0 =  rjk, the C—N distance, which we assume to be 
constant under reorientation. From Eqs. (9) and (10), we 
see that

<[<*$’(#)>,]2>n= l™ <F^\t )F^(t  + r ) ) t>n .T—> oo
Combining Eqs. (10), (19), and (20), we finally obtain 

G $ \ r ) = \ r o (>{([Ht) -nt+  r ) ]2>,

(20)

\ r o 6GR(r) , (21)

where we have introduced here a “rotational” correlation 
function Gr (t ), given by

GR(r) =  ( [ r ( t ) -r ( t  + r ) ] 2) t — lim <[r(t)-r (t + r ')]2), .
r'—* 00

(22)

Using an exponential correlation function as in Eq. (11), 
we obtain from Eq. (12),

1 /T ’i.c - n  =  f  r h W S  (S +1  ) r f 0GR (0)- 6/

X
1
2 1 + ( o)j — COS )2t I

r c+ 3-------------------------
1 +  {cdi + cds )2t 1c

2 1 + g)2Tc

(23)

where

G*(0)=1 — lim ([r (t)-r (t + r ) ] 2) t (24)

The information about the type of reorientations taking 
place is contained in G/{(0), as we will demonstrate below.

a. Head-to-tail reorientations. First, let us evaluate 
G^(0) for simple head-to-tail reorientations of the CN~ 
molecules. Since [r (t)mr (t + r )]2=  1 for all values of t 
and r in this case, we see from Eq. (24) that GR(0) is zero. 
Simple head-to-tail reorientations cannot cause relaxation 
in this case. This is due to the fact that the intramolecu
lar dipolar energy is invariant under 180° rotations. As a 
result, I ,i,c -n  is verY sensitive to other types of reorienta
tions which might otherwise be masked by the large 
head-to-tail reorientations.

b. Intermediate orientations. von der Weid et al.9 sug
gested that CN-  molecules in KCN reorient head-to-tail 
via intermediate orientations along the orthorhombic 
O i l )  directions. This model would give ten possible 
directions for the CN“ molecule: the orthorhombic [010] 
and [010] directions (the b axis) and the eight intermedi
ate (111) directions. The time average in Eq. (24) can be 
expressed as a statistical average using occupation proba
bilities Qi (direction ?/ is occupied with probability Qt ):

10 10

Gr (0 = 1 - 2  2 ( ^ ) 2& e *
i=\k=\

(25)

The occupation probability Q{ of_the (111) directions 
is less than that of the [010] and [010] directions by the 
Boltzmann factor e=exp( — A/kT),  where A is the differ
ence in energy for the two types of orientations. Imposing 
the normalization requirement

10

I 2 ,  =  l , (26)

we easily obtain Q, =  (2+ 8e)-1 for the [010] and [010] 
directions, and Q,-=e(2 +  8e)-1 for the (111) directions. 
Setting this into Eq. (25), we obtain

G * (0 )= l- ( l+ 4 e ) - l+ 4 e  + - 8 eb7
a 2+ b  + c

■ +4e (— a * + b 2+ c 2)2+ ( a 2—b 2+ c 2)2+ ( a 2+ b 2—c 2)2 
(a2+ b 2+ c 2)2

(27)

where a,b,c are the orthorhombic lattice constants (Fig.
D.

c. Small-angle orientations. For reasons to be discussed 
in a later section, we also want to consider the possibility

of small-angle reorientations about the b axis. For this 
case, we consider a continuum of possible CN“ directions 
f  with an associated probability density function Q(r) 
such that the probability of finding a CN-  molecule 
oriented in a direction within the solid angle dr is given 
by Q(r)dr.  Similar to Eq. (25), we write

G * ( 0 ) = 1 - /  dr f  dr' (r-r' )2Q(r)Q(r' ) . (28)

To evaluate this expression, let us choose the x,yyz axes to 
be along the orthorhombic c,a,b axes, respectively. Also, 
let us use polar coordinates, r,0,<f> with their usual mean
ing. In terms of <f> and 0, we have

' =  cosij) sin#cos^' sin#'

FIG. 1. Orthorhombic crystal structure of KCN and NaCN. -h sin<£ sin# sin 0' sin#' +  cos# cos#' (29)
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and

d'r=smdddd</> . (30)

By symmetry, we have

Q l - 0 , t ) = Q ( 0 r f )  ,

Q(e,-<f>)=Q(d9<f>),

and

Q(7r-d,(f>)=Q(e,<i>). (3i)

Using these relations, we obtain from Eq. (28),

U
i r /2  r 2w )2
 ̂ d 0 s i n d j Q d<f>Q(d,(f>)cos <f>sin 0

U rr/2  r  2ir - 0 2
 ̂ r f0sin jo <i0Q(0,<£)sin20sin20

- 4  ( /J ^ O s in f l  f ^ d f p  Q{0,<j))cos20 J2 . (32)

Now, for small-angle reorientations about the b axis (z 
axis), £>(0,0) is nonzero only near 0 = 0  and tt. Since the 
integrals in Eq. (32) include only values of Q(0,<f>) be
tween 0 = 0  and 7t/2, we can expand the expression about 
0= 0 . Keeping only the lowest-order term in 0, we have

r tt/2 r 2ir _
Gr ( 0 ) = 4 J o d 0 s in 0 fo d<f> Q(6,<f>)d2

=2<02) . (33)

If we replace 0 by a  which is also defined to be the angle 
between the C—N axis and the macroscopic b axis, then

G *(0 )=2a2 (34)

where a ^  is the root-mean-square average of a  over all 
the CN-  molecules in the crystal.

B. Chemical shift

Molecular reorientations cause nuclei with an anisotro
pic chemical shift (CS) to experience a fluctuating mag
netic field. This in turn causes spin-lattice relaxation.16 
From Soda and Chihara,14 we obtain

l / T ltCs = 2(oj J  drcoslcoxr)

X<Saxz(r)8axz(r + r )> r>ft ,

where 8a^U)  is the fluctuating part of any off-diagonal 
element of the chemical shift tensor cr. The choice of 
off-diagonal element is arbitrary in this case since we 
average over all orientations H of a.

Consider a chemical shift with axial symmetry. Let r x 
and r2 be the axes of symmetry for two different orienta
tions of the tensor a. We show in the Appendix that

<axz(̂ i)CTxz(r2) )n=35-(Aa)2[3(r1-r2)2- l ]  , (36)

where A a  is the anisotropy of a. Noticing the similarity 
between this expression and Eq. (19), we can immediately 
obtain

l / T ucs =  i(oj(A(T)2GR(0)
l+co t t

(37)

where Gr (t ) here is the same correlation function as that 
given in Eq. (22), assuming that the axis of symmetry for 
a  lies along the C—N axis.17

If we use the approximation cos « cqj in Eq. (23), we 
obtain

l / r 1>c_ Na2y?y|#f2S(S  +  l)r5-°GJl(0)-
l+(0/T^

(38)

Note that cos =  0.35a)j, so this approximation is very 
rough. Combining Eq. (38) with Eq. (37), we obtain a 
very useful relation between T ljCS and TifC- N :

^ l,C -N _____ 6>/(Acr)2rQ
T hCs =  lO rfrS^StS  +  l) ’

Note that this ratio does not depend on Gr (t ), i.e., it does 
not depend on the nature of the reorientations.

C. Quadrupolar interaction

Nuclei with spin I  > \  possess electric quadrupole mo
ments and thus interact with electric field gradients. 
Motions of electric charges (such as CN" reorientations) 
cause fluctuating electric field gradients and thus spin- 
lattice relaxation. From O’Reilly,18 we obtain for the case

‘ 23*(35) I  =  t  (as in Na),

l / T UQ= ± e 2Q2# < |« K „ U )+ i8 r„ ( f ) |2>,,n l+<y2r^

where e is the electronic charge, Q is the nuclear quadru
pole moment, and SV^t) ,  8V^t),  etc. are the fluctuating 
parts of Vxz= d 2V/dxdz, Vyz =  d2V/dydz,  etc., respective
ly, and V  is the electric potential at the I  spin. Here, 
correlation functions are again assumed to be exponential.

III. SAMPLES

The 13C NMR measurements were made on isotopically 
enriched (90 at. % 13C) samples of KCN and NaCN (ob
tained from Prochem (Summit, NJ). The 23Na NMR

+  < | bV„{t)-bV„{t)'+2ibV„(t) | 2)t>a
1+4<o2i*

(40)

measurements were made on a sample of NaCN (nonen
riched) obtained from the University of Utah Crystal 
Growth Laboratory (Salt Lake City, Utah) as well as the 
enriched sample of NaCN mentioned above.

IV. EXPERIM ENTAL RESULTS

A. KCN

We measured the 7Y of 13C in KCN as a function of 
temperature at three different fields (Fig. 2). At each field
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FIG. 2. Spin-lattice relaxation time T x of 13C in KCN.

a minimum in T x is observed. The field dependence of 
T i exhibited here is very unusual. On the cold side of the 
minima (1000/7" > 9  K "1), T x decreases with decreasing 
field, whereas on the hot side (1000/71 < 7  K -1 ), T x in
creases with decreasing field, in contrast to the expected 
behavior for dipolar relaxation. Furthermore, the T x 
minima at 10.5 and 56.65 MHz are both deeper than the 
minimum at 24 MHz.

This field dependence can be explained by considering 
T\ to be due to a combination of two different interac
tions, dipolar and chemical shift. The T j due to the dipo
lar interactions usually decreases with decreasing field on 
the cold side of its minimum and is field independent on 
the hot side. On the other hand, the T \ due to chemical 
shift anisotropy usually increases with decreasing field on 
the hot side of its minimum and is field independent on 
the cold side. If both interactions are present in compar
able strength, we might expect to see a field dependence 
like that exhibited by our data.

In KCN both such interactions are present: the 14N -13C 
dipolar interaction and the 13C chemical shift. Spin- 
lattice relaxation, of course, is caused by fluctuations in 
these interactions. We propose that the mechanism in 
KCN which produces such fluctuations is molecular 
reorientations of the CN-  ion. The observed T u then, is 
given by

i / T i  =  i / T l>c_ N+ W T hCS. (4i)

where T x, C _ N  and T x c s  are given by Eqs. (23) and (37), 
respectively.

To test Eq. (41), we examine the ratio r 1>c_ N/ r 1>cs 
given by Eq. (39). This ratio is independent of the nature 
of the reorientations, as long as the fluctuations in the di
polar and chemical-shift interactions are caused by the 
same reorientations, which, of course, they must be.

It is easy to show from Eqs. (41), (37), and (38) that T x 
should have its most shallow minimum when 
T i,c—n — T ĉs* If we set T i,c—n =  i,cs (39) and
use values of A a  and r0 published in the literature 
(Aa=290 ppm in Ref. 17 and r0=  1.13 A in Ref. 19), we 
predict that the most shallow minimum should occur

when coI /2w=23  MHz. [Note that this result is only ap
proximately correct since it is based on Eq. (38) which is 
an approximation to Eq. (23).] At this frequency, the T x 
minimum should have a value larger than the T x 
minimum at frequencies above or below. This predicted 
result is in agreement with our 24-MHz data which is in
termediate between the two extremes where either r l c _ N 
or T 1>cs dominates Tx.

The above agreement strongly confirms our hypothesis 
that the observed relaxation is due to CN~ reorientations 
which cause fluctuations in the 13C chemical shift and 
the 14N -13C dipolar interactions. We emphasize that this 
conclusion does not depend on the type of reorientations, 
since T 1CS and 7"1C_ N both depend in the same way on 
the correlation function Gr (t ) which is the only parame
ter dependent upon the details of the motion.

Now, in order to determine the nature of the reorienta
tions present, we must investigate GR(r). From Eq. (37), 
we find the value of T 1>cs at its minimum,

l / r 1, c s )m in  =  T > / ( A ( r ) 2 G * ( 0 ) .  ( 4 2 )

At (oi /2'tt=2A MHz, we have already shown that 
T ucs s  T i,c-n* From Fig. 2 we find that T i,min =  40 s at 
24 MHz, and thus, using Eq. (41), we obtain 
r 1Cs,inin =  80 s- Solving Eq. (42) for GR(0), we finally 
calculate G*(0)^0.01. We determine G^(0) more accu
rately at the end of this section.

We can conclude that simple head-to-tail reorientations 
cannot cause our observed relaxation since such motions 
correspond to G^(0)=0, as shown in Sec. II. Thus the re
laxation exhibited by our data must be due to departures 
from this simple head-to-tail reorientation.

From the very small value of G*(0), we know that 
these departures must be small, i.e., the CN“ molecules 
spend most of their time oriented in directions near or 
along the orthorhombic b axis. The fact that GR(0) is 
nonzero, though, indicates that the CN“ molecules must 
spend at least part of the time oriented in directions not 
parallel to the b axis. This can be accomplished in two 
different ways: (1) The CN-1 molecules spend a very 
small fraction of their time oriented at large angles with 
the b axis, or (2) the CN“ molecules spend most of their 
time oriented at small angles with the b axis. The first 
possibility is the case of intermediate orientations, and the 
second is the case of small-angle reorientations. In Sec. II 
we calculated G^(0) for both of these cases. We now try 
to fit these calculations to the data for each case.

First, let us consider the case of intermediate orienta
tions. von der Weid et a l 9 made EPR measurements on 
HCN-  defects in KCN and found some of them in the 
orthorhombic ( 111) orientations as well as the [010] and 
[010] directions, suggesting that a head-to-tail reorienta
tion might proceed, for_example, from [010] to [111] to 
[111] and finally to [010]. From the fractional occupa
tion of these (111) orientations detected by EPR, they 
determined that the minima of the (111) potential wells 
were only 0.0074 eV greater than that of the [010] and 
[010] potential wells. The similarity between HCN-  and 
CN-  molecules led them to suggest that the information 
obtained about the HCN-  reorientations from EPR might 
also be true for the CN-  reorientations.
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We can rule out the model of von der Weid et a l 9 for 
the CN“ reorientations ino KCN. Using A=0.0074 eV 
from Ref. 9 and a =4.22 A, b =5.07 A, and c =6.13 A 
from Ref. 1, we evaluate our expression for GR(0), Eq. 
(27), at the temperature ( T =  125 K) of our T { minimum 
for 24 MHz and obtain G^(0)^0.6, which is about 60 
times larger than our experimental value. The model of 
von der Weid et al. would cause T\ to be less than 1 s at 
the minimum instead of the 40 s which we observed (Fig. 
2),

In order for this model of intermediate orientations to 
fit our value of GR(0), a much larger value of A is re
quired. For large A, we have e « l ,  and Eq. (27) may 
then be written to first order in £ as

Gr ( 0) =  8e a2+ c 2 
a 2 +  b 2+ c 2

(43)

In this case, the relaxation rate is decreased by a factor 
e= exp (—A/kT)9 a feature which is typical of reorienta- 
tional motion between unequal potential wells.20 Using 
G*(0)=0.01, we find from Eq. (43) that A=0.07 eV.

One striking consequence of such a large A is an asym
metry of the slope of T\ on the two sides of the 
minimum.20 On a plot of InT\  versus 1 / T ,  the slope of 
the line on the cold side of the minimum would be EA +  A 
and on the hot side —(EA— A). The difference in the ab
solute values of these slopes would be equal to 2 A ^ 0 .14 
eV. Such a great difference is clearly in disagreement 
with our data.

Thus although the value A =0.07 eV may give the 
correct value for at the minimum, it would produce 
too great an asymmetry in the slopes of T {. We therefore 
conclude that our T\ data in KCN does not arise from 
reorientations between (111) directions and [010] or
[010] directions. If there are any intermediate orienta
tions in (111) directions, the resulting relaxation must be 
so weak so that it is masked by the relaxation which we 
do observe. We can thus place a lower limit on A in 
KCN. This limit is more than ten times the value mea
sured by von der Weid et al. for HCN“ reorientation. 
Even though the CN~ and HCN-  are very similar, their 
reorientational motions here are strikingly different. Ap
parently, von der Weid et al. were not justified in suggest
ing that CN“ reorients similar to HCN“ in KCN.

Reorientations between other possible intermediate 
orientations which are at large angle with the b axis 
would give similar results: large A and asymmetric slopes 
in T u which disagrees with our data. We can simply rule 
out this type of mechanism as being responsible for the 
observed relaxation.

This leaves us with the other possibility: small-angle 
reorientations. In Sec. II we calculated GR(0) for this 
model. Using <3^(0)^0.01 in Eq. (34), we obtain 
arms=4°. Later in this section we obtain more accurate 
values for GR(0) and a ^ .  We discuss the possible origin 
of these small-angle reorientations in a following section.

The correlation time rc for the reorientations can be ob
tained from the positions of the T \ minima. We see from 
Eqs. (37) and (38) that the T x minima occur when 
cojTc ^  1, which allows us to determine the values of rc at 
the temperatures of the three T x minima shown in Fig. 2.

We plot the resulting values of rc in Fig. 3.
Values of the correlations times rc obtained at lower 

temperatures from dielectric response6,7 and ITC measure
ments8,7 are also plotted in Fig. 3. As can be seen, a sin
gle straight line can be drawn through all the data. Thus 
we conclude that the correlation times obtained from 
dielectric response and ITC data describe the same motion 
as the correlation times obtained from our NMR data. 
Using the Arrhenius relation,

Tc = r 0exp(EA/kT)  , (44)

we obtain =0.154 eV and r0= 3 .8 X  10-15 s from a 
least-squares fit to the data. (These values are more accu
rate than our previously reported values12 due to im
proved dielectric response data.7) The activation energy 

=0.154 eV which we obtain from data in Fig. 3 is 
consistent with the slopes of the T j data in Fig. 2 if the 
background relaxation rate is first subtracted off. We 
note that rc is continuous through the electric-ordering 
phase transition and that the activation energy EA ap
pears to have the same value on both sides of the phase 
transition. Thus, the phase transition does not appear to 
have a measurable effect on the CN“ reorientational 
motion.

With an expression for rc we can now fit our data with

1/^1 =  1/^1,C-N +  1/^1,CS +  other > (45)

where r l c_ N and r 1>cs are given by Eqs. (23) and (37), 
respectively. [Here we used Eq. (23) instead of the ap
proximate expression, Eq. (38).] The last term, 1 /7"l other, 
is the relaxation rate from other sources (such as 
paramagnetic impurities) which determine T x at low tem
peratures. The form we choose for T i>other is rather arbi
trary and does not affect the results of the fit significant
ly. Weuse

l/^l,other =  ̂  exp(T0/ r )  , (46)

which is a straight line on a graph such as Fig. 2. We al
low the coefficient A to take on different values for the 
three frequencies coj.

In the expressions for 7 \ C_ N and I^cs we allow only 
two adjustable parameters: GR( 0) and A a. The resulting

1000/T (K-i)
FIG. 3. Correlation time rc of CN~ reorientations in KCN. 

Our NMR data (O). Dielectric response data (A) and ITC 
data (A ) from Ref. 7.



30 MOLECULAR REORIENTATIONS IN THE ORDERED PHASES OF KCN AND NaCN . 4931

best fit is shown by the solid lines in Fig. 2 and yields 
Gr ( 0 )=0.0093 and A<r=300 ppm. The value of Act has 
not been directly measured in KCN, but in other com
pounds containing CN groups, similar values for A a  have 
been obtained: 280 ppm in HCN (Ref. 21) and 290 ppm 
in K2Pt(CN)4Br0.3 * 3H20  (Ref. 17). From the best fit 
value of Gr (0), we obtain c^ s =  3.9°. (We reported ear
lier12 that « rms=2.6° and subsequently found a numerical 
error in that calculation.)

In our analysis of the 13C relaxation in KCN, we have 
neglected the 13C-13C dipolar interaction. To demonstrate 
the validity of this approximation, we measured ^  in a 
sample containing only 10 at. % 13C and found no signifi
cant difference in T x from the data in Fig. 2. Since 
13C—13C distances are very different in the two samples, 
our data shows that the 13C-13C dipolar interaction does 
not make any significant contribution to our relaxation 
data.

B. NaCN

We measured T\ for 13C in NaCN as a function of 
temperature at two different fields (Fig. 4). The relaxa
tion here is dominated by 13C-23Na dipolar interactions 
and is described by Eq. (18). Since the NMR frequencies 
of 13C and 23Na are very close to each other (about 1.2 
MHz when cdj/ I tt—IA MHz, for example), the first term 
in Eq. (18) should have a much larger value at its 
minimum than the other two terms. Thus T\ should 
have a rather prominent minimum when | coj—cos |r c =  l, 
which allows us to determine the values of rc at the two 
Ti minima shown in Fig. 4.

We plot in Fig. 5 these values of rc along with values 
obtained from dielectric response6,7 and ITC measure
ments.8,7 We see again that rc obeys the Arrhenius rela
tion of Eq. (44) with EA =0.284 eV and r0= 9 .4 x  10-16 s. 
As in KCN, rc is continuous through the electric ordering 
phase transition, and EA has the same value in both 
phases.

Using these values, we can now fit the data to

1 / ^ 1  =  l / ^ i , C - N a  + 1 / ^ 1 , C - N  +  1 / ^ 1 , CS +  1 / ^ 1 , other •

(47)

FIG. 4. Spin-lattice relaxation time Ti  of 13C in NaCN.

1000/T (K-i)
FIG. 5. Correlation time r c of CN -  reorientations in NaCN. 

Our NMR data ( O ). NMR data ( • )  from Ref. 10. Dielectric 
response data (A ) and ITC data (A ) from Ref. 7.

Expressions for these terms are given by Eqs. (18), (23), 
(37), and (46), respectively. Equation (47) for 7  ̂ in 
NaCN is identical in form to Eq. (45) for T\ in KCN ex
cept for the addition of the C—Na relaxation term. The 
13C-39K dipolar interaction is very weak and can be 
neglected for 13C relaxation in KCN. In contrast, the 
13C-23Na dipolar interaction is very strong and in fact 
dominates 13C relaxation in NaCN. Using the value of 
Act determined for KCN, we allow only two adjustable 
parameters [AM2)C_ Na and GR(0)] in our expressions for
^ l ,C -N a >  ^ i ,c - n > a n d  7*1,c s -

The resulting best fit is shown by the solid lines in Fig. 
4 and yields AM2 C_ Na= 2.5 X 106 s“ 2 and GR{0)=0.006. 
There is a much larger uncertainty in GR(0) here than for 
KCN since the effect of small-angle reorientations are 
now largely masked by the l / T ^c-Na term. However, 
we do obtain a value which is approximately the same as 
in KCN, showing that the same small-angle reorientations 
which we observed in KCN are probably also present in 
NaCN with about the same amplitude.

We can calculate AAf2>c_ Na from Eq. (17) assuming 
simple head-to-tail reorientations of the CN-  molecules 
along the b axis. We neglect the small-angle reorienta
tions which make a relatively minor contribution to 
AM2>c —Na- Using this model, we obtain AAf2C_ Na 
=  5 .0 x l0 6 s-2 which is twice as large as the value ob
tained from the data. This disagreement suggests either 
that this simple model used in calculating AM2>c_ Na 
from Eq. (17) does not completely describe our data or 
that we have made a computational error. At present, we 
cannot account for this disagreement.

We also measured the T t of 23Na in NaCN as a func
tion of temperature (Fig. 6). The relaxation here is due to 
the quadrupolar interaction of 23Na with fluctuating elec
tric field gradients arising from CN-  reorientations. The 
strong nature of this interaction gives rise to a rather 
short T ! at the minimum. We see from Eq. (40) that the 
Ti minimum should be at ©/rc s l .  Using this relation, 
we obtain rc^ 7 x l 0 ~ 9 s at the minimum, and we plot
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1000/T (K 1)

FIG. 6. Spin-lattice relaxation time T\  of 23Na in NaCN.

this point in Fig. 5.
We fit the data to

i / r ,  =  i / r ljG+ i / r lj0ther, (48)

where we use, as an approximation for Eq. (40),

i / r , n =
■AqTc

C= l +c o h l  9
(49)

and treat r lj0ther as a constant. In the expression for 
Ti q, we have only one adjustable parameter, Aq.  The re
sulting best fit is drawn as a solid line in Fig. 6. We do 
not attempt to calculate A q  here.

Buchheit et al.10 also measured T x of 23Na in NaCN 
and found the minimum to be at 1000/ T  = 4 .4  K ” 1 for 
coj / 2 tt—19. 38 MHz. Using g)/Tc =  1 at their minimum, 
we obtain rc=2 .0X  10” 9 s. This point is also plotted in 
Fig. 5. They also measured T lp, the spin-lattice relaxa
tion time in the rotating reference frame, and found a 
very shallow minimum at 1000/7" =  7.5 K ” 1, using an rf 
field Hi = 2  G. From the approximate relation 
YjH itc ^  1 at the minimum, we obtain rc s 7 . 1X 10“ 5 s, 
in rough agreement with the data shown in Fig. 5. (Actu
ally, this determination of rc is not rigorously correct in 
weak rf fields at a T ip minimum.22 The effect of the lo
cal field should be included, in which case a smaller value 
of rc would be obtained, in better agreement with our 
data.)

V. DISCUSSION

We have shown from our data in KCN that the CN" 
molecules reorient among directions which are very nearly 
parallel to the orthorhombic b axis. However, we can see 
from Fig. 3 that the observed reorientations cannot be 
simple librations of the CN” molecules since the mea
sured correlation times are much too long. The correla
tion times observed for these small reorientations are com
parable in magnitude to those expected for the head-to- 
tail reorientations. Certainly, head-to-tail reorientations

are also taking place here although they do not affect the 
relaxation directly.

The observed values of rc lead us to propose the follow
ing model. These small-angle reorientations of any given 
CN-  molecule are caused by the head-to-tail reorienta
tions of nearby CN-  molecules. In the elastically ordered 
phase, the CN” molecules are disordered with respect to 
head-and-tail alignment. Since the CN” molecule is 
slightly different with respect to head and tail, this disor
der breaks the orthorhombic symmetry of the lattice on a 
microscopic scale and distorts the lattice randomly 
throughout the crystal. This distortion causes each CN~ 
molecule to be misoriented slightly from its otherwise 
equilibrium orientation along the b axis. This misorienta- 
tion varies randomly from molecule to molecule such 
that, over macroscopic distances, the misorientation aver
ages to zero and the lattice has overall orthorhombic sym
metry as detected by x-ray and neutron diffraction.

Each time a CN-  molecule reorients head-to-tail, the 
local distortion of the lattice changes, thereby causing the 
CN” molecules in the vicinity to change their orientations 
slightly so that they are now all misoriented in new direc
tions. Thus, a given CN” molecule reorients both in 
small-angle steps (due to head-to-tail reorientations of 
neighbors) as well as large-angle steps (180°, due to its own 
head-to-tail reorientations). The small-angle steps provide 
the mechanism for relaxation of 13C in KCN. In contrast, 
the large-angle steps are not directly observable in the 13C 
relaxation even though they are responsible for the small- 
angle steps of nearby CN” molecules.

From this model, we see that the small-angle reorienta
tions observed in our data are indirectly caused by head- 
to-tail reorientations. The frequency of the small-angle 
reorientations is much greater than that of the head-to-tail 
reorientations since a given CN” undergoes a small-angle 
reorientation whenever any one of the neighboring CN“ ’s 
reorients head-to-tail. Nevertheless, the correlation time 
of the small-angle reorientations is not equal to the mean 
time between such reorientations since each reorientation 
is very small and arises from the head-to-tail reorienta
tions of any one of a number of neighboring CN” ’s. In 
fact, since the head-to-tail reorientations drive the small- 
angle reorientations, their correlation times must be equal. 
Thus the values of rc which we obtained from our data 
are identical to those for head-to-tail reorientations.

If these small-angle reorientations and resulting disor
der are present in KCN, we would expect them to be 
present in NaCN as well. However, these effects are 
masked in NaCN largely by the strong 13C-23Na dipolar 
interactions which produce 13C relaxation via head-to-tail 
CN” reorientations directly and which are rather insensi
tive to the small-angle reorientations, if present. Howev
er, our 13C relaxation data in NaCN does allow these 
small-angle reorientations to be present. In fact, we get a 
slightly better fit of our calculated relaxation to the data 
if we assume the presence in NaCN of small-angle 
reorientations of the same amplitude as in KCN.
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APPENDIX: CALCULATION OF < a xz(r x )crxz(t 2> >n

Consider a chemical-shift tensor a  with axial symme
try. Let and r 2 be the axes of symmetry for two dif
ferent orientations of a. Calculation of the powder aver
age of (Jxzirx )crxz(r2) is accomplished by averaging over 
all possible orientations of the coordinate axes x,y,z. To 
do this, we use the transformation matrix A(d9</>yil>) which 
reorients the coordinate axes through Eulerian angles 

We have from Goldstein23

^xx =  c°stp cos<j) — cos# sin^ simp ,
Axy =  cosx/t sin(f> +  cos# cos(/> sintp ,
.. _______ ;_______________ __________________ I

( a xz( r i ) a xz( r2) ) n = - ^  f Q d t/; fo dtp f g d0sin0'2lA xi(0><t>,if))aik( r l )[A ~Hd,(f>,i>)]kz
i ,k

X.'2,Axm(O,<f>,tl>)amn(r2) [ A - x(0,tl>,\l))]nz . (A3)
m ,n

Now, since we are averaging over all possible orientations of the coordinate axes, we are free to choose the original 
axes which define the components a ik( r i ) and crik(r2). Therefore, let us choose the z axis along and the x and y  axes 
such that r2 lies in the y-z plane. Then we have

&XX 0 0
2(^1 ) = 0 Oxx 0 , (A4)

0 0 *̂2Z

and

orik(r2) =  ̂ lAim(y,0,0)<jmn(r1) [ A - 1(y,0,0)]nk , (A5)
m ,n

where y  is the angle between r x and f 2. In Eq. (A4), crxx= a yy because of axial symmetry. Now, using ( A ~ l)ik= A ki 
and Eqs. (A4) and (A5), we finally obtain

<crxz(rl )axz(r2))a =  2  Amk(rA0)Ank(y,0,0)aa(ri )akk(rx)
i ,k ,m ,n

\ r 2ir r 2n r ir
X — j  J Q dip f Q d<f>fo d0sin0Axi(0,<t>,i{>)Azi(0,<t>,ip)Axm(0,<fi,if>)Azn(0,(t>,if>).

_ (A6)
The evaluation of this expression is straightforward, though tedious, and we obtain

(o-xz(rl )o-xz(r2) ) n = ^ ( A a ) 2(3cos2y  — 1) , (A7)

w here  A ct= a a — , th e  a n iso tro p y  o f  a .
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