
DIO.4 
ADAPTIVE ALGORITHMS FOR IDENITFYING 

RECURSIVE NONLINEAR SYSTEMS* 

Heung Ki Baik** and V. John Mathews 

Department of Electrical Engineering 
University of Utah 

Salt Lake City, Utah 84112 

ABS1RACf 

This paper presents two fast least-squares lattice algorithms 
~or ad~ptive n~:m-linear filters equipped with system models 
involving nonlinear feedback. Such models can approximate a 
larg~ class of no~-linear. systems adequately, and usually with 
consl~era?l~ parsImony m .the number ?f coefficients required. 
For sl~phclty of presentatIOn, we consIder the bilinear system 
model m the paper, even though the results are applicable to 
more ge~eral s~stem models. The .computational complexity of 
the ~lgonthms IS an order of magnItude smaller than previously 
avaIlable methods. Results of several experiments that 
demonstrate the properties of the adaptive bilinear filters as well 
as comp~e their performances with two other algorithms that are 
computanonally more expensive are also presented in this paper. 

1. INTRODUCfION 

. While linear fIlters and system models have been very useful 
~n a large v~iety of. applications and are conceptually and 
Im~lementatI~:mally SImple, there are several applications in 
w~lCh they WI!! not perf?rm well ~t all. This paper is concerned 
WIth developmg adaptIve fIltenng algorithms for nonlinear 
systems. System analysis using nonlinear structures has several 
applicati?ns, in~luding those in channel equalization, echo 
cancellatIon, nOIse cancellation, characterizing semiconductor 
devices, modeling biological phenomenon, and several others. 

I>:- very common system model that has been employed with 
relatIvely good success in nonlinear filtering applications is the 
Volte~ system model [3]. Several researchers have developed 
adaptIve filters ba~ed on truncated Volterra series expansion ['1, 
2,4- 6]. The mam problem associated with such filters is the 
extremely large number of coeffIcients ( and the correspondingly 
large computational complexity) that is usually required to 
adequately model the nonlinear system under consideration. An 
alternat~ appr<;>ach tha~ is pursued in this paper is to use system 
mod~ls m,:,ol~mg nonlmearfeedback, in which the input-output 
relatIonshIp IS governed by a recursive nonlinear difference· 
equation of the type [7] 

M 

yen) = L pJx(n), ... ,x(n-N+l),y(n-l), ... ,y(n-N+I)] (1) 
i=l 

where Pi[ ... ] is an i-th order polynomial in the variables within 
t~e square brack~ts. Just as linear IIR filters can model many 
linear systems WIth ~ore parsimony than FIR fIlters, there are a 
larg~ number of nonhnear systems that can be approximated by 
nonhnear feedback models using a relatively small number of 
parameters. In such situations, one can expect that the 

This work was supponed in pans by a Fellowship from the Korean 
Science Foundation, NSF Grants MIP 8708970 and MIP 8922146 
and a University of Utah FacultyFellow Award. ' 

On leave from Chonbuk National University, Chonju, Korea. 

corresponding adaptive fIlters can be implemented with good 
computational efficiency. Perhaps the simplest among the 
nonlinear feedback models is the bilinear system model. The 
input-output relationship for a bilinear system is given by the 
nonlinear difference equation 

N-l N-l N-l N-l 
yen) = L att(n-i) + L L bl(n-i) y(n-j) + L cl(n-j). (2) 

i=<l i=<l j=l j=l 

An attractive feature of the bilinear system models is that 
they can be used to approximate any Volterra system with 
arbitrary precision under fairly general conditions [8J. Because 
of these advantages, bilinear system models have found various 
applications, including those in control systems, population 
models, biological systems, economics, etc. An overview of 
continuous-time bilinear system models and their applications 
can be found in [9, 10]. In this paper, we present two adaptive 
lattice filtering algorithms for bilinear fIltering. In spite of the 
potential benefits of such system models, very little work has 
been done on adaptive filters employing nonlinear feedback 
models. Among the very few published works are [11 - 14]. 
The results in [11, 14J involve direct-form structures and 
employ the conventional recurvise least-squares adaptation 
algorithm or its variations which are computationally very 
complex. Fast versions of such algorithms will almost certainl:y 
suffer from numerical problems. Reference [12] discusses an 
algorithm involving the simpler least-mean-square (LMS) 
adaptive filter. Such algorithms are known for their slow and 
input-dependent convergence rates. Lattice structures are 
attractive because of the existence of fast, and numerically stable 
adaptive algorithms. The method presented in [13] involves a 
lattice structure, bu6is useful only for a very special class of 
nonlinear models. We believe that ours is the first successful 
attempt at deriving adaptive lattice fllters that is applicable for the 
general bilinear system model. Furthermore, the methods 
presented in this paper can be very easily extended to more 
general nonlinear output feedback structures. 

II. A LATTICE STRUcruRE FOR BILINEAR FILTERING 

Consider the problem of adaptively estimating the desired 
response signal yen) as the response of a bilinear system to its 
input signal x(n). We will recursively estimate the bilinear 
system parameters such that the cost function 

n 

~N(n) = L A. n-k[y(k) -Yn(k)]2 (3) 

k=l 

is minimized at each instant. In this expression A., 0 < A. ~ 1, is 
a constant that controls the memory of the adaptive filter, and 
9n(k) is an estimate of y(k) based on the parameters of the 
adaptive fIlter at time n. 

We will consider two different approaches to solving the 
problem which differ in the way in which 9n(k) is evaluated. 
The first approach is the equation error formulation, 
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In which tile adaptive tilter output is estimated as 

!If'~ N"l N,~ N-I 

Yn(n}: La~(n)x(a-i) -+: L L Dy.(nJx(n-i): y(n-j)+ L cj(n)y(a-j) 
i;"Q ~O iFl yl 

(4) 
where /tiCn}, fuiJ(n) .. and ctnl are the coefficients of the adaptive 
bilinear fitter at time n. The second approach is an output error 
formu~ation. in wnieh ~he adapti¥e filter output is estimated as 

]I<'-J. N-L NA Nel 

yn(n) = La.(n}x(n-i} of"" L b,.(n}x(n- i} y(n-j} -I' '" c.(nlY .(n-j~ L-J lJ' L-J. J R-J 
~o FO jot .i=! 

(5) 
This forrn~raliion restlr~ in a suboptimal feast-squares solution in 
the sense that the adaptive filter coefficients. at time n depend on 
those at the previous tfmes ~hrough the estimates 9n-j(n-j); j. = 
1..), ... ,N-l as can be seen from the above equation. 

€'Jur approach for developing a lattice structure for bilinear 
fitrerillg is to transfoFl!Il the nonlinear filtering problem into an 
equivalent mtl,}ticnannel, but linear filtering problem. This 
a~pTOach is similar to (he development of the adaptiv~ lattice 
Volterra filter in [6J. The basic idea is to partition the input 
vector (say "UN(n)) into tne foHowing set of 2N smaller vectors. 
(Here den): corresponds to y(n) or 9n(n), depending on whether 
tbe equation error or the output error approach is employed.) 

CH 1 [xCn),xCn-l), ..... x:(n-N+ 1)] 
CH 2 Ud(n-I),d(n-2) .... ,d(n·N+ 1)] 
CH 3 : rx(n-l)d(n-l):,x(n-2)d(n-2},,, .• xCn~N+1Jd(n"N+l}J 
CH 4 ~ [x(n}dCn-F),xen-2}dCn-2) •.... ,xCn-N+2)den-N+IH 

CH 2N-!: [x(n,-N-+:l)d(n-l)] 
CH2N : [x(n)d(n-N+l}}.. ~6) 

No,w, we can consider eacb of the above 'lectors as. being 
fnrmed. asing successive samples of signalS from a different 
input channel. Channel 1 has N' coefficients associated with it 
while channels 2, 3 and 4 have N-r channels associ<Lted for the 
Ok-l)-rh and 2k-th channels is W-k-t! for ~3. To simplify the 
uo~ations. fet xj(n}; t=O,I ..... ,N-l be defined as 

x6!nJ = [xen)] 

xt(n) = [dtn-l }i,x(n- ljden-l.x (njden.-l )if 
x2{n) = [x(n.2)d(n-1l.x(n)d(n<2U

T 

xN_1(n): ~x(n-N-l'lJd(n-n.x(n}d(I'I.N-ttnT • 
The above representation is useful since all the channels 

belonging to each Subset have the same number of delays. 
The first task involved in developing a lattice structure for 

bHinear filters IS to obtain a Gram-Schmidt orthogonalization of 
the input data. Wbil'e rh,ere. are several approaches for 
performing the Gram-Schmidt ortnogonalization, our method 
follows tbe technique in [16} very closely. The development of 
the Jiattice structure depends critically on two different partitions 
of the input vector. The first partition divides !:he elements of 
TJNCn} into N "backward" input vectors as foHows. 

X;Cn) = [xt);(n}] 

li.~(n;} = Ex.o(n-l},x
1
(a}]1 

b l' xl€nJ == Rxe{n-2:},x1 (n-1l,x:zc(ta)]' 

Let bm~n} he nhe optimal estimation error vec:nor when 
II ( ~.. • d' • b" bot') "( \ 1M '-x.mr~Fl·i IS e.stlmate . IlS1in.g xQ;~n:t •. lCl~1l ·, •..• Xljl.f~.t v,ote tnat 

00'(£1) = ~(n) by definitionJ.. h is well' known that the 

"Ii>ackward prediction" residuals {bm.(n); m == 0;.lu .. ,N~}J form 

an orthogonal decomposition of xf(nJ~ 1 = O";l •..... ,m-l. Once 

-rlrJiS' decomposition has been acflieved, we can estiInate yen) as a 

J:inear combination of the elements of the "backward prediction" 

errorveclors. 
Jrust as in any laJ!lce fi11eF formulation, effICIent com:putation 

oJ "'backward prediction" residual vectors requires knowledge of 
the "forward predI'cfion"em>r ve~tors. For understanding the 
llotlOJfl of 'fo.rwardpredicti.on' iIn our context, we .have ro 
introduce the second type of partitioning of the input data. For 
defining the moth order "forward prediction' error. we partition 
the elements of tfue rUSt m,.j-! "backward" input vectors in (8) 
(whrich, i.s the same as the elements ef Um(nn as 

~:o(n) = Ixo£n~m11 
'F 

x~:l(nJ =!xo(n.m+l},x1Cn-m+11]1 
f 'F 

x
lll

:2(nJ = [x0~n-m+2).xI(n-m+2J.x:zc(F1.m,.j-2n (9) 

x~:rn(n} = [x6~nl,xl(nl, ... ,Xm(n};]'F . 

The H'Hh order "forward predictIon" error vector fmen) i,s 

d'efined as the estimation error when x f en ).is estimated as a m;m 

linear c~mbinatlon of all tile elements of 

xf .,,~h}. xJ An)~ ... xf I(n}. As usual we win define fQ(n) fo 
m,v m.~·· m:m • 

(!)e the same as x~:Jn) 
The derivation of the 1attice equations is somewhat lengthy 

lmd is omitted here.. The de'a}Is can be found in [15]:.. The 
argpri;~hm is given. in Table I. An eperatioos count will soow 
that the computational complexj:ty is proportional; to O(N3:) 
mulitt~lications per iteration. 

m .. EXFERIMENT AJL RESULTS 

The £nput signal t@ the adaptive filter was a: coPored, zero
mean and pseudorandom Gaussian noise. The. desired response 
signal yen} was obtained as a noisy measurement of a bilinear 
system with coefficients as given in Table ll. The inp.ut signal 
was such that the output of the unknown system had unit mean 
squared value. The adaptive filter was run with fhe same 
number of coefficients as the unknown system. AU of the 
results presented are ensemble averages over fifty independent 
runs. 

The time averages of ahe ensemJ:)le-averaged mean-squared 
error during the interval from o. = 4001 to n : 5000 are given in 
Table III for three different noise levels and two different values 
of A... These tabulations indicate that the output error algorithm 
performs better (han the equation error algorithm. in the presence 
of measurement noise. The difference in performance is evident 
ill a more dramatic form, when the mean coefficient traj¢etories 
are compared for different noise levels. The mean trajectories of 
qen} are plotted in Fig. I for different noise levels and X = 
0 .. 995. The ensemble averages were obtained by averaging the 
coefficients· of the direct-form bilinear ruter lealizatioFls after 
conveF£ing the lattice parameters- to direct-form' parameters. The 

- 207'8 -



mean behavior of the coefficients in the output error adaptive 
filter appears to be much less sensitive to measurement noise. 
The mean behavior of Cl(n) obtained using the extended least
squares (ELS) algorithm and the recursive prediction-error 
method (RPEM), which are discussed in [14] are displayed in 
Fig. 2. Similar to some of the results in [14], the behavior of 
the coefficient obtained using the ELS algorithm is very erratic. 
RPEM performs the best among all the 0(N4) complexity 
algorithms discussed in [14]. It is interesting to note that the 
output error version of our algorithm performs almost as well as 
the RPEM even though it has only 0(N3) computational 
complexity. We believe that the computational efficiency and 
good numerical properties make the introduction of our 
algorithms a significant development in the area of adaptive 
bilinear filtering. 
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TABLE!. 
THE RECURSIVE LEAST-SQUARES ADAPTIVE 

LATTICE BILINEAR FILTER 

Time InitialIzation 
DO (Tl)-(T2). for m = O.I •...• N-l 

am(O) = 1 

f b {o ~ 0 
Rm(O) = Rm(O) = OT otherwise 

'"'2m+2' 

ifm=O 

Order Initialization 
DO (T3)-(T7). for n = 1.2 •... 

ao(n) <= 1 
f b f 2 

Ro(n) = Ro(n) = ARo(n-l) + x (n) 

fO(n) {= bO(n) = x(n) T 

(p) [d(n-l).x(n-l)d(n-l).x(n)d(n-l)] t. p=1 
fo (n) = T 

[x(n-p)d(n-l).x(n)d(n-p)] • p=2.3 •...• N-l 

eo(n) = yen) 

Iteration Procedure 
DO (T8)-(T21). for n = 1.2 •... 

DO (T8)-(Tl9). for m = 1.2 •...• N-l 

T 
~m(n) = A~m(n-l) + bm-l(n-l)fm_l(n)/am_l(n-l) 

f(m) f(m) (m)T 
~m (n) = A~m (n-l) + bm_1(n-l)fm_1 (n)/am_1(n-l) 

b(m) b(m) (m)T 
~m (n) = A~m (n-l) + fm_1(n)fm_1 (n)/am_1(n-l) 

DO (Tl3)-(Tl4) for p=m+l.m+2 •...• N-l 

f(p) f(p) (P)T 
~m (n) = A~m (n-l) + bm_l(n-l)fm_l(n)/am.l(n-l) 

(p) (P) f(p)T.b 
fm (n) = fm_l(n) - ~m (n)Rm_1(n-l)bm_1(n-l) 

t For equation error formulation. den) = yen). 
For output error formulation. den) = yen) - eN(n). 

(Tl) 

(TI) 

(T4) 

(T5) 

(T6) 

(T7) 

(T8) 

(T9) 

(TlO) 

(Tll) 

(Tl2) 

(Tl3) 

(T14) 

(T15) 

(T16) 
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TABU II. 
COEFFlCIEN'FS OF THE UNKNOWN BILINEAR 

SYSTEM USED IN THE EXPERIMENTS 

TABLEID 
1'IME.A ¥BRAGED MEAN-SQUARED ERROR OVER 

THE LAST 1000 DATA SAMPLES 
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