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Abstract 

The rapid advance of gene sequencing technologies has produced an unprecedented rate of discovery 

for genome variation in humans. A growing numbered of authoritative clinical repositories archive gene 

variants and disease phenotype, yet there are currently many more gene variants that lack clear 

annotation or disease association. To date, there has been very limited coverage of gene-specific 

predictors in the literature. Here we present the evaluation of "gene-specific" predictor models based 

on a Na"ive Bayesian classifier for 20 gene-disease data sets, containing 3,986 variants with clinically 

characterized patient conditions. Utility of gene-specific prediction is then compared "all-gene" 

generalized prediction and also to existing popular predictors. Gene-specific computational prediction 

models derived from clinically curated gene variant disease data sets often outperform established 

generalized algorithms for novel and uncertain gene variants. 
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Background and Significance 

Personalized medicine implies that all relevant clinical information is available on demand for effective 

patient treatment. Proper interpretation of gene test results is a key component in customizing patient 

therapy. Efforts such as the Human Variome Project, 1000 Genomes and NCB I Genetic Testing Registry 

highlight a growing interest in annotation and clinical interpretation of gene variants in human 

disease.{1-3) As genetic information is incorporated into the electronic medical record, new decision 

support approaches are needed to provide clinicians with a preferred course of treatment.(4) For 

decision support rules to add value, the clinical relevance of laboratory information must be well 

understood.{S, 6) 

Furthermore, with rapidly evolving technologies such as SNP chip genome wide association studies and 

next-generation sequencing, genomic analysis is trending faster and cheaper and yielding much larger 

data sets. As such, gene variants are being discovered at an almost astronomical pace, with one recent 

report finding an average of 3 million variants per personal genome.(7) More importantly, for genomic 

variation to be of real clinical utility, laboratory interpretation and disease association must be well 

understood for each new gene variant found. (8, 9) 

Unfortunately, an increasingly apparent gap exists between rapidly growing collections of genetic 

variation and practical clinical implementation. Although collections of human genome variation have 

been underway for years, authoritative repositories of gene variants with clear association to disease 

phenotype are only now beginning to emerge.{10-14) This is in contrast to existing collections of 

genome-wide mutations such as dbSNP{lS) or OMIM(16) that are not curated using consistent, 

systematic or transparent methods. Focusing computer predictive algorithms on authoritative and 

specific gene-disease settings has the potential to bridge this knowledge gap. 
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Prediction algorithms for computing mutation severity have been used for many years.(17-20) Despite 

their use in laboratories, they do not have sufficient accuracy to predict disease phenotype to the 

degree necessary to be clinically applicable. This prompts opportunities to explore the application of 

advanced informatics approaches to this problem.(21-23) This study expands the recently reported 

Primary Sequence Amino Acid Properties (PSAAP) algorithm (24, 25), which uses a gene-specific 

classification approach utilizing amino acid physicochemical properties of the primary amino acid 

sequence to predict pathogenicity of novel and/or uncertain gene variants. To date, gene-specific 

approaches have been applied only to the RET proto-oncogene and hypertrophic cardiomyopathy.(25, 

26) 

To evaluate the generalizability of our gene-specific PSAAP algorithm, we extend its use to a set of 20 

genes with clinically curated disease variants (Table 1). The analyses also compare the effectiveness of 

generic gene versus gene specific approaches using a minimum (non-redundant) set of amino acid 

properties to describe exonic non-synonymous variants coupled with evaluation of overlap and/or 

trends of biochemical properties of mutation. 

Methods 

Gene variant data relating well-characterized patient condition to genotype (genotype-phenotype) were 

assembled from multiple sources including: cystic fibrosis mutation database curated by Ruslan Dorfman 

(Hospital for Sick Children, Toronto}(27); BioPKU database curated by Nenad Blau (University Children's' 

Hospital, Zurich)(28); neurofibromatosis type 1 database curated by Ophelia Maertens (Center for 

Medical Genetics, University Hospital, Ghent) and Collagen, type IV, alpha 5 (COL4A5) Mental 

Retardation Database curated by Judy Savige (Department of Medicine, University of Melbourne) as 
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hosted by Leiden Open Source Variation Database (LOVD)(29-31); biotinidase (BTO) curated by Barry 

Wolf (Medical Genetics, Henry Ford Hospital, Detroit)(32); aryl hydrocarbon receptor interacting protein 

(AlP) curated by Rodrigo Toledo (Endocrine Genetics Unit, University of Sao Paulo Medical School) 

(personal communication); Disease Databases hosted by Department of Pathology, University of Utah 

School of Medicine(33) and genetic testing results archived at ARUP Laboratories (Salt Lake City) . The 

clinically curated gene-disease data sets (n=20) containing some 3986 curated variants are summarized 

in Table 1. 

This 20 gene collection contained 1639 exonic non-synonymous SNP's (nsSNP) with known outcomes of 

benign (n=607) and pathogenic (n=1032). The gene variants were characterized using physicochemical 

properties of the substituted amino acid as recently reported .(24, 25) Briefly, gene-specific clinically 

curated missense variants (nsSNP's) were characterized using a Na·ive Bayes classification scheme of 

primary amino acid sequence only and delta differences in physical, chemical, conformational, or 

energetic properties between the amino acid present in the wild type and the variant. Descriptors were 

attributes derived from 544 amino acid properties archived in AAindex v9.4.(34) AAindex is a database 

of numerical indices representing various physicochemical and biochemical properties of amino acids. 

For each gene variant, vectors of delta values for each biochemical property of the substituted amino 

acid were calculated and the resulting mutation described by an array of variables, corresponding to the 

absolute value of the difference between wild type and mutant - as trained in a gene-specific setting. 

Based on curated clinical outcomes of benign or pathogenic, the minimum (non-redundant) set of amino 

acid properties needed to describe pathogenicity of gene variants was investigated using various 

attribute selection methods such as correlation-based feature subset selection, SVM-RFE and Relief-F 

and various classifiers. Thresholds of 95% (or 0.95) for Greedy-Stepwise and Ranker were used during 
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this analysis. The best performing correlation-based feature subset selection and Na"ive Bayes 

classification was implemented using the Weka software package.(35) 

For each of the 20 genes, random selection was used to build a 2/3 training and a 1/3 test sets with 

known class labels (benign, pathogenic) . Training and test sets were to keep the original ratio of benign 

and pathogenic constant, but without regard to functional motif or protein location. Next, based on 

curated clinical classification of benign or pathogenic, algorithm training and pathogenicity prediction 

was performed gene-by-gene. Gene-specific models were also tested for prediction of other gene-

disease outcomes, by using the training set of one gene and a test set from a second gene. In a similar 

fashion, an "all-gene" model was constructed using all the available training sets. This "all-gene" model 

was then tested by making gene-by-gene predictions. Due to a low number of nsSNP exonic 

substitution variants, five genes (MECP2, MSH2, MSH6, PLODl and SPINK1) were only included in the all-

gene training set, and not used for gene-specific training. Algorithm performance was evaluated using 

each gene test set, with sensitivity (true positive rate), specificity (true negative rate), and positive 

predictive value (PPV or precision) calculated for each classifier algorithm and gene-specific and all-gene 

permutations. 

Well established prediction tools such as PolyPhen (18) and SIFT (17) are primarily based on multiple 

alignment and amino acid substitution penalties have been available for many years. More recently, 

MutPred (20) which calculates probability of deleterious mutations by disrupted molecular mechanism. 

Additionally, PMut (19) is neural net based and trained on human mutations. (A more detailed 

description of each prediction algorithm is given in Supplementary Data .) Lastly, gene-specific algorithm 

performance was compared to well established prediction algorithms such as SIFT(17), PolyPhen(18)' 
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PMUT(19) and MutPred(20) . Comparison of established prediction tools with gene-specific trained 

algorithms may increase our understanding of predicting mutation status. 

For all genes, the full length protein isoform was used for this study. Splice variants were not 

considered. All gene variants were mapped to their reference amino acid sequence from UniProtKB 

(http://www.uniprot.org). Protein reference sequences are summarized in Supplementary Table 1. 

Results and Discussion 

Overall, the performance of the gene-specific trained algorithm was significantly better (8% to 13%) 

than the "all-gene" model, with p values of 0.00001 (sensitivity), 0.00113 (specificity) and 0.00012 (PPV) 

as shown in Figure 1. For the genes evaluated, the PPV of our gene-specific PSAAP algorithm averaged 

89% (82% to 94%). This was on average 11% higher than the "all-gene" model where PPV ranged from 

62% to 86%. The one exception was SLC22A5, where PPV remained constant. Sensitivity averaged 13% 

higher than the "all-gene" model, except for SPREDl which was 6% decreased. Specificity was also 

generally improved (9% average) for all but PMS2 (no increase) and NFl , which was 5% decreased. 

For the genes studied here, the PSAAP gene-specific prediction performs well. PPV values are displayed 

in Supplementary Table 2. The self against self is plotted on the diagonal in blue with ppv>80 bolded . 

Other gene predictor performance with PPV above 80 is shaded in orange. Interestingly, gene-specific 

prediction models do not seem to generalize well - even across similar protein functional families. For 

instance, Supplementary Table 2 shows that the RET kinase trained model (94% PPV) performed lower 

for the ACVRLl kinase (84% PPV) while the ACVRLl trained predictor (88% PPV) only predicted RET with 

80% PPV. Additionally, the carboxylase enzyme BTD (91% PPV) only predicted the hydroxylase PAH 

gene variant outcome with 76% PPV, while the PAH trained predictor (89% PPV) only predicted BTD with 
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59% PPV. It is notable however, that 3 out of 15 genes (SPRED1, NFl and GAL T) yielded comparable 

numbers for predicting disease association across other genes. 

The improved performance of gene-specific algorithms may be explained in part by an important 

observation that biochemical and/or structural characteristics of mutation specific to one disease may 

be lost or diluted when combined with large genome-wide data sets for algorithm development. This 

can be illustrated by plotting non-synonymous variants specific to a gene-disease condition as compared 

to random amino acid substitutions. When 1000 random amino acid changes were plotted 

(Supplementary Figure lA), a wide distribution evenly covers the entire range of possible substitutions. 

In contrast, when 1000 pathogenic mutations are graphed, characteristic trends of specific residues and 

frequency of substitution are readily seen (Supplementary Figure IB) . More importantly, disease-

specific examples of this concept are shown in Figure 2. In the RET proto-oncogene (associated with 

medullary thyroid cancers), some 79% of all pathogenic changes were found to involve cysteine (C) to 

some other residue (X) as displayed in Figure 2A. In the COL4A5 gene (associated with Alport 

syndrome), 84% of pathogenic changes involve glycine (G) to other residues (X) as shown in Figure 2B. 

To confirm this trend, further experiments should be performed as additional curated gene-disease 

collections become available. 

Although the majority of the PSAAP models did not perform as well for predicting pathogenicity in other 

genes-diseases, most still outperformed established algorithms. As shown in Table 2, a majority of 

genes (13 out of 15) analyzed using the gene-specific PSAAP trained algorithm had improved PPV as 

compared to other algorithms, with the overall PPV increasing 8.8% to 22.0%. For example, the PSAAP 

model specific for SPREDl (93% PPV as seen in Table 2), when analyzed using established prediction 

algorithms yielded precision scores from 56% to 71%. As mentioned above, the PSAAP model specific 
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for RET kinase (94% PPV) underperformed for the ACVRLl kinase (84% PPV), however, both still 

outperformed established algorithms, where on-line predictions for ACVRLl only ranged from 57% to 

81% PPV. Two exceptions to this trend were GALT and SMAD, in which MutPred and/or PMut scored 

slightly higher as shown bolded/underlined in Table 2. 

It is important to note that the all-gene trained Bayes predictor also compares favorably to established 

algorithms, with the average, minimum and maximum PPV for each predictor also summarized in Table 

2. For instance, although the gene-specific trained PSAAP model yielded the best PPV, the all-gene 

trained model outscores 3 of 4 established predictors, with MutPred being the exception. This 

observation may highlight the importance of authoritative variant data and amino acid physicochemical 

properties being used to develop/train algorithms. It also demonstrates that primary acid sequence 

only, when coupled with amino acid properties, can be successfully used to develop predictor 

algorithms. 

Finally, a minimum attribute set of amino acid properties seems specific to each gene-disease, with 

overlap found among different genes using three feature selection methods ranging from 11% to 80% as 

summarized in Supplementary Table 3. Representative examples are shown in Figure 3. Interestingly, 

the gene models with more shared amino acid attributes (GALT, 80%; NFl, 62%; SPRED1, 60%) also had 

the best generalizability. Of note, both SMAD4 and GALT did well using the established on-line 

prediction tools, where SMAD4 also had 58% overlap. Without considering the above mentioned 4 

genes, the overlap ranged from only 11% to 37%. Overlap for the all gene data set follows this same 

trend, showing only 38% overlap between the feature selection methods. 

Conclusion 
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The number of authoritative disease and locus specific gene variant collections in use for clinical 

diagnostics is rapidly growing. These clinically-curated gene variant data sets, with reliable genotype-

phenotype association, can readily be utilized for training and test set performance of machine 

classifiers. The generalizability of classification rules across multiple genes and diseases may be 

strengthened as the number of curated disease variants continues to increase, although our analysis 

suggests that gene-specific approaches will, with few exceptions, outperform generic approaches. 

Nonetheless, the recognition that the proposed classifier outperforms existing tools is important, given 

that it will take time for disease-specific curated genotype-phenotype databases to be developed and 

for some ultra-rare diseases such databases may never be realistic . 

For machine learning classifiers, amino acid attributes characteristic of substitution mutations for a 

given disease may be lost or diluted when combined with multiple genes and diseases. A key 

distinguishing feature of this gene-specific classifier methodology is that algorithms are trained explicitly 

to curated monogenic disease outcomes. While this methodology is complementary to established 

generalized prediction tools, algorithms should take advantage of authoritative (clinically-curated) gene 

variant collections where they exist. This is especially important when pathologic variants exhibit 

characteristic trends or properties specific to a given disease. 

This study included only gene variant collections with clearly documented disease association and 

known to the authors - and represents the largest collections to-date of clinically curated gene-disease 

results as used for diagnostic and gene test reporting purposes. Although correlation of genotype-

phenotype offers therapeutic options that would otherwise remain hidden and may lead to disease 

specific mutation-guided management strategies, appropriate caution is justified when clinicians are 

asked to trust computational outcomes for determining patient care.(36) Continued interaction 
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between clinicians and laboratorians to refine mutation-specific clinical classification is imperative to 

optimal patient care.{5, 6} 
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Figure Legends 

Figure 1. Performance of the gene-specific PSAAP algorithm as compared to all-gene algorithm plotted 

to show A) sensitivity, B) specificity and C) positive predictive value (PPV) . Significance was calculated 

using a 2 tailed paired t-test. 

Figure 2. Disease specificity of pathogenic mutations demonstrated by plotting A) the RET proto-

oncogene variants where 79% of pathogenic changes are cysteine [C] to another residue [X] and B) 

COL4A5 where 84% pathogenic changes are glycine [G] to another residue [X] again showing 

characteristic trends of specific residues and frequency of substitution that may be lost when diluting 

gene-specific data into genome wide computational methods. 

Figure 3. Venn diagram showing overlap of amino acid properties to characterize benign and 

pathogenic gene variants using three feature selection methods (CfsSubset, Relief-F, SVM-RFE) . Overlap 

for A) RET with only 14% shared attributes, B) GALT with a much higher 80% overlap and C) the all-gene 

data set with only 38% shared attributes. 
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Table 1. Summary of c1inically-curated gene variant data sets (n=20) with known disease association. 

Gene Symbol Gene Name Curated Exonic 

Biological Function Disease Association Variants nsSNPs 
ACVRLl activin A receptor type II-like 1 332 192 
activin receptor activity, type 1 hereditary hemorrhagic telangiectasia 

AlP aryl hydrocarbon receptor interacting protein 102 84 
transcription coactivator activity familial pituitary adenoma 

BTD biotinidase 155 105 
biotin carboxylase activity biotinidase deficiency 

CFTR cystic fibrosis transmembrane conductance regulator 252 121 
chloride channel regulator activity cystic fibrosis 

COL4A5 collagen, type IV, alpha 5 600 266 
extracellular matrix structural constituent X-linked Alport syndrome (hereditary nephritis) 

ENG endoglin 397 124 
TGF ~ receptor activity hereditary hemorrhagic telangiectasia 

GALT galactose-1-phosphate uridylyltransferase 247 168 
uridylyltransferase activity galactosemia 

GJB2 gap junction protein, beta 2 (connexin 26) 61 43 
gap junction channel activity hereditary sensorineural hearing loss 

MECP2 methyl CpG binding protein 2 26 14 
transcription co-repressor activity Rett syndrome 

MSH2 mutS homolog 2 89 8 
guanine/thymine mispair binding hereditary nonpolyposis colonrectal cancer 

MSH6 mutS homolog 6 34 10 
guanine/thymine mispair binding hereditary nonpolyposis colonrectal cancer 

NFl neurofibromin 1 125 121 
Ras GTPase activator activity neurofibromatosis type 1 

PAH phenylalanine hydroxylase 730 126 
phenylalanine catabolism phenylketonuria (PKU) 

PLODl procollagen-Iysine 1, 2-oxoglutarate 5-dioxygenase 1 34 12 
procollagen-Iysine-dioxygenase activity Ehlers-Danlos syndrome type VI 

PMS2 postmeiotic segregation increased 2 348 45 
mismatched DNA binding hereditary nonpolyposis colorectal cancer 

RET ret proto-oncogene 146 97 
transmembrane receptor kinase activity multiple endocrine neoplasia, medullary thyroid carcinoma 

SLC22A5 solute carrier family 22, member 5 95 57 
carnitine transporter activity primary carnitine deficiency 

SMAD4 SMAD family member 4 86 23 
transcription activator activity juvenile polyposis syndrome, pancreatic cancer 

SPINKl serine peptidase inhibitor, Kazal type 1 73 5 
endopeptidase inhibitor activity hereditary pancreatitis 

SPREDl sprouty-related, EVH1 domain containing 1 54 18 
inactivation of MAPK activity Legius syndrome (neurofibromatosis type-like syndrome) 

16 
http://mc.manuscriptcentral.com/jamia 



Page 7 of 24 Journal f Vle Ameri~an Medicjtl-.lflfp rrnattcs AS~Qcia~on 1 R -t unlverslty 01 Ulan J.nSlllUllona epoSl ory 

1 
2 
3 
4 
5 
6 
7 
8 e 
~E 
1 ~ 
1~ 
1~ 
1~ 
13"t 
1 ~ 
1;b 
1 ~ 
1 ~ 
203· 
21rt 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
4C 
4~ 
4~ 

:~ 
46T 
4-;g 
4~ 

~~ 
5~ 
~. 

5~ 
54 
55 
56 
57 
58 
59 
60 

Author Manuscript Crockett et al 

Table 2. Gene-specific and all-gene algorithm PPV as compared to established algorithms. 

Gene PSAApa 

ACVRLl 88 
AlP 91 
BTO 91 
CFTR 90 
COL4AS 88 
ENG 92 
GALT 86 
GJB2 87 
NFl 89 
PAH 89 
PMs2 88 
RET 94 
sLC22AS 90 
SMA 04 
sPREOl 

84 
93 

(avg 89.3 
(min 84.0 
(max 94.0 

AII-geneb 

77 
71 
79 
63 
82 
83 
77 
77 
70 
80 
63 
84 
82 
82 
86 

77.1 
63.0 
86.0 

SIFTc 

57 
71 
77 
68 
58 
62 
66 
69 
64 
59 
64 
78 
74 
71 
71 

67.3 
57.0 
78.0 

PolyPhend 

67 
73 
72 
74 
74 
64 
65 
74 
70 
76 
74 
54 
76 
70 
65 

69.9 
54.0 
76.0 

a Primary Sequence Amino Acid Properties (PSAAP) algorithm, gene-specific trained . 
b Primary Sequence Amino Acid Properties (PSAAP) algorithm, all-gene (n=20) tra ined. 
C Analyzed with default settings at http://sift.jcvLorg. 
d Analyzed with default settings at http://genetics.bwh.harvard.edu/pph. 
e Analyzed with default settings at http://mmb.pcb.ub.es/PMut. 
f Analyzed with default settings at http://mutdb.org/mutpred. 

http://mc.manuscriptcentral.com/jamia 

PMute 

69 
80 
71 
70 
62 
73 
58 
67 
70 
77 
74 
72 
53 
85 
56 

69.1 
53.0 
85.0 

MutPredf 

81 
79 
87 
89 
73 
65 
87 
83 
84 
84 
72 
84 
82 
86 
71 

80.5 ) 
65.0 ) 
89.0 ) 
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Supplementary Table 1. Reference amino acid sequence from UniProtKBa
• 

Gene symbol UniProt # Protein name AA length Date accessed 

ACVRLl P37023 ACVLl_HUMAN 503 December 6,2010 

AlP 000170 AlP _HUMAN 330 January 5, 2011 
BTO P43251 BTD_HUMAN 543 December 6, 2010 

CFTR P13569 CFTR_HUMAN 1480 December 6, 2010 

COL4AS P29400 C04A5_HUMAN 1685 December 7, 2010 

ENG P17813 EGLN_HUMAN 658 December 7, 2010 

GALT P07902 GALT_HUMAN 379 December 7,2010 

GJB2 P29033 CXB2_HUMAN 226 December 7, 2010 

MECP2 P51608 MECP2_HUMAN 486 December 7, 2010 

MsH2 P43246 MSH2_HUMAN 934 December 8, 2010 

MsH6 P52701 MSH6_HUMAN 1360 December 8, 2010 

NFl P21359 NFl_HUMAN 2839 January 5, 2011 

PAH P00439 PH4H_HUMAN 452 January 6, 2011 

PLOOl Q02809 PLOD1_HUMAN 727 December 9, 2010 

PMs2 P54278 PMS2_HUMAN 862 December 9,2010 

RET P07949 RET_HUMAN 1114 December 9,2010 

sLC22AS 076082 S22A5_HUMAN 557 December 9, 2010 

SMA 04 Q13485 SMAD4_HUMAN 552 January 7, 2011 

sPINKl P00995 ISK1_HUMAN 79 December 9, 2010 

sPREOl Q7Z699 SPREl HUMAN 444 December 9,2010 

a http://www.uniprot.org. 
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3 Supplementary Table 2. PPV of gene-specific algorithms to predict pathogenicity in other genes. 
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6 ACVR LI AlP BTD CFTR COL4A5 ENG GALT GJB2 NFl PAH PMS2 RET SLC22A5 SMAD4 SPR EDl 
7 
8 e 
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1 ~ 
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1 ~ 
13"t 
1 ~ 

CFTR 53 62 56 90 56 54 59 55 51 54 47 60 53 57 61 

1;b 
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1 ~ 
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rt 
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2 
3 Supplementary Table 3. Overlap of minimum set of amino acid properties describing disease 
4 
5 association. 

6 
7 
8 e CfsSubset Relief-F SVM-RFE Overlap 

~E ACVRLl 7 39 49 7 
1 ~ AlP 90 29 117 25 
1 ~ 
1~ BTO 41 20 39 8 
1 ~ 

CFTR 19 161 139 12 13"t 
1 ~ COL4A5 63 65 88 21 
1;b 
1 ~ ENG 13 82 59 9 

1 ~ 
203· GALT 46 40 45 35 

rt 
21 GJB2 11 37 145 11 
22 
23 NFl 28 20 39 18 

24 PAH 29 73 129 24 
25 
26 PMs2 13 58 107 11 

27 RET 87 56 47 9 
28 
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Supplementary Figure 1. Specificity of pathogenic mutations demonstrated by plotting A) simulated 
random amino acid substitutions (n=1000) showing a wide distribution that evenly covers the entire 
range of possible substitutions and B) known pathogenic mutations (n=1000) showing characteristic 

trends of specific residues and frequency of substitution. 
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