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Abstract

Background: Though a variety of linkage disequilibrium tests have recently been introduced to measure the signal 

of recent positive selection, the statistical properties of the various methods have not been directly compared. 

While most applications of these tests have suggested that positive selection has played an important role in 

recent human history, the results of these tests have varied dramatically.

Results: Here, we evaluate the performance of three statistics designed to detect incomplete selective sweeps,

LRH and iHS, and ALnLH. To analyze the properties of these tests, we introduce a new computational method that 

can model complex population histories with migration and changing population sizes to simulate gene trees 

influenced by recent positive selection. We demonstrate that iHS performs substantially better than the other two 

statistics, with power of up to 0.74 at the 0.01 level for the variation best suited for full genome scans and a power 

of over 0.8 at the 0.01 level for the variation best suited for candidate gene tests. The performance of the iHS 

statistic was robust to complex demographic histories and variable recombination rates. Genome scans involving 

the other two statistics suffer from low power and high false positive rates, with false discovery rates of up to 0.96 

for ALnLH. The difference in performance between iHS and ALnLH, did not result from the properties of the 

statistics, but instead from the different methods for mitigating the multiple comparison problem inherent in full 

genome scans.

Conclusions: We introduce a new method for simulating genealogies influenced by positive selection with 

complex demographic scenarios. In a power analysis based on this method, iHS outperformed LRH and ALnLH in 

detecting incomplete selective sweeps. We also show that the single-site iHS statistic is more powerful in a 

candidate gene test than the multi-site statistic, but that the multi-site statistic maintains a low false discovery rate 

with only a minor loss of power when applied to a scan of the entire genome. Our results highlight the need for 

careful consideration of multiple comparison problems when evaluating and interpreting the results of full genome 

scans for positive selection.

Background
Until a few years ago, studies of positive selection have 

been limited to sequence data from a single gene cover­

ing only a few thousand nucleotides. Now that detailed 

genetic maps of human variability are available in many 

populations, it is possible to measure the signature of 

positive selection on a genomic scale [1,2]. Traditional 

tools for detecting selection are not applicable to these 

large SNP datasets, as most traditional tests require 

sequence data with no ascertainment bias. However, 

with dense SNP coverage across the genome, it is now
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possible to accurately measure the decay of linkage dise­

quilibrium (LD) over long genomic distances, opening 

the door for new tests that can detect the fingerprint of 

selection across hundreds of thousands of nucleotide 

positions. Most of the tests that measure this signal of 

selection have been constructed using one of two basic 

statistics, Extended Haplotype Homozogosity (EHH) and 

Fraction of Recombinant Chromosomes (FRC) [3,4]. 

Variants of both statistics have been used in multiple 

whole genome scans to provide a global view of recent 

positive selection in humans.

Most of the discussion surrounding these genome 

scans has focused on the similarities of their results, 

since all indicate that positive selection has been a
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surprisingly important force in recent human evolution 

[4-7]. However, beneath the broad picture lie curious 

differences in the results of the two approaches. In 

2006, Wang et al. identified 1799 candidate genes as 

potential targets of recent positive selection in a scan of 

the human genome based on the FRC statistic. Later 

that year, Voight et al. [5] identified 431 candidate genes 

in a similar genome scan using the iHS statistic, which 

is based on EHH. Both groups calculated a summary 

statistic at each site that measured the LD associated 

with that site, and then aggregated those statistics to 

identify candidate loci from the outliers of the empirical 

distribution, with Voight et al. including 1% of the dis­

tribution and Wang et al. including 1.6%. So although 

the Wang et al. study was only slightly less restrictive, it 

identified over four times the number of candidate loci. 

One possible explanation is that FRC is a more powerful 

statistic for detecting recent positive selection. However, 

Voight et al. estimated that the power of iHS to detect 

recent positive selection was approximately 33% for the 

range of allele frequencies considered in Wang et al. If 

their estimate is accurate, even if the power of the FRC 

test is 100%, the discrepancy between the two tests can­

not fully explained. Additional genome scans have 

demonstrated that the differences in these results are 

not artifacts, and instead represent stable differences 

between the two statistics [6,8].

While several studies have estimated the power of 

EHH statistics to infer positive selection, the statistical 

power of FRC has not yet been explored. To address 

this gap, we use simulated data to compare the proper­

ties of FRC and EHH statistics. We first examine the 

power of the single-site statistics of each method under 

explicit null models of neutrality and alternative models 

of selection. We then estimate the false positive rate, 

power, and false discovery rate of each test when 

applied to an empirical distribution of its respective sta­

tistic based on a combination of neutral and selected 

loci.

The available computational methods for simulating 

genealogies cannot easily model complex demographic 

scenarios combined with the presence of positive selec­

tion. Most methods require a single population of con­

stant size. This is problematic when evaluating the 

statistical power of LD-based tests in the presence of 

positive selection, as population bottlenecks and subdivi­

sion can create LD that mimics that generated by selec­

tion. Here, we introduce a new approach for simulating 

positive selection in complex population histories with 

subdivision, migration, bottlenecks, and expansions in a 

coalescent framework. With this approach, we first gen­

erate a set of potential allele trajectories for the favored 

allele using forward-in-time simulations. Then for each 

backwards-in-time simulation, we select an allele

trajectory at random and condition the coalescent simu­

lation on the population sizes and migration history of 

the favored allele as specified by the allele trajectory (see 

Methods).

Results
In our analysis, we considered one test derived from the 

FRC statistic, ALnLH, and two tests derived from the 

EHH statistic, LRH and iHS [3-5], To evaluate the 

effects of population history on the power of each of 

these statistics, we considered four demographic models: 

constant population size, expansion, expansion with 

migration, and bottleneck with migration. For the final 

three models, we obtained parameter values from the 

best fitting model in [9]. From this model, we used 

Africa to represent the expanding population and Eur­

ope to represent the bottlenecked population. For his­

tories with migration, we allowed low levels of 

migration between Europe, Asia, and Africa as specified 

in their model [9]. For selection models, we used the 

estimate for the average strength of recent positive 

selection in humans of s = 0.022 from [8], We set the 

origin generation of the favored allele for each model to 

produce an average allele frequency of approximately

0.5, which met our goal of providing coverage for allele 

frequencies between 0.2 and 0.8.

Throughout the analysis, we calculated two versions of 

the FRC statistic. As originally presented by Wang et al., 

FRC is calculated from unphased data using the indivi­

duals homozygous for each allele at the focal site [4], 

However, the two EHH tests we evaluated, LRH and 

iHS, are calculated from phased data [3,5], This intro­

duces a complication when directly comparing the sta­

tistics with simulated data, since ALnLH will have lower 

power than it would otherwise because it ignores infor­

mation about phase that is available to the other two 

tests. To account for this, we calculated both a phased 

and unphased version of the statistic, ALnLHp and 

ALnLHu, with the phased statistic using information 

from both homozygotes and heterozygotes to infer FRC. 

As shown in Figure la, the power of the unphased sta­

tistic was much lower than the phased statistic when 

one of the alleles is relatively rare, but as the allele fre­

quency approaches 0.5 the two statistics were essentially 

equivalent. Throughout our analysis, we make the sim­

plifying assumption that gametic phase is known, when 

in practice it can only be estimated. While this assump­

tion may bias our evaluation of ALnLHu, the effect 

should be small given the accuracy of current phase 

estimation technology and that ALnLHu ignores infor­

mation from all heterozygote comparisons [4,10,11].

In general, the properties of iHS and ALnLHp were 

similar when the recombination rate was constant (Fig­

ure 1). The power of both tests increased substantially
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Figure 1 Power to detect selection from single-site statistics with a constant recombination rate, for all figures, the power was averaged 
across 4 population histories of constant si7e, expansion, expansion with migration, and bottleneck with migration. Both Al nl Hp and iHS 
performed quite well in most models. ~he pow'er of I RH w'as consistently low'er than the other statistics. Neutral simulations for each set of 
simulation parameters provided the critical values for each statistic, a. Pow'er to detect selection for allele frequencies between 0.? and 0.8 with 
a simulated region of 1 Mb at a significance level of 0.01. Al nl Hp and Al nl Hu w'ere equivalent when allele frequencies w'ere close to 0.5, but 
the pow'er of Al nl Hu drops by 40% with allele frequencies of 0.? and 0.8. b. Pow'er to detect selection in simulated regions of 0.1 Mb to 1 Mb. 
~he pow'er w'as calculated from an equal proportion of allele frequencies 0.?, 0.4, 0.6, and 0.8 for the favored allele at a significance level of 0.01. 
~he average pow'er increased substantially for Al nl H and iHS out to nucleotide lengths of 400 Kb, beyond which there w'as little improvement, 
c. Pow'er to detect selection for significance levels of 0.005 to 0.05 with simulated region of 1 Mb and an equal proportion of allele frequencies 
0.?, 0.4, 0.6, and 0.8 for the favored allele. ~he average pow'er of Al nl Hp and iHS w'as over 0.9 for significance levels of 0.01 or greater.

with the size of the simulated region out to 400 Kb, 

beyond which there was little improvement, as shown in 

Figure lb. Both statistics performed very well even at 

low critical levels, with an average power of over 0.9 at 

the 0.01 level (Figure lc). The statistics also perform 

well across the range of allele frequencies we tested, 

with an average power of over 0.8 at the 0.01 level for 

allele frequencies between 0.2 and 0.8 (Figure la). Both 

statistics maintained high power across all of our demo­

graphic models, though iHS was more sensitive to 

expansions, bottlenecks, and migration (Figure 2). The 

performance of the statistics diverged when we intro­

duced variable recombination rates to the models. 

While both tests were negatively impacted, the effect on 

ALnLHp was much greater, as shown in Figure 3. On 

average, the power of ALnLHp dropped by 46%, while 

iHS dropped by only 8% for (Figure 3). This directly 

reflects the strength of the internal controls for local 

recombination rates within each test. For iHS, there is 

no measure of global recombination rate, and the mea­

surement of LD is based solely on the relative difference 

in LD between the two alleles at each site [5]. For 

ALnLHp, the global recombination rate is based on the 

observed decay of LD at G6PD and the genome devia­

tion from the G6PD model [4]. The test controls for 

local recombination rate by ignoring all sites where the 

observed LD is greater than 1 standard deviation above 

the mean for both alleles. Therefore, positive selection is 

difficult to detect in regions with high recombination 

rates, as discussed by Wang et al. [4] in their analysis of 

positive selection at the DRD4 gene.

For the results presented above, we calculated a statis­

tic for each SNP and evaluated the power to detect 

selection, with the null hypothesis of neutrality and the 

alternative hypothesis of strong positive selection acting 

on the SNP in question. This is an appropriate test for

positive selection when the investigator has a prior 

hypothesis about the potential influence of natural selec­

tion and when there are a small number of candidate 

loci. However, as we demonstrate below, when this sim­

ple strategy is applied to an uninformed scan across the 

genome, it introduces a multiple testing problem that 

heavily weights the significant results toward false posi­

tives. The testing methodology that Voight et al. [5] 

employed for iHS addresses this problem by binning the 

genome into 100 Kb segments, and then calculating the 

fraction of SNPs in each segment with | iHS | greater 

than 2.0 as their test statistic. This approach takes 

advantage of the tight linkage of genetic hitchhikers 

near the favored locus to reduce the number of tests 

from the number of SNPs in the study to the number of 

100 Kb regions in the genome. Their candidate genes 

were those in regions with the highest fraction of signifi­

cant iHS scores, taking the top 1% of the empirical dis­

tribution. By lowering the criteria for a significant iHS 

score and considering the total fraction of significant 

results, they were able to test each 100 Kb region one 

time at the 0.01 level. In contrast, Wang et al. set a 

higher threshold for a significant result and tested each 

SNP individually, taking the top 1.6% of the distribution. 

All genes within 100 Kb of a significant result were 

included as candidate genes, which resulted in poten­

tially hundreds of tests at the 0.016 level for each 200 

Kb region [4].

Figure 4 illustrates the different effects of the two 

approaches. For these results, we follow Teshima et al. 

[12] in combining data from neutral simulations with 

selection simulations to evaluate the performance of 

each empirical test. Since both methods depends heavily 

on the fraction of the genome that has been affected by 

positive selection, we allowed this fraction to vary 

between 0 and 0.1, reporting the corresponding range of
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Figure 2 Power to detect selection from single-site statistics for various demographic models with a constant recombination rate. All
statistics perform well under all 4 population histories. The only statistic notably sensitive to population history was il IS, which performed 
particularly well in models with expansion and relatively worse in models with bottlenecks and migration. The simulated region was I Mb in 
length with an equal proportion of allele frequencies 0.?, 0.4, 0.6, and 0.8 for the favored allele at a significance level of 0.01.

values for power, false positive rates, and false discovery 

rates (Figure 4). Here we distinguish between the false 

positive rate and the false discovery rate, with the first 

equal to the rate of false positives for each test, and the 

second equal to the rate of false positives among all of 

the statistically significant results. Since both tests were 

designed to identify candidate genes from a full genome 

scan, for this analysis we evaluated the statistical proper­

ties of the tests at the gene level rather than the SNP 

level. For the iHS test, we make the simplifying assump­

tion that each gene is contained in a single 100 Kb

region. W ith one 100 Kb test statistic for each gene 

evaluated at the 0.01 level, the false positive rate per 

gene is at most 0.01. For ALnLHu, we treat the test sta­

tistic for each SNP within a 200 Kb region as a separate 

(but not independent) test for each gene. While the 

false positive rate per SNP was 0.016 for ALnLHu [4], 

we estimate that the false positive rate per gene was 

between 0.05 and 0.13. Therefore, of those candidate 

genes identified by Wang et al., we estimate that a frac­

tion between 0.74 and 0.96 are false positives (Figure 

4b). In comparison, we estimate that the false discovery

Figure 3 Effects of variable recombination rate on the power of selection statistics. The variable recombination rate reduced the power of 
il 6 by 8% and the power of Al nl I lp by 46%. The locus recombination rate for each simulation was set to an exponential random variate with 
mean equal to I cm/Mb. For other simulation parameters, see Figure ?.
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Figure 4 Power, false positive rates, and false discovery rates for a) iHS and b) ALnLHu. To obtain critical values, we combined loci from 
neutral simulations with loci from selection simulations in proportion to the fraction of the genome influenced by positive selection ['?]. Our 
implementation of each test followed the methodology employed in the empirical genome scans from [5] (iHS) and Wang et al., ?006 (Al nl H). 
The false discovery rate was between 0 and 0.53 for iHS, and between 0.74 and 0.96 for Al nl Hu. To approximate the histories of the populations 
in the original studies, we combined results from simulations of African and European populations based on the best fitting model in [9]. The 
locus recombination rate for each simulation was set to an exponential random variate with mean equal to ' cm/Mb. For other simulation 
parameters, see Figure ?.

rate for each gene in Voight et al. was between 0 and

0.53. Despite the higher false positive rate, we estimate 

that the power was approximately 25% lower in the 

Wang et al. test due to the issues with uncertain phase 

and variable recombination rates discussed above.

Discussion
From our evaluation of false discovery rates, we can esti­

mate the number of false discoveries for each genomic 

scan. O f the 1799 candidate genes identified by Wang et 

al. [4], we estimate that 1331 to 1727 of those were false 

discoveries. For Voight et al. [5], we estimate that there 

were 0 to 231 false discoveries over 431 candidate 

genes. The estimates for true discoveries are then 72 to 

468 for Wang et al. [4], and 200 to 431 for Voight et al. 

[5], So after adjusting for false discoveries, the two stu­

dies are in close agreement. Given our true discovery 

and power estimates for iHS, we estimate that there are 

between 600 and 1000 variants with an allele frequency 

of at least 0.2 that have been influenced by strong recent 

positive selection in the HapMap phase 2 populations.

While the single-site statistics used in these studies 

perform equally well under simulations with constant 

recombination rates, several factors inhibited the perfor­

mance of ALnLH. These factors primarily involve imple­

mentation details of the test and not the properties of 

the FRC statistic itself. Since both ALnLH and iHS 

methods measure the long range LD for each allele at 

each focal site, it may be possible to design a test based 

on the FRC statistic that matches or exceeds the perfor­

mance of iHS using the Voight et al. implementation as 

a template [5], Five features that should be included in 

such a test are local controls for recombination rate, 

standardization for allele frequency, population specific 

critical regions, external inference of gametic phase, and 

the aggregation of results at nearby loci to mitigate

multiple testing problems. While a future FRC test may 

prove more valuable, the false positive and false discov­

ery rates are too high in the current ALnLH implemen­

tation to provide a useful set of candidate genes in 

genomic scans.

Throughout our analysis of EHH statistics, iHS consis­

tently outperformed LRH. Since specific guidelines are 

not available for determining the core haplotype region 

and level of EHH decay for LRH, we may have underes­

timated the power of LRH. However, we tested 4 sets of 

parameter values using examples in Sabeti et al. as a 

guide [3], and none of the tests were able to match the 

performance of iHS in any of our scenarios.

Our estimates for the power of the iHS test were con­

sistently higher than those reported in Voight et al. [5], 

but it is important to distinguish between our single-site 

analysis vs. our site-aggregation analysis when compar­

ing the two results. Figures 1, 2, and 3 report the power 

of the single-site statistic, which is based on one iHS 

value measuring the decay of LD surrounding one SNP. 

This is not directly comparable to the power analysis in 

Voight et al., which was based on the aggregation of 51 

iHS scores for SNPs near the favored allele [5], This 

aggregation strategy successfully mitigates the multiple 

testing problem inherit in a full genome scan by incor­

porating information from potential genetic hitchhikers 

near the favored allele. However, as demonstrated in the 

comparisons between Figures 3 and 4, the power of the 

site-aggregation test is appreciably lower than the sin­

gle-site test. This tradeoff is worthwhile for uniformed 

genome scans involving large numbers of SNPs, since it 

reduces the number of tests by one or more orders of 

magnitude. However, candidate gene studies that involve 

only a few potential targets of selection do not suffer 

from the same multiple testing problems as full genome 

scans. For these studies, the single-site iHS test is a
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better choice, providing an average power of 0.81 at the

0.01 level according to our estimates (Figure 3).

There are two other considerations when comparing 

the power analysis from Voight et al. [5] with the results 

from this study. First, Voight et al. [5] established criti­

cal values from null models with histories of population 

bottlenecks, but tested those values against selection 

models where the population size was constant. Because 

population bottlenecks also introduce LD, this resulted 

in conservative critical regions and lower power. Second, 

our strategy for simulating ascertainment bias resulted 

in higher SNP density and more low frequency alleles 

compared to Voight et al. [5], which probably elevated 

the power of the test in our analysis when the favored 

allele was relatively rare.

As pointed out by Przeworski et al., empirical scans 

for selection will miss many selection events when they 

are applied to genomes that have been heavily influ­

enced by recent positive selection [13]. This is evident 

in Figure 4a, where the power of iHS is 0.74 when selec­

tive sweeps are very rare, 0.69 when 1% of the genome 

is influenced by positive selection, and drops to 0.33 

when just 5% of the genome influenced by selection. 

This effect could be mitigated by choosing critical values 

from a subset of the genome that has a smaller propor­

tion of recent selection events. We expect a priori that 

nongenic regions are less likely to be targeted by selec­

tion. This expectation is supported in Voight et al. [5], 

where they demonstrated a highly significant enrichment 

for genic regions within the group of loci identified as 

potential targets of positive selection (p < IE-20). By 

establishing critical regions from nongenic regions, it 

may be possible to substantially improve the power of 

genome scans for recent positive selection with only a 

small increase in false positives.

Conclusions
In agreement with previous findings, our results demon­

strate that the multi-site iHS test is an excellent test for 

detecting incomplete selective sweeps in full genome 

scans, with power between 0.33 and 0.74 and false dis­

covery rate between 0 and 0.53 at the 0.01 level. In 

comparison, the power of the ALnLH test in full gen­

ome scans was approximately 25% lower with a false 

discovery rate between 0.74 and 0.96. However, the sta­

tistical properties of the two statistics are quite similar 

when applied to a single site in a candidate gene test, 

with power of over 0.8 at the 0.01 level, demonstrating 

the importance differences in the adjustments made for 

multiple tests in full genome scans. Our results highlight 

the need for careful consideration of multiple compari­

son problems when evaluating and interpreting the 

results of full genome scans for positive selection. The 

algorithm we present for simulating genealogies

influenced by positive selection will allow for more thor­

ough exploration of complex demographic scenarios 

when evaluating methods for detecting positive 

selection.

Methods
Simulating the allele trajectory

To simulate positive selection, we employed the coales­

cent framework first proposed by Kaplan et al. [14], 

where the selected and neutral alleles are treated as two 

subdivided populations. In this method, the trajectory of 

the favored allele is determined separately through 

model or simulation, which provides the population 

sizes of the two allelic classes throughout the coalescent 

simulation. Though there are a variety of existing meth­

ods for generating the trajectory of the favored allele, 

most are limited to simple models of demography and 

selection. The original method of Kaplan et al. [14] 

models strong balancing selection by assuming that 

allele frequencies remain constant. Braverman et al. [15] 

introduced a model of directional selection, but the tra­

jectory path is deterministic. Stochastic simulations of 

the trajectory have generally been limited to backward 

time Moran models, which require a single population 

of fixed size [13,16-18]. Slatkin proposed an importance- 

sampling method that weights realizations of a reversed 

Wright-Fisher model according to the conditional prob­

ability of the trajectory path in forward time given the 

observed genetic data [19]. This model allows for vari­

able population size, and could be extended to include 

population subdivision and migration. However, the 

method is computationally intensive and the introduc­

tion of n subpopulations with migration would increase 

computational complexity by a factor of n2+n. Pickrell 

et al. [7] adopt a hybrid approach, where a single popu­

lation is initialized by coalescent simulation until the 

first population split. From that point on, the simulation 

occurs in forward time using Wright-Fisher drift [7]. 

While this method can model complex demography, it 

does not allow for conditioning on the desired allele fre­

quency of the favored allele. It also requires the simula­

tion to track each recombinant haplotype in each 

subpopulation, and as such is computationally intensive 

even for relatively small genomic regions.

In the interest of developing a more flexible method, 

we introduce a new importance-sampling method based 

on forward Wright-Fisher drift. Consider a sample of n 

sequences from a single subpopulation, x of which carry 

a favored allele that originated t generations ago with a 

selection coefficient of s. We would like to draw ran­

domly from the trajectories that produce x modern 

copies of the favored allele in a sample of size n. To 

accomplish this, we simulate the forward trajectory of 

the favored allele, continuing until the allele is lost,
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becomes fixed, or until t generations have passed. Let p 

equal the frequency of the allele in the subpopulation in 

the final generation. Then the importance weight for 

our desired distribution is the binomial likelihood func­

tion:

w : xp(n ■

Because Wright-Fisher drift is a Markov process, the 

importance weight depends only on the allele frequency 

in the final generation. In contrast, Slatkin’s method 

employs a backward process that is only a rough 

approximation to Wright-Fisher drift, so the sampling 

weight must be calculated over the entire history of the 

two alleles with a separate term for each population and 

for each potential migration path in each generation 

[19].

Because the allele trajectory is generated from Wright- 

Fisher forward simulation, this method can seamlessly 

model complex demographic scenarios that include bot­

tlenecks, expansions, and population subdivision with 

migration. The biggest downside to this flexibility is the 

potential for choosing parameter values that rarely result 

in population allele frequencies that are near the 

observed frequency in the sample. This concern must be 

evaluated when choosing parameter values, as some will 

require a prohibitive number of forward simulations to 

cover the sample space. However, all of the backward 

time methods are approximations to a forward Wright- 

Fisher process, and are meant to model natural pro­

cesses that clearly occur in forward time, so this method 

is adequate for exploring most relevant models of posi­

tive selection and demography. For models where the 

sample allele frequency is particularly unlikely, Slatkin’s 

method will be preferable since it involves a backward 

process conditioned on the sample [19].

For the results presented here, we set s and t to fixed 

values, though in principle they could be set to random 

variates in each forward iteration, reflecting uncertainty 

around estimates of selection strength and allele age. If t 

is a random variable, each origin generation-subpopula­

tion must be weighted by its respective population size 

to reflect the probability that a new mutation originates 

in that generation [19].

Coalescent simulations

We assumed all recombination events were crossovers, 

where a crossover occurs with the favored or neutral 

allele with probability proportional to the frequency of 

the alleles in the subpopulation [20,21]. For models with 

variable recombination rates, we followed Przeworski et 

al. [13] in setting the recombination rate to an exponen­

tial random variate in each simulation, with mean equal 

to the rate of recombination in our constant models, 1

cm/Mb. We adopted the implementation details of the 

coalescent process from [17], storing each generation in 

a lookup table indexed by the cumulative hazard of coa­

lescence. To account for population subdivision, we 

introduced a subpopulation dimension to the coales­

cence table.

The trajectory of the favored allele was generated 

under a model where the migration rates are constant 

between subpopulations for each epoch. However, since 

a trajectory is in part a realization of this random pro­

cess, we could not assume constant migration rates in a 

coalescent simulation based on a particular trajectory. 

The number of individuals of each genotype migrating 

to and from each population in a given generation is 

determined by the forward simulation and is therefore 

treated as a constant during the backward simulation. 

The individual migrants themselves are, however, cho­

sen at random during the backward simulation. To 

implement this process, we introduced two migration 

lookup tables. The first table was analogous to the coa­

lescence lookup table, storing the cumulative hazard of 

migration out of a given subpopulation for each allele. 

We used the second table to determine the destination 

subpopulation of a migrant, by storing the conditional 

probability of migrating from an origin subpopulation to 

a destination subpopulation given that a migration event 

occurred out of the origin subpopulation in a particular 

generation. Expanding on Coop and Griffith’s method, 

we accessed the coalescence and migration lookup 

tables with uniform random variates to generate the 

waiting time until the next event for each subpopula- 

tion-allele combination [17]. We then generate the wait­

ing time until the next recombination event from an 

exponential random variate. Then from the memoryless 

property of the exponential distribution, the next event 

to occur is the event with the shortest wait time [17,20]. 

Ascertainment bias

To introduce ascertainment bias to the simulated data, 

we developed a procedure to model the process in the 

Perlegen dataset. In their SNP discovery process, they 

identified all polymorphic sites in a fully sequenced sub­

sample, then genotyped those sites in a larger sample 

[22]. To replicate their procedure on simulated data, we 

randomly assigned mutation events to the tree under an 

infinite sites model using a mutation rate of 2.2E-8 per 

nucleotide per generation [23]. We then designated 13­

33% of the chromosomes in each simulation as the ascer­

tainment subsample [22]. We excluded all mutations that 

were not polymorphic in the subsample. To generate 

diploid genotypes for calculating FRC, we grouped the 

simulated chromosomes into randomly chosen pairs. 

Statistics

EHH is defined as the probability that two chromo­

somes in a sample share the same haplotype for a given

http://www.biomedcentral.com/1471-2164/11/8
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set of SNPs [3], Sabeti et al. [3] introduced the long 

range haplotype test (LRH), which is calculated by divid­

ing EHH on a core haplotype by EHH among all sam­

ples not containing the core haplotype. Since explicit 

guidelines for identifying the core haplotype were not 

available, we tested two criteria. Our core haplotype 

region was then either a fixed 15 Kb region surrounding 

the focal site, or the first 8 SNPs nearest the focal site 

with minor allele frequencies greater than 0.05, includ­

ing the focal site. The core haplotype was then the lar­

gest haplotype in the core haplotype region. We based 

these criteria on the size of the G6PD region and the 

simulation methodology employed in [3], We calculated 

LRH for both methods at the furthest distance where 

the EHH was greater than either 0.25 or 0.05 at core 

haplotype. In our tests, the 15 Kb regions with an EHH 

cutoff of 0.25 had the highest average power of the 

options we considered, so we only report those results. 

For both LRH and iHS, we measure EHH from the 

expected homozygosity given the allele frequencies of 

each haplotype rather than observed homozygosity.

Voight et al. [5] introduced the integrated EHH (iHH), 

which is the integral of the observed decay of EHH away 

from a particular allele, summing over both directions 

until EHH is less than 0.05. To obtain their single-site 

statistic, iHS, they divide the value of iHH at the ances­

tral allele by the value of at the derived allele and then 

take the natural log. Finally, they standardize iHS by 

subtracting the expectation and dividing by the standard 

deviation, which are conditioned on the frequency of 

the derived allele. This final step accounts for the fre­

quency of the allele, since low frequency derived alleles 

are younger and as such will be associated with longer 

LD blocks.

FRC is the fraction of inferred recombinant chromo­

somes between two sites within a sample [4], Through­

out their analysis, the decay of FRC at G6PD is used as 

a model for recent positive selection, and each site is 

measured by how closely it matches the model. Their 

formula for this model was derived by fitting a sigmoid 

to the observed decay of FRC at G6PD:

F(X) = 12 + 64.4665e
-X-7.47593E—6

where X is the distance from the focal site.

For a given allele at a focal site, Wang et al. calculate 

FRC separately for each site within 500 Kb of the focal 

site with a minor allele frequency greater than 0.1 [4], 

They then input each array of FRC statistics into a 

pseudo-likelihood function to measure the goodness-of- 

fit to the G6PD model under the assumption that FRC 

values are normally distributed. This likelihood is 

adjusted for allele age, as described below.

Positively selected alleles that are much younger than 

G6PD will, in general, have larger LD blocks surround­

ing the selected allele. If the likelihood calculation were 

left unadjusted, this would result in low likelihood 

scores for alleles with very low LD, since they would be 

a poor fit to the G6PD model. This is also an issue for 

alleles older than G6PD or in regions with higher rates 

of recombination. Since these are undesired properties, 

Wang et al. [4] set the likelihood equal to its maximum 

value for each FRC value that is between 0 and F(X) 

+0.1. Their test statistic is then the average log likeli­

hood of selection, ALnLH, for each allele at the focal 

site given the model:

ALnLH = ln

where

g(Yj,Xj):

__ 1_

•J2na

___1_

2N a:

0 Yj < F(Xj) + 0.1 

Yj - F(Xj), Yj > F(Xj) + 0.1

Here, Yi is the FRC at site i, Xi is the distance from 

site i to the focal site, F is the expected value of FRC as 

a function of the distance from the focal site, N is the 

number of sites, and a 2 is the variance of g over the 

entire empirical distribution.

They calculate ALnLH for each allele at each site with 

a homozygote minor allele frequency of greater than

0.05. From the empirical distribution, they determine 

the average and standard deviation of ALnLH scores. 

Candidates for positive selection are those SNPs where 

one allele has an ALnLH score of 2.6 SD above the 

mean while the other allele has a score of less than 1 

SD above the mean. In their 2006 study, these criteria 

included the top 1.6% of the empirical distribution [4], 

We determined the details of this algorithm from source 

code provided by Eric Wang (personal communication).
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