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Analysis of the Short-Time Unbiased Spectrum 
Estimation Algorithm 

V. JOHN MATHEWS, MEMBER, IEEE, AND DAE-HEE YOUN, MEMBER, IEEE 

Abstract-The short-time unbiased spectrum estimation (STUSE) al­
gorithm is analyzed and expressions for the mean and variance of the 
spectrum estimates are derived. The STUSE algorithm deliberately 
adds biased spectrum estimates in order to yield unbiased estimates 
and at the same time have excellent spectral leakage suppression capa­
bilities. Computer simulations are presented, verifying the theoretical 
results and also comparing the STUSE algorithm with the conventional 
weighted, overlapped, segment averaging (WOSA) method. 

I. INTRODUCTION 

C ONVENTIONAL methods of spectrum estimation have 
commonly employed the weighted, overlapped, segment 

averaging (WOSA) algorithm [1] - [3]. While the WOSA algo­
rithm is computationally and statistically attractive, because 
of the inherent windowing involved in discrete Fourier trans­
form (DFT) computations, the estimates are biased and also 
suffer from reduced spectral resolution. The short-time un­
biased spectrum estimation (STUSE) algorithm [4]-[6] was 
proposed recently to overcome the above limitations of the 
WOSA algorithm by overlap adding biased spectrum estimates. 
The STUSE algorithm has been shown to be a very effective 
method for FIR system identification [4] -[6]. FIR system 
identification using the STUSE algorithm has the property 
that the solution to the system identification problem quickly 
approaches the theoretically optimum least squares solution 
as the number of samples used in the estimate increases [4], 
[6]. The usefulness of the STUSE algorithm for estimating 
time delay and magnitude-squared coherence function has 
been demonstrated in [7]. However, many statistical proper­
ties of this algorithm are still little understood. 

In this paper, we derive analytical expressions for the estima­
tion variance of the STUSE algorithm and verify the analysis 
using computer simulations. We also show that the effective 
window function [8] for the STUSE algorithm is uniformly 
superior [9] to the effective window function for the WOSA 
algorithm, implying that the STUSE algorithm suppresses 
spectral leakage better than the WOSA algorithm when both 
the methods use the same linear window function. We also pre­
sent a theoretical and empirical comparison of the variance of 
the estimates obtained using the STUSE and WOSA algorithms. 
It will be shown by means of an example that the STUSE algo­
rithm exhibits smaller estimation variance than the WOSA 
algorithm when the statistical bandwidth [10] of the effective 
windows for both the algorithms are the same. 
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The organization of the paper is as follows. In the next sec­
tion, we review the WOSA method and present the STUSE 
algorithm. Expressions for the estimation variance, assuming 
Gaussian time series, are derived in Section III. Simulation ex­
amples verifying the theoretical results in earlier sections are 
presented in Section IV. Section V contains a summary of the 
results and concluding remarks. 

II. PAST WORK AND THE STUSE ALGORITHM 

Let x I (k) and x 2 (k) for k = 0, 1, ... ,P - 1 be two station­
ary time series. The 2M-point cross-power density spectrum 
(cross-PDS) between x I (k) and X z (k) (if x I (k) = X2 (k) for all 
k, we get the auto-PDS) is defined as 

G12 (f' A2M) = F2M {C12 (m)}; 

m = - M, -M + I, ... , M - 1 

1= 0,1,2,' .. ,2M - 1 (1) 

where 

CJ2(m) =E{xi (k) x2(k - m)} (2) 

is the crosscorrelation function between XI (k) and xz(k), 
F2M {.} denotes the 2M-point discrete Fourier transform of 
{- }, E {. } denotes the statistical expectation of {.}, 

A2M = Is/2M, (3) 

Is is the sampling frequency in Hz, and I is a discrete integer 
frequency index. 

In the WOSA method one segments x J (k) and X2 (k) into N 
overlapped segments of length LI each, applies a linear win­
dow function wen) multiplicatively to each segment, and com­
putes the 2M-point DFT of the lth weighted segment of xiCk) 
as 

for O~n~LI - 1, O~l~N- 1, 

where R denotes the number of samples between successive 
segments (i.e., LI - R samples are overlapped). The cross-PDS 
between x I (k) and X z (k) is now estimated as 

A (w) ) 1 1 G (f. A2M = - . -- . -'---
12 N (2M) r ww(O) 

N-J 

L X1,1(f' A2M) Xi,I(f' A2M) 
1=0 

(5) 
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where 

1 Ll 1 
rww(k)= M L wen) wen - k), 

2 n~O 

Thus, from (12a) and (12b), we can see that if Q1> Q2, andR 
are chosen ca}efully to have constant, ww(m) for 1m I .,:;; M, 

(6) the estimate G~1u· Ll2M) in (8) obtained using the STUSE 
algorithm is unbiased. 

carets denote estimated quantities, and "*,, denotes complex 
conjugate. 
A It has been shown [2], [3] that the expected value of 
Gi:r)U' Ll2M), 

For 'ww(m) to be flat in a given range, QI and Q2 should be 
large enough and R should be chosen such that 1) R = 1, 2) the 
auto-PDS of wen) is zero for nonzero integer multiples of (l/R) 
(this implies that rectangular windows require no overlap, Han­
ning windows require 50 percent overlap, Blackman windows 
require 75 percent overlap, and so on [11]), or 3) R is smaller 

E{G(w)(f' Ll )} = G (f'Ll ) ® Gww(f' Ll2M) 
122M 12 2M rww(O) 

where Gww(f' Ll2M) is the 2M-point auto-PDS of the linear 
window function wen), and ® denotes complex convolution. 

(7) than the "Nyquist" sampling interval of the band-limited win­
dow function wen) [12]. In many cases, the window func­
tions will neither be band limited nor be such that it is zero at 
nonzero multiples of some fundamental frequency. Also, 
since most of the discrete window functions are numerically 
evaluated, errors in numerical computations may give the win­
dow fUnctions nonzero values at frequencies where they 
should have zero value theoretically. In such cases, these win­
dow functions may be considered approximately band limited 
and the shift R may be chosen such that (ljR) is at least twice 
the approximate bandwidth. Thus R may be chosen to be 
less than or equal to one-fourth the window length if we con­
sider the -42 dB bandwidth of Hamming window functions 
[4] -[6]. For a comprehensive study of window functions, 

From (7) we can see that for G~';)(f· Ll2M) to be unbiased, 
G ww U . Ll2M) should be a delta function. However, for all 
the finite length linear window functions, GwwU' Ll2M) ex­
hibits low-pass characteristics and the estimate in (5) is biased. 
Recently, a new spectrum estimation technique has been pro­
posed, in which the influence of the finite window length on a 
spectral estimate can be removed by linearly combining biased 
estimates [41-[6]. This method, which has been referred to 
as the STUSE algorithm [4] computes the cross-PDS between 
Xl (k) and X 2 (k) as 

c?lu· Ll2M) = E G 12, qU' Ll2m ) e j(21f/2M)fRq 

q~Ql 

where 

(8) 

one may refer to [13] -[15] . 
If R is chosen as above, and 

(13) 

All ~l X1,/(f' Ll2M) where lO] is the largest integer smaller than ('),we have 
G12 ,qU' Ll2M)::: N M ~ () L... 

2 rww 0 I~O 
Iml":;;M. (14) 

. Xi, l+qU . Ll2M) 

and 

(9) This is true since shifts beyond Ql and Q2 does not have any 
influence on r ww(m) for 1m J .,:;; M. Now, if 

Q2 
fww(m)= L rww(m +qR). 

q=QI 
(10) 

In (8) the exponential term takes care of the time delay be­
tween the nth and (n + q)th segments. It is assumed here 
that the product of fww(m) and the cross-correlation function 
of Xl (k) and x2(k) is zero for Iml > M, i.e., 

Cll(m)'fww(m)=O; Iml>M. (11) 

A.J; for the case of the WOSA method, we can show that the 
expected value of the cross-PDS estimate using the STUSE 
algorithm is given by 

"'O} GwwU· Ll2M) ) 
E{G I

s
2 U'LlzM) ::: G12(f' Ll2M) ® rww(O) (12a 

where 

GwwU' Ll2M) 
Q2 
L Gww(f' Ll2M) 

q=QI 

Iml>M 

we have 

E{G(S)(f'Ll )}=F {C12(m)'rWw(m)} 
12 2M 2M rww(O) 

= F2M {c12(m)} 

==G12U' Ll2M) 

thus yielding unbiased estimates of the cross-PDS. 
Remarks: 

(15) 

(16a) 

(16b) 

(16c) 

1) The STUSE algorithm with Ql == Q2 ::: 0 is identical to 
the WOSA algorithm. Thus the STUSE algorithm may be 
viewed as a generalization of the WOSA algorithm and there­
fore, all the analysis in this paper apply to the WOSA algo­
rithm also. 

2) If (11) does not hold, the algorithm may be modified as 
follows (7). For q == Ql, ... , Q2, define . 

A I A 

c12,q(m) = FiM {G I2 ,q(/' Ll2M)} (17) 
• ej(21r/2M) fqR = F 2M rr ww(m)}. 

where F- 1 
{. } denotes the 2M-point inverse of {.}. Now com­

(12b) pute the spectrum as 
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(18) 

Note that Iml may be larger than M and that the final FFT 
length 2Kl may be larger than the one used to obtain 
Gn,q(f' ~2M) (Le., 2M). In (I 8), the time shift qR corre­
sponds to the exponential term in (7). 

3) In (7) and (12a), Gww(f' ~2M) and Gww(f' ~2M) will 
be called the effective window functions for the WOSA and 
STUSE algorithms, respectively. Also, rww(k) and rww(k) 
will be referred to as the effective lag window functions for 
the WOSA and STUSE algorithms, respectively. 

We will now show that even when Ql and Qz are not selected 
as in (I3), G ww(f· ~2M) has better sidelobe structure than 
Gww(f·~2M)' Thatis, 

I
E Gww(f· ~2M) e j(21r/2M) fqRI 

I 
Gww~f' .::).2M) I ::: ;..;:..q-:.;Q:...::..I ----------' 

Gww(O) I (Q2 - Ql + 1) I Gww(O)1 

(19a) 

Q2 I Gww(f' ~2M)1I e j(21r/2M) fqR I 
~ L ~~~~~~-~~ 

q;Ql (Qz QI + 1) IGww(O)1 

(19b) 

== j Gww(f' ~2M) I 
Gww(O) . 

(19c) 

Inequalities in (19a )-(19c) imply that the mainlobe width of 
Gww(f . ~2M) is less than or equal to that of Gww(f' ~2l',.f) 
and that the sidelobes of the former are at most as large as that 
of the latter. That is, Gww(f' ~2M) is uniformly superior [9] 
to G ww(f' ~2M)' Because of this, the STUSE algorithm sup­
presses spectral leakage better than the WOSA algorithm when 
both the methods use the same linear window. 

In the next section we will derive analytical expressions for 
the variance of the spectrum estimates obtained using the 
SruSE algorithm. 

III. VARIANCE ANALYSIS 

We will assume that G($)(f· ~2M) for f= 0 1 2 ... 2M-
12 ' " , 

1 in (8) was obtained by first computing a 2L-point inter-
mediate spectr~m G12(f' ~2L) for [= 0,1,2,'" 2L - 1 and 
then sampling Gr2 (f. ~2L) every K = LIM frequency bins. L 
is chosen such that L ~ P and K is an integer. G~1(f· ~2M) 
obtained by this procedure and by (8) and (9) are identical, 
since from (4)-(10) 

" 1 Qz N - 1 L1 - 1 

G1z(Kf· ~2L) = P q~i l~ tl~;O 

. {x t (IR+td x 2«(I+q)R+t2 ) 

. w(tdw(tz )}' e-i (21r/2L) Kf(tl-tz-qR) 

(20a) 

. {x 1 (IR+td x 2«1+q)R+tz ) 

. w(td w(t
z

)} . e -i(21r/2M)f(tt -t2 -qR) 

(20b) 

G~1(f· ~2M) 
for [=0,1,'" ,2M- 1 (20c) 

where 

(21) 

The above procedure is very useful for analysis since all the 
data segments may be correlated. This will become more ap­
parent during the derivation. We will also assume that the data 
belong to a real stationary Gaussian time series. 
No~ the expected value of the product of G12 ,Ql (f. ~2L) 

and G tz, q2 (f. ~2L) is given by 

'E{Xl(lIR+td xz«ll +ql)R+tz)Xl(lzR+t3 ) 

. xz((lz + qz)R + t4)}· w(td w*(tz ) W*(t3) W(t4) 

(22) 

where wet) is taken to be zero for t greater than the window 
length and rww(O) is defined with 2L in the denominator in­
stead of 2M as in (6). 

Because of Gaussianity, the expectation in (22) may be writ­
ten as [16] 

E{-··} =CIZ(-ql R + tl - t.z)Cn(-q2 R + t3 - t4 ) 

+Cll((ll -lz)R + tl . t3)czz«11 + ql 

where 

- (l2 + qz» R + t2 - t4) + Cn WI (lz + q2») 

'R+tl t4 )CI2((l2-(11+q.)R+t3 -tz) 

(23) 

Cij{Jn)=E{Xi(t)Xj(t m)} for i,j=1,or2. (24) 

Expressing Cij(m) as 

(25) 

and substituting (23) and (25) in (22) and simplifying, we 
obtain 
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E{G (f-A )G* (f-A )}::::(G (f·A )e-i (21T/2L)fqIR ® IW(f'AnW} -(G (f·A )e-j(Z1T/2L)fq2 R 
12, ql 2L 12, q2 ZL 12 2L 2L . rWW(O) 12 2L 

® IW(f' A2LW }* + _1 _' 2~1 G ( . A ) G ( . A ) IW«(f-p.)· AzL ) W«(f- v)· AnW 
2L . rww(O) (2L)2 jL~O 11 P. 2L 22 V 2L (2L)2 - r~W(O) 

_ e -j(21T/2L) jLq2R + j(21r/ZL)vqIR } . 

In the above expression, the exponential terms exp {j(21T/2L) 
(II - 12 ) RCIl": v)} take care of the dependence of the II th 
and 12 th segments on each other. If L < P, this expression will 
not give correct results, and hence the need for the analysis 
procedure described at the beginning of this section. The 
first term of (26) is the product of the expected values of 
G!2,ql (f. AzL ) and G12 ,Q2 (f. AZL ) and the third term is 
negligibly small for all f except f:::: 0 and f= L, for most 
choices of window functions [17]. Therefore, the covariance 

between GI2 ,QI (f - AZL ) and G12 ,Q2 (f. A ZL ) may be approx­
imated as 

cov {G I2 , ql (f. A2L ), G12 , Q2(f' A2L )} 

• 1 'Y(f - p., f - vW SHp.- v) e- j(Z1T/2L) V(Ql-Q2) R 

for f:::: 0, 1,2, - .. , 2L - 1 (27) 

where 

[ 

sin (fLRNX) J2 
:::: N - sin (2: RX) 

(28) 

and 

1 (X )12 = I W(x . A2L ) W(Y' AzL ) \ 2. 

. 'Y ,y 2L . r ww(O) 
(29) 

Now, using (8) and (27), the variance of the estimate 
GW(f' An) is given by 

A ,Q2 A 

var {GnU' A2d} = L. cov {G12,ql(f' Azd, 
QI,q2=QI 

G12 , Q2(f' Azd} 
e j(21T/2L) fR(QI-Q2) (30a). 

where 

2L-I 
= -- L GlI(p.- An) 

(2L)2 jL,V=O 

. G2iv' A2L )I'Y(f-p., f- V)12 

·S?(p.- v) S~(f- v) 

(26) 

for f=0,1,"';2L-l (30b) 

(31) 

Since the 2M-point spectrum Gf1(f - AZM) is obtained by 

sampling the 2L-point spectrum Gf1(f - A2L ) every K (::::L/M) 

frequency bins, the variance of G~sl(f· AZM) is given by 

A, 1 2L-I 
var {G~1(f· A2M)}:::: (2L)2 L GlI(p.- An) 

}l,v=O 

. G22(V . A2L )1 r(Kf - p., Kf - vW 

. SfCp.- v) SHKf - v). (32) 

Equation (32) is exact, but for the approximation on the third 
term of (26). For f= 0 and M, the variance is approximately 
twice that given by (32) since the second and third terms of 
(26) are equal at f= 0 and L. We can make further approxi­
mations on (32) if GlI (f. A2L ) and G22(f' A2L ) are relatively 
constant in a region of width equal to the statistical bandwidth 
of Gww(f'An) around the frequency oflnterestf' A2M as 
(see [17]) 

var {G(s)(f' A )} === GlI U- AZM) G22(f' AZM) 
12 ZM (2L)2 

(33) 
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Normalized Gll (f'l!I12S) 

:1 ],,' 1 
0.0 64.0 

FREQUENCY (f) 

(a) 

Normalized G11 (f·l!II2S) 

]----,-1,,'-1 
0,0 FREQUENCY (tl 64.0 

(b) 

Normalized G" (f·l!II2S) 

], "1(,,, 1 
0.0 FREQUENCY (f) 64.0 

(c) 

Fig. 1. Example comparing spectral resolution of the STUSE and 
WOSA algorithms. (a) WOSA with Hanning windows. (b) STUSE 
with Hanning windows. (c) WOSA with rectangular windows. 

Thus, the normalized variance defined as 

NV AR {811(f' ~2M)} 
var {8(s)(j' ~2M)} 

b u 0~ 
= E{81?(f' ~2M)} E{8~1(f· ~2M)} 

1 2L-1 
= --2 2: ir(p,v)j2 Si(p- v) S~(v) (35) 

(2L) /I.,V",O 

is approximately independent of f. 

IV. SIMULATION EXAMPLES 

In this section, we will present four simulation examples, 
demonstrating the properties of the STUSE algorithm and veri­
fying the theoretical results in the previous sections. The first 
example demonstrates the superior spectral resolution of the 
STUSE algorithm, when compared with the WOSA algorithm. 
The second example compares the spectral leakage suppression 
properties of the STUSE and WOSA algorithms. We verify the 
variance expressions derived in Section III, using example 3). 
A comparative study of the normalized variance of the esti­
mates using the STUSE and WOSA algorithms as a function of 
the statistical bandwidth of the effective window functions is 
made in example 4). 

Example 1): The signal used was the sum of two sinusoids 
of frequencies 32 and 33.75 Hz and amplitudes 2 and 1.5, 
respectively, sampled at 128 Hz. Fig. 1 (a) displays the spec­
trum estimates normalized to have a maximum value of one, 

G 11 (f'1I 12S ) (dB) 

0.0 r----=~~------__, 

-(1) 

---- (2) 

- 50.0 L.<.-L-L-L.....L-'---'-L.....L--'---'-L-.L-'-..L....J 

0.0 0.5 
NORMALIZED FREQUENCY (Hz) 

(a) 

G'l (f·1I 12B ) (dB) 
0.0 -.-?"F":~::r--------, 

-(1) 
---- (2) 

- 5 O. 0 ~--'-..L....J-L--'-..L....J---'----'-..L....J---'--'--.L....J 
0.0 0.5 

NORMALIZED FREQUENCY (Hz) 

(b) 

Fig. 2. Example demonstrating the good leakage suppression capability 
of the STUSE algorithm. (a); (1) true spectrum and (2) spectrum 
estimate using the WOSA algorithm. (b); (1) true spectrum and (2) 
spectrum estimate using the STUSE algorithm. 

using the WOSA algorithm using 64-point Hanning windows, 
128-point FFT's, 50 percent overlap, and 1024 data points. 
The corresponding estimates obtained with the STUSE algo­
rithm using the same parameters as above, -Ql = Q2 = 2 and 
using (18) are plotted in Fig. l(b). For comparison, Fig. l(c) 
shows the normalized spectrum estimate using the WOSA 
algorithm with 64-point rectangular windows, I 28-point FFT's 
and 50 percent overlap. It may be noted that this case gives 
the best spectral resolution using the WOSA algorithm, for the 
parameters used. It can be seen that the WOSA algorithm 
cannot distinguish between the two frequency components, 
whereas the STUSE algorithm has good enough resolution to 
discriminate the two frequencies. 

Example 2): The true auto-PDS of the signals used (in 
dB's) and normalized to have a maximum value of zero is 
plotted as curve I in both Fig. 2(a) and (b). Curve 2 in Fig. 
2(a) and (b) are the estimates of the spectrum obtained using 
the WOSA and STUSE algorithms, respectively. Both the algo­
rithms made use of 1024 data points, 64-point Hanning win­
dows, 128-point FFT's, and 75 percent overlap (R = 16). For 
the STUSE algorithm, we used -Ql == Q2 ::: 2 and (8). From 
Fig. 2(a) and (b), we can see that the STUSE algorithm exhib­
its better spectral leakage suppression capability than the 
WOSA algorithm. This property is significant since the STUSE 
algorithm alleviates one of the major drawbacks of linear win­
dowing, namely bias, and at the same time retains its leakage 
suppression property. It may also be noted here that the esti­
mate obtained using the STUSE algorithm is more noisy than 
that obtained using the WOSA algorithm. This is because the 
spectral resolution of the STUSE algorithm is better than that 
of the WOSA method in this example. However, we will see 
in example 4), that for the same spectral resolution of the esti­
mates, the STUSE algorithm shows smaller variance than the 
WOSA method. 
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::ts: =::; I 

0.0 0.5 
NORMALIZED FREQUENCY (Hz) 

Vcr {G ll (f'612S)} 
0.12 

(a) 

-(1) 

---- (2) 

0.0 LL-'--'-.L.J--=""'--'-l..-.-J.-'--'-.1.-''-'----' 
0.0 0.5 

NORMALIZED FREQUENCY (Hz) 

(b) 

NVAR {G n (f '612S )} 
~6 -

-(1) 
---- (2) 

'v' 

0.0 LL--'--'--.L.J'-'--'-..L-l..-.-J.-'--'-.L.J--L.---' 
QO Q5 

NORMALIZED FREQUENCY (Hz) 

(c) 

Fig. 3. Theoretical and empirical averages for example 3). (a): (1) true 
spectrum and (2) ensemble mean. (b): (1) theoretical variance and 
(2) ensemble variance. (c): (1) theoretical normalized variance and 
(2) ensemble normalized variance. 

Example 3): In this example, we compute the auto power 
density spectrum of the signal obtained by passing a zero 
mean, Gaussian white signal through a second-order filter 
whose transfer function is given by 

H(z) = 0~367z-1 . 
1 - Z I + 0.4z-2 (36) 

The ensemble mean of eighty independent spectrum estimates 
using 1024 data points each obtained by the STUSE algorithm 
is displayed in Fig. 3(a), along with the true spectrum. We 
used 64-point Hanning windows, 12S-point FFT's, 75 percent 
overlap and -QI = Q2 = 2 for the estimation using (S). Fig. 
3(b) displays the ensemble variance of the estimates along with 
the theoretical variance given by (33). Also, plotted as Fig. 
3(c) are the theoretical normalized variance given by (35) and 
the ensemble normalized variance. We can see that the corre­
spondence between the simulation results and theoretical re­
sults is excellent. At f = 0 and 64, the ensemble variance is 
about twice the value given by (33), which is in accordance 
with the discussion after (32). 

Example 4): We will now compare the normalized variance 
of the spectrum estimates obtained using the STUSE and 
WOSA algorithm as a function of the statistical bandwidth of 
the effective window function. The statistical bandwidth of 
the effective window function We(f' ~2M) is defined as [10] 

NVAR {G ll (f'62M)} 

1.25 

---(1) 

------ (2) 
----(3) 
----(4) 

0.0 ~----'---L-~:;:::J::::i;::::::c:::r::::c:r::::::r::::r:=-d 
0.0 

NORMALIZED RESOLUTION (Hz) 
0.064 

Fig. 4. Comparison of normalized variances of the estimates using the 
STUSE and the WOSA algorithms as a function of the normalized 
resolution of the estimates. (1) STUSE-theoretical, (2) STUSE­
empirical, (3) WOSA-theoretical, and (4) WOSA-empirical. 

2M-l 
(37) 

L W;(f. ~2M) 
[=0 

The signals used were zero-mean white Gaussian with unit vari­
ance and forty independent estimates were made. The nor­
malied variance was obtained as the average over all frequencies 
of the ensemble normalized variance. We used Hanning win­
dows and 50 percent overlap for both the algorithms. For the 
STUSE algorithm, the linear window used was always a 32-
point Hanning window function and the statistical bandwidth 
was varied by increasing Q = -QI = Q2 from 0 to 16. The FFT 
lengths (2M) used to compute G12 , q(f. ~2M) was 64, but the 
final FFT length (2K d depended on Q. Equation (1S) was 
used to compute all the estimates. The statistical bandwidth 
of the window function for the WOSA algorithm was varied by 
changing the win dow length L I from 32 to 1024. FFT lengths 
used were such that they were always greater than 2L 1 • 

Fig. 4 displays the normalized variance obtained from the 
simulations for both the STUSE and WOSA algorithms as a 
function of the statistical bandwidth of their effective window 
functions as well as the corresponding theoretical curves given 
by (25). (Note that (33) is the same as (32) since the signal 
is white.) Once again, the agreement between theoretical and 
simulation results is excellent. We can see from the curves 
that for the same statistical bandwidth, the STUSE algorithm 
performs better than the WOSA algorithm from an estimation 
variance point of view. 

V. SUMMARY AND CONCLUSIONS 

The short-time unbiased spectrum estiination algorithm was 
analyzed and expressions for the variance of the spectrum esti­
mates were derived. Simulation examples presented showed 
excellent agreement between analytical and simulation results. 
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We also showed that while the STUSE algorithm alleviates the 
problem of bias due to windowing, it retains the spectral leak­
age suppression capability of the linear window used. The last 
simulation result demonstrated that for the same statistical 
bandwidth of the effective window functions, the STUSE algo­
rithm performs better than the WOSA algorithm, when the 
same type of linear windows and the same overlap between 
adjacent segments are used. However, this improvement in 
performance is achieved at the cost of higher computational 
cost. The statistical properties of the STUSE algorithm sug­
gest that it is a viable and possibly better alternative for the 
\VOSA algorithm, especially when computational considera­
tions are not paramount. The usefulness of the STUSE algo­
rithm in applications such as FIR system identification, time 
delay estimation, and magnitude-squared coherence func­
tion estimation, has already been documented in literature 
[4J -[7]. 
It may be pointed out that the variance analysis in Section 

III follows closely the work in [17J. However, the derivations 
in this paper are done completely in the discrete domain and 
therefore applicable to all values of FFT lengths, irrespective 
of the length of observation periods. 
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