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Abstract

Recent systems have been developed for 
sentiment classification, opinion recogni
tion, and opinion analysis (e.g., detect
ing polarity and strength). We pursue an
other aspect of opinion analysis: identi
fying the sources of opinions, emotions, 
and sentiments. We view this problem as 
an information extraction task and adopt 
a hybrid approach that combines Con
ditional Random Fields (Lafferty et al., 
2001) and a variation of AutoSlog (Riloff, 
1996a). While CRFs model source iden
tification as a sequence tagging task, Au
toSlog learns extraction patterns. Our re
sults show that the combination of these 
two methods performs better than either 
one alone. The resulting system identifies 
opinion sources with precision and 

recall using a head noun matching 
measure, and precision and
recall using an overlap measure.

1 Introduction

In recent years, there has been a great deal of in
terest in methods for automatically identifying opin
ions, emotions, and sentiments in text. Much of 
this research explores sentiment classification, a text 
categorization task in which the goal is to classify 
a document as having positive or negative polar
ity (e.g., Das and Chen (2001), Pang et al. (2002), 
Turney (2002), Dave et al. (2003), Pang and Lee

(2004)). Other research efforts analyze opinion ex
pressions at the sentence level or below to recog
nize opinions, their polarity, and their strength (e.g., 
Dave et al. (2003), Pang and Lee (2004), Wilson et 
al. (2004), Yu and Hatzivassiloglou (2003), Wiebe 
and Riloff (2005)). Many applications could ben
efit from these opinion analyzers, including prod
uct reputation tracking (e.g., Morinaga et al. (2002), 
Yi et al. (2003)), opinion-oriented summarization 
(e.g., Cardie et al. (2004)), and question answering 
(e.g., Bethard et al. (2004), Yu and Hatzivassiloglou
(2003)).

We focus here on another aspect of opinion 
analysis: automatically identifying the sources of 
the opinions. Identifying opinion sources will 
be especially critical for opinion-oriented question- 
answering systems (e.g., systems that answer ques
tions of the form “How does [X] feel about [Y]?”) 
and opinion-oriented summarization systems, both 
of which need to distinguish the opinions of one 
source from those of another.1

The goal of our research is to identify direct and 
indirect sources of opinions, emotions, sentiments, 
and other p r iv a te  s ta tes  that are expressed in text. 
To illustrate the nature of this problem, consider the 
examples below:

SI: Taiwan-born voters favoring independence...

1In related work, we investigate methods to identify the 
opinion expressions (e.g., Riloff and Wiebe (2003), Wiebe and 
Riloff (2005), Wilson et al. (2005)) and the nesting structure 
of sources (e.g., Breck and Cardie (2004)). The target of each 
opinion, i.e., what the opinion is directed towards, is currently 
being annotated manually for our corpus.



S2: According to the report, the human rights 
record in China is horrendous.

S3: International officers believe that the EU will 
prevail.

S4: International officers said US officials want the 
EU to prevail.

In S1, the phrase “Taiwan-born voters” is the di
rect (i.e., first-hand) source of the “favoring” sen
timent. In S2, “the report” is the direct source of 
the opinion about China's human rights record. In
53, “International officers” are the direct source of 
an opinion regarding the EU. The same phrase in
54, however, denotes an indirect (i.e., second-hand, 
third-hand, etc.) source of an opinion whose direct 
source is “US officials”.

In this paper, we view source identification  as an 
information extraction task and tackle the problem 
using sequence tagging and pattern matching tech
niques simultaneously. Using syntactic, semantic, 
and orthographic lexical features, dependency parse 
features, and opinion recognition features, we train a 
linear-chain Conditional Random Field (CRF) (Laf- 
ferty et al., 2001) to identify opinion sources. In ad
dition, we employ features based on automatically 
learned extraction patterns and perform feature in
duction on the CRF model.

We evaluate our hybrid approach using the NRRC 
corpus (Wiebe et al., 2005), which is manually 
annotated with direct and indirect opinion source 
information. Experimental results show that the 
CRF model performs well, and that both the extrac
tion patterns and feature induction produce perfor
mance gains. The resulting system identifies opinion 
sources with 79.3% precision and 59.5% recall us
ing a head noun matching measure, and pre
cision and recall using an overlap measure.

2 The Big Picture

The goal of information extraction (IE) systems is 
to extract information about events, including the 
participants of the events. This task goes beyond 
Named Entity recognition (e.g., Bikel et al. (1997)) 
because it requires the recognition of role relation
ships. For example, an IE system that extracts in
formation about corporate acquisitions must distin
guish between the company that is doing the acquir
ing and the company that is being acquired. Sim

ilarly, an IE system that extracts information about 
terrorism must distinguish between the person who 
is the perpetrator and the person who is the victim. 
We hypothesized that IE techniques would be well- 
suited for source identification because an opinion 
statement can be viewed as a kind of speech event 
with the source as the agent.

We investigate two very different learning-based 
methods from information extraction for the prob
lem of opinion source identification: graphical mod
els and extraction pattern learning. In particular, we 
consider Conditional Random Fields (Lafferty et al.,
2001) and a variation of AutoSlog (Riloff, 1996a). 
CRFs have been used successfully for Named En
tity recognition (e.g., McCallum and Li (2003), 
Sarawagi and Cohen (2004)), and AutoSlog has per
formed well on information extraction tasks in sev
eral domains (Riloff, 1996a). While CRFs treat 
source identification as a sequence tagging task, Au
toSlog views the problem as a pattern-matching task, 
acquiring symbolic patterns that rely on both the 
syntax and lexical semantics of a sentence. We hy
pothesized that a combination of the two techniques 
would perform better than either one alone.

Section 3 describes the CRF approach to identify
ing opinion sources and the features that the system 
uses. Section 4 then presents a new variation of Au
toSlog, A utoS log-SE , which generates IE patterns to 
extract sources. Section 5 describes the hybrid sys
tem: we encode the IE patterns as additional features 
in the CRF model. Finally, Section 6 presents our 
experimental results and error analysis.

3 Semantic Tagging via Conditional 
Random Fields

We defined the problem of opinion source identifi
cation as a sequence tagging task via CRFs as fol
lows. Given a sequence of tokens, , 
we need to generate a sequence of tags, or labels, 
U =  y i y 2 ---Un. We define the set of possible label 
values as ' S ' ,  ' T ' , ' - ' ,  where ' S '  is the first to
ken (or Start) of a source, 'T '  is a non-initial token 
(i.e., a conTinuation) of a source, and ' - '  is a token 
that is not part of any source.2

A detailed description of CRFs can be found in

2This is equivalent to the IOB tagging scheme used in syn
tactic chunkers (Ramshaw and Marcus, 1995).



Lafferty et al. (2001). For our sequence tagging 
problem, we create a linear-chain CRF based on 
an undirected graph , where is the
set of random variables ,
one for each of tokens in an input sentence; 
and is the set
of edges forming a linear chain. For each
sentence , we define a non-negative clique poten
tial e x p ^ L i  h f k ( y i - u  Hi, %)) for each e ^  and 
cxP(Efc=i K :.fk (y i> *)) for each node, where 
is a binary feature indicator function, is a weight 
assigned for each feature function, and and 
are the number of features defined for edges and 
nodes respectively. Following Lafferty et al. (2001), 
the conditional probability of a sequence of labels 
given a sequence of tokens is:

P (y\x) =  ^ e x p r ^ A fc/fc(i/i-i,i/i,x)+^A 'fc/fc(i/i,x)'j 
x ' i . k  i.k ‘

(1)

Z* = Y 1 exp( i l  Afc My*-1*v^x) + Y I x 'k x))
y ' i.k i.k '

(2)

where is a normalization constant for each 
. Given the training data , a set of sen

tences paired with their correct ' S T - '  source la
bel sequences, the parameters of the model are 
trained to maximize the conditional log-likelihood 

. For inference, given a sentence 
in the test data, the tagging sequence is given by 
argmax .

3.1 Features
To develop features, we considered three properties 
of opinion sources. First, the sources of opinions are 
mostly noun phrases. Second, the source phrases 
should be semantic entities that can bear or express 
opinions. Third, the source phrases should be di
rectly related to an opinion expression. When con
sidering only the first and second criteria, this task 
reduces to named entity recognition. Because of the 
third condition, however, the task requires the recog
nition of opinion expressions and a more sophisti
cated encoding of sentence structure to capture re
lationships between source phrases and opinion ex
pressions.

With these properties in mind, we define the fol
lowing features for each token/word in an input 
sentence. For pedagogical reasons, we will describe 
some of the features as being multi-valued or cate
gorical features. In practice, however, all features 
are binarized for the CRF model.
Capitalization features We use two boolean fea
tures to represent the capitalization of a word:
a l l - c a p i t a l , i n i t i a l - c a p i t a l .
Part-of-speech features Based on the lexical cat
egories produced by GATE (Cunningham et al.,
2002), each token is classified into one of a set 
of coarse part-of-speech tags: noun, verb, adverb, 
wh-word, determiner, punctuation, etc. We do the 
same for neighboring words in a window
in order to assist noun phrase segmentation. 
Opinion lexicon features For each token , we in
clude a binary feature that indicates whether or not 
the word is in our opin ion  lexicon  — a set of words 
that indicate the presence of an opinion. We do the 
same for neighboring words in a window.
Additionally, we include for a feature that in
dicates the opinion subclass associated with Xj, if 
available from the lexicon. (e.g., “bless” is clas
sified as “moderately subjective” according to the 
lexicon, while “accuse” and “berate” are classified 
more specifically as “judgments”.) The lexicon is 
initially populated with approximately 500 opinion 
words 3 from (Wiebe et al., 2002), and then aug
mented with opinion words identified in the training 
data. The training data contains manually produced 
phrase-level annotations for all expressions of opin
ions, emotions, etc. (Wiebe et al., 2005). We col
lected all content words that occurred in the training 
set such that at least 50% of their occurrences were 
in opinion annotations.
Dependency tree features For each token , we 
create features based on the parse tree produced by 
the Collins (1999) dependency parser. The purpose 
of the features is to (1) encode structural informa
tion, and (2) indicate whether is involved in any 
grammatical relations with an opinion word. Two 
pre-processing steps are required before features can 
be constructed:

3Some words are drawn from Levin (1993); others are from 
Framenet lemmas (Baker et al. 1998) associated with commu
nication verbs.



1. Syntactic chunking. We traverse the depen
dency tree using breadth-first search to identify 
and group syntactically related nodes, produc
ing a flatter, more concise tree. Each syntac
tic “chunk” is also assigned a grammatical role
(e.g., subject ,  object ,  verb modif ier ,  time, 
lo ca tio n , of-pp,  by-pp) based on its con
stituents. Possessives (e.g., “Clinton’s idea”) 
and the phrase “according to X” are handled as 
special cases in the chunking process.

2. Opinion word propagation. Although the 
opinion lexicon contains only content words 
and no multi-word phrases, actual opinions of
ten comprise an entire phrase, e.g., “is really  
w illin g ” or “in m y o p in io n ”. As a result, we 
mark as an opinion the entire chunk that con
tains an opinion word. This allows each token 
in the chunk to act as an opinion word for fea
ture encoding.

After syntactic chunking and opinion word propa
gation, we create the following dependency tree fea
tures for each token xf.

the grammatical role of its chunk
•  the grammatical role of £ i_ i ’s chunk 

whether the parent chunk includes an opinion 
word
whether ’s chunk is in an argument position
with respect to the parent chunk
whether represents a constituent boundary

Semantic class features We use 7 binary fea
tures to encode the semantic class of each word 
Xi'. a u t h o r i t y ,  g o v e r n m e n t ,  human,  m e d i a ,  
o r g a n i z a t i o n _ o r _ c o m p a n y ,  p r o p e r _ n a m e ,  
and o t h e r .  The o t h e r  class captures 13 seman
tic classes that cannot be sources, such as v e h i c l e  
and t i m e .

Semantic class information is derived from named 
entity and semantic class labels assigned to by the 
Sundance shallow parser (Riloff, 2004). Sundance 
uses named entity recognition rules to label noun 
phrases as belonging to named entity classes, and 
assigns semantic tags to individual words based on 
a semantic dictionary. Table 1 shows the hierarchy 
that Sundance uses for semantic classes associated 
with opinion sources. Sundance is also used to rec
ognize and instantiate the source extraction patterns

SOURCE

AUTHORITY
— COMPANY
— GOVERNMENT
— MEDIA
— ORGANIZATION 

HUMAN NATIONALITY

LOCATION
— CITY
— COUNTRY
— PLANET
— PROVINCE

PROPER NAME

— PERSON DESC 
PERSON NAME

— TITLE

Figure 1. The semantic hierarchy for opinion 
sources

that are learned by AutoSlog-SE, which is described 
in the next section.

4 Semantic Tagging via Extraction 
Patterns

We also learn patterns to extract opinion sources us
ing a statistical adaptation of the AutoSlog IE learn
ing algorithm. AutoSlog (Riloff, 1996a) is a super
vised extraction pattern learner that takes a train
ing corpus of texts and their associated answer keys 
as input. A set of heuristics looks at the context 
surrounding each answer and proposes a lexico- 
syntactic pattern to extract that answer from the text. 
The heuristics are not perfect, however, so the result
ing set of patterns needs to be manually reviewed by 
a person.

In order to build a fully automatic system that 
does not depend on manual review, we combined 
AutoSlog’s heuristics with statistics from the an
notated training data to create a fully automatic 
supervised learner. We will refer to this learner 
as AutoSlog-SE (Statistically Enhanced variation 
of AutoSlog). AutoSlog-SE’s learning process has 
three steps.

Step 1: AutoSlog’s heuristics are applied to every 
noun phrase (NP) in the training corpus. This 
generates a set of extraction patterns that, col
lectively, can extract every NP in the training 
corpus.

Step 2: The learned patterns are augmented with 
selectional restrictions that semantically con
strain the types of noun phrases that are legiti
mate extractions for opinion sources. We used



the semantic classes shown in Figure 1 as se
lectional restrictions.

Step 3: The patterns are applied to the training cor
pus and statistics are gathered about their ex
tractions. We count the number of extrac
tions that match annotations in the corpus (cor
rect extractions) and the number of extractions 
that do not match annotations (incorrect extrac
tions). These counts are then used to estimate 
the probability that the pattern will extract an 
opinion source in new texts:

correct sourcesF(source pattern ) = ------------------------------------------
correct sources incorrect sources

This learning process generates a set of extraction 
patterns coupled with probabilities. In the next sec
tion, we explain how these extraction patterns are 
represented as features in the CRF model.

5 Extraction Pattern Features for the CRF

The extraction patterns provide two kinds of infor
mation. S o u r c e P a t t  indicates whether a word 
activates any source extraction pattern. For exam
ple, the word “c o m p la in ed ” activates the pattern 
“< s u b j>  co m p la in ed ” because it anchors the ex
pression. S o u r c e E x t r  indicates whether a word is 
extracted by any source pattern. For example, in the 
sentence “President Jacques Chirac frequently com
plained about France’s economy”, the words “Pres
ident”, “Jacques”, and “Chirac” would all be ex
tracted by the “< s u b j>  c o m p la in ed ” pattern.

Each extraction pattern has frequency and prob
ability values produced by AutoSlog-SE, hence we 
create four IE pattern-based features for each token 
xf. S o u r c e P a t t - F r e q ,  S o u r c e E x t r - F r e q ,  
S o u r c e P a t t - P r o b ,  and S o u r c e E x t r - P r o b ,  
where the frequency values are divided into three 
ranges: {0, 1, 2+} and the probability values are di
vided into five ranges of equal size.

6 Experiments

We used the Multi-Perspective Question Answering 
(MPQA) corpus4 for our experiments. This corpus

4The MPQA corpus can be freely obtained at 
http://nrrc.mitre.org/NRRC/publications.htm.

consists of documents that have been manu
ally annotated with opinion-related information in
cluding direct and indirect sources. We used 
documents as a tuning set for model development 
and feature engineering, and used the remaining 
documents for evaluation, performing 10-fold cross 
validation. These texts are English language ver
sions of articles that come from many countries and 
cover many topics.5

We evaluate performance using 3 measures: over
lap match (OL), head match (HM), and exact match 
(EM). OL is a lenient measure that considers an ex
traction to be correct if  it overlaps with any of the an
notated words. HM is a more conservative measure 
that considers an extraction to be correct if  its head 
matches the head of the annotated source. We report 
these somewhat loose measures because the annota
tors vary in where they place the exact boundaries 
of a source. EM is the strictest measure that requires 
an exact match between the extracted words and the 
annotated words. We use three evaluation metrics: 
recall, precision, and F-measure with recall and pre
cision equally weighted.

6.1 Baselines
We developed three baseline systems to assess the 
difficulty of our task. B aselin e-1  labels as sources 
all phrases that belong to the semantic categories 
a u t h o r i t y ,  g o v e r n m e n t ,  human,  m e d i a ,  
o r g a n i z a t i o n _ o r _ c o m p a n y ,  p r o p e r _ n a me .  
Table 1 shows that the precision is poor, suggest
ing that the third condition described in Section 3.1 
(opinion recognition) does play an important role in 
source identification. The recall is much higher but 
still limited due to sources that fall outside of the se
mantic categories or are not recognized as belong
ing to these categories. B aselin e-2  labels a noun 
phrase as a source if  any of the following are true:
(1) the NP is the subject of a verb phrase containing 
an opinion word, (2) the NP follows “accord in g  to ” ,
(3) the NP contains a possessive and is preceded by 
an opinion word, or (4) the NP follows “by ” and at
taches to an opinion word. B aselin e-2 's  heuristics 
are designed to address the first and the third condi
tions in Section 3.1. Table 1 shows that B aselin e-2  
is substantially better than B aselin e-1 . B aselin e-3

5This data was obtained from the Foreign Broadcast Infor
mation Service (FBIS), a U.S. government agency.

http://nrrc.mitre.org/NRRC/publications.htm


Recall Prec FI

Baseline-1
OL 77.3 28.8 42.0
HM 71.4 28.6 40.8
EM 65.4 20.9 31.7

Baseline-2
OL 62.4 60.5 61.4
HM 59.7 58.2 58.9
EM 50.8 48.9 49.8

Baseline-3
OL 49.9 72.6 59.2
HM 47.4 72.5 57.3
EM 44.3 58.2 50.3

Extraction Patterns
OL 48.5 81.3 60.8
HM 46.9 78.5 58.7
EM 41.9 70.2 52.5

CRF: 
basic features

OL 56.1 81.0 66.3
HM 55.1 79.2 65.0
EM 50.0 72.4 59.2

CRF: 
basic + IE pattern 

features

OL 59.1 82.4 68.9
HM 58.1 80.5 67.5
EM 52.5 73.3 61.2

CRF-FI: 
basic features

OL 57.7 80.7 67.3
HM 56.8 78.8 66.0
EM 51.7 72.4 60.3

CRF-FI: 
basic + IE pattern 

features

OL 60.6 81.2 69.4
HM 59.5 79.3 68.0
EM 54.1 72.7 62.0

Table 1. Source identification performance table

labels a noun phrase as a source if it satisfies both 
B aselin e-1  and B a se lin e-2 ’s conditions (this should 
satisfy all three conditions described in Section 3.1). 
As shown in Table 1, the precision of this approach 
is the best of the three baselines, but the recall is the 
lowest.

6.2 Extraction Pattern Experiment

We evaluated the performance of the learned extrac
tion patterns on the source identification task. The 
learned patterns were applied to the test data and 
the extracted sources were scored against the manual 
annotations.6 Table 1 shows that the extraction pat
terns produced lower recall than the baselines, but 
with considerably higher precision. These results 
show that the extraction patterns alone can identify

6These results were obtained using the patterns that had a 
probability .50 and frequency 1.

nearly half of the opinion sources with good accu
racy.

6.3 CRF Experiments
We developed our CRF model using the MALLET 
code from McCallum (2002). For training, we used 
a Gaussian prior of 0.25, selected based on the tun
ing data. We evaluate the CRF using the b a sic  fea 
tures from Section 3, both with and without the IE 
pattern features from Section 5. Table 1 shows that 
the CRF with basic features outperforms all of the 
baselines as well as the extraction patterns, achiev
ing an F-measure of 66.3 using the OL measure, 
65.0 using the HM measure, and 59.2 using the 
EM measure. Adding the IE pattern features fur
ther increases performance, boosting recall by about
3 points for all of the measures and slightly increas
ing precision as well.

CRF with feature induction. One limitation of 
log-linear function models like CRFs is that they 
cannot form a decision boundary from conjunctions 
of existing features, unless conjunctions are explic
itly given as part of the feature vector. For the 
task of identifying opinion sources, we observed 
that the model could benefit from conjunctive fea
tures. For instance, instead of using two separate 
features, h u m a n  and p a r e n t - c h u n k - i n c l u d e s -  
OPINION-EXPRESSION, the conjunction of the two 
is more informative.

For this reason, we applied the CRF feature in
duction approach introduced by McCallum (2003). 
As shown in Table 1, where CRF-FI stands for the 
CRF model with feature induction, we see consis
tent improvements by automatically generating con
junctive features. The final system, which com
bines the basic features, the IE pattern features, 
and feature induction achieves an F-measure of 69.4 
(recall=60.6%, precision=81.2%) for the OL mea
sure, an F-measure of 68.0 (recall=59.5%, preci- 
sion=79.3%) for the HM measure, and an F-measure 
of 62.0 (recall=54.1%, precision=72.7%) for the EM 
measure.

6.4 Error Analysis
An analysis of the errors indicated some common 
mistakes.

Some errors resulted from error propagation in



our subsystems. Errors from the sentence bound
ary detector in GATE (Cunningham et al., 2002) 
were especially problematic because they caused 
the Collins parser to fail, resulting in no depen
dency tree information.

Some errors were due to complex and unusual 
sentence structure, which our rather simple fea
ture encoding for CRF could not capture well.

Some errors were due to the limited coverage of 
the opinion lexicon. We failed to recognize some 
cases when idiomatic or vague expressions were 
used to express opinions.

Below are some examples of errors that we found 
interesting. Doubly underlined phrases indicate in
correctly extracted sources (either false positives 
or false negatives). Opinion words are singly 
underlined.
False positives:

(1) Actually, these three countries do have one common 
denominator, i.e., that their values and policies do not 
agree with those of the United States and none of them 
are on good terms with the United States.
(2) Perhaps this is why Fidel Castro has not spoken out 
against what might go on in Guantanamo.

In (1), “their values and policies” seems like a rea
sonable phrase to extract, but the annotation does not 
mark this as a source, perhaps because it is some
what abstract. In (2), “spoken out” is negated, which 
means that the verb phrase does not bear an opinion, 
but our system failed to recognize the negation.
False negatives:

(3) And for this reason, too, they have a moral duty to 
speak out, as Swedish Foreign Minister Anna Lindh, 
among others, did yesterday.
(4) In particular, Iran and Iraq are at loggerheads with 
each other to this day.

Example (3) involves a complex sentence structure 
that our system could not deal with. (4) involves an 
uncommon opinion expression that our system did 
not recognize.

7 Related Work

To our knowledge, our research is the first to auto
matically identify opinion sources using the MPQA 
opinion annotation scheme. The most closely re
lated work on opinion analysis is Bethard et al.
(2004), who use machine learning techniques to 
identify propositional opinions and their holders 
(sources). However, their work is more limited

in scope than ours in several ways. Their work 
only addresses propositional opinions, which are 
“localized in the propositional argument” of cer
tain verbs such as “believe” or “realize”. In con
trast, our work aims to find sources for all opinions, 
emotions, and sentiments, including those that are 
not related to a verb at all. Furthermore, Berthard 
et al.’s task definition only requires the identifica
tion of direct sources, while our task requires the 
identification of both direct and indirect sources. 
Bethard et al. evaluate their system on manually 
annotated FrameNet (Baker et al., 1998) and Prop- 
Bank (Palmer et al., 2005) sentences and achieve 
48% recall with 57% precision.

Our IE pattern learner can be viewed as a cross 
between AutoSlog (Riloff, 1996a) and AutoSlog- 
TS (Riloff, 1996b). AutoSlog is a supervised learner 
that requires annotated training data but does not 
compute statistics. AutoSlog-TS is a weakly super
vised learner that does not require annotated data 
but generates coarse statistics that measure each pat
tern’s correlation with relevant and irrelevant docu
ments. Consequently, the patterns learned by both 
AutoSlog and AutoSlog-TS need to be manually re
viewed by a person to achieve good accuracy. In 
contrast, our IE learner, AutoSlog-SE, computes 
statistics directly from the annotated training data, 
creating a fully automatic variation of AutoSlog.

8 Conclusion

We have described a hybrid approach to the problem 
of extracting sources of opinions in text. We cast 
this problem as an information extraction task, using 
both CRFs and extraction patterns. Our research is 
the first to identify both direct and indirect sources 
for all types of opinions, emotions, and sentiments.

Directions for future work include trying to in
crease recall by identifying relationships between 
opinions and sources that cross sentence boundaries, 
and relationships between multiple opinion expres
sions by the same source. For example, the fact that 
a coreferring noun phrase was marked as a source 
in one sentence could be a useful clue for extracting 
the source from another sentence. The probability or 
the strength of an opinion expression may also play 
a useful role in encouraging or suppressing source 
extraction.
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