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The properties of the mean momentum balance in turbulent boundary layer, pipe 
and channel flows are explored both experimentally and theoretically. Available high- 
quality data reveal a dynamically relevant four-layer description that is a departure 
from the mean profile four-layer description traditionally and nearly universally 
ascribed to turbulent wall flows. Each of the four layers is characterized by a pre
dominance of two of the three terms in the governing equations, and thus the mean 
dynamics of these four layers are unambiguously defined. The inner normalized 
physical extent of three of the layers exhibits significant Reynolds-number dependence. 
The scaling properties of these layer thicknesses are determined. Particular signi
ficance is attached to the viscous/Reynolds-stress-gradient balance layer since its 
thickness defines a required length scale. Multiscale analysis (necessarily incomplete) 
substantiates the four-layer structure in developed turbulent channel flow. In parti
cular, the analysis verifies the existence of at least one intermediate layer, with its 
own characteristic scaling, between the traditional inner and outer layers. Other 
information is obtained, such as (i) the widths (in order of magnitude) of the four 
layers, (ii) a flattening of the Reynolds stress profile near its maximum, and (iii) the 
asymptotic increase rate of the peak value of the Reynolds stress as the Reynolds 
number approaches infinity. Finally, on the basis of the experimental observation that 
the velocity increments over two of the four layers are unbounded with increasing 
Reynolds number and have the same order of magnitude, there is additional theore
tical evidence (outside traditional arguments) for the asymptotically logarithmic 
character of the mean velocity profile in two of the layers; and (in order of magnitude) 
the mean velocity increments across each of the four layers are determined. All of these 
results follow from a systematic train of reasoning, using the averaged momentum 
balance equation together with other minimal assumptions, such as that the mean 
velocity increases monotonically from the wall.

1. Introduction
Laminar to turbulent transition in boundary layer, pipe and channel flows is accom

panied by dramatic redistributions of the momentum and vorticity fields, e.g. Lighthill 
(1963), Willmarth (1975). These redistributions, which continue to occur with increas
ing Reynolds number within the turbulent regime, are reflected in the shape of the 
mean velocity profile. Over the past decade, research regarding the mean velocity pro
file in turbulent wall flows has intensified, e.g. Gad-el-Hak & Bandyopadhyay (1994), 
Barenblatt, Chorin & Prostokishin (1997), George & Castillo (1997), Sahay (1997), 
Sreenivasan & Sahay (1997), Zagarola & Smits (1998), Wosnik, Castillo & George
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(2000), Afzal (2001a, b), Zanoun et al. (2002), and Panton (2002, 2003). Despite these 
efforts, fundamental questions concerning the proper analytical forms of the mean 
velocity profiles in boundary layer, pipe and channel flows remain largely unanswered. 
At the heart of this matter is the fact that the equations from which the profile is 
derived (i.e. the time-averaged Navier Stokes equations) are unclosed, and thus are 
resistive to, for example, standard perturbation methods. Apart from this, further 
progress requires confronting other difficult to resolve issues. These relate to both the 
quality of the data and the selection of appropriately sensitive, yet measurable, indi
cator functions employed in distinguishing between the various proposed analytical 
forms for the velocity profile. For example, considerable discussion has surrounded 
the potential effects of surface roughness on the Princeton superpipe data, Perry, 
Hafez & Chong (2001), while the comparison of the gradient functions, v ' (dt/ ' /d  v ' ) 
and ( v ' j U  ' )(dt/' /d v ' ). for respectively determining logarithmic or power law forms, 
presents stringent demands on the data quality relative to the subtleties of the issues 
at hand, Wosnik et al. (2000).

Given this context, it is useful to remain cognizant of the primary physical/ 
technological motivations underlying the mean profile research efforts. Specifically, a 
primary (if not the primary) importance associated with determining the velocity pro
file lies in its inherent description of the momentum/vorticity redistribution processes 
mentioned at the outset. Specifically, at a practical technical level a knowledge of the 
mean profile translates to a predictive formula for the skin friction. More generally, 
turbulent wall flows are traditionally divided into four layers, 

viscous sublayer: y + < 5,
buffer layer: 5 < y + < 30,
logarithmic layer: 30 < y + < 0.155+, 
wake layer: y + > 0.15S+,

where, as is customary, +  signifies normalization by u T =  ^Jxw/p  and v, and S is the 
boundary layer thickness or half-channel height. As is apparent, these layers are closely 
tied to the properties of the mean profile, and thus a more subtle influence of mean 
profile structure relates to the associated physical interpretations of wall-flow physics. 
Tn a pipe or channel, the flow dynamics embody the processes by which momentum 
is extracted from the applied mean pressure force, transported to the wall, and trans
mitted into a mean surface shear force. Tn boundary layers the processes are similar, 
except that the mean pressure force is replaced by mean advection. Tn either case, a 
major motivation for correctly determining the mean velocity profile is the property 
that it inherently, albeit indirectly, reflects these momentum transport dynamics and 
their scaling with Reynolds number. Since mean dynamics are described by the time- 
averaged momentum balance, it is rational to expect that explicit study of the mean 
momentum balance, and its scaling behaviours, will be of considerable utility.

The present study employs existing high-quality data sets to reveal the properties 
of the mean momentum balance in boundary layer, pipe and channel flows. This 
analysis indicates that these turbulent wall flows are composed of a basic four-layer 
structure, with the dynamics in each of these layers predominantly characterized by 
a balance of two of the three terms in the mean momentum equation. The four- 
layer structure revealed is unambiguous in its connection with the relevant mean 
dynamics and stands in contrast to the accepted mean profile-based characterization 
(i.e. the sub-, buffer, logarithmic and wake layer composition mentioned above). The 
Reynolds number scaling properties of the momentum balance are also revealed. Tn 
doing so, clear Reynolds number dependences in the thicknesses of the four layers, 
as well as the velocity increments across these layers, are identified. Consistent with



this, multiscale analyses (under a minimal set of assumptions) are subsequently used 
to construct a new theoretical framework for turbulent channel flow. These analyses 
indicate that a length scale intermediate to the traditional inner and outer scales is 
required to properly describe mean flow structure, and thus embrace the experimental 
observations made herein.
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2. The mean momentum balance
The streamwise mean momentum equation for fully developed channel flow is

Q.. i dp  tA 2u  d(uv)
p dx dy2 dy ’ 

where the mean pressure gradient is

dP  =  r„ 
dx 8 ’

and 8 is the channel half-height. Normalizing the mean velocity, U, and Reynolds 
stress, —(uv), by the friction velocity wT, and y by the viscous length scale v/wT, gives 
the normalized streamwise mean momentum equation

J _  ( 2 1 )
J+ d y 12 d y 1 '

Three physical mechanisms are represented in equation (2.1). The first term, l/<5+, 
is the normalized pressure gradient which provides the driving force for the flow, 
the second term, d2U+/ d y +2, is the gradient of the viscous stress and the third term, 
d{—(ttv) )/d v . is the gradient of the Reynolds stress.

For the zero-pressure-gradient turbulent boundary layer, the inner normalized mean 
momentum equation is

rT+3u +  H U ' d2u +  d{uv)+
U I T T + V I T T  =  123x+ 3 y+ 3v+- 3 y+

As in turbulent channel flow, there are three different physical mechanisms represen
ted. Mean advection is represented by the terms on the left-hand side of equation (2.2). 
The other two mechanisms are the same as in channel flow: the gradient of the viscous 
stress, d2U+/d y +2, and the gradient of the Reynolds stress, 3(^{wi>)+)/3y+.

2.1. Force balance data
Physically, the above momentum balance equations represent the time-average 
statement of Newton’s second law for a differential fluid element. Examination of the 
mean momentum equations ((2.1) and (2.2)), indicates that it is the stress gradients 
(viscous, Reynolds stress, or pressure) that are the significant quantities in the force 
balance, not the stresses themselves. Based on the momentum equations, the three 
effects must all be in balance, or have two nominally in balance with the third much 
smaller. Therefore, for the purpose of elucidating the mean momentum transport it 
is useful to examine the ratio of the gradient of the viscous stress to the gradient of 
the Reynolds stress. If, for example, this ratio in a pipe is

d2U / dp(uv) 
9>’2 /  d y

<  1
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F ig u r e  1. The ratio  o f the gradient o f  the viscous stress to  the gradient o f  the Reynolds 
stress in fully developed channel flow, DNS data  from  M oser e t al. (1999).

then the viscous force is small, and the pressure and Reynolds stress gradients are 
nominally in balance. If

d2u  / d p (u v )  

M 3 r  /  3 y
l .

their effects are in balance and the pressure gradient term is either of the same order 
or relatively smaller order. And, if

d 2U  / d p j u v )

M 3 r  /  3 y
>  l

the Reynolds stress gradient is small and the pressure and viscous forces approximately 
balance.

Figure 1 shows the ratio of the gradient of the viscous stress to the gradient of the 
Reynolds stress for the fully developed channel flow, from the DNS of Moser, Kim & 
M ansour (1999). This figure shows a thin sublayer (O ^ y + ^ 3 )  where pressure and 
viscous forces dominate the balance equation. Outside this thin layer is a region 
defined by a nearly perfect balance between the viscous and Reynolds stress gradients. 
The thickness of this stress-gradient balance layer shows a clear Reynolds-number 
dependence, extending well into the traditionally accepted logarithmic region of the 
mean velocity profile as Reynolds number increases. Near the location of maximum 
Reynolds stress, the viscous and pressure force are, once again, nearly in balance. 
Around the peak Reynolds stress location the gradient of the viscous stress is much 
larger than the gradient of the Reynolds stress. For greater distances from the wall, 
the Reynolds stress gradient changes sign and the viscous stress gradient becomes
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F ig u r e  2. The ratio  o f the gradient o f the viscous stress to the gradient o f Reynolds stress in 

a turbulent pipe flow, as derived from the data  o f Zagarola & Smits (1997).

much smaller than either the Reynolds stress gradient or pressure gradient. In this 
region the Reynolds stress and pressure gradients are essentially in balance.t 

The superpipe data of Zagarola & Smits (1997)$ and the boundary layer data of 
Spalart (1988) and DeGraaff & Eaton (2000) exhibit similar behaviour. These data 
are plotted in figures 2 and 3 respectively. Both these sets of data show a Reynolds 
number dependence consistent with the DNS channel flow data in the inner region. 
For the superpipe data, the stress-gradient balance layer extends out to approximately 
y+ =  300 at K =41 235. Overall the turbulent boundary layer and superpipe data 
indicate that the width of the stress-gradient balance layer is Reynolds-number 
dependent and extends well into the traditionally accepted logarithmic layer. Existing 
superpipe data at higher Reynolds number cannot be reliably used to explore this 
issue further as the data point closest to the wall lies beyond the region of interest.

The behaviour of the ratio of the two stress-gradient terms as shown in figures 1-3, 
suggests a four-layer structure. The first region is an inner viscous/advection balance 
layer where the viscous force balances the pressure force (in channel flow), or in the 
case of the turbulent boundary layer the viscous force becomes smaller while balancing 
mean advection. (Note that all of the terms in equation (2.2) are zero at the wall in the 
zero-pressure-gradient boundary layer.) The second region is called the stress-gradient 
balance layer. In this layer the viscous and Reynolds stress gradients are of nearly 
equal magnitude but opposite sign. The third region is a meso viscous/advection 
balance layer where the viscous force balances the pressure force in channel flow 
or the mean advection in the turbulent boundary layer, while near the centre of 
this layer the Reynolds stress gradient passes through zero. The fourth region is

t  A similar presentation of stress-gradient ratio data was earlier given by Cenedese, Romano & 
Antonia (1998), but only explored in the context of viscous sublayer structure.

t  Note that the corrected superpipe data of McKeon et al. (2003) yields nearly identical results 
as Zagarola & Smits (1997) relevant to the present analyses.
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F ig u r e  3. The ratio  o f  the gradient o f  the viscous stress to the gradient o f the Reynolds stress 
in turbulent boundary layers. D N S data  are from  Spalart (1988) and the experim ental data 
are from  D eG raaff & Eaton (2000).

an inertial/advection balance layer, where the Reynolds stress gradient balances the 
pressure force in channel flow or the mean advection in the turbulent boundary layer, 
while the viscous force is negligible. The sketch in figure 4 depicts the four layers as 
defined by the dynamics of the mean momentum balance at a fixed Reynolds number.

2.2. Layer thicknesses
Based on the DNS and laboratory data presented, the physical extent and the 
Reynolds-number dependence of each of the four layers identified above may be char
acterized. The inner viscous/advection sublayer extends from the wall to >’+ =  3, and, 
at most, exhibits only a very weak Reynolds number dependence. The stress-gradient 
balance layer extends from y+ =  3 to y+ =  1.6 x (5+)1/2. For this characterization, the 
numerical constant of 1.6 is based on the criterion that the end of the stress-gradient 
balance layer is located where the ratio of the viscous to Reynolds stress gradients 
is less than —2. This definition is somewhat arbitrary in a fashion similar to the 
definition of S99. Further discussion regarding the definition of this layer is given 
in the theoretical considerations below. A meso viscous/advection balance layer 
extends from y+ =  1.6 x (S+)1/2 to >’+ =  2.6 x (S+)1/2. (The numerical constant, 2.6, is 
determined by the criterion that the stress gradient ratio at the end of this layer 
decreases below 0.5.) Beyond the end of the meso viscous/advection balance layer, 
at v+ =  2.6 x (5+)1/2. is the inertial/advection balance layer, whose thickness is about 
8+ — 2.6 x (5+)1/2.

Except for the inner viscous/advection balance layer, the extent of these layers 
depends significantly on Reynolds number. The Reynolds-number dependence of the 
physical extent for each layer is shown in figure 5. Channel DNS data of Moser et al.
(1999) and Superpipe data of Zagarola & Smits (1997) are used for the location of the 
end of the stress-gradient balance layer and the location of the end of the viscous/ 
advection balance meso-layer. (The turbulent boundary layer data of DeGraaff &
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Ratio of stress 
gradients

F ig u r e  4. Sketch of the four layers of turbulent wall-bounded flows for one Reynolds number; 
layer I is the inner viscous/advection balance layer, layer I I  is the stress-gradient balance layer, 
layer I I I  is the viscous/advection balance meso-layer and layer I V  is the inertial/advection 
balance layer. Note layer I in the zero-pressure-gradient turbulent boundary layer is different 
from that of channel and pipe flow in that all of the terms in equation (2.2) are zero at the 
wall.

Eaton (2000) has been tried, but the second derivative of the mean profile and the 
derivative of Reynolds stress are noisy.) As is evident, all of the Reynolds-number 
dependences can be tied to the growth rate of the stress-gradient balance layer 
thickness. For this reason, the thickness of this layer is identified as an important 
intermediate length since, like all similarity variables, it arises solely from the internal 
dynamics of the problem. Along with the outer and inner scales, S and v /u z 
respectively, the analyses below show that this meso-scale, ĵ vS /uT, is fundamental to 
the description of the mean flow.

As indicated in figure 5, the thickness of the inertial/advection balance layer 
is 5+ — 2.6 x (5+)l/2, the ratio of this layer thickness to the total layer thickness, 
5+, is then 1 — 2.6 x (<5+)-l/2. This is illustrated in figure 6, which shows that the 
inertial/advection layer is an increasingly larger fraction of the entire boundary layer 
with increasing Reynolds number. For example, this layer constitutes about 95.2%, 
99.1% and 99.7% of the boundary layer thickness at 5+ =  3000, 5+ =  105 and 
£+ ^  10® respectively. Figure 6 is a linear-linear plot. These axes were chosen to best 
illustrate the behaviour of the inertial/advection layer at low to moderate Reynolds 
number. As the Reynolds number decreases, the ratio of the thickness of this layer to 
8 decreases rapidly. For example, the inertial/advection layer is about 74.0%, 81.6%
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F i g u r e  5.  Reynolds-num ber dependence o f  the outer-norm alized physical extent o f the four 
layers in canonical wall flows. The four layers are num bered according to the sketch o f  figure 4. 
Channel data are from M oser et al. (1999), pipe data are from Zagarola & Smits (1997) and 
turbulent boundary layer data are from Spalart (1988).

F i g u r e  6. Reynolds-num ber dependence o f  the ratio  o f  the inertial/advection  layer thickness 
to the boundary layer thickness. N ote the Reynolds num ber on the abscissa is <5+. For reference, 
Reg for the zero-pressure-gradient turbulent boundary layer flow is typically about 3 ~  4 times 
th a t o f  the corresponding <5+.
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F ig u r e  7. O uter norm alized velocity increments across the layers as depicted in figure 4: + , 
channel data, o f  M oser et al. (1999); x , superpipe data  o f Zagarola & Smits (1997); *, turbulent 
boundary layer data  o f Spalart (1988). A u U  is the velocity increm ent across the stress-gradient 
balance layer, A m U  is the velocity increm ent across the meso viscous/advection balance layer 
and A [f/U  is the velocity increm ent across the inertial/advection  balance layer.

and 88.3% of 8 at <5+ =  100, <5+ =  200, <5+ =  500 respectively). These rapid changes 
at low Reynolds number are likely to correspond with other significant changes in 
boundary layer properties. Tn this regard, there is an increasing body of evidence (e.g. 
Klewicki 1989; DeGraaff & Eaton 2000) that the scaling properties of turbulence 
quantities largely break down at sufficiently low but still fully turbulent Reynolds 
numbers. The rapid change of scale effects of the inertial/advection balance layer 
may provide the underlying reason for these observations.

2.3. Velocity increments 
Owing to the fact that it is zero outside the boundary layer and non-zero inside the 
boundary layer, vorticity, and its wall-normal distribution, are particularly relevant 
measures of turbulent wall-flow structure. For a two-dimensional flow in the (x, >’)- 
plane, the circulation, P.  is a useful integral measure of the total mean z-component 
vorticity present. Tn the case of the boundary layer (or half-channel), it is easy to show 
that, per unit length, the circulation of the entire layer has a magnitude equalling the 
total velocity increment across the layer, i.e. \rlolai\ = UX.

Given this, and for the purposes of better understanding the distribution of vorticity 
across the four balance layers (as well as the Reynolds number dependence of these 
distributions), the velocity increment across each balance layer was determined as a 
function of Reynolds number. These results are shown in figure 7. Under outer norma
lization, the velocity increment across the stress-gradient balance layer is essentially 
constant, equalling about 50% of the total velocity increment. The velocity increment 
across the inertial/advection balance layer increases rapidly at low Reynolds number 
and then levels off to a slower rate of increase over the Reynolds number range shown. 
The initial rapid increase reflects the changes in the mean profile wake structure at low
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Re. In contrast, the velocity increments across the inner and meso viscous/advection 
layers become a decreasingly small fraction of Ux  with increasing Reynolds number. 
If  the scalings discussed here for layers I, II, and III continue to hold for high 
Reynolds number, the velocity increment across layer IV will asymptotically approach 
50% of Ux . On the other hand, inner normalization (not shown here) of the velocity 
increments across the inner and meso viscous/advection layers are essentially invariant 
with Reynolds number, equal to about 3wr and lwT respectively. As expected, the 
inner normalized velocity increments across the stress-gradient balance layer and 
inertial/advection layer increase like {/+. It is intriguing to note that while the meso 
viscous/inertial layer grows like with increasing Reynolds number, its position 
in the layer is such that the inner normalized velocity increment across it remains 
essentially constant. Similarly, it is worth noting that the circulation of the stress- 
gradient balance layer is apparently independent of Reynolds number, 0.5|,Ttoto/|.

2.4. Data summary
The above experimental results have a number of implications. Perhaps most impor
tant is that viscous effects are dynamically significant from the wall out to a (Reynolds- 
number-dependent) position beyond the peak in the Reynolds stress. At large but 
technologically relevant Reynolds numbers this position could be thousands of viscous 
units from the surface. Thus, the nearly universally held notion, e.g. Tennekes & 
Lumley (1972), Gad-el-Hak & Bandyopadhyay (1994), George & Castillo (1997), 
Pope (2000), that viscous effects are, in the mean, dynamically negligible outside 
the buffer layer (y+ ~  30) is not supported by the relevant stress-gradient data. 
The relevance of such viscous effects was an emphasis of the work of Sahay (1997). 
Coupled to this misconception is the commonly employed approximation that outside 
the buffer layer equation (2.1) is well represented by a balance between the pressure 
and Reynolds stress gradients, as is the misconception that the traditionally defined 
logarithmic layer (say y + ^ 3 0  to j /5 ^ 0 .1 5 )  is a zone of nominally zero Reynolds 
stress gradient, e.g. Wosnik et al. (2000). That is, the traditional logarithmic layer 
encompasses portions of layers II and IV and all of layer III. This provides a reason 
to rationally question the efficacy of the representation of the traditional logarithmic 
layer as the overlap region between an inner and outer layer, Millikan (1939). In fact, 
the empirical observations suggest the existence of a third, intermediate, dynamical 
length scale. These and a number of other related observations are given theoretical 
foundation by the analyses that follow.

3. Scale analysis o f turbulent channel flow
Concepts of multiscale analysis are applied here to the problem of statistically 

stationary, fully developed turbulent flow in a two-dimensional channel. The reasoning 
employed corroborates and adds to the understanding of the four-layer structure 
revealed by the above data presentation. It is shown that the analysis is most properly 
done using three length scales, each appropriate to its own region.f The orders of 
magnitude of the widths of the scaling regions are given, as well as the governing 
equations in each of the regions and some qualitative features of the flow in each. The 
question of the merging of adjacent scaling domains is discussed. For completeness, 
some scaling results that are already well-known are included.

t  Work in progress (Fife et al. 2004) shows that there is a hierarchy of length scales which serve 
to smoothly connect the inner, meso and outer scales. These results are forthcoming.



The discussion is systematic, relying only on the averaged momentum equation and 
as few other assumptions as possible. For example, one important assumption is that 
U+ monotonically increases, and its gradient monotonically decreases from the wall 
to the centreline:

dU+ dU+
——-  > 0, ——-  decreases from 1 (at the wall) to 0 at the centreline and
dy+ dy+

—> oo as S+ —> oo, (3.1)

where U+ is the mean velocity at the centreline.
At this juncture it is worth putting this paper’s approach in perspective with what 

will be called the classical approach. The classical approach purports to derive salient 
properties of the velocity and Reynolds stress profiles by means of the inner and 
outer scales alone. Based on the suggestion of Izakson (1937) and Millikan (1939) 
and exemplified by many later writers such as Afzal (1976, 1982, 1984a) and Panton 
(1990), whose work is possibly most completely expounded in Panton (2003) and 
Buschmann & Gad-el-Hak (2003), it is assumed, in the classical scenario, that an 
overlap region of the flow exists, in which the traditional outer and inner forms of the 
mean velocity profile are simultaneously valid. Incidentally, Gill (1968) rightly showed 
that at the very least, additional assumptions about the magnitude of the errors in 
these approximations are needed (such assumptions, as well as assumptions about the 
location of the overlap zone, would be difficult to validate in an a priori manner). If 
these estimates are valid, then matching derivatives in the overlap zone produces an 
equation whose solution for the velocity profile is either (a) U+ = constant or (b) U+ 
grows logarithmically. Conclusion (a) is unacceptable, since it is known from (3.1) 
that U+ is a strictly increasing function of distance from the wall.

In the present paper, the meso-layer scaling is shown analytically to have the same 
legitimacy as the inner and outer scalings, in the sense that the meso-layer is shown 
theoretically to necessarily exist, by reasoning as valid as any theoretical basis for 
the traditional scalings. Given this, the classical, two-layer, description would appear 
to constitute an incomplete framework for the problem. In addition, concerns arise 
about the derivation itself. A derivation, such as the classical one just described, 
should proceed in a logical manner from assumptions that are both credible and 
removed from the conclusion that is being derived. In this sense, it seems rational to 
question whether it is reasonable to assume the existence of an overlap zone in which 
the profile is not constant.

The motivation for this concern arises from two observations:
(i) Although the existence of overlap zones associated with two-scale problems in 

other fields and with mathematical examples is prevalent and well-known, the profile 
is generally constant in the overlap zone.

(ii) There are any number of functions with two scales which reduce to the given 
outer/inner forms in the outer/inner scaling domains, but do not have overlap zones 
nor logarithm profiles. In view of this, one must ask whether there is some natural 
physical reason why one should consider only profiles with overlap zones. This would 
be an interesting subject of further investigation.

Therefore, while recognizing that many of the present results could be interpreted or 
corroborated on the basis of the logarithmic profile emerging from classical Millikan- 
type arguments, assumed valid in some appropriate region, it is felt that an alternative 
approach, which would serve as a comparison and contrast with the classical one, is 
highly desirable. Regarding this point, it is also worth noting the lucid arguments of
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with boundary conditions

Sahay (1997) that advocate the benefits of a ‘first principles’ approach not reliant on 
the overlapping layer hypothesis. Consistent with this, the derivations presented in 
this paper are totally independent of the classical train of thought.

3.1. Momentum balance properties in the /bur layers 
Tn terms of the traditional inner variables y +, U+, and T + = ^ ( u v ) +, the conservation 
equation for streamwise momentum is

d  2U +  d T + ,

d T ^ d ^  ’ ( )

where the small parameter e =  l /^fs+, S+= u TS/v  is used so that e —>0 as !?<?—>• oo. 
Associated with (3.2) are the boundary conditions

d a +u+ _  T + _  q and —  =  | at = 0 . (3.3)
dy

The traditional outer variables are t], U+, T +, where t] =  e2y+ =  y/S. (The centreline 
is at y = S.) Alternatively, the variable U+ in this list is often replaced by the defect 
velocity f/t+ — U . Equation (3.2) becomes

d ' / "  , 2 d 2U + n  „-3-----h 1 +  r  , =  0, (3.4)
at] at]*-

d u +
T + =  —-—  =  0 at t] =  1. (3.5)

at]

Tt will be shown from scaling arguments alone that an intermediate scaling with 
its layer (TTT) exists as well, thus corroborating the empirical finding described in 
the previous section. All this will result in three different forms for the momentum 
equation: (3.2), (3.4), and later (3.19).

Equation (3.2), while correct in all cases, is the most appropriate of the three forms 
of the momentum equation to use in regions where the two derivatives indicated 
there are 0(1), and at least one is not small (o(l)). (Here and below, all order of 
magnitude relations are understood to hold as e —>• 0, and the order symbols, O and 
0, take their established definitions, e.g. Kevorkian & Cole (1981), with the exception 
that a relation a =  0(1), say, means that both a and 1/a are bounded as e —>• 0.) This 
is the case near the wall in layers T and TT. When at least one of the first two terms in
(3.2) is not small, i.e. 0 (e 2), the third term in equation (3.2) may be neglected, leaving

d2U+ d /'
d ^  +  “ °- ,3-6)

Tntegrating with use of (3.3) yields
d a +
— —  +  T + -  1 =  0. (3.7)
dy

Similarly in the region where the derivatives appearing in (3.4) are sg 0(1) and 
d T +/dr] is not small, such as near the midline r] =  1, the 0 (e 2) term in (3.4) may be 
neglected, leaving

d r 4
dt]

+  1 = 0 ,  (3.8)
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and integrated to obtain
T +(t) ) = 1 - t). (3.9)

The solution T +(v) given by (3.9) approaches the limit 1 as >0, instead of 0 as it 
should do according to (3.3). Thus there is a region near the wall where the stated 
condition on which the validity of (3.8) depends breaks down. In this wall layer, T + 
drops abruptly to 0 as >0; the T + derivative in (3.4) then gets very large. From 
this one can surmise the known fact that T + attains a maximal value, say FB}(e), near 
the wall. (The extra assumption that d:U /d.v which is negative, increases towards
0, when applied to (3.2), would entail T + having only a single maximum.) The value 
of >’+ at which T + =  T+ is designated by >’+(t), and the corresponding value of r] by 
t]m(e) =  e 2y+(e).

Although Tn+(e) and >>+(e) are unknown at this point, certain general conclusions 
can be drawn about them. One is that, T+  <  1 since the outer solution (3.9) satisfies 
that inequality. And since mathematical boundary layers get thinner as the perturba
tion parameter approaches zero, the position t]m(e)  —>• 0 as e  —>• 0. Finally, another way 
of saying this is that the domain where the outer solution is valid expands towards 
the wall as e —>0, i.e. (3.9) is valid for values of rj in intervals where
limê 0 t]o(e) = 0. Thus,

l im r + ( e ) = l .  (3.10)
€->0

3.1.1. Layers I and II
These are where the inner variables are appropriate. Layer 1 is the viscous sublayer 

and layer 11 is where the viscous and Reynolds stress gradients are balanced. The 
viscous sublayer is where >’+ is so small (recall F +(0) =  0) that F +(>’+) =  0 is negligible. 
Then from (3.7) and (3.3),

f /+«y+. (3.11)
Integrating (3.2) gives

dU+ , , ,
—— =  1 ^ 7  (3.12)
d v

The small e2 term is included here, because this equation will soon be used a little 
outside the formal range of validity of the approximate version (3.6), namely where 
layer 11 merges with layer 111. As previously mentioned, when the last term in (3.12) 
is small (such as when y + =  0(1)), it may be neglected. In any case, (3.12) shows how 
to find U+ if the function T+( j +) were known. It is, of course, unknown. But it was 
brought out before that F +(0) =  0 and r +(>’+) increases to its maximum value T+(e)  
at >’+ =  y+(e).  By (3.10) the maximum falls just short of 1. It follows then from (3.12) 
that the gradient dLr /d.v starts at 1 at >,+ =  0, and decreases to a small value at 
>’+(<?), provided that e2}’̂ ^ )  ^  1- This will be verified later. A function quantifying 
the deviation of FB|  from its upper limit of 1 is

a(e) = I ^  T^ie).  (3.13)

Although positive, it approaches 0 with e. Further details regarding the order of 
magnitude of a  will be given later.

3.1.2. Layer III
This is the meso-layer containing Tm(e);  similar concepts have been described 

using different tools by others, e.g. Long & Chen (1981), Afzal (1982, 1984a), Sahay 
(1997), Sreenivasan & Sahay (1997), George & Castillo (1997). For example, Sahay
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combined empirical data and theoretical reasoning to study the scaling properties of 
the Reynolds stress profile, and hence velocity profile, near the location of its peak 
(Sahay 1997). He presented strong evidence that a meso-layer exists, and noted that 
data indicate its location and characteristic lengths to be in agreement with what is 
found by purely theoretical methods in the present paper. For present purposes this 
layer may roughly be defined as where the approximations made above -  replacing
(3.2) by (3.6) and dropping the last term in (3.12) are no longer valid, because the 
term dropped is no longer smaller (in order of magnitude) than both of the other two 
individual terms in those equations. The transition out of layer II may be described 
in the following way. For moderate values of >’+ outside layer I, the first two terms in
(3.2) are each 0(1), and except for an 0 (e 2) difference, they cancel each other. As >’+ 
increases, each of the first two terms decreases in magnitude; the second term does 
so because T + approaches its maximum, and therefore (3.2) itself forces the magni
tude of the first term also to decrease. Eventually, d T +/ d y + = 0 (e 2), and by (3.2) 
|d2f /+(d>’+)2| 0 ( e 2). To be more specific, albeit still arbitrary, let y f  be the value 
of y+ at which d2U+/(dy+)2 = —2e2. A tentative definition for the transition point 
between layers II and ITT is this location yj^e), although in reality the boundary is 
not well-defined. This choice corresponds to the definition given in § 2.2, i.e. the point 
where d : (/ ' /{d v ' )2/d 7 '' dy ' =  —2.

The same may be done with (3.12). Again, for moderate values of y+, it represents 
an approximate balance between the quantities dU+/ d y + and 1 — T +, with error e2y+. 
As y+ increases, those two terms decrease and e2y+ increases, until both dU+/ d y + 
and I T ares?- 0 (e :y ' ). Again to be specific, let y^(e) be the location where 
d.U+/ d y +(yt )  = l € 2y t this is once more an arbitrary criterion. At that point, 
1 - T +  = 3e2y t  by (3" 12).+

Two possible definitions for the transition point between layers II and ITT, found 
by similar constructions, are now given by yf(e) and y^(e). It is reasonable to expect 
that at least in order of magnitude, they are the same. This can be verified to be true 
in the typical case that dU+/ d y + asymptotically decays for large y+ according to a 
power law:

d U+
—— « C (y +) m for some m > 0, C > 0, (3.14)
dy+

with the corresponding relation holding after differentiation: d2f/+/(d>’+)2«  
-m C (y +)'"1" 1. For in this case, y f  and y£ are both 0 (e^ 2/(m+l)). (Actually, the 
decay assumption here can be relaxed to hold only up to y+ =  yf(e), because a 
different scaling for the function U+ will be used for greater y+.) Tt is also allowed 
that C depends on e, as C =  C'ea, where a < 2. Tn addition, the experimentally and 
computationally determined values of the two numbers shown in table 1 give strong 
support to the expectation that y + ^ y j"  (they both are seen to be 0(  1/e)). The 
transition point is therefore specifically defined to be yf(e).

The location y+ =  y+ was designated as the lower edge of layer TTT, and in an 
analogous fashion the location =  where d2f /+/(d >’+)2 =  — | e 2 is defined to be 
the upper edge, because that corresponds to where d2U+/(dy+)2/ d T +/ d y + =  j ,  as 
was done in the experimental data analysis in § 2.2.

At the transition point >’i(e), each of the first two terms in (3.2) is 0 ( e 2), although 
their formal appearance in that equation does not indicate this fact. This is the

t  The authors have discovered a more straightforward theoretical method to find the location of 
this and other layers, using a hierarchy of scales (Fife et al. 2004).
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ReT >’i + >’2 + > f /d A ) >.+/(l/e)

180 25.1 20.2 1.88 1.51
395 31.7 26.2 1.60 1.32
590 36.7 30.5 1.51 1.26
850 44.3 35.8 1.52 1.23

2344.7 54 48.4 1.12 0.999
8486.3 79.6 80.5 0.864 0.873

T ab le  1. Locations of >’i and >’2- Data are from Moser et al. (1999) and 
Zagarola & Smits (1998).

beginning of layer 111, and a rescaling will now be sought to better reflect the true 
orders of magnitude of the terms in (3.2). In fact, a scaling is possible that renders 
all three terms formally the same order of magnitude. In the process, additional 
information regarding er(e) and TM (e ) will be revealed. The existence and scaling of 
a third layer was possibly first found by Afzal (1982, 1984a).

The rescaled y+ and T + variables will be called y and T. Rescaling is most easily 
accomplished for the differentials d y ' and d7" : explicit expressions for the new 
variables, in terms of the old ones, will be derived later. With factors a  and fi to be 
determined (they will depend on e), rescaling begins by setting

dy+ =  ady, d J + =  /M f. (3.15)

This transforms the terms in (3.2) as follows:

d2U+ 1 d2U+ d T+ f id  T

The idea now is to assume that the derivatives on the right of (3.16), namely 
d2U+/ d y 2 and d J /d y , are 0(1) quantities. By the requirement established above, the 
orders of magnitude of both terms on the right, namely 1/ a 2 and f i/a,  must match 
(in order of magnitude) the third term in (3.2), namely e2: a~~2 =  P/a  =  e2. This is 
only possible if p = e ,a  = e~~l. Thus from (3.15)

dy =  f d y ' . d J+  =  ed f .  (3.17)

Integrating (3.17) gives two integration constants, which are chosen to be y+ and ; 
they will be the values of y+ and T + where y =  0 and T  =  0. The result is

>’+ =  >’+ +  ^ J , T + =  J+  +  e f .  (3.18)

Thus the scaling to be employed in layer 111 is now completely defined, along with its 
lower and upper edges yj^e) and >’̂ (e). With the transformation (3.18), (3.2) becomes

d 2U+ d f
--TTt-  ”1“ “7a- 1 =  0. (3.19)
d r  dy

Now consider the balancing property of (3.12). As in the case of (3.2), it suffices at the 
transition point, y+ =  y-f(e), to require that the three terms dU+/ d y +, (1 ^ T +), e2y t  
in (3.12) have the same formal order of magnitude. Those orders can be calculated as 
follows. Since, by definition, y and dU+/dy  are both 0(1) in layer 111, it follows that 
\dU+/ d y +\ = e |d f /+/dy | =  0(e) (This is supported by the data as shown in table 2). 
As for the second term in (3.12), write it as 1 — 7’+ =  (l — J,+) +  (J,+ — T +) = a — e t ,
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ReT df/+ /d> -+ |^=2/£ (d l /dv

180 0.135 1.802
395 0.066 1.307
590 0.050 1.211
850 0.035 1.029

2344.7 0.0191 0.927
8486.3 0.0126 1.156

T ab le  2. Experimentally determined dU+/dy+ values at y+ = 2 /e  (inside the meso-layer, 
around the peak Reynolds stress location). Data are from Moser et al. (1999) and Zagarola & 
Smits (1998).

Rer a e a /e

180 0.275 0.075 3.67
395 0.162 0.0505 3.21
590 0.135 0.0413 3.27
850 0.10 0.034 2.94

2344.7 0.061 0.0206 2.96
8486.3 0.0328 0.0109 3.01

T ab le  3. Experimentally determined a values. Data are from Moser et al. (1999) and
Zagarola & Smits (1998).

so that since T ^  0(1), 1 — T + = 0(m ax [<r, e]). And of course the last term is e2yt-  
Equating the three orders of magnitude yields

max [a, e] =  0(e), e2y t  =  0(e). (3.20)

This implies that
<7 ^  0(e) and y t  =  0 (e -1). (3.21)

Setting }’+ =  }’+ in (3.12) and using (3.1) gives

ATJ+
<x =  1 -  T+ =  +  O ’̂ )  5= 0(e). (3.22)

(An argument like this was also supplied in Sreenivasan & Sahay (1997).) Combining 
(3.22) with (3.21) gives

<t =  0(e). (3.23)

The data of table 3 and figure 8 support these theoretical predictions.
Throughout layer ITT, U+, T and their derivatives are, to lowest order in e, regular 

functions of the rescaled variable y. To justify this assertion, consider that the mo
mentum equation written in terms of y, (3.19), has no e-dependence, and on each end 
of layer ITT, i.e. at =  and each term of that equation is 0(1). Tn fact, 
d2f /+/d >’2 =  —2 at the lower end, and =  —|  at the upper end. We take this to be 
conclusive evidence that those derivatives, and their derivatives in turn, remain 0 (1) 
in ITT. The width of layer ITT can now be found. Tt will be gauged by Ay =  >’3 — yi 
(corresponding to — yf). The corresponding increment in A2U+/ d y 2 is
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F ig u r e  8. Properties of viscous shear stress and Reynolds shear stress compared to the present 
theory. In the meso-layer a = 0(e) and d[/+/dv+ = 0(e). Data are from Moser et al. (1999) 
Rer = 590.

F ig u r e  9. Reynolds stress around the peak, showing d2r +/d>’+2 = 0(e3). Data are from
Moser et al. (1999).

but for some value y* in layer ITT, the mean value theorem says that the left-hand 
side =  d3£7+/d>’3(>’*)A>’, so that Ay = k where k =  ^(d3t / +/d>’3)""1. By differentiating 
(3.19) and using the data from figure 9, which shows that |d2rdy2| =  |d3t/+/d>’3| is 
0 (1), one finds

Ay =  0(1). (3.24)
Therefore the width of layer ITT =  0(1) in the variable y, i.e. 0 ( l /e )  in y+.
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In summary, layer III is characterized in part by

df/+ df/+
|y| =  0 (1), y+ =  0 (1/ 6), —  =  0 (e), —  =  0 (1);

dU+
the higher derivatives of ——  and T are 0(1). (3.25)

d y

3.1.3. Qualitative implications o f  the scaling in layer III
Since by definition yj^e) is the transition point between layers II and III, and layer 

I has width (in y+) 0(1), the second part of (3.21) says that the width of layer II 
is O ^ ” 1). This is the first important consequence of the scaling in layer III. In 
connection with this it is relevant to note that this result of the analysis is in complete 
accord with the experimental data. The second important property of layer III comes 
from the fact (see (3.25)) that dU+/dy  =  0(1) in layer III, i.e. where |y| ^  0(1). 
Integrating across the layer, it is found that the velocity increment Am U+ across the 
layer is an 0(1) quantity. The significance is that it is (approximately) independent 
of <5+, which is also in explicit agreement with the experimental observations.

A third qualitative effect in layer III concerns the pronounced flattening in the r ( y +) 
profile near J + =  r,+, as seen for example in Sreenivasan & Sahay (1997). This can 
be explained by measuring the curvature by the second derivative of the function T +. 
With the meso-scaling which has been seen to be appropriate in layer III, it follows that 
T is a regular function of y, so that in particular, it is expected that d2T /(dy )2 =  0(1). 
In view of (3.17), this means that d2J +/(dy+)2 =  0 (e 3) and d2J +/d y 2 =  0(e). This 
is smaller (flatter) than one might anticipate. On the other hand, the second deriva
tive with respect to the outer variable rj at rj =  rjm is, as expected, large, so that the 
profile from the outer perspective is still sharply peaked. The flattening effect of T + 
near is explicitly shown to follow the predicted behaviour in figure 9.

It is appropriate to reiterate an assumption which was made here in connection 
with the characterization of layer III. A scaling was found and an interval [yf1", y^] 
was found for which (i) an e-independent differential equation (3.19) holds, expressing 
a balance between at least two kinds of scaled forces, and (ii) the derivatives in (3.19) 
are verified to be 0 (1) on each end of the interval (this latter condition is usually 
disregarded by other authors). It was then inferred that the physical quantities U+ and 
T do in fact satisfy (3.19) to lowest order, and that they and their higher derivatives 
are 0(1) within the interval. More generally, it is reasonable to relax condition
(ii) by requiring only that those derivatives be known to be 0 (1) at one point; then 
the interval of validity of (3.19) is not known a priori, except that it is 5* 0(1) in the 
rescaled variable. The reason for this is that the higher derivatives are 0(1) in the 
scaling layer, so that it would take an increment in y S5 0(1) for the terms in (3.19) 
to deviate from being 0(1). Therefore the width of the layer must be at least that 
large. In the present example, d2J /( d y )2 =  0(1), as indicated above. These criteria for 
establishing a scaling layer constitute an important ingredient of our analysis, and, 
significantly, are exactly the same criteria used to establish the valid domains for the 
classical inner/outer scales.

3.1.4. Merging layers III and IV
There is a transparent matching of T + as we proceed into layer IV. In fact in view 

of (3.10),

dii =  e 'dy  ' =  edy, dT ' =  e d f ,
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so that
d r  d7

(3.26)
dy drj

The middle term in (3.19) is therefore the same as the first in (3.4) and (3.8). Thus, 
under the simple assumption that d2U+/ d y 2 —> 0 as y —>co, the meso equation (3.19) 
will approach the outer equation (3.8). This says that the derivatives of T + match 
automatically as one passes from layer 111 to IV.

The behaviour of U+ is a more complex issue. So far, the only relevant assumption 
is (3.1). Note that (3.1) was written in terms of the variable y+, but it holds also for 
y and r]. The simplest way to model the behaviour (3.1) (in the variable y) is by a 
power law, say U+(y ) «  A  y“ +  B as y —> oo. The requirements (3.1) compel 0 < a  < 1. 
Another possibility is a log law: U+(y)«  A  In y +  B as y —> oo. Arguments have been 
made in the past to support one or the other of these forms; these arguments will 
not be reviewed here.

The boundary condition (3.5), however, dictates that some modification be made 
near t) = 1 ( i.e. in the wake region). This should be done so that U+ is smooth and 
even about the centreline. There are many possibilities. These will not be explored 
herein.

3.2. Increments in U+
In layers 1 and 11, dU+/ d y + starts off with the value 1 at y + =  0 and, according to 
(3.25), decreases to 0(e) at y+ =  0 ( l/e ) ,

Given this, important questions are: what might be the rate of this decrease, and 
how does the rate effect the value of U+ at y + =  0 ( l /e )  and the increment AnU+ 
across layer 11? It is natural to propose that dU+/ d y + decays according to a power 
law for large y+, as in (3.14). The requirement (3.27) says that C =  Ofe1̂ ” ), so set 
C =  C 'e1_m. Among these power laws, the simplest is when m = 1, so that

in fact this is the only case in which there is no e-dependence on the right. This case 
results in a logarithmic law for sufficiently large values of y + in layer II:

which is unbounded as e —> 0.
Another point is that the choice m = 1 coincides with the assumption that the law 

of the wall, i.e. that U + depends (to lowest order as e —>0) only on y +, holds not 
only for y+ =  0 (l), but also for a range of values of y + larger than 0 (1), namely 
for y+ ^  0 ( l/e ) . This kind of assumption would be reminiscent of, but not the same 
as, the classical overlap assumption. More importantly, the possibility of m ^  1 can 
also be tested, but integration yields the conclusion that if m ^  1, An U+ is bounded 
independently of e. This contradicts the velocity increment data which indicate that 
A jjU / U c = 0.5, independent of S+. Thus only in the logarithmic case does U+ grow

(3.27)

(3.29)

The associated velocity increment is given by

A n U+ «  U+( l / e ) «  C| lne| +  D, (3.30)



322 T. Wei, P. Fife, J. Klewicki and P. McMurtry

unboundedly at the end of layer 11 as e —> 0. Therefore, several arguments can be given 
to support the claim that (3.29) is valid for large y +. Work in progress (Fife et al, 
2004) points to the existence of a hierarchy of scalings appropriate to the transition 
zone from 11 to 111; in turn, this hierarchy implies (3.29) and provides still another 
strong argument in favour of it.

Analogous considerations may apply in part to the transition from 111 to IV and 
the increment A IVU+, although that situation is much less clear, as was brought out in 
§3.1.4. One replaces y + by y. In this case, however, one does not set dU+/dy  =  0(e) 
at the end of the zone, and as a result the velocity increment in this transition 
process always grows as e —> 0. This, of course, is in accord with the experimental 
observations. Furthermore, the deviation from a logarithmic-like dependence in the 
wake region can be excluded from the transition zone; doing so does not effect the 
unbounded behaviour of A[VU+ as e —>0. Given that dU+/ d y + decays asymptotically 
according to a power law (while not necessarily exactly equal to a power function), 
the requirement that this latter increment, divided by A nU+, be 0(1) (as prescribed 
by the experimental data), demands a logarithmic dependence in the mean profile 
both in the upper part of layer 11 (transition zone to layer 111) and in the lower part 
of layer IV (transition from layer 111).

4. D iscussion
The results presented herein have a number of physical and theoretical implications, 

some of which are now discussed.

4.1. Physical implications
A picture of boundary layer structure is revealed that provides a different perspective 
to the predominant view held in the literature, e.g. Townsend (1976), Monin & Yaglom 
(1971), Hinze (1975), Tennekes & Lumley (1972), Panton (1990, 1997, 2003), Pope
(2000). That is, the traditional view of turbulent wall layer structure is that viscous 
forces are significant only in the near-wall region (i.e. buffer layer and below), see 
Gad-el-Hak & Bandyopadhyay (1994). Outside of this near-wall region it is assumed 
that viscous forces play a negligible role. This is believed to underlie the Reynolds 
number similarity for the law of the wall, as well as the characterization of the 
logarithmic layer as an inertial sublayer in physical space (e.g. Tennekes & Lumley 
1972). From this, turbulent wall layers are usually divided into the four regions of the 
mean velocity profile, i.e. the viscous sublayer, buffer layer, log-layer and wake layer 
mentioned in the Introduction.

The traditional picture is primarily supported by the properties of the stress field and 
the mean velocity profile. As is widely known, the viscous stress is high very near the 
wall. At y + =  10, however, the viscous and Reynolds stress are approximately equal, 
and by y + =  30 the viscous stress is only about 10% of the Reynolds stress. Farther 
from the wall the viscous stress becomes an even smaller fraction. However, it is the 
gradients of these stresses that are the relevant dynamical quantities. Considering 
this, the traditional interpretation of turbulent wall flows is deemed inappropriate for 
educing the correct time-averaged dynamics.

The present results indicate that the inner viscous/pressure gradient layer structure 
in channels is different from the inner viscous/advection layer in boundary layers. 
That is, at the channel wall the viscous stress gradient balances the pressure gradient 
(so it is not the only significant term in the momentum balance equation), and 
there is an associated flux of vorticity from the surface. In the zero-pressure-gradient



boundary layer, however, all of the terms in the mean momentum equation are zero 
at the wall, and there is no net flux of vorticity. The influence of these differences 
can be seen by expanding the near-wall region of the stress-gradient ratio profiles 
in figures 1 and 3. When this is done, it becomes apparent that in the channel the 
viscous/advection layer is thicker at low Reynolds number, and that the ratio of —1 
in the stress gradient balance layer is approached asymptotically, probably owing to 
the net diminishing effect of the diffusive surface flux of vorticity. In the boundary 
layer, however, the value of this ratio is apparently —1 even at very low Reynolds 
number.

Also significant are modifications to the interpretation of logarithmic layer structure. 
As mentioned previously, the commonly held interpretation of the logarithmic layer 
as constituting an inertial subrange in physical space requires revision. That is, since 
viscous effects are significant in both the stress-gradient balance layer and the meso 
viscous/advection layer, only the outer portion of the logarithmic layer (i.e. the 
portion that adjoins the inertial/advection layer) might rationally be considered an 
inertial sublayer. Given this, characteristics of logarithmic layer turbulence are also 
likely to change depending on the force balance layer from which it is sampled. The 
present results also provide evidence that characterization of the logarithmic layer as 
a simple overlap layer is inappropriate. In connection with this it is instructive to 
note the recent observations of Osterlund et al. (1999). Specifically, while they assert 
that there is no significant Reynolds number dependence for the classical logarithmic 
relation, they do point out that a viscous influence exists in an extended ‘buffer 
region’ to >’+ =  200, instead of the more traditionally held value of >’+ =  50. Their 
experiments, however, ranged from Ree =  2500 to 27000. Given this, the present results 
indicate that the stress-gradient balance layer extends to about y+ =  40 followed by a 
meso viscous/advection layer extending to about y + = 66 for their lowest Reynolds 
number. For their highest Reynolds number, Ree =  27000, the stress-gradient balance 
layer extends to about >’+ =  120 followed by the meso viscous/advection layer out 
to about >’+ =  203. Similar empirically based conjectures have been made regarding 
the existence of two distinct logarithmic/power law-like scaling regions in pipe and 
channel flow, Zagarola & Smits (1998), Wosnik et al. (2000) and Afzal (2001a, b). 
The present results provide a physical explanation for these observations.

Across the meso viscous/advection layer the Reynolds stress gradient changes sign. 
This indicates that turbulent inertia shifts from a net momentum source for y < ym 
to a net momentum sink for y > y m. For this reason, it is likely that the significant 
inner/outer interactions occur across the meso viscous/advection layer. Similarly, 
the re-emergence of mean advection effects in the inner viscous/advection layer 
are probably associated with the recent observations of Metzger & Klewicki (2001) 
indicating that low-frequency motions are prevalent at high Reynolds number even 
very near the wall, as well as the successful scaling of the near-wall axial stress using 
the mixed velocity scale, v;Lf, it r. as found by DeGraaff & Eaton (2000).

Regarding flow physics, it is also worth noting that the present findings hold consi
derable promise in classifying and /o r characterizing non-canonical boundary layer 
flows. That is, non-equilibrium effects (associated with, for example, pressure gradients 
and /o r added strain rates) are likely to be clearly reflected in deviations from the force 
balance layer structure depicted herein. Similarly, since surface roughness imposes 
external length scales within the flow, the relation between these imposed scales and 
the thickness of the stress-gradient balance layer thickness is likely to be a significant 
measure of roughness influences, as well as the Reynolds number dependence of 
roughness effects.

Mean momentum balance in turbulent boundary layer, pipe and channel flows 323



324 T. Wei, P. Fife, J. Klewicki and P. McMurtry

4.2. Theoretical implications 
Unlike more familiar multiscale analyses, the present one is not amenable to a 
full-blown matched asymptotics approch, such as where matching conditions lead to 
boundary conditions at oo or at 0, and are used to determine inner and outer solutions 
uniquely. The differential equations in this case are underdetermined, and thus cannot 
be used to obtain a unique solution for the mean velocity. Nevertheless, considerable 
qualitative information about these unknown solutions was extracted. Since this 
information directly reflects the behaviour of the mean momentum balance, it is felt 
to be particularly useful in assessing the viability of proposed analytical/approximate 
formulae for the mean velocity profile. That is, the mathematical properties derived 
herein comprise a set of criteria that any candidate mean velocity profile equation (e.g. 
once inserted in the mean momentum balance) must satisfy. In connection with this, 
it is important to note that at least some of these criteria are rather robust relative 
to the inherent capabilities of experimental data. For example, the analysis in §3.2 
indicated that effectively distinguishing between a power or logarithmic form for the 
mean profile required determining whether Ajj£/+ remained 0 (1) or underwent an un
bounded increase with increasing Reynolds number. Such a distinction is considerably 
more attainable with experimental measurements than via use of the v ' (dLr ' /d  v ' ) 
and (y+/ U+)(dU+/ d y +) indicator functions mentioned in the Introduction.

The present analysis provides a theoretical justification for the intermediate boun
dary layer length scale empirically identified via examination of the stress gradient 
ratios. This intermediate meso-scale, lm = N/vS/uz, follows directly from the layer 111 
rescaling given in §3.1.2. Note that this rescaling was formally derived and is required 
to render all the terms in the mean momentum balance formally of the same magnitude 
in layer 111. Simply stated, has the same theoretical relevance as either the inner 
scale, li = v/uT, or the outer scale, J0 =  <5. Note further that normalization of wall- 
normal distance by lm yields \ ^ y 2/^ /vS /u I = %/t)y+. This is both y (as measured relative 
to j,„) and the geometric mean of the inner and outer normalized distance from the 
wall. Regarding the former, it is apparent that given any two of the three length scales, 
the third may be determined. Regarding the latter, it would seem that geometric mean 
(intermediate or mixed) scalings, often empirically identified as being superior to either 
inner or outer scalings (Alfredsson & Johansson 1984; Afzal 1984ft; Klewicki & Falco 
1996; DeGraaff & Eaton 2000; Priyadarshana & Klewicki 2003; Metzger, Klewicki & 
Priyadarshana 2003), but just as often discounted owing to their purported lack of 
physical significance or theoretical justification, e.g. Gad-el-Hak & Bandyopadhyay 
(1994), are worthy of continuing investigation.

Finally, the current work provides a unifying context for several previous boundary 
layer observations and analyses that have identified ‘intermediate’ (Afzal 1982; Sahay 
1997), ‘critical’ (Sreenivasan & Sahay 1997), and ‘meso’-layers (Long & Chen 1981). 
Each of these identify an important region around the peak in the Reynolds stress that 
scales with mixed variables. The analysis and empirical observations of Sahay (1997) 
and Sreenivasan & Sahay (1997) focused on the ratio of the viscous stress gradient 
to Reynolds stress gradient in the vicinity of the peak in the Reynolds stress, with an 
emphasis of the importance of viscous effects in this region. Afzal (1982) developed 
a scaling for an intermediate layer around the peak in the Reynolds stress (which 
he subsequently used to match with both the inner and outer layer using classical 
overlap ideas) by assuming all terms in the ‘once-integrated’ momentum equation are 
of the same order in this region. This resulted in the intermediate scalings developed 
here in §3.1.2. In each of these works, the intermediate layer identified is essentially



the meso-layer (layer III) discussed in this work with its dynamical relevance revealed 
by examination of the stress gradient data in figures 1-3 herein. The present work 
expands upon these earlier works by revealing (i) the existence of the stress-gradient 
balance region (layer II), in which viscous effects are important at all ;y+ up to a 
point beyond the peak in the Reynolds stress (and not simply in the vicinity of this 
peak), and (ii) the mathematical requirement for the intermediate length to adequately 
describe the scaling behaviour of the mean momentum balance.
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5. Conclusions
The time-mean differential momentum equation for canonical turbulent wall flows 

indicates that stress gradients are the appropriate quantities to examine for educing 
dynamics. Given this, available premier-quality experimental data and DNS simula
tions were used to reveal the properties and Reynolds-number dependence of the mean 
structure of boundary layer, pipe and channel flows. A four-layer structure of these 
canonical wall flows was revealed. The dynamical structure of each layer was described 
and the Reynolds-number dependent properties of the thickness and circulation of 
each layer quantified. From this analysis, a Reynolds-number-dependent intermediate 
length scale for turbulent wall flows was identified. This length scale arises directly 
from the internal dynamics and characterizes the thickness of the viscous-inertial 
stress-gradient balance layer. The present view of wall flow structure is in contrast to 
the established and pervasive view. The present picture of mean dynamics is directly 
founded on the mean statement of Newton’s second law for turbulent wall layers.

To complement these empirical observations, a multiscale analysis of the properties 
of the mean momentum balance in statistically stationary, fully developed, turbulent 
channel flow has been developed. The analysis employed minimal assumptions beyond 
the averaged momentum equation itself, an example being that the mean velocity 
monotonically increases from the wall to the channel centreline. With this, all proper
ties and Reynolds-number scalings shown empirically were derived in a systematic 
manner. Three different scalings (inner, outer and meso) were shown to be relevant, 
each in their own region, with the regions characterized by Reynolds-number depen
dent intervals of distance from the wall. Specific mathematical properties and scaling 
behaviour of the mean streamwise velocity, Reynolds stress and their wall-normal 
gradients were derived for each of the domains, and, in each case, were shown to be in 
full agreement with channel flow DNS and Princeton Superpipe data. These properties 
include the physical extent and Reynolds-number dependent scaling of the layer 
thicknesses, a flattening of the Reynolds stress profile near its maximum, the mean 
velocity increment across each layer, the rate of decay of the mean velocity gradient 
(especially in the stress-gradient balance layer), the asymptotic rate of increase of the 
peak value of the Reynolds stress, as well as compelling evidence for the logarithmic 
character of the mean profile in two distinct regions of the flow.
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