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The gene for spinocerebellar ataxia 7 (SCA7) includes a 
transcribed, translated CAG tract that is expanded in 
SCA7 patients. We have determined expansions in 73 
individuals from 17 SCA7 kindreds and compared them 
with repeat lengths of 180 unaffected individuals. 
Subjects with abnormal expansions comprise 59 
clinically affected individuals and 14 at-risk currently 
unaffected individuals predicted to carry the mutation by 
haplotype analysis. For expanded alleles, CAG repeat 
length correlates with disease progression and severity 
and correlates inversely with age of onset. Increased 
repeat lengths are seen in generational transmission of 
the disease allele, consistent with the pattern of clinical 
anticipation seen in these kindreds. Repeat lengths in 
expanded alleles show somatic mosaicism in leukocyte 
DNA, suggesting that these alleles are unstable within 
individuals as well as between generations. Although 
dynamic repeat expansions from paternal transmissions 
are greater than those from maternal transmissions, 
maternal transmission of disease is more common, 
suggesting germline or embryonic effects of the repeat 
expansion.

INTRODUCTION

The autosomal dominant spinocerebellar ataxias (SCAs) are a 

heterogeneous group of hereditary diseases manifested by 

degeneration of the cerebellum (primarily cortex) with associated 

variable pathology in other neural structures, including the

inferior olivary nucleus, basal ganglia, spinal cord, retina and 

peripheral nerves. Clinical manifestations of progressive ataxia, 

dysarthria and dysmetria may be accompanied by an associated 

constellation of associated deficits including ophthalmoplegia, 

visual loss, dementia, sensory deficits and pyramidal and/or 

extrapyramidal signs, depending on the underlying genetic 

defect. Previously defined on the basis of clinical (1) and 

pathological (2) critera, this complex group of diseases has been 

delineated by the discovery of distinct disease-causing genetic 

loci (3-8). More recently, successful cloning and determination 

of several disease-causing mutations have been accomplished for 

many of these diseases (9-13). We (14) have described families 

with SCA distinguished by associated pigmentary macular 

dystrophy and retinal degeneration leading to blindness, which 

we designated SCA7 (15). Previous nomenclature for SCA7 

includes autosomal dominant cerebellar ataxia (ADCA) type II

(1) and olivopontocerebellar ataxia (OPCA) type III (2). We (15) 

and others (16,17) previously have mapped the disease-causing 

gene to the short arm of chromosome 3 (3p12-13). Following this 

linkage information, SCA7 recently has been characterized (18).

The striking anticipation seen in this disease (14) mirrors that 

seen in other SCAs including SCA1, SCA2 and SCA3/Machado- 

Joseph disease (MJD), as well as other neurodegenerative 

diseases such as Huntington’s disease (HD), dentatorubralpalli- 

doluysian atrophy/Haw River/Smith’s disease (DRPLA) and 

spinal bulbar muscular atrophy/Kennedy’s disease (SBMA). The 

underlying mutation in these neuropathologies is a transcribed, 

translated CAG repeat coding for a polyglutamine tract that is 

expanded in affected individuals [for review, see (19,20)]. As 

predicted by clinical (14), cellular (21) and molecular (22) 

studies, this appears to be the case in SCA7 as well. We have
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investigated the length of the polyglutamine tract in affected 

individuals from several large previously described kindreds (15) 

as well as from other large and several smaller kindreds diagnosed 

as carrying the phenotype attributed to SCA7, and we have 

compared repeat length with a large sample of unrelated 

unaffected individuals.

RESULTS

Repeat length determination in affected and unaffected 
individuals

Repeat length distribution among three population groups studied 

is shown in Figure 1a. The distribution of unexpanded alleles is 

similar for CEPH, unaffected and affected SCA7 kindred 

individuals (Fig. 1b), with (CAG )10 by far the most common 

allele (71.5% of all unexpanded alleles). CAG repeat lengths 

ranged from six to 17 in 427 unexpanded chromosomes, with a 

mean of 10.5 ± 1.1 and median of 10 repeats. Unexpanded alleles 

showed no mutation, and genotype distribution in this group is 

consistent with Hardy-Weinberg equilibrium. Unrelated 

unaffected individuals taken from the CEPH panel had 34.3% 

observed repeat length heterozygosity (36/105 individuals); 

36.6% by the HET equation (210 chromosomes). Unaffected 

SCA7 kindred subjects incorporating both marry-ins and 

asymptomatic individuals not carrying the disease genotype 

showed greater heterozygosity (54.3% observed, 57.1% by HET, 

n = 144 chromosomes). This may be due to the fact that the CEPH 

reference panel has a preponderance of individuals of European 

origin, whereas many of the SCA7 kindreds are drawn from a 

broader geographic region (see Materials and Methods).

Seventy three expanded alleles (>17 repeats) from 59 patients 

and 14 asymptomatic at-risk individuals carrying the disease 

genotype ranged from 34 to 103 CAG repeats (Fig. 1c). The mean 

repeat length among these alleles was 49.4 ± 11.0 with a median 

of 47 repeats. Analysis of expanded repeats showed somatic 

variation in DNA derived from peripheral blood lymphocytes 

(Fig. 2), with expanded repeat lengths varying from ±1 to ±3 

repeats from the most prominent band per sample; such 

heterogeneity was not seen in unexpanded alleles. Although the 

possibility of PCR infidelity for larger expansions cannot be ruled 

out, the use of polymerase with proofreading/exonuclease 

activity makes this less likely.

Repeat length correlation with age of onset, disease 
severity and generation

As is seen in other trinucleotide repeat expansion diseases with 

anticipation, there is an inverse correlation between repeat length 

and age of onset. Age of onset in 59 clinically affected individuals 

ranged from 3.5 to 60 years. Mean age of onset was 29.9, with a 

standard deviation of 14.4 years. Correlation between SCA7 age 

of onset and CAG repeat length using quadratic regression 

analysis gave a Pearson coefficient of r = -0.80 (P<0.0001) 

(Fig. 3). Unlike the situation described in SCA3/MJD (23), the 

sex of the affected individual does not appear to affect this 

correlation greatly. When disease was categorized by number of 

decades between clinically detectable and debilitating disease, 

correlation was noted (r = 0.62, P<0.0001) by simple regression 

analysis.

Consistent with anticipation previously observed in many of 

the SCA7 kindreds, as age of onset decreased, repeat length

increased in each generation. Kindreds where three generations 

of SCA7 patients were studied had an average age of onset of 

48.3 ± 6.4 for generation I, 31.6 ± 10.7 for II and 15.6 ± 9.0 for 

III. Inverse correlation is seen in the expanded allele data, with a 

mean CAG repeat length of 42.1 ± 4.3 (range 34-47, n = 7) for 

the first generation, 47.1 ± 5.0 (39-57, n = 16) for the second and 

54.7 ± 16.0 (38-103, n = 23) for the third generation. Smaller 

kindreds with a two generation history of SCA7 showed an 

average age of onset of 42.4 ± 10.0 years with a mean repeat 

length of 45.5 ± 5.5 repeats (40-58, n = 11) for generation I and

19.2 ± 5.7 years and 49.6 ± 8.5 repeats (39-66, n = 16) for 

generation II.

Effects of transmitting parent on repeat length 
expansion

Parent-child transmission of the disease allele showed expansion 

of the CAG repeat in 32 of 44 cases. The repeat length differential 

between generations ranged from -13 to +62, with a mean total 

expansion of 7 ± 3.5 (mode = 3) repeats per transmission. A 

significant (P<0.001) difference between paternal and maternal 

transmission of the dynamic mutation exists in our kindreds as has 

been observed in other neurodegenerative trinucleotide repeat 

expansion diseases (24) [reviewed in (19)]. Whereas 33 maternal 

transmissions produced anywhere from -13 to +17 CAG repeats 

in offspring averaging 3.8 ± 3 repeat expansions, 11 paternal 

transmissions ranged from -6 to +62 repeats in offspring, 

averaging 16.6 ± 11 repeats (Fig. 4). Nine of the 10 as well as the 

two largest decreases in repeat length (-13, -8) were due to 

maternal transmission, and the four largest increases (+24, +24, 

+38, +62) were due to paternal transmission. However, the 

average degree of anticipation is similar betweeen the sexes, with 

a mean age of onset differential from paternal transmissions of

20.2 ± 10.5 years and of 20.2 ± 9.5 years from maternal 

transmissions.

In our kindreds, it is notable that whereas repeat length 

expansion is more dramatic in paternal transmissions, the 

majority of actual transmissions of expanded alleles are maternal 

in a 3:1 ratio (33 maternal versus 11 paternal, P<0.001). If 

generational disease histories are taken into account (where 

DNA, and therefore repeat length data was unavailable), the 

female:male ratio of the disease-transmitting parent increases to 

4:1 (65 female versus 16 male disease-transmitting parents). 

Furthermore, this bias in maternal disease transmission was seen 

in all large kindreds and in all of the smaller kindreds except two. 

It should be noted that the total number of females in our study 

was slightly greater than males, but this difference was not 

statistically significant (P>0.05).

Whereas an expanded (>17 repeats) parental allele was 

necessary for transmission of the dynamic mutation, the size of 

this allele could not be correlated significantly to the extent of 

transmission instability. This may be due to the fact that the range 

of expansions observed in 44 parents was confined between 34 

and 54 repeats. Within this sample, no individual or sub-range of 

repeat length could significantly show a differential propensity 

for instability (Fig. 4).

DISCUSSION

The mutation causing SCA7 comprises a transcribed translated 

CAG repeat; this is a common motif among the ‘type I ’ [as
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Figure 1. Repeat length of SCA7 alleles. The x-axis is the number of CAG repeats in all three graphs. The y-axis is total chromosomes in (a) and allele frequency 
in (b) and (c). (a) The filled columns in the first row represent 146 alleles from affected and pre-symptomatic individuals considered to be at risk by genotype. The 
shaded columns in the second row represent 144 alleles from unaffected family members. The distribution of the 210 unexpanded alleles from unaffected unrelated 
individuals is shown in the open columns in the rear. (b) Similar frequency distribution of unexpanded alleles in three populations. Columns are as described above. 
(c) Expanded SCA7 alleles (n = 74) show a wide distribution from 34 to 103 repeats; no single allele represents >9% of the total.



528 Human Molecular Genetics, 1998, Vol. 7, No. 3

Figure 2. The autoradiogram of amplified products spanning the CAG repeat 
in SCA7 shows sharp bands and no heterogeneity in unexpanded alleles 
(bottom) but a range of products in expanded alleles (top). The repeat length of 
expanded alleles was determined by the darkest (usually central) band, which 
is flanked by 1-3 larger and smaller PCR products, which are usually lighter. 
Details of the PCR amplification are given in the text.

categorized in (19)] trinucleotide expansion diseases which 

include HD, SCA1, SCA2, SCA3, SCA6 , DRPLA and SBMA. 

Other notable similarities with these diseases are autosomal 

dominant inheritance, generational anticipation, paternal bias and 

a cell-specific neurodegenerative phenotype despite widespread 

gene expression.

We have analyzed the dynamic mutation in 17 SCA7 families 

and correlated repeat length expansion with phenotype and 

inheritance pattern, and typed a large sample of independent 

normal chromosomes for comparative analysis. This study 

represents the largest analysis of SCA7 repeat length in affected 

and unaffected individuals to date. The observed difference 

between normal and expanded alleles is 17 repeats, a relatively 

large differential in the type I group. This striking contrast 

between normal and expanded alleles raises the possibility that 

predictive assays for disease potential in at-risk individuals might 

be relatively straightforward. Nevertheless, despite a correlation

between quantifiable repeat length and age of onset and disease 

course, a genotypic assay based on SCA7 allele size cannot 

provide sufficient predictive value for clinical prognosis.

Although the range of repeat expansions seen in affected 

individuals is similar to that seen in many of the aforementioned 

diseases, it is notable that the normal alleles show low poly

morphism and are constrained to a narrow range. Furthermore, 

with >97% of the unexpanded alleles harboring between 10 and 

13 CAG repeats, the normal range is centered around a shorter 

CAG repeat length relative to the normal ranges seen in all other 

polyglutamine tract diseases except for SCA6 (25). We (data not 

shown) and others (18) have noted that in normal SCA7 alleles, 

the CAG tract lacks interrupting trinucleotides. As such inter

vening sequence have the hypothesized role of stabilizing repeat 

length (26), it is paradoxical that unexpanded alleles show such 

low heterogeneity. Despite a lack of interrupting trinucleotide 

within the CAG tract, low repeat length alleles could remain quite 

stable, explaining the limited polymorphism seen in unexpanded 

alleles in our sample. However, expansions beyond the low, 

narrow range seen in normal chromosomes would be expected to 

be highly unstable within populations. Indeed, this marked 

instability is seen in expanded alleles, and appears to be more 

dramatic than in other known polyglutamine tract diseases. As 

instability and subsequent repeat expansion contribute to age of 

onset and severity of disease, selective pressures might be 

expected to exist to keep repeat length below a threshold where 

the allele becomes prone to instability. An initiating gene 

conversion event causing duplication of the repeat sequence (27), 

might precipitate the appearance of the expanded allele; it is 

interesting to note in this regard that the smallest expanded allele 

is exactly twice as large as the largest unexpanded allele (both 

alleles occur in the same individual, who is currently asympto

matic at the age of 48). Due to the highly unstable nature of the 

repeat, the subsequent morbidity and the autosomal dominant 

nature of the disease, this mutation would not be expected to be 

transmitted intact through many generations before becoming 

incompatible with further transmission; this is consistent with the 

fact that SCA7 has a lower prevalence than most of the type I 

diseases (1,2,14). Unequal sister chromatid exchange, poly

merase slippage or changes in cis- (28) or trans-acting elements 

[reviewed in (29) and (30)] may also be responsible for initial 

and/or subsequent events conferring instability on the normal 

CAG repeat; more intensive sequence analysis on this large 

patient sample may give insight into these possibilities.

The paternal bias in transmission of expanded alleles is 

particularly noticeable, and extends the pattern seen in other type 

I dynamic mutations. What is appreciated in this large sample of 

SCA7 kindreds is the further observation that actual disease 

transmission shows a strong maternal bias. Although fathers, on 

average, transmit significantly larger alleles to their offspring, 

mothers appear to be more consistent in passing on expanded 

alleles and thus maintaining disease within kindreds. Although 

females comprise 57% of total SCA7 family members and make 

up 64% of individuals harboring expanded alleles, they are 

responsible for a statistically significant 75% of all expanded 

allele transmissions and >80% of disease transmissions deter

mined by pedigree history. This pattern can also be seen in 

previously described SCA7 families (16,31-36). In a review of 

17 other described kindreds with an autosomal dominant 

degenerative cerebellar/retinal phenotype where a geneology was 

shown, or data regarding sex of affecteds and transmitting parents
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Figure 3. Quadratic regression analysis of repeat length versus age of onset gives a Pearson correlation coefficient of r = -0.80 P<0.0001. Males (squares) show a 
slightly, but not significantly earlier age of onset for a given repeat length.

Figure 4. Parental effects on expanded allele transmission. Paternal transmission (filled squares) is responsible for more dramatic expansion changes seen in offspring, 
although more maternal transmissions (shaded circles) of expanded alleles occur.

could be otherwise delineated, the sex of the disease-transmitting 

parent was predominantly female (84 maternal transmissions 

versus 56 paternal). Although the significance (P<0.05) of this 

statistic in the meta-study is not as strong as that seen in our 

kindreds, the skew is still striking when one considers the fact that 

the actual ratio of affected females to males is almost exactly 50% 

(82 affected females versus 83 males).

Possible explanations for this female disease-transmitting bias 

include a potential selective disadvantage for unstable, greatly 

expanded paternal alleles at the gametic stage (i.e. spermato

genesis), at fertilization or in utero. This is entirely consistent with 

observations of greater allele instability in sperm populations 

seen in other trinucleotide repeat expansion disease (37-41). If 

this was the case, one would expect fathers with expanded alleles
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to have significantly fewer than 0.50 of total progeny harboring 

expanded alleles. Where genotypes of sibships derived from 

affected fathers are known, this is not seen, but this sample size 

is quite small (6/11 children of affected fathers with expanded 

SCA7 alleles). It is unknown whether increased fetal wastage 

occurs in families where the father is affected. An alternate 

explanation of the observed bias takes both genetic and social 

factors into account: as children of affected fathers would be 

expected to be more severely affected with earlier age of onset, 

this could impact the father's decision to have more children. 

Indeed, although the percentage of affected males with children 

is approximately equivalent to that of affected females with 

children (83% versus 90%), sibships derived from affected 

fathers are smaller than those from affected mothers (mean 

paternal sibship size is 2.4 ± 1.7, mean maternal sibship size is 

4.0 ± 3.1).

Nonetheless, the possibility that in utero pathology resulting 

from the presence of a greatly expanded paternal allele remains 

intriguing as there are hints that the SCA7 protein product, 

ataxin-7, may act as a transcription factor; as such it may play a 

role in development. The polyglutamine and polyproline tracts in 

ataxin-7 resemble those found in certain homeodomain proteins 

and transcription factors (42,43). Expanded ataxin-7 has been 

localized to the nuclear fraction using an antibody to poly

glutamines (21), and a putative nuclear localization sequence in 

the SCA7 open reading frame suggests that the normal protein 

may also act within the nucleus. Study of other type I proteins 

offer tantalizing, albeit indefinite clues: the androgen receptor (in 

SBMA) is a known transcription factor, and huntingtin also 

carries polyglutamine/polyproline tracts (44) and is implicated as 

necessary for development (45-47). Further examination of 

ataxin-7 directed towards understanding its potential for trans

criptional regulation as well as interaction with other proteins 

should help to elucidate its cellular role as well as its cell-specific 

pathogenicity when mutated.

MATERIALS AND METHODS

Subjects

The previously reported SCA7 kindreds constituted 75 family 

members, 38 of who were predicted to carry the SCA7 disease 

allele by genotype; of these 38, 25 were deemed clinically 

affected by exam. Fourteen additional SCA7 kindreds 

incorporating 70 individuals were included in the analysis. Two 

large and nine smaller kindreds were of European origin, one 

large and two smaller kindreds were African-American, one 

large kindred was native Peruvian and a small Liberian and small 

Korean kindred were included in the study. In all, 145 SCA7 

family members were studied: 72 unaffected, 59 affected and 14 

asymptomatic individuals believed to carry the disease allele by 

linkage analysis. To determine relative frequencies of normal 

alleles and heterogeneity of genetic polymorphism, 105 unaf

fected, unrelated individuals derived from the CEPH reference 

panel were analyzed.

Age of disease onset from patient histories was based on the 

time at which individuals first noted visual disturbances or 

problems with balance; visual changes are usually noted prior to 

difficulty with coordination, and Tritan axis color blindness is a 

reliable indicator of early symptoms (14). Clinical evaluation by

neuro-ophthalmological exam was done to determine affected 

status. For patients where the disease course was known, duration 

from clinically detectable disease to debilitating disease 

(perambulatory incapacity and/or visual ability reduced to 

light/dark perception only) was categorized broadly by number of 

decades between states.

Subjects (or, in the case of minors, the responsible adult) signed 

a ‘Consent for Participation’ form which was approved by the 

Institutional Review Board for Human Research at the University 

of Utah School of Medicine.

DNA isolation and genotyping analysis

Anti-coagulated venous blood samples obtained from the exam

ined individuals were used for direct DNA preparations and to 

establish lymphoblastoid cell lines by Epstein-Barr virus trans

formation as previously described (14). Genotyping using poly

morphic microsatellite markers was as previously described (15).

Amplification of CAG repeats

Primer pairs 7ALT (5'-AAGGAGCGGAAAGAATGTCG-3') 

and 4U716 (5'-CACGACTGTCCCAGCATCACTT-3') were 

used to amplify human DNA. The 5' termini of primer 7ALT were 

labeled with bacteriophage T4 polynucleotide kinase (Promega) 

and [y-32P]dATP (NEN) at 37 ° C for 30 min. Due to the repetitive 

nature of the DNA sequence and high GC content in and around 

the trinucleotide repeat, amplification by ‘standard’ polymerase 

chain reaction (PCR) was inefficient, especially for larger repeat 

lengths (data not shown). In order to amplify these regions more 

accurately, we used a combination of Taq DNA polymerase (for 

processivity) and Pwo DNA polymerase (for proofreading and 

exonuclease activity) (48). Conditions were as follows: genomic 

DNA (50-100 ng) in 25 p,l of total reaction volume 50 mM 

Tris-HCl (pH 9.2) 16 mM  (NH4)2SO4, 1.75 mM  MgCl2, 280 pM  

dATP, dTTP and dCTP, 80 pM  dGTP (Pharmacia), 200 pM  

7-deaza-2'-dGTP (Boehringer Mannheim), 50 pM  each of 

primers 7ALT and 4U716, 5 pM  5'-[32P]7ALT, 1.5 U  of Pwo 

DNA polymerase (Boehringer Mannheim), 3.5 U  of Taq DNA 

polymerase (Boehringer Mannheim). Thermocycling conditions 

were 95 °C for 5 min followed by 30 cycles of 95 °C for 1 min 

denaturion, 56.5 °C for 1 min annealing, 72 °C for 1 min 

extension, followed by a 7 min final extension step at 72 ° C. After 

addition of 10 p,l of formamide loading buffer (98% formamide, 

0.01 M  NaOH, 0.01% each of xylene cyanol and bromophenol 

blue), PCR products were denatured at 95 °C for 10 min and 

placed on ice. Between 3 and 6 p,l of product were loaded and 

separated by denaturing polyacrylamide gel electrophoresis 

(PAGE) on a 7% bis-acrylamide/acrylamide gel (Bio-Rad) 1x 

TBE, with 32% formamide, 6 M  urea. Products were visualized 

either by autoradiography (Fuji X-ray film) or by Phosphor- 

Imager (Molecular Dynamics) analysis.

Sequencing analysis

Selected sequence was derived from PCR products generated as 

described above. Products were cycle sequenced using dideoxy- 

nucleotide terminators with SequeTherm EXCEL polymerase 

(Epicentre Technologies), run on PAGE and visualized by 

autoradiography. Normal alleles from homozygotes (CAG10 and 

CAG11) as well as an expanded allele (CAG44) were sequenced.
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Regression coefficients, ANOVA table, mean and standard 

deviation data were fit using the StatView statistical analysis 

package version 4.5 for Apple Macintosh (Abacus Concepts, Inc.). 

Determination of significance for comparison of percentages was 

performed by x2 analysis, with Yates correction when necessary. 

Non-parametric analysis comparing means was done by the 

Mann-Whitney U  test. The heterozygosity of unaffected individuals 

was determined by the equation HET = 1 - Epg2 (i = 1...n).
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