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Directional recoil rates for WIMP direct detection
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New techniques for the laboratory direct detection of dark matter weakly interacting massive particles 
(WIMPs) arc sensitive to the recoil direction ofthe struck nuclei. Wc compute and compare the directional 
recoil rates clR/dcos0 (where 0 is the angle measured from a reference direction in the sky) for several 
WIMP velocity distributions including the standard dark halo and anisotropic models such as Sikivic’s 
latc-infall halo model and logarithmic-ellipsoidal models. Since some detectors may be unable to 
distinguish the beginning ofthe recoil track from its end (lack of head-tail discrimination), wc introduce 
a folded directional recoil rate d R /d  | cos0|, where | cos0| docs not distinguish the head from the tail ofthe 
track. Wc compute the CS2 and CF4 exposures required to distinguish a signal from an isotropic 
background noise, and find that dR/d\oo&Q\ is effective for the standard dark halo and some but not 
all anisotropic models.
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I. IN T R O D U C T IO N

The nature of dark matter (DM) in the Universe is still 
one of the outstanding problems in astrophysics and cos
mology. Numerous observations support the existence of 
DM. Examples are: big bang nucleosynthesis, cosmic m i
crowave background data (W M AP3), supernova surveys, 
galaxy surveys (SDSS, 2dF), and distance measurements 
with cepheids (HST). In the concordance cosmological 
model A CDM, the total density of the Universe has 
three contributions: matter, radiation, and a cosmological 
constant. The matter contribution can be further divided 
into the contribution of ordinary (baryonic) matter 
and the contribution of nonbaryoiiic cold dark matter 
(CDM). Their density parameters, i.e. their densities 
in units o f the critical density p c =  1.053 X 
10-5 h2 (G cV /c2) crrT 3 (here h is the Hubble constant in 
units of 100 k m /s/M p c), are: O b =  (0.021 86 ±  
0.000 68)/j-2 and O cdm =  (0.110 5 ̂  ̂  | ) —2 (from 
Ref. [11). Thus, CDM  constitutes —84% of the matter in 
the Universe.

CDM  is found in clusters of galaxies and in individual 
spiral and elliptical galaxies. For example, stars in spiral 
galaxies are observed to move too fast around their galactic 
centers to be explained by the gravity of luminous matter 
alone. In particular, our Milky Way Galaxy also contains 
DM. Bimiey and Dehnen [21, for example, show that the 
rotation curve of the Milky Way is nearly constant far 
beyond the Sun’s location, implying the presence of DM 
in the Sun’s neighborhood. This and similar studies give a 
density of DM  near the Sun o f p =  0.3 (G cV /c2)/c m 3.

The nature o f CDM  is still unknown. DM  candidates for 
CDM  are subatomic particles such as neutralinos, axions, 
Kaluza-Klein particles, and other W IM Ps. W IM Ps are 
hypothetical electrically neutral stable particles with scat
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tering cross section off nucleons of the order of the weak 
interaction (crp ~  10-44 cm2) and mass in the range 10
1000 GeV. Dark matter W IM Ps arise, for example, as 
lightest supersymmetric particles (LSPs) in supersym m et
ric extensions of the standard model of particle physics. 
Kaluza-Klein particles arise in theories with more than 
four space-time dimensions, and share the same properties 
with W IM Ps except for being somewhat heavier. In this 
paper, we refer to W IM Ps but our considerations apply to 
Kaluza-Klein particles as well.

Dark matter W IM Ps near the Sun can reach the Earth 
and can scatter elastically off target nuclei in a detector, 
making the nuclei recoil. The energy, and recently the 
direction, o f the recoiling nuclei can be measured experi
mentally. Extensive experimental efforts have been de
voted to detect W IM Ps directly (e.g., DAMA, CDMS, 
EDELW EISS, CRESST, DAM A/LIBRA, SuperCDM S, 
DRIFT, etc.). There are two types of direct detection ex
periments: those that measure the recoil direction and those 
that do not. Examples of directional direct detectors are: 
DRIFT [3-71, which uses a gas target in a time projection 
cham ber and has run a prototype detector for a few years; 
NEWAGE [8,91, which uses a similar time projection 
cham ber and is sensitive to spin-dependent W IM P-nucleus 
interactions; and detectors that use organic crystals such as 
stilbene [10,111. The other detectors previously listed are 
all noiidirectional.

A goal of directional W IM P detectors is to identify 
galactic W IM Ps by using the distribution of the nuclear 
recoil directions as a signature. We believe that an analysis 
o f the W IM P-induced recoil directions can also allow the 
study of the staicture and dynamics o f the W IM P halo.

The idea of directional W IM P detection originated as 
early as 1988. Spergel [121 suggested that a W IM P signal 
could in principle be identified by means of the diurnal 
rotation of the “W IM P w ind" direction due to the Earth’s 
rotation (the “W IM P w ind" is caused by the Solar 
System ’s rapid motion through the galactic halo). The
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practical realization of directional W IM P detection was 
delayed by the difficulty of finding a suitable target m ate
rial and an effective detection technique. In 1996, M artoff 
et al. [ 131 described a prototype direction-sensitive solid- 
state detector for W IM Ps. A gaseous directional detector 
was studied by M artoff el al. [31 and is described in 
Snowden-Ifft, Martoff, and Burwell [41 (see also [5-71). 
This detector, called DRIFT (directional recoil identifica
tion from tracks), uses a time projection cham ber filled 
with a low pressure mixture of a target gas and an electro
negative gas. The first stage of DRIFT (DRIFT I) had a
1 in3 target (167 g of CS2) and ran from  2001 to 2004 at the 
Boulby mine, North Yorkshire, England [141. The current 
stage of DRIFT (DRIFT II) is an array of 1 tn3 modules 
and has been operational since 2005 [151. A future stage 
has been envisaged (DRIFT III) that may have a target 
mass of up to 1 ton [161.

On the theoretical side, Copi, Heo, and Krauss [ 171 and 
Copi and Krauss [ 181 examined the num ber of events 
required to distinguish a W IM P signal from  an isotropic 
background. Gondolo [191 obtained analytic expressions 
for a variety of directional recoil spectra by means of the 
Radon transform that relates the W IM P velocity distribu
tion to the distribution of recoil momenta. Freese, 
Gondolo, and Newberg [201 studied the possible direc
tional detection of W IM Ps belonging to the Sagittarius 
tidal stream, which may be showering DM onto the Solar 
System. M organ, Green, and Spooner [211, M organ and 
Green [221, and Green and M organ [231 studied how the 
exposure required to directly detect a W IM P directional 
recoil signal depends on the capabilities of a directional 
detector. They also examined statistical tests to distinguish 
a W IM P signal from an isotropic background and found 
that in detectors with head-tail discrimination (see below) 
of order ten events will be sufficient to distinguish a W IM P 
signal from an isotropic background for all of the halo 
models they considered. Host and Hansen [241 investigated 
the possibility of measuring the velocity anisotropy of the 
galactic dark matter halo in a direction-sensitive W IM P 
detector. They found that in excess of 103 events across all 
energies are needed to make a coarse m easurement of the 
velocity anisotropy.

The goal of this paper is to study how different halo 
models affect the directional recoil rate dR/dcosO,  where 
0 is the angle between the nucleus recoil direction and a 
chosen reference direction in the sky. We compare the 
directional recoil rates for the different models. We repeat 
the same analysis for a “ folded” directional recoil rate 
d R / d | cos0| that incorporates the inability of some detec
tors to distinguish the beginning of a recoil track from  its 
end (head-tail discrimination). We compare each 
d R / d |co s0 | to an isotropic background, to examine the 
possibility of discriminating a W IM P signal from  back
ground noise.

In Sec. II, we present a general discussion of the direc
tional recoil spectra. There we give the expressions of

various differential recoil rates that are useful to analyze 
and interpret W IM P direct detection experiments. In 
Sec. Ill, we describe two methods, numerical and analyti
cal, for calculating the directional differential recoil rate 
d R / d  cosO of recoiling target nuclei struck by W IM Ps. The 
analytical method is applied to a Gaussian velocity distri
bution whose average velocity is aligned with the reference 
direction. The numerical method is more general and it can 
be used for any reference direction and any W IM P distri
bution. In Sec. IV, we present the results of applying the 
num erical method to various W IM P halo models, includ
ing streams of W IM Ps, the standard dark halo, the Sikivie 
late-infall halo, and anisotropic models. In Sec. V, we 
address the difficulty of head-tail discrimination in 
W IM P direct detection experiments and present recoil 
distributions suitable for direct comparison with experi
ments lacking head-tail discrimination. Finally, we sum 
marize our results in Sec. VI.

II . D IR E C T IO N A L  R E C O IL  SPE C T R A

In this section we give an expression for the directional 
recoil rate for interactions between W IM Ps and target 
nuclei. In W IM P direct detection, the collision between 
the W IM P and the target nucleus is detected by measuring 
the energy of the recoiling nucleus. In directional detec
tors, one can also measure its direction of recoil.

Figure 1 shows the kinematics of such a collision. The 
energy of the recoiling nucleus is given by (see e.g. Gascon 
[251)

£maxcos 0R’ (D

where 0R is the angle of the nuclear recoil relative to the 
initial W IM P direction (recoil angle), and

(2 )

is the maximum energy that the W IM P can transfer to the 
nucleus. Here v  is the speed of the incoming WIMP, m is 
its mass, M„ is the mass of the target nucleus, and jxn =  
m M „/ (m  + M„) is the reduced mass of the W IM P-nucleus 
system.

FIG. 1. Kinematics of a WIMP-nucleus elastic scattering.
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In general, the differential recoil spectrum, i.e. the dif
ferential event rate per unit detector mass, is given by

DIRECTIONAL RECOIL RATES FOR WIMP DIRECT ...

C„a„(E)£(E) f  — d3v, (3)
J  v > w n V

where the sum is over the nuclear species in the target, C„ 
is the fraction of mass in species n.

W’„
M„E

l l f i l
(4)

is the m inimum W IM P speed required to transfer an 
am ount of energy E  to the nucleus of mass M n in the 
detector (here c is the speed of light), p  is the local 
W IM P density mentioned in the Introduction, £ (£ ) is the 
detection efficiency at recoil energy £ ,  and cr„(£) is de
fined as

o-,AE )
der

(5)"max dE

with der /dE  equal to the differential W IM P-nucleus scat
tering cross section.

For directional detectors, we need a differential rate not 
only in energy but also in direction. The three-dimensional 
recoil rate in spherical coordinates where the angles d and 
4> refer to the direction of the nuclear recoil and the radial 
coordinate is the recoil energy £ ,  is given by (see Ref. [191)

dR
d E d l l I C „ /( h-„,w)o-„(£)£(£), (6)

where d i l  =  d<f>dcosd and f ( w ,  w) is the 3-dimensional 
Radon transform of the velocity distribution function /(v ) . 
The 3-dimensional Radon transform f ( w ,  w) of a function 
/(v )  is defined to be the integral of / (v )  on a plane 
orthogonal to the direction w at a distance vv from the 
origin v =  0 [261.111 formulas.

f ( w ,  w) =  j" S(v  ■ w — w ) f ( v )d 3v, (7)

where <5 is the Dirac delta function and w is the recoil 
direction. In this work we will specify the direction w using 
a reference frame fixed in the sky in preference to a 
reference frame fixed with the laboratory.

Projections of the directional differential rate are also 
useful and have been used in the past. For example, one can 
measure recoil directions w from a chosen reference direc
tion n as in Fig. 2. If Eq. (6) is integrated over the azimuthal 
angle <f> and the energy £ ,  one obtains

dR
d cosd jfd § n d,,“l£- (8)

where 6 is the angle between the reference direction n and 
the recoil direction w. Equation (8) is the directional 
differential recoil rate we study in this paper. It has been 
used in previous work [8,271 to compare W IM P velocity

PHYSICAL REVIEW D 77, 043532 (2008)
direction of

FIG. 2. The figure shows the reference direction n , pointing to 
a specific direction in the skv, and the angles 0 and <p used in 
Sec. ITT.

distributions and/or assess the advantages of directional 
detection methods.

The directional rate d R / d  cosd requires a 3D readout of 
the track direction. Although we are optimistic that one day 
a 3D readout will be available, current experiments are 
limited to a 2D readout in a plane fixed with the laboratory 
[151. This plane precesses around the North-South terres
trial axis due to the rotation of the Earth. A differential rate 
dR/d(f> appropriate for this situation has been introduced 
and studied in Refs. [21-231, to which we refer.

Besides the difficulty of a 3D readout, current detectors 
may be unable to distinguish the beginning of the recoil 
track (the head) from the end o f the track (the tail). This is 
called the difficulty of head-tail discrimination. Because of 
this, it is useful to introduce the following folded direc
tional recoil rate relevant to experiments that lack head-tail 
discrimination:

dR
d \ cos0

dR(cosd) dR( — cosd)
d  cosd d  cos d

(9)

This rate is correctly normalized because the integral of 
both sides gives the total rate. As illustrated in Fig. 3, 
Icos0| does not distinguish between w and - w .

FIG. 3. The vectors w and — w share the same value o f | cos6>|.
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Therefore, there is 110 need to know the track's head from 
its tail when using the folded directional recoil rate, 
Eq. (9). However, there may be a loss of inform ation in 
doing so (see Sec. V).

The differential W IM P-nucleus scattering cross section 
<t„(E) in Eq. (5) can be split into two parts, one spin- 
independent (SI) and the other spin-dependent (SD):

MOQBIL S. ALENAZI AND PAOLO GONDOLO

a„(E) =  cr„(E) +  af,D(E). ( 1 0 )

Correspondingly, one can separate the spin-independent 
and spin-dependent contributions to the directional recoil 
rate d R /d  cos# as

d R Sl d R SD 
+  ■

dR
cl cos# d  cos6 d  cos6

( ID

A sim ilar separation can be defined for the folded direc
tional recoil rate d R / d \  cos0|.

The rest o f this section describes the expressions for the 
directional recoil rate for spin-independent and spin- 
dependent interactions.

A. Spin -independen t d irec tiona l recoil ra tes

In Eq. (10), the spin-independent part o-^(E) can be 
written as

rsi (E) =  a-QJ M ( 1 2 )

where <r0 is the W IM P-nucleus scattering cross section and 
T,S.E)  is a nuclear form factor which depends on the type 
of W IM P-nucleus interaction and oil the mass and spin 
distributions within the nucleus. In cases where the nuclear 
form  factor effects are negligible we have ^T„(E) =  1. In 
reality, the nuclear form  factor may become im portant for 
specific detectors.

One can write

77
IZ G \  +  (A -  Z )G ns \2, (13)

where Z  is the num ber of protons in the nucleus, A is the 
mass num ber of the nucleus, and Gs (GJ) is the effective 
proton (lieutron)-W IMP coupling. The W IM P-proton cross 
section is

<rp = ^ ( C D 2,F ^

where

Mp
m/Hp

m  +  tflrs

(14)

(15)

is the W IM P-proton reduced mass. Assuming, as it is 
approximately the case for neutralino dark matter, that

G? =  C l (16 )

(17)
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_ Mn a?0~Q ryA. (Tp.
Mp

In this case, the recoil rate, Eq. (6), takes the form 

d R sl _  pcrp
d E d il  477f i tm

y C „ A j j ( w n, w ) J n(E)£(E).  (IB)
P"‘ n

We can define ail effective spin-independent recoil mo
mentum distribution, f% (E ,  w), as the average over all 
masses

f % ( E ,  w) =  Y C , A l K w n, w ) T n(E)£(E).  (19)
n

The rate of detection of W IM Ps then reads

w).d R sl _  P ?si,
d E d il  ^TTfxpn 

We can also write

d R sl _  P<r P

(2 0 )

/ f r r(E, w)d(f>dE. (21)
d  cos# 477/xpn 

For example, for a CS2 target as in DRIFT,

2 M s
Cc

Cr

2M s +  M q ’

M c 
1M S +  M q ’

(2 2 )

(23)

and f% (E ,  w) is given explicitly by

, 2M sA 2f s J s +  M cA 2 f c T c  ,
W) “  2 Mg + M e  (24)

Here / „  =  f (w„,  w). [Notice that the symbol C (italic) 
denotes the fraction of mass while the symbol/subscript 
symbol C (roman) denotes the carbon nucleus].

Using common units and magnitudes, the spin- 
independent directional detection rate of W IMPs is

d R sl , events
1.306 X 10- 3 -

d E d il kg-day-keV-sr

X  £ M £ i i f f i ( E , A ) ,
4TT/JLpfn'

(25)

we have

where p 0 3 is the DM density in the solar neighborhood in 
units o f 0.3 (G eV /c2)/c m 3, <r44 is the proton cross section 
in units o f 10-44 cm2. /xp and m  are in G eV /c2, and / ^ r is 
in (k m /s)-1 .

B. S p in -dependen t d irec tiona l recoil ra te s

In Eq. (10), the spin-dependent part o-^D(E) can be 
written as

043532-4
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•SD (E)
32

(2J„ +  1 )ft4

+  a pa nS" (£)]

[a lS ;p(E) + a lS U E )

(26)

Here h is the reduced Planck constant, G F is Ferm i cou
pling constant [Gf /(ftc )3 =  1.16637 X 1CT3 G eV _2l, /„  
is the nucleus total angular m omentum in units o f h, a p(an) 
is the effective axial coupling o f W IM P and proton (neu
tron) in units o f 2%/2Gf / / r  [281. [Notice that the subscript/ 
superscript symbol n (italic) denotes the nucleus while the 
subscript symbol n (roman) denotes the neutronl. In 
Eq. (26), the dimensionless functions 5p'p(£), S"n(E), and 
Spn(E) play the same role as the nuclear form factor J :n(E) 
in the spin-independent case. They are given by

cn
°PP

cn _i_ cn _ cn
°00 ^  ° 1 1  01 >

(27)

(28)

(29)

where 5q0, 5",, Sg, are the nuclear spin structure functions 
defined in [291. W hen the nuclear spin is approximated by 
the spin o f the odd nucleon only, one finds

+  0 (2 /,, +  1 )
Jw TT

0 ,
(30)

s ; n =  o.

for a proton-odd nucleus, and

S1” =  0  s1”J pp u - J n
A2/„ ( /„  +  1 )(2 /„ +  1)

TT
s;n = o.

(31)

for a neutron-odd nucleus. Here A„ is conventionally de
fined through the relation <«|S|/7) =  A„(7j|J|7j), where \n) 
is the nuclear state, S is the spin, J  is the total angular 
momentum. Tables o f A2/„ ( /„  + 1) values for several 
nuclei can be found in [30,311.

The spin-dependent cross section off a proton is

cr\•SD 24

wh4

and that off a neutron is

cr\,SD _

Trh4

(32)

(33)

In case the target is a combination of different nuclei, we 
write

=  S ^ flW -P P (£ - + ^

+  ava J f i . VxXE ’ w)], (34)

where we define the effective spin-dependent recoil mo-

PHYSICAL REVIEW D 77, 043532 (2008)

m entum  distributions

ff, pp(£.w) X 4-7T

3 0 aT + i ) ^ pp
C „ SU E )f(w „ , W)£(E), 

(35)

and similarly for /err.nn(£, w) and /err.Pn (£  w). The nor
malization o f /e£pp(£ . w), and f l £ pn(£, w) 
has been chosen so that /err.pp( £  w) =  / ( w p, w) when the 
target is a proton and /err.nn(£, w) =  /(w ’n, w) when it is a 
neutron.

For the CF4 target used in the NEWAGE detector [8,91, 
and in the proton-odd approximation, Eq. (34) takes the 
form

SD
P a p ?SD 

J e
dR S D _________

dEdVt ATTfiim J elT'pp
,(£, w). (36)

In this case, the C nucleus has no spin (thus Ac =  0), while 
the F  nucleus has spin ^ . In the proton-odd approximation, 
Ap/F( /F +  1) =  0 .647“(see Table 1 in [301). Thus the 
effective spin-dependent recoil m omentum distribution, 
Eq. (35), reads

3
0.647 CFf F£(E).

The fraction o f mass CF is given by

AM [7
CF

4A/f  +  M q

(37)

(38)

Using common units and magnitudes, the spin-dependent 
directional detection rate o f W IM Ps (for the CF4 target 
used in the NEWAGE detector) is

cIRsd ___ „ , events
1.306 X I 0 - 3 -

d E d il kg-day-keV-sr

n ,rSD
x  pft3 P-44 fSD ,E %) 

4TTu2m Je((PP{I it
(39)

III . C A LC U LA TIO N  O F  d R / d  co s0

The analysis o f directional spectra in W IM P direct 
detection can be carried out by computing the directional 
differential recoil rate d R / d  cos8 as a function o f the angle 
8 between the nuclei's recoil directions w and a reference 
direction n. In this section we describe two methods for 
calculating the directional recoil rate d R / d c o s 8 .  The first 
method is numerical and can be used for any W IM P 
velocity distribution and for any reference direction. The 
second method is analytic and is restricted to Gaussian 
distributions and to reference directions n in the same 
direction as the W IM P average velocity Y. Results o f 
applying these methods to various dark halo models are 
given in Sec. IV.
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Before describing the two methods, we recall the ex
pression o f the recoil m omentum function f l w ,  w) for a 
M axwellian velocity distribution. In the rest frame of the 
detector, the W IM P velocity distribution is given by

/(v) =
1

exp
2 a t

(40)

where v is the velocity of a WIMP, crv is the velocity 
dispersion (not to be confused with the W IM P-nucleus 
cross section) and V is the average velocity of the 
W IM Ps with respect to the detector. The recoil momentum 
spectrum for nucleus n in the laboratory frame is [19]

f„ {w ,  w) =
1

exp
w - V]:

2 crt
(41)

In principle,

V =  V(W, G) V(S, G) -  V(E, S) -  V(lab, E), (42)

where V(W, G) is the average velocity of the W IMPs 
relative to the galactic rest frame (zero in the standard 
halo model), V(S, G) is the velocity of the Sun relative to 
the galactic rest frame (of order 200 km /s), V(E, S) is the 
velocity of the Earth relative to the Sun (of order 30 km /s), 
and V(lab, E) is the velocity of the detector in the labora
tory relative to the center of mass of the Earth (of order 
0.3 km /s). As the Earth rotates and orbits the Sun, two 
signal modulations (annual and diurnal) are expected as a 
result of the relative motions V(E, S) and V(lab, E). In this 
work we neglect V(E, S) and V(lab, E )— and the corre
sponding annual and diurnal m odulations— and use the 
velocity distribution in the frame of the Sun. We also 
neglect focusing effects due to the gravitational field of 
the Sun (of order 1 k m /s , see [32]).

In the following, we assume that the nuclear form  factors 
are T , A E )  =  1- In the case of a detector with threshold 
energy Elhr, we model the detection efficiency at recoil 
energy E  as

£ ( E )  =
1, if E  >  E,
0, if  £  <  Elhr.

thr> (43)

A. N um erica l d R / d  cost) — g enera l case

In general directions and for non-Gaussian distributions, 
the integration o f the recoil rate over the energy E  and the 
azimuthal angle <f> in Eq. (8) cannot be done analytically. 
However, one can calculate the recoil distribution 
numerically.

We do the integration over the azimuthal angle <f> using a 
Riemann sum. For the integration over the energy E, it is 
difficult to use a Riemann sum because of narrow peaks in 
d R / d  cosd as a function o f cosd when streams of dark 
matter are present. Therefore, we do the integration over E 
by means of the fifth-order Cash-Karp Runge-Kutta 
method with adaptive stepsize control, as described in

Ref. [33]. To apply this method, we write the differential 
recoil rate in the form  of an ordinary differential equation:

d f  dR  \  
d E \d c o s d )

=  1.306 X y / elT(E ,w ,)A 0 ,
4 tr/xp n  f^ i

(44)

where A <f> =  27r/A ^, and the unit vectors w,-, which de
pend on <f>h are specified in Eq. (52) below. We take N#  =  
100 with initial condition (d R / d  cosd)E=0 =  0; we require 
an accuracy of 10-8 and choose a scaling factor

ltscal =  I.V/I ‘RK
d y \
He ),

(45)

where ftRK is the value of the stepsize, v,- =  d R /d  cosd  at 
<f> =  <f>h and (d y /d E )j  is the partial derivative of 
d R /d  cosd  with respect to E  at <f> =

An expression for w,- is obtained as follows. At a fixed 
value of the angle d between the reference direction n  and 
the recoil direction w, the possible directions of the target 
nucleus recoils lie on a cone of opening angle 2d , as shown 
in Fig. 2. Since d is constant, it is convenient to specify w in 
terms of the polar angle d and the azimuthal angle <f> 
reckoned with respect to the n  axis.

We want to find the Cartesian components of w,- in an 
arbitrarily given reference frame x, y, s. For this purpose, 
we introduce an auxiliary Cartesian coordinate system x \  
/ ,  zf- with z! aligned with ii. Since d and <f> are reckoned 
from z1- the vector w,-, which is w at <f> =  <f>h can be written 
in terms of the new unit vectors e V  e '2, e '3 as

w ,• =  sin# cos 0,-e'! + sin# s i i i^ e '?  + cos 0 e '3. (46)

Our task is now to express the new basis vectors e ^ ,  e '2, 
e '3 in terms of the original basis vectors § i, e 2, e 3. Once 
this is achieved, Eq. (46) will give w,- in terms of § i, e 2, e 3 
and one can read off its Cartesian components.

The transformation matrix from  e 2, e3 to e ^ ,  e ' ■ e ' 3
can be found using Euler angles. We first rotate the e,- axes 
about the s axis counterclockwise through an angle a  + f . 
Then we rotate the resulting axes about the new x  axis 
counterclockwise through an angle f3. We find

e 't  = sinorex + cosa-e2, (47)

e ' 2 =  ^  coSyScosa-e! -  cos/3 sina-e? + sin/?e3, (48)

e ' 3 =  sin/3 cosae! + sin^ sina-e, + co s^ e3. (49)

Identifying ii with e 3 in Eqs. (47)—(49) shows that a  and /3 
are the spherical coordinates of ii:

, / i iv ,
a  =  tan — ,

P  =  COS * (nz).

(50)

(51)
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Inserting these relations into Eq. (46), we obtain

w , =  (— sin# cos4>j s in a  — cos/3 co sa  sin# siii$,- 

+ sin/3 co sa  c o s# )^  + (sin# cos(/>, co sa  

— sin# sin (/>, cos/3 s in a  + sin/3 s in a  cos#)e2 

+ (sin# sin</j, sin/3 + cos/3 cos#)e3. (52)

B. A nalytic d R / d  c o s # — special case

We were able to derive an analytic expression for 
d R / d  cos# when the W IM P velocity distribution is 
M axwellian and the reference direction n is aligned with 
the W IM P average velocity Y. Notice that this does not 
mean that # =  # fi, the recoil angle (see Fig. 1), because 0R 
is measured from the velocity of an individual W IM P while 
# is measured from the average velocity of all W IM Ps. 
Here we assume a spin-independent case and a zero- 
threshold detector.

We wish to compute

dR p w  P
dcosd  Arrji^m 

Using Eq. (19),

dR _  po-  P

[ f U E , vf)dEd<j>. (53)

d  cos# Arrjipn n
V ’ f  a 2I

where

r r.
Jo Jo

f„(w,  v/)dEd<j>.

(54)

(55)

For a M axellian velocity distribution,

[vv„ -  w • V ]2 

(277<x2)1/2 Jo Jo r \  2cr2 J..2'ii"y™*■
(56)

Since w • n =  cos# and we assume here that V =  V^n, we 
have

From Eq. (4),

w • V =  V  cos#.

4 f i 2,
d t  = ------ ~w„dw„.

(57)

M„c2

Substituting Eqs. (57) and (58) into Eq. (56), we find

877[JL2 (  [vv’„ — y c o s # ] 2

(58)

I
M nC2{2TT(J2y I 2 /> (- 2 err.

vv „du n, 

(59)
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87r / i2,crv r /  ^ c o s 2# 
exp

M „ c 2 ( 2 t t ) ^ 2 

V  cos# h-

,y/2

2 cr;,

l + e r f ( '1' C0Se
\  (rvy/2

(60)

where erf(.r) is the error function. Inserting Eq. (60) into 
Eq. (54) gives

dR — 2 p a vCnA 2ltx;la v \ /  V^cos2#
Z  .------^ ! eXP 2 err,

V  cos#
+  ---------— \/TT

W,
I +

V cr „V2
(61)

or

dR  
d  cos#

2612 eV£lltS Y  P ^ u C i A l ^ v  
kg-day \ f2TrMnc 2mfxp

V,2cos2# \
X J ex.pi

V  cos#
+  ---------— \ITT

2 a 2 J 

i +
V crvyj2

(62)

This analytic formula agrees with the num erical method, 
Eq. (44), in the cases in common.

IV. RESU LTS

I11 this section we present the results of applying the 
numerical method, Eq. (44), to various W IM P halo models, 
including streams of W IM Ps, the standard dark halo, the 
Sikivie late-infall halo (SLI streams), and anisotropic 
logarithm ic-ellipsoidal models. For com parison's sake, in 
the last three cases (the standard dark halo, SLI streams, 
and the anisotropic models), we fix the reference direction 
n to be the direction of galactic rotation. For all these 
models, we use CS2 molecules as target nuclei. We use 
ecliptic coordinates (longitude A and latitude /3).

We specify the W IM P velocities and the directions of 
nuclear recoil in a Cartesian coordinate system defined as 
follows: as seen from the Earth, the x  axis points toward the 
position of the Sun at the vernal equinox, the v axis toward 
the position of the Sun at the summer solstice, and the s 
axis toward the North Pole of the ecliptic (which is the 
projection of the trajectory of the Sun onto the celestial 
sphere). The ecliptic longitude of the reference direction, 
Aaxis, is the angular distance along the ecliptic from the 
vernal equinox to the base of the great circle containing n 
and the pole of the ecliptic; it is measured eastwards in 
degrees from 0° to 360°. The ecliptic latitude of the 
reference direction, /3axis, is the angular distance north 
(from 0° to 90°) or south (from 0° to —90°) of the ecliptic 
along the pre viously mentioned great circle; it is measured 
from the ecliptic to n. I11 terms of Aaxis, /3axis, we write

n =  (cos/3axis cosAaxis, cos/3axis sinAaxis, sin/3axjs). (63)
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In computing our rates we take a W IM P mass m =  
60 GeV, a W IM P-proton cross section a p =  1CT44 cm 2 =  
1 C T 8 pb. We also neglect the nuclear form  factor, i.e. take 
J ^ J E )  =  1. In this section, we further assume an ideal 
efficiency with zero threshold £(E)  =  1. In Sec. V, we 
present some results with a nonzero threshold for both 
spin-independent and spin-dependent cases.

A. S tream s of W IM P s

We start by showing the results of applying the num eri
cal method, Eq. (44), to a simple model, namely, a 
M axwellian stream of W IM Ps with an average velocity 
V. For definiteness sake, we consider the case of a stream 
with V  =  ( V, 0, 0), but our results apply to a generic V.

First we fix the reference direction n in the direction of 
V, i.e. we take (Aaxis, /3axis) =  (0°, 0°), and vary the ratio 
crv/ V  of the velocity dispersion a v to the magnitude of the 
average W IM P velocity V. Figure 4 shows the resulting 
d R / d  cost) as a function of cos# for streams with cr,, / V  =  
4 .74 /300  =  0.0158 (solid line), a v/ V  =  10/100 =  0.1 
(dashed line), a v/ V  =  100/100 =  1 (dotted line), and 
t r j V  =  200/100  =  2 (dash-dotted line).

The solid line in Fig. 4 shows that d R / d  cos# peaks at 
0 =  0 and almost vanishes for cos# <  0. This behavior can 
be understood by considering a stream with zero velocity 
dispersion. All W IM Ps in the stream move at the same 
velocity V, so the velocity distribution function is

MOQBIL S. ALENAZI AND PAOLO GONDOLO PHYSICAL REVIEW D 77, 043532 (2008)

,/'(v) =  <5(v -  V).

Its Radon transform follows from Eq. (7) as

(64)

FIG. 4. The directional recoil rate dR /dcosd  off a CS2 target 
as a function of cos6 for streams with average velocity V parallel 
to the reference direction ii for different crv/V  ratios; crv/V  =  
4.74/300 =  0.0158 (solid line), <rJV  =  10/100 =  0.1 (dashed 
line), <x„/V =  100/100 =  1 (dotted line), and crv/V  =  
200/100  =  2 (dash-dotted line).

f ( w ,  w) =  J <5(v • w  — w ) f ( y ) d i v  =  <5(V • w  — w).

W ith V =  Vn and w  • n =  cos#,

f ( w ,  w) =  <5(w -  V cos#).

(65)

(6 6 )

Inserting this relation into Eq. (55), and using Eq. (58), 
gives

/(w ’„, w)dEd(l)

r
2 tt j  S (w „ — V cos6)dE

4 /4
M „c2

/*U-
2 tt I S(w„ — V cos6)\vnd\vn 

Jo

877/x
M„c

t ^ cos #.

Therefore, for zero velocity dispersion, we have 

dR
d  cos #

( 1 2p2 d Cf  if  cos# > 0 .{ipnM nc2

0 , if cos# <  0.

(67)

(6 8 )

(69)

(70)

(71)

For positive cos#, d R /d  cos# is a linearly increasing func
tion of cos#. Its maximum occurs in the forward direction 
at # =  0 ° . Away from  the forward direction, the number of 
recoils decreases, and d R /d  cos# drops. At negative cos# 
there are no recoils for a v =  0, since momentum conser
vation forces all recoils to be in the forward direction.

As the ratio crv/ V  increases we can observe first a few 
and then many recoils at cos# <  0, because of the effect of 
the relatively higher velocity dispersion a v of the streams. 
This is illustrated by the dashed, dotted, and dash-dotted 
lines in Fig. 4, some of which extend to cos# =  — 1.

Now we fix the velocity of the stream and its dispersion, 
and vary the reference direction n. Since there are no other 
directions in this case, the rate d R / d  cos# depends only on 
the angle <// between V and n , besides the ratio crv/ V .  For 
definiteness, we take V  =  (200, 0, 0) k m /s and a v =  
10 k m /s (so the ratio crv/ V  =  0.05). We start with the 
stream ’s average velocity V parallel to the reference direc
tion (Aaxis, /3axjs) =  (0°, 0 °). We keep the ecliptic latitude 
of the reference direction constant at /3axis =  0°. We in
crease its ecliptic longitude Aaxis in steps of 45° until V is 
antiparallel to n . Figure 5 shows the corresponding 
d R / d  cos# for if; =  0 °, 4 5 ° , 9 0 ° , 135°, and 180°. We 
note the following.

First, the directional recoil rate d R /d  cos# of streams 
parallel to the reference direction peaks in the direction 
opposite to the incoming W IM Ps. For example, the solid 
line that peaks on the right is for W IM Ps coming from the
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FIG. 5. The directional recoil rate dR/dcosB  off a CS2 target 
for streams with V = 200 km/s, cr,, = 10 km /s (thus cr„/V = 
0.05), and various reference directions making an angle i// with V  
equal to: 0° (solid line), 45° (dashed line), 90° (dotted line), 
135° (dash-dotted line), and 180° (thick solid line).

left and the thick solid line that peaks on the left is for 
W IM Ps coming from the right.

Second, for a given stream, if we take two reference 
directions that arc opposite to each other, they form  angles 
if/ and 77 -  <//, respectively, with the stream 's velocity V. 
Since cos iff =  -  cos(77 -  iff), their respective d R /d  cosd 
distributions transform into each other under the substitu
tion cosd  —> -  cos#. For example, the case iff =  0° (solid 
line in Fig. 5) is the reflection about cosd =  0 of the case 
if/ =  180° (thick solid line in Fig. 5). Similarly, the case 
if/ =  45° (dashed line in Fig. 5) is the reflection of the case 
iff =  135° (dash-dotted line in Fig. 5). For the same token, 
the case iff =  90° is the reflection o f itself, i.e. it is sym 
metric under cosd —> -  cos#.

B. S ta n d a rd  d a rk  halo

Here we consider a flow of W IM Ps according to the 
standard dark halo. In this model, the W IM Ps arc on 
average at rest relative to the galaxy, and their velocity 
distribution is M axwellian with velocity dispersion given

220 k m /s

V2  '
(72)

The local standard of rest (LSR) moves at uLSR =  
220 k m /s relative to the galactic rest frame in the direction 
of the galactic rotation, i.e. (/Gai.r„,., *Gai.rot.) =  (90°, 0°) in 
galactic coordinates and OW rot.. 0Gai.r«t.) =  (347? 
340, 59? 574) in ecliptic coordinates.

Using the ecliptic Cartesian coordinate axes defined in
the beginning of the current section. the average W IM P
velocity components with respect to the Sun arc

FIG. 6. The directional recoil rate d R /d  cosB off a CS2 target 
for the standard dark halo for a reference direction n in the 
direction (/\;lxi„ f3axiJ  = (A,1(1> f3hid) = (161? 513, -6 0 ?  755).

V std =  (-1 0 4 .5 2 5 , 34.947, -1 9 6 .8 3 6 ) km /s. (73)

The average velocity V std points in the direction 
Ustd> Aitd) =  (161 ? 513, - 6 0 ?  755). These values (Vstd 
and its direction) arc from  Alcnazi and Gondolo [32].

In this subsection, we choose the reference direction n 
along Vstd, i.e. jS^s) =  (161 ? 513, - 6 0 ?  755).

Applying the numerical method, Eq. (44), we see in 
Fig. 6 that d R / d  cosd is an increasing function of cos#. 
It peaks in the forward direction (# =  0°) because most of 
the recoils occur at # =  0°. Away from  the forward direc
tion, d R / d  cosd decreases because fewer recoils result due 
to momentum conservation. The effect is similar to the 
dotted line in Fig. 4, whose ratio a v/ V  =  1 is close to the 
ratio <xTOld/ y sld =  =  0.689 of the standard dark 
halo. We further discuss the case of the standard dark 
halo (Fig. 6) in the following subsections.

C. S ikiv ie’s la te-infall halo  m odel (SL I stream s)

Here we consider Sikivic's late-infall (SLI) halo model 
[34 -36 ]. The SLI model is a self-similar axially symmetric 
infall model with net angular momentum and parameters 
adjusted to describe our galaxy. In this model, many flows 
o f collisionlcss DM  particles arc oscillating into and out of 
the galaxy in pairs. The first pair corresponds to particles 
passing through the Solar System from  opposite sides of 
the galactic plane for the first time, the second pair corre
sponds to particles passing for the second time, and so on 
(from the fifth pair onward, the flows in a pair come on the 
galactic plane but one inwards and the other outwards). 
Table I lists the densities and velocities V, of the first 20 
pairs o f SLI streams in our ecliptic coordinate system. 
These values arc taken from  Ref. [37], where they were 
given in the galactic coordinate system (see also [38]).
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TABLE I. Densities and velocities of the first 20 pairs ( ±  ) of 
SLI streams in the ecliptic coordinate system. The values are 
from Ref. [37] where they were given in the galactic coordinate 
system.
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i Pi (10  26g/cm 3) Vix (km/s) Viy (km/s) Viz (km/s)
IH 0.4 -56U 19 225i 49U 20 -377
2 " 1.0 -417 6.5 274

46U 6.8 -228
3" 2.0 -27U

4(J7
-4.0
—3.8

299
-89

4" 6.3 _95
321 - i t

302
63

5" 9.2 102
123

-203
175

164
201

6" 2.9 55 —298 81
87 289 138

T 1.9 21
57

-325
331

21
85

8" 1.4 - 0.2
38

-341
355

-15
52

9" 1.1 - I S -342 -4621 364 23
10 " 1.0 -30

8.8
-339
367

-67
1.3

1 1 " 0.9 —40 -337 -84
- 1.0 369 —16

12 " 0.8 -50 -330 -101
— 11 366 -34

13" 0.7 -57
—

—323
363

-114
—47

14" 0.6 -64 -316
359

-126
-6 !

15" 0.6 —68 -305
351

-134
-70

16" 0.55 -37
-299
347

-142
-79

17" 0.5 -78_42
-293
343

-150
-88

18" 0.5 -~80 
—45

—283
334

-153
-94

19" 0.45 -~82
—48

-277
329

-157
-98

20" 0.45 —84
—51

-271
325

-161 
—103

The conversion from the galactic frame to ecliptic frame 
proceeds as follows. In the galactic coordinate system, X  
points toward the galactic center, Y  toward the direction of 
galactic rotation, and Z  toward the north galactic pole. Our 
ecliptic coordinate system assumes x  pointing toward the 
vernal equinox, v toward the summer solstice, and z toward 
the North Pole of the ecliptic. We take the galactic com 
ponents of the solar m otion to be [39] U =  10.00 ±  
0.36 k m /s  (radially inwards), V =  5.25 ±  0.62 k m /s  (in 
the direction of galactic rotation), and W =  7.17 ± 
0.38 k m /s  (vertically upwards). The velocities V f of the 
SLI streams relative to the Sun follow, in galactic coordi
nate system, as

Vfx =  Vfx ~

Vfy = V f y - V - ULSR-

Vfz

(74)

(75)

(76)

where V f  are the velocities relative to the galaxy (and 
u l s r  =  220 km /s , as in the previous subsection). Then we 
convert Vfx , VfY, and V'fz  from the galactic coordinate 
system to our ecliptic coordinate system, and obtain the 
velocities of SLI streams Vix, V/v, and Vjz listed in Table I.

FIG. 7. The directional recoil rate dR/dcosB  off a CS2 target 
for SLI streams (solid line) and the standard dark halo (dashed 
line) for a reference direction opposite to the direction of galactic 
rotation. (Aaxis, /Saxis) =  (167? 340, -5 9 ?  574).

In the SLI model, the W IM P velocity distribution func
tion is given by

/ s l i (v ) =  - Y p / S C v  -  V -) .
P i

(77)

Following [38], we assume a Gaussian distribution of 
velocities for each flow with velocity dispersion o-„SL1 =  

^  with u0 =  30 km /s. We have

/S L I(V ) - x -n  I

Pi exp |v ~ V,
2 a 1,.p (2 7 7 -o -? ,s li)3 /: x vSLl

Now, the recoil m omentum distribution is

[ w  -  w  • Y, J

(78)

/  SL1(vv, w) Pi- Y -
p  (2^o-„sli

)T72 exP 2 a ‘vSLl

(79)

We fix the reference direction opposite to the direction 
of galactic rotation, (/axis, b.KI%) =  (270°, 0°) in galactic 
coordinates or (Aaxis, 0 axis) =  (167? 3 4 0 ,- 5 9 ?  574) in 
ecliptic coordinates. We used the numerical method, 
Eq. (44), to calculate the directional recoil rate 
d R / d  cos# for SLI streams. The result is shown in Fig. 7 
by the solid line. For comparison, we also show the result 
from the standard dark halo (dashed line), recomputed for 
the new reference direction.

We see in Fig. 7 that d R / d  co s# |SL1 (solid line) peaks in 
the direction opposite to the case o f d R / d  co s0 |stJ (dashed 
line). This is because the average velocity of the SLI 
streams points in a direction roughly opposite to that of 
standard dark halo’s. Indeed, using Table I, the average 
(weighted) velocity Y SL1 of the SLI streams is

SLI (57.534, -1 .4 6 5 , 85.994) km /s. (80)
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Comparison with Eq. (73) shows that V std and Y s u  form  ail 
angle of 170°.

D. A nisotropic logarithm ic-ellip so id al m odels

M any observations and numerical simulations show that 
galaxy halos are better approximated by triaxial models 
with anisotropic velocity distributions (e.g. M oore et al. 
[401, Helmi, W hite, and Springel [41], and Green [42]). 
Green [42] examined the effect o f triaxial and anisotropic 
halo models on the exclusion limits from W IM P direct 
detection searches and found that such models lead to 11011- 
liegligible changes in the exclusion limits. Helmi, W hite, 
and Springel [41] found that the expected signal for the 
fastest moving DM particles in direct detection experi
ments is highly anisotropic. In this subsection we inves
tigate the nuclei's directional recoil rate d R /d cosO  in 
specific cases o f anisotropic logarithmic-ellipsoidal 
models.

Evans, Carollo, and de Zeeuw [43] provided analytic 
solutions to the Jeans equations for the logarithmic- 
ellipsoidal model, which is the simplest triaxial general
ization of the isothermal sphere, under the assumption of 
conical alignm ent o f the velocity ellipsoid. Their aniso
tropic velocity distribution at the Sun's position can be 
approximated by an anisotropic Gaussian, which in the 
galactic rest frame where the W IM Ps are on average at 
rest is given by

DIRECTIONAL RECOIL RATES FOR WIMP DIRECT ...

/ ( v )
1

(2 ^-V : ( T  v X  V v Y & v Z

■expi
2a:v X 2  cr:v Y 2<x;v Z

(81)

Here X  points toward the galactic center, Y  toward the 
direction of galactic rotation, and Z  toward the north 
galactic pole. In this frame, the velocity dispersion matrix 
t r2, is diagonal.

In one o f the Evans, Carollo, and de Zeeuw models, the 
Solar System is on the long (major) axis o f the halo density 
ellipsoid, and

cr 0
l,A’ (2 +  y ) ( p - 2 + q - 2 -  1 )’ 

___ v l(^P  2 ~  1 )

(Iv Z

2(p 2 + q  2 -  1 )’

vU 2<T2 ~  1 ) 
2 ( p - 2 + q - 2 ~  I)"

(82)

(83)

(84)

In another of their models, the Solar System is on the 
interm ediate (minor) axis o f the halo density ellipsoid, and

cr v oP~
v X (2 +  y )( l +  q 2 -  p  2) ’

(85)

a:
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ug(2 -  p - 2)
v Y

(Iv Z

2 ( l + q - 2 - p - 2) ’

v l(2q  2 ~  p  2)
2 ( 1 + q - 2 - p - 2Y

(8 6 )

(87)

Here p  and q  are constants used to describe the axis ratios 
of the density ellipsoid, and y  is a constant used to describe 
the velocity anisotropy. In the spherical lim it (p =  q =  1, 
y  =  0), all the velocity dispersion components are equal, 
and the logarithmic-ellipsoidal model reduces to the iso
thermal sphere.

An anisotropic Gaussian velocity distribution can be 
written in matrix form as

/ ( v )
1

(277)3/,2(det<r2)1/,‘
exp

I
- - ( v - Y ) V - 2( v - Y )

Its Radon transform has been found to be [19]

1 /  [w -  w • V]-
f ( w ,  w)

(277WJ <r2w )1/,‘
exp

2 w cr tw

(8 8 )

(89)

Since the W IM Ps are assumed to be on average at rest in 
the galactic frame, the same average W IM P velocity Y as 
for the standard dark halo V std [see Eq. (73)] applies to 
these anisotropic models. Since the velocity dispersion 
matrix <r2 is diagonal in the galactic frame, the principal 
axes of the velocity dispersion ellipsoid are aligned with 
the axes X, Y, and Z [see Eq. (81)]. In matrix form, the 
exponent of Eq. (81) can be written as

~ ( v x  v y v z )

/ 4 -  0(T
U v X

o 4 -

V

0 \  

0
10

<T;./

(90)

and the velocity dispersion tensor is

<rtx 0 0
0 ° i r 0
0 0 <dz

(91)

To calculate w <rf,w in Eq. (89), we write

/
( WX IV y W7 J

v X 0

0 

V o
cri>3'

0

K x t i ’x  +  K y *’y +  K z * z -

0 W  H’X ^

0 Wy

v i z  J  \  * z  /
(92)

Thus, the anisotropic recoil m omentum distribution is 
given by

043532-11



MOQBIL S. ALENAZI AND PAOLO GONDOLO

FIG. 8. The directional recoil rate dR /dcos0  off a CS2 target 
as a function of cos6 for logarithmic-ellipsoidal anisotropic 
models in which the Solar System is on the minor axis of the 
density ellipsoid (solid, dashed, dotted, and dash-dotted lines, 
with parameters given in the legend). Also shown is the case of 
the isotropic standard dark halo (thick solid line). The reference 
direction n is opposite to the direction of the galactic rotation, 
(Aaxis. /̂ axis) =  (167.°340, —59,°574).

/ ( w \  w) =  .......... ....... ......... 1........ ........... ....... ...
^2Tr(ar2vXw2x  +  cr2)Yw 2Y +  cr2v7w 2)

( _ ________ [vv -  w  • V ]2________ \

V 2(crlx ^ 'x  +  fnyvry  +  cr;
(93)

where only the components of crv and w are now in 
galactic coordinates.

We fix the reference direction to be opposite to the 
direction of galactic rotation, (I:aiv =  (270°, 0°) in

cose

FIG. 9. Same as Fig. 8 but for logarithmic-ellipsoidal models 
in which the Solar System is on the major axis of the density 
ellipsoid.

galactic coordinates or (Aaxis, /3axis) =  (167? 340, —59? 
574) in the ecliptic coordinates. We consider eight aniso
tropic models (i.e. different values of /?, q , and y)  taken 
from  Green [42]. Using the numerical method, Eq. (44), 
the results are shown in Fig. 8 in the case when the Solar 
System is on the m inor axis o f the density ellipsoid and in 
Fig. 9 in the case when the Solar System is on the major 
axis of the density ellipsoid. For comparison, in both 
figures we also show the case of the isotropic standard 
dark halo discussed in Sec. IV B (thick solid line). The 
values of /?, <y, and y  in Figs. 8 and 9 are taken from  Table I 
in [42j.

In Figs. 8 and 9, d R / d c o s 0  is an increasing function of 
cos#. It is maximum in the forward direction (0 =  0°) 
because of the direction of the average W IM P velocity is 
sim ilar to that o f the standard halo’s. We see from  Figs. 8 
and 9 that the behavior of the eight anisotropic models 
(solid, dashed, dotted, and dash-dotted lines) resembles 
that o f the isotropic standard dark halo (thick solid line). 
The differences between these models in Figs. 8 and 9 arise 
from  the different velocity dispersions crv of these models 
resulting from  different values of the parameter /?, <y, and y  
in Eqs. (82)—(87). This also means different ratios crv/ V  
for each model.

V. FO L D E D  D IR E C T IO N A L  R E C O IL  RATE

In this section, we will discuss the consequences of a 
lack of head-tail discrimination in W IM P direct detectors. 
We use the folded directional recoil rate d R / d | cos0| de
fined in Eq. (9). We also discuss the exposures required to

0.0018 

0.0016 

I" 0.0014 

^  0.0012 

<5 0.001 >
_  0,0008
<x>

-§- 0.0006 

c  0.0004-O
0.0002 

0 0 0.2 0.4 0.6 0.8 1
|COS0|

FIG. 10. The folded directional recoil rate <r/i?/c/| costal off a 
CS2 target for the standard dark halo (thick solid line), SLI 
streams (thick dash-dotted line), and four logarithmic-ellipsoidal 
anisotropic models in which the Solar System is on the minor 
axis of the density ellipsoid (solid, thick dotted, dashed, and 
dotted lines, with parameters given in the legend). In all cases, 
the reference direction is opposite to the direction of the galactic 
rotation, U axis, /3 „ J  =  (167° 340, -5 9 °  574).
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I cose |

FIG . 11. Same as Fig. 10 but using a detector with threshold 
energy equal to 20 kcV.
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FIG. 13. Same as Fig. 12 but using a detector with threshold 
energy equal to 20 kcV.
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distinguish the expected W IM P signals from an isotropic 
noise, and present results for both an ideal zero-threshold 
detector and a detector with a finite energy threshold of 
20 keV. We consider a CS2 target (spin-independent and 
spin-dependent, which is zero) and a CF4 target (assuming 
a spin-dependent cross section only).

We use Eq. (9) and the numerical method, Eq. (44), 
for the standard dark halo (Sec. IV B ), SLI streams 
(Sec. IV C), and logarithmic-ellipsoidal anisotropic models 
(Sec. IV D). The results are shown in Figs. 10-13 for the 
C S2 target nuclei, where for all cases the reference direc
tion is opposite to the direction of the galactic rotation.

(Aaxis./Sam) =  (167.°340, ^59 .°574). Tn all o f these fig
ures, we show the rates for the standard dark halo and the 
SLI model. For the anisotropic models, the case in which 
the Solar System is assumed to be on the minor axis o f the 
density ellipsoid is shown in Fig. 10 (for an ideal zero- 
threshold detector) and 11 (for a 20-keV threshold detec
tor). Figures 12 and 13 show the analogous cases for the 
Solar System on the major axis of the density ellipsoid.

The spin-dependent case for a 20-keV threshold detector 
is shown in Fig. 14 (when the Solar System is assumed to 
be on the minor axis of the density ellipsoid) and in Fig. 15

FIG . 12. The folded directional recoil rate d R /d \  cos# | off a 
C S2 target for the standard dark halo (thick solid line), SLI 
streams (thick dash-dotted line), and four logarithm ic-ellipsoidal 
anisotropic models in which the Solar System is on the major 
axis o f the density ellipsoid (solid, thick dotted, dashed, and 
dotted lines, with param eters given in the legend). In all cases, 
the reference direction is opposite to the direction o f the galactic 
rotation, (Aaxi„  /3;lxiJ  =  (167? 340, - 5 9 ?  574).

I '  le-06

coc 8e-07<D>

% 6e-07 
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A, 2e-07
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0 0.2 0.4 0.6 0.8 1
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FIG. 14. The spin-dependent folded directional recoil rate 
(IRsd / ( I \ cos0\ off a CF4 target using a detector with threshold 
energy equal to 20 kcV, for the standard dark halo (thick solid 
line), SLI streams (thick dash-dotted line), and four logarithm ic- 
ellipsoidal anisotropic models in which the Solar System is on 
the minor axis o f the density ellipsoid (solid, thick dotted, 
dashed, and dotted lines, with param eters given in the legend). 
In all cases, the reference direction is opposite to the direction of 
the galactic rotation, (/\;LKi„ /3axiJ  =  (167? 340, —59? 574).
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termine the required effective exposure e as follows. We 
use a model d R / d | cos0| to M onte Carlo generate a | cos0| 
distribution of n events representing the outcome o f a 
simulated experiment with zero background. We do this 
for 10 000 simulated experiments. For each experiment, we 
compute the Kolmogorov-Smirnov statistic D„, which is 
the maximum vertical distance between the cumulative 
distributions of a uniform variate and of the simulated 
|co s0 | values. We declare that the |co s0 | distribution is 
nonuniform at the 90% level o f significance (i.e. that the 
experiment under question detects a W IM P signal at the 
90% significance level) when D„ is greater than the upper 
10% quantile D„ 10 o f the D„ distribution evaluated under 
the null hypothesis of a uniform variate. To evaluate the 
probability distribution of Dn under the null hypothesis, we 
use formulas in Refs. [44,451 as implemented numerically 
in Refs. [33,461. We determine the fraction of the 10000 
simulated experiments with a positive detection at the 90% 
significance level. We finally increase the number n of 
events in each simulated experiment, until the fraction of 
experiments with a positive detection reaches 90%. 
This gives us the minimum number of events N c required 
to distinguish each of the halo models considered from a 
flat distribution at 90% significance level in 90% of the 
simulated experiments. Finally, the corresponding effec
tive exposure e is obtained by dividing N c by the 
integrated expected rate above threshold 
j  d\ cosd \[dR (> E {bs)/d \  cos0 |] (or the total rate 
J  d\ cosd \[dR /d \ cos0 |] for an ideal zero-threshold 
detector).

Table II shows the resulting N c and e for a zero- 
threshold detector and a detector with threshold energy 
equal to 20 keV, assuming a CS2 target, a W IM P mass m  =  
60 GeV and a W IM P-proton cross section crp =  
10-44 cm2.

TABLE II. Number of recoil events N t. required to distinguish each of the halo models considered from a flat distribution at 90% 
significance level in 90% of the simulated experiments using a Kolmogorov-Smirnov statistic, for a CS2 zero-threshold detector and a 
CS2 detector with threshold energy equal to 20 keV. Here <rp =  10 44 cm2. Also shown are the effective exposures e required for each

Zero-threshold energy Threshold energy =  20 keV
Model N t. e (kg-yr) N e e (kg-yr)

Standard dark halo 260 330 39 113
SLI streams 1606 1596 115 295
Anisotropic logarithmic-ellipsoidal models (Solar System is on the minor axis of the density ellipsoid):
p  =  0.9. q =  0.8. y  =  0.07 503 585 98 275
p  =  0.9. q =  0.8. y  =  -0 .62 876 969 196 482
p  =  0.72. q =  0.7. y  =  4.02 1005 1149 1199 3548
p  =  0.72. q =  0.7. y  =  2.01 2088 2276 7500 19116

Anisotropic logarithmic-ellipsoidal models (Solar System is on the major axis of the density ellipsoid):

3̂ © 5° p 00 1 b 365 427 60 168
p  =  0.9. q =  0.8. y  =  -1 .33 600 668 115 283
p  =  0.72. q =  0.7. y =  -1 .39 301 354 46 130
p  =  0.72. q =  0.7. y  =  -1 .6 497 555 90 221

FIG. 15. Same as Fig. 14 but for logarithmic-ellipsoidal mod
els in which the Solar System is on the major axis of the density 
ellipsoid.

(when the Solar System is assum ed to be on the major 
axis of the density ellipsoid). The shape of the 
d/?SD(>20keV)/V/| cos0| curves in Figs. 14 and 15 differs 
from the shape of the d/?(>20keV)/V/| cos0| curves in 
Figs. 11 and 13 respectively because of the different 
masses of sulfur (S) and fluorine (F).

The d R / d \  cos0| curves that show small variation with 
| cos0| will be harder to differentiate from an isotropic 
background. To make this statement quantitative, we com 
pute the effective exposure e required to distinguish a 
directional signal of W IM Ps from a distribution uniform 
in | cos0| that may be due to background events. For this 
purpose, we use the Kolmogorov-Smirnov test, which tests 
if data are drawn from a given distribution (in this case, the 
uniform distribution). Neglecting the background, we de-
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The number of events N e is independent o f the value of 
the W IM P-proton cross section crp, because it depends 
only on the shape, and not the height, of the d R / d \  cos#| 
distribution. The corresponding exposure however scales 
as the inverse of crp. Regarding the dependence on the 
W IM P mass, in general N t, and e have a complicated 
dependence due to the relation between the threshold 
energy, the target nucleus mass, and the W IM P mass.

From  Table II, we notice the following. Even in the most 
favorable case of negligible background, the most optim is
tic case is the standard dark halo where, for a detector with 
a 20-keV threshold, only 39 recoil events or an effective 
exposure of 113 kg-yr are needed in order to distinguish the 
standard dark halo from a fiat distribution at 90% signifi
cance level in 90% of the simulated experiments. For a 
zero-threshold detector, the required num ber of recoil 
events N t, increases to 260 events (330 kg-yr of effective 
exposure). These numbers are almost the same as those 
obtained by M organ, Green, and Spooner [211 for the same 
standard dark halo, although they used the average of 
| cos#| while we use the full | cos#| distribution.

In the case of SLI streams, the required number of events 
N t, is 115 (295 kg-yr of effective exposure) for a detector 
with 20-keV threshold, and N t. =  1606 (1596 kg-yr of 
effective exposure) for a zero-threshold detector. 
Distinguishing an SLI streams signal from  an isotropic 
background requires 3 to 5 times larger exposures than 
for a standard dark halo.

The anisotropic models we considered are, with few 
exceptions, intermediate between the standard dark halo 
and the SLI streams cases. The hardest cases to distinguish 
from  a flat distribution are the two anisotropic models with 
parameters p =  0.72, q =  0.7, y  =  4.02 and p =  0.72, 
q =  0.7, y  =  2.01. They require effective exposures of 
thousands to ten thousands of kg-yr. This is due to 
the peculiar behavior of their <ift(>20keV)/<i| cos#| dis
tributions. As seen in Fig. 11, these distributions 
(dashed and dotted lines) exhibit a sudden drop in 
d R (> 20  k eV )/d | cos#| in the folded forward +  
backward direction |co s# | =  1. Notice that these two 
models are the most anisotropic models among the eight 
anisotropic logarithm ic-ellipsoidal models considered in 
this study ( y  =  4.02 and y  =  2.01, respectively). This 
might be the reason for such behavior.

To illustrate a spin-dependent case, we assume a CF4 
target, a proton-odd approximation for the F  spin, a spin- 
dependent cross section off protons o | D =  10-44 cm2, and 
a vanishing spin-independent cross section. We examine 
both a zero-threshold detector and a detector with thresh
old energy equal to 20 keV. Because the spin-dependent 
rates do not increase as A2, the effective exposures required 
for spin-dependent interactions are longer than for the 
spin-independent case (at the same W IM P-proton cross 
section). For CF4 we find them about 1000 times longer 
than for CS2. For example, in the case of the standard dark

halo we find that e is about 4.8 X 105 kg-yr for a zero- 
threshold detector and it is about 1.6 X 105 kg-yr for a 
detector with threshold energy equal to 20 keV. The effec
tive exposures e for the other halo models follow the same 
pattern and they are in the order of magnitude of 106 kg-yr. 
Such effective exposures are impractical.

To summarize, the folded directional recoil rate 
d R / d |co s# | can be helpful in recognizing the cases of 
the standard dark halo, SLI streams, and some not-too- 
anisotropic models. However, if the detector threshold is 
too low, or the degree of anisotropy too high, it may be 
difficult to recognize SLI streams and some other aniso
tropic models.

V I. SU M M A RY  AND C O N C LU SIO N S

In this paper, we studied the directional recoil rate 
d R / d  cos# of recoiling target nuclei struck by W IMPs in 
terms of the angle 0 between the nucleus recoil direction w 
and a chosen reference direction fi in the sky. We used the 
ecliptic coordinate system and imagined a CS2 detector 
similar to DRIFT but with 3D readout capabilities.

The directional recoil rate d R / d  cos0 was computed and 
compared for different halo models that represent several 
W IM P velocity distributions: streams of W IM Ps 
(Sec. IV C), the standard dark halo (Sec. IV B), Sikivie's 
late-infall halo model (SLI streams) (Sec. IVA), and an
isotropic logarithm ic-ellipsoidal models (Sec. IV D). We 
repeated our analysis for a folded directional recoil rate 
d R / d | cos#| that incorporates the inability o f some detec
tors to distinguish the beginning of a recoil track from its 
end (lack of head-tail discrimination). For all of the halo 
models considered, we compared d R / d |co s# | to an iso
tropic background, to examine the possibility of discrim i
nating a W IM P signal from background noise.

We computed d R / d  cos# both numerically and analyti
cally (Sec. III). The numerical method (Sec. Ill A) uses a 
fifth-order Cash-Karp Runge-Kutta method and can be 
applied to general (Gaussian and non-Gaussian) velocity 
distributions and any reference direction. The analytical 
method (Sec. Ill B) works only for Gaussian distributions 
with the reference direction fi aligned with the average 
W IM P velocity V. The analytic formula was used to cross 
check the numerical calculation. Com parison of the nu
merical and analytic calculations gave the same results. In 
both the numerical and analytical methods, the recoil 
m omentum function f ( w,  w) used in the calculation of 
d R / d  cos# was taken as the Radon transform of the veloc
ity distribution function /(v ) .

We applied the numerical method to the aforementioned 
W IM P halo models and presented the results by showing 
the directional recoil rate d R / d  cos# as a function of the 
angle 0 (see Sec. IV). For generic streams of W IM Ps, we 
showed how varying the ratio crv/ V  of the velocity disper
sion crv to the magnitude of the average W IM P velocity V 
affect the directional recoil rate d R / d  cos# (see Fig. 4). We
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also showed the effect of varying the reference direction ii 
or equivalently the stream velocity V (see Fig. 5).

Comparisons between the case of the SLI streams and 
the case of the standard dark halo showed that SLI streams 
produce a directional recoil rate that peaks in the opposite 
direction to the standard halo one (see Fig. 7). The case of 
streams with anisotropic logarithm ic-ellipsoidal models 
resembles that of the standard dark halo, with small differ
ences between the anisotropic models due to different 
values of their axial ratios p  and q and anisotropy param e
ter y  (see Figs. 8 and 9).

We allowed for the difficulty of head-tail discrimination 
in W IM P direct detection experiments in Sec. V. There we 
introduced a folded directional recoil rate d R /d \c o s 0 \  
suitable for direct comparison with experiments lacking 
head-tail discrimination. For both a zero-threshold detector 
and a detector with 20-keV threshold energy, we calculated 
the number of recoil events N e and the effective exposure e 
required to distinguish each of the halo models considered 
from a flat distribution (see Table II). We found that in

distinguishing a signal from an isotropic background noise, 
the folded directional recoil rate d R /d \c o s8 \  may be ef
fective for the standard dark halo and some of the aniso
tropic logarithm ic-ellipsoidal models; it may be less 
effective for the SLI streams and other anisotropic models 
(see Figs. 10-13). In m ost cases, for m  =  60 GeV and 
crp =  10-44 cm2, exposures from few dozens to few hun
dreds of kg-yr of CS2 would be needed to utilize the folded 
directional recoil rate d R /d \ cos0| for the purpose o f dis
criminating a directional W IM P signal from an isotropic 
background noise.
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