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Fundamental Principles o f Cloud and Aerosol Physics by Professor 
Norihiko Fukuta lays a sophisticated foundation in Cloud Physics through an 
illustration of theoretical principles and experimental results. The treatment 
starts from a general discussion of the relevant thermodynamic and kinetic 
principles at macroscopic and molecular scales. It moves on to discuss 
mechanisms for the nucleation, growth and precipitation of cloud droplets 
and ice crystals. The text concludes with a discussion of interactions 
between microphysics and dynamics in clouds.

Professor Fukuta was one of the world's leading cloud physicists who 
continued to make significant advances in his field up until his death in May 
of 2010 at the age of 78. He received his B.S. in Chemistry (1954) and M.S. 
(1956) and Ph.D. (1959) in Physical Chemistry from Nagoya University, 
Japan. Following graduation, he served in several public and private-sector 
teaching and research positions at institutions around the world including 
Imperial College, London (under the direction of Sir B. J. Mason); 
C.S.I.R.O., Sydney, Australia, Meteorology Research Inc., Altadena, CA; 
and the University of Denver. He became a Professor in the University of 
Utah Department of Meteorology (now Atmospheric Sciences) in 1977 and 
Professor Emeritus in 2001. Professor Fukuta supervised 20 graduate 
students during his tenure at the University of Utah and published more than 
100 journal articles. He authored the Japanese Meteorological Society book 
Weather Engineering --  New Approach to Weather Modification, and 
served as editor for Nucleation and Atmospheric Aerosols. He was named a 
fellow of the American Meteorology Society in 1998.

Professor Fukuta’s unique talent was his ability to approach difficult physical 
problems by combining his deep knowledge of theory and experimental 
techniques to yield novel insights into droplet and ice crystal nucleation and 
growth. This book’s cover shows photographs of cloud particles grown in a 
world-class diffusion chamber at the University of Utah, aimed at 
elucidating ice crystal growth mechanisms. Professor Fukuta demonstrated 
the important effect of electricity on the coalescence and orientation of plate 
and column crystals, and he underscored the importance of non-equilibrium 
thermodynamics for understanding the early stages of droplet formation. 
Much of the material described in Advanced Cloud Physics reflects 
advances in the field of Cloud Physics that were made by Professor Fukuta 
himself.
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LIST OF SYMBOLS

a constant, radius, lattice parameter 
a constant, Cunningham's constant, area

a constant
a constant, second virial coefficient, buoyancy factor 

a constant, specific heat
molar heat capacity, electrostatic capacitance, third virial 
coefficient, a constant

a constant, diameter 
diffusivity

eccentricity, vapor pressure
electric field vector, efficiency, collection efficiency, 
energy

relative humidity, ventilation factor, fog factor, 
normalization factor 
function of
Helmholtz free energy, flux, force

specific Gibb's free energy, acceleration of gravity, thermal 
gradient, (1 - 2mx + x2) 1/2 
molar Gibbs free energy

specific Helmholtz free energy, Planck's constant, height 
molar Helmholtz free energy, collection kernel based on 
volumetric expression

van't Hoff's factor 
ice

degrees of freedom 
joule, nucleation rate

Boltzmann's constant
thermal conductivity, collection kernel based on size 
expression, a constant, Knudsen number, eddy diffusivity

mean free path distance, jump distance

specific latent heat, liquid phase

mass, mass of a water molecule, cos# 
molecular weight

n number of moles, number concentration, number of atoms in a
molecule, normal distance 

N Avogadro's number, number of droplets, number of state, total
number of molecules



pressure
probability

heat per unit mass, specific humidity
heat per mole, electrostatic charge, magnitude of property 

radius
radial distance
specific gas constant, radius of collector drop, rain water 
mixing ratio 
Reynolds number

specific entropy
entropy per mole, saturation ratio, solid phase 

time
absolute temperature
equivalent temperature, temperature at particle surface, 
virtual temperature, wet bulb temperature
melting temperature of ice, adiabatic wet bulb temperature 
ambient temperature, temperature at about mean free path above 
particle surface, in environment

velocity in x-direction, specific internal energy 
internal energy per mole

velocity in y-direction, molecular volume
volume, molar volume, electrostatic potential, vapor phase

velocity in z-direction, mixing ratio, work per unit mass 
liquid water content per unit volume of air

coordinate distance in x-direction, rn/r*, a variable, axial 
ratio between major and minor axes of spheroids, separation of 
droplet center from fall line of collector drop center

coordinate distance in y-direction

coordinate distance in z-direction
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GREEK LETTERS

a angle, thermal accommodation coefficient, specific volume
a' - 2a/ (2 - a) representative thermal accommodation coefficient

p condensation coefficient
p' - 2/?/(2 - P) representative condensation coefficient

7 deposition coefficient, ambient lapse rate, edge free energy 
7 ' - 2 7 /(2 - 7 ) representative deposition coefficient

T dry adiabatic lapse rate
rs pseudo-adiabatic lapse rate

8 lattice misfit 
A difference

€ - M/Ma, strain

rj dynamic viscosity

6 angle, potential temperature, fraction, contact angle
0V characteristic temperature for vibrational modes

0e ,0w equivalent potential temperature, wet bulb potential 
temperature

k - R/Cp, thermal diffusivity

Ii chemical potential, dipole moment

v kinematic viscosity

p density, density of water vapor

a surface free energy

0 specific angle 
angle

X adiabatic liquid water content of air

o) solid angle



SUBSCRIPTS

a air
adiab adiabatic

B basal plane

c cubic, condensation, condensate, crystal
C crystal

d dry air, deposition
D drag

DK diffusion kinetic

f flat surface, freezing, fog

G gas

h heat, homogeneous, hexagonal

i ice, inside, incoming

L liquid

m,melt melting
max maximum
msl mean sea level

M Maxwellian

n,N nucleus

o standard state, outside, outgoing

p particle, polydisperse
P photophoresis, prism plane

Q property Q

R resistance

s saturation, surface
sat saturation

S solid

T thermophoresis

u unit area

v,V vapor

w water, water vapor



a thermal accommodation

P condensation

7 deposition

A mean free path

SUPERSCRIPTS

' ambient, solute, representative

" with solute and curvature effects

- average

forward 

«- backward

* critical state, molar property

V

x,y,z components corresponding to coordinate axes



1.1

INTRODUCTION
Cloud physics is a field of atmospheric sciences in which aerosols, clouds 

and precipitation processes are exclusively studied. Cloud microphysics covers 
the non-dynamical aspects of clouds and precipitations consisting of condensed 
phases of water substance dispersed in air. So, they are sometimes called an 
"aerodisperse system." This dispersed system, unlike some stable colloids, is 
basically unstable; and the rate processes involved in development of 
precipitation may be considered as a cancellation course of the dispersed state. 
Such changes, including formation of the dispersed systems and their cancellation 
or precipitation development, occur under the conditions of Earth's atmosphere 
in motions and affect transfer processes of energy, mass, and momentum. In this 
regard, cloud physics and cloud microphysics border many other fields of 
atmospheric sciences. The intention of this class is, therefore, to describe the 
central concepts and processes of cloud microphysics quantitatively, based on 
clear scientific principles, while explaining the bordering areas in a 
descriptive manner.

CHAPTER 1. THERMODYNAMICS OF AIR AND WATER VAPOR
1.1 Origin and Evolution of the Earth's Atmosphere

The Earth's atmosphere, which accommodates the cloud processes of our 
interest, is believed to have originated in a relatively short geological time, 
less than 1 billion years after the formation of the Earth some 4.6 billion years 
ago. Evidences suggest that the Earth formed due to collision of planetesimals, 
and the resultant heating that led to degassing of C02, NH3, H20, etc, under the 
influence of the so-called "dark sun" which gave an estimated brightness of only 
about 70% of the present level. The molten rocks thus formed partially absorbed 
H20 vapor and others to become magma. The temperature and pressure of C02-H20 
rich proto-atmosphere were about 1,200*C and 100 atm at the magma surface. The 
OH radical formed by photo-chemical decomposition of H20 vapor oxidized gases, 
like CO and NH3, into C02 and N2. As the flux of falling planetesimals and the 
resultant heating rate at the Earth's surface reduced, magma solidified to 
release the dissolved gases. Further cooling led to condensation of water vapor, 
and the rain, though hot, fell to form the proto-ocean. The remaining C02-N2 
rich proto-atmosphere provided a greenhouse effect and trapped the weak solar 
radiation to maintain the liquid state of the ocean. C02 gas then slowly 
deposited into carbonate rocks. Under this primitive atmosphere without oxygen, 
life appeared (chemical era) . After life had originated, the atmospheric 
composition further evolved, and as photosynthesizing green-plant developed, the 
atmospheric oxygen accumulated eventually to the present level (microbial era) . 
After this, the essentially modern atmosphere has been controlled by geological 
and biological processes that have not changed significantly in nature for 
perhaps 2 billion years (geological era) (Matthews et al., 1989; Walker, 1977).
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1.2 Contemporary Atmosphere. Air, and Water Vapor

Contemporary Earth's atmosphere is outlined as follows:

Total mass is 5 x 1018 kg, 10-6 of the Earth's mass.
95% of the mass is below 20 km.
Up to 100 km above the sea level, the composition is uniform, due to 

turbulence and convection.
Above 100 km msl, lighter gas molecule concentration increases.
Temperature profile is given in Fig. 1.1. There are two minima, one at 

above the tropopause and the other at above the mesopause, the 
latter being colder.

Tropopause altitude is about 8 km at a pole and about 18 km at the 
equator. Below the tropopause, or in the troposphere, most 
meteorological phenomena take place, and the temperature normally 
drops with altitude.

Some gaseous components are variable:
H20; 0 - 7% (in various forms; vapor, liquid, and solid)
C02; 0.02 - 0.05%. Recent anthropogenic activities keep the C02 

concentration rapidly increasing.
Composition of dry air is shown in Table 1.1. 03, S02, N0X (N02) , CO, etc.
Aerosol particles of various compositions are found in air. They may be 

water-soluble, water-insoluble, organic, inorganic, liquid, solid, 
mixed, crystalline, or noncrystalline.

The composition of the contemporary Earth's atmosphere is unique, 
telltaling the extraordinary history of its development. Atmospheres of earth
like inner plants (Venus and Mars) consist primarily of C02, while those of the 
outer giant planets (Jupiter, Saturn, Uranus, and Neptune) are based on light 
gases such as H2, CH4, NH3, and He, H being the most abundant element in the 
universe.

Water exists largely in the form of liquid or ocean covering 72% of the 
Earth's surface. 1/4950 of the Earth's mass is water, and the average depth of 
the hydrosphere is 2.3 km.

1.3 Outline of Thermodynamics

Thermodynamics deals with macroscopic phenomena of a thermal nature. It 
only provides conditions of thermal equilibrium, as well as the relationships 
between equilibria before and after changes. So, the rate or the time-dependent 
processes are essentially beyond its scope. However, there has been a 
phenomenological development of thermodynamics in order to describe irreversible 
processes, such as Fourier's law of heat conduction, which we shall look into in 
later chapters. The latter is called phenomenological irreversible 
thermodynamics . 1

Thermodynamics is often substantiated by statistical mechanics that

1 There has been a new development in non-phenomenological irreversible 
thermodynamics (see Sections 1.3.2 and 1.3.3).
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TEMPERATURE (°C)

Fig. 1.1 The generalized vertical distribution of temperature and pressure up to about 110 km. Note

the tropopause and the zone of maximum ozone concentration with the warm layer above it (Barry 
and Chorley, 1970).

Table 1.1 Composition of dry air (Tverskoi, 1962).

Molecular Content
Density

Critical

Gases weight (percents 
by volume)

absolute 
(g/m3) at 

1013 mb 0°C

relative 
to dry 
air

temperature*
T*(°C)

Nitrogen 28.016 78.084 ± 0.004 1250 0.967 -147,.2 (33.5)
Oxygen 32.000 20.946 ± 0.002 1429 1.105 -118..9 (49.7)
Argon 39.944 0.934 ± 0.001 1786 1.379 -122..0 (48.7)

Carbon dioxide 44.010 0.033 ± 0.001 1977 1.529 31..0 (73.0)
Neon 20.183 (18.18 ± 0.04)10"' 900 0.695 -228.,0 (26.0)

Ozone 48.000 Highly variable; 
(0-0.07)10‘4 

near surface, 
(1-3)10-4 at 

height of 20-30 km

2140 1.624 5 (92.3)

Dry air 28.966 100 1293 1.000 -140.,7 (37.2)

In the last column the number in brackets indicates the pressure (in atmospheres) corresponding to the 
given temperature.
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describes phenomena from the microscopic or atomic and molecular standpoints in 
a statistical manner. Statistical mechanics that specifically treats 
thermodynamic phenomena* is called statistical thermodynamics. and statistical 
mechanics that deals with quantum mechanical processes is called quantum 
statistical mechanics. Nevertheless, caution must be exercised with their 
application since hidden misconceptions exist . 2

1.3.1 The definition of thermodynamic system

In thermodynamics, which is an energetics and successful particularly in 
phase equilibria, there are only two energies involved in exchange, i.e., heat 
and work. Heat has been identified as the energy associated with random motions 
of atoms and molecules and is shown to correspond to mechanical energy as

1 calorie (calIT) =* 4.1868 joul (J)
1 J = 107 ergs.

For a given material without phase change, as we shall see later, the amount of 
heat given is proportional to the increase of temperature (T) of the material. 
T is thus equivalent to the height of the water column, if the total amount of 
water is considered the same as the heat energy.

Work is also a form of energy that is transferred against the resisting 
force, and is given by the product between the resistance force acted and the 
displacement induced.

A homogeneous system or a part of a homogeneous system is called phase. 
There are two categories of thermodynamic properties. An extensive property is 
any property whose value for the whole system is the sum of the value of its 
parts (for example, mass and volume). Whereas, an intensive property is any 
property whose value is constant throughout the system and independent of the 
amount of phase (for example, density, pressure, and temperature).

In thermodynamics, changes are defined as follows:

Natural changes occur towards equilibrium.

Unnatural changes are those which take place away from equilibrium.

Under equilibrium, no change takes place.

A reversible process consists of a continuous series of equilibrium 
states, and they do not actually occur in nature.

1.3.2 The first law of thermodynamics

Thermodynamics consists of two major laws, i.e., the first and the second. 
The first law describes conservation of energies: Total amount of heat added to 
a gas (or a system), dQ, is equal to the sum of the increased internal energy, 
dU, and the work done by the gas to outside (loss of work to outside), dW, or

2 Corrections are planned in publication.
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dQ - dU + dW (1.1)

The internal energy includes kinetic energies of all motions of atoms and 
molecules and potential energy by molecular binding forces.

For a unit mass of gas

dq = du + dw, (1 .2)

where small letters express corresponding properties per unit m ass.

Since the work is the product between the resisting force, f, and the 
displacement, dn, due to the force, and the pressure, p, is related to the force 
as

' P = f/A, (1.3)

where A is the area the force is acting upon, and since the increase of volume 
is given as (see Fig. 1.2),

dV = Adn, (1.4)

dn being the displacement in the direction of the force, from Eqs. (1.3) and 
(1.4),

dW ^ prdV, (1.5)

where subscript r stands for resisting. Describing V for unit mass of the gas, 
Eq. (1.5) becomes

dw = prda, (1 .6)

where a is the specific volume of the gas. Then, an expansion from to a2 
against the external resisting force, while adding heat to the gas

J  dw = J^Prda (1.7)3

gives the total amount of work done against the pressure.

If the expansion is followed by a compression to come back to the original 
state or a cyclic process (see Fig. 1.3), the contour integral,

Jo dW = J Poda ~ J Pida ’

where subscripts o and i stand for outside and inside, respectively, gives the 
net work done to the outside by the gas. Whereas, integral of an exact (total) 
differential, such as

3 If this is a natural change, the pressure of the gas in question should 
be higher than the external pressure which is pr.



Fig. 1.2 Work by volume expansion.

Fig. 1.3 The contour integral.

Fig. 1.4 The Carnot cycle.
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d(pa) = d(PQ ) dp + d(j?a ) da = adp + pda (1.9)

over any closed contour becomes zero (see Fig. 1.3).

1.3.3 The second law of thermodynamics and entropy

In the above section, it was shown that the first law of thermodynamics 
concerns only conservation of energy and does not state the direction of change. 
In nature, there are many irreversible processes, and the second law gives 
conditions to determine if a change in question is irreversible. All natural 
changes are irreversible. We shall briefly look into the second law below, first 
using the Carnot cycle.

N.L. Sadi Carnot devised an idealized cyclic process to examine the 
efficiency of the thermal engine. The cyclic process consists of quasistatic 
(infinitesimal deviation from equilibrium and reversible) adiabatic and 
isothermal processes, so that each state of change is in equilibrium. Some heat 
is absorbed during the latter and eventually converted into mechanical work.

As we shall see in the following section, the heat exchange in an 
isothermal reversible process may be expressed as

where a and aD are the final and the initial specific volumes, respectively, R 
the specific gas constant, and an adiabatic reversible process as

where T0 and p0 are the temperature and pressure of the initial condition and k 
Poisson's constant. Combining Eq. (1.11) with the ideal gas law

Aq = RT In (1.10)

(Poisson's equation), (1 . 11)

pa - RT, (1 . 12)

we have, for adiabatic process,

P a
1

(1.13)

For an isothermal process of an ideal gas, Eq. (1.12) gives

(1.14)

In Fig. 1.4, the following express the changes:

From 1 to 2; isothermal, Eq. (1.10), (1.15)
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l-K r ^-K
From 2 to 3; adiabatic, Eq. (1-11) + (pa=RT), t2

[ T i J
= «3

a 2
(1.16)

From 3 to 4; isothermal., Eq • (1-10), <12 = = RT2« n ^ (1.17)

1 -K r ■«-K

From 4 to 1; adiabatic , Eq. (1.11) + (pa=RT) , t2
[ TlJ

=
a i j

(1.18)

Equations (1..16) and (1,,18) yield

a, a L
or

O. i OCj.a 2

From Eqs. (1.15), (1.17), and (1.19), we obtain

ii
q2

1 « i  = Ti

T z t n ^  Tz 
“ a

(1.19)

(1 . 20)

Thus, in a reversible cyclic process, only by transferring heat from a higher to 
a lower temperature, heat is converted into work. All the reversible engines 
have the same and the highest efficiency . 4 From Eq. (1.20), the efficiency rj 
may be derived as

=
q T ~

Ti " T 2 ( 1 . 21)

Then,

< 0 (irreversible cycle) (pi>p0) ,
(1 . 22)

where s = q/T is specific entropy. and S = Q/T is entropy, and entropy is always 
defined for the reversible route of the process.

S or s is a state function for a reversible process. To apply the entropy 
concept thus defined only for the reversible process, if the process is 
irreversible, one must find a reversible route to estimate the entropy 
difference.

In an isolated system where neither energy nor mass is exchanged with the 
outside,

The reason is that the hypertrophy change is zero in a reversible 
process, and as we shall see below, the hypertrophy is responsible for 
non-work change.



1.9

ds = (dq)rev/T, (defined for reversible process)1
As = 0, (reversible process)
As > 0, (irreversible, natural process)
As < 0. (unnatural process) (1.23)

In this generalized treatment of entropy, applicable to both reversible and 
irreversible processes, there exists missing information which describes the 
pressure pr that provides the resisting force for the work transfer. ftWork 
energy is transferred only against the resisting force . 11 Out of the following 
three possible cases;

(a) pr = Pi < p0 1 dw = Pida

(b ) Pr = Pi = Po I dw - Pida

(c) Pr - Po < Pi dw  = P n d a  J (1.24)

cases (a) and (b) allow the variables of the system in question, which carry 
subscript i, to describe the changes. However, case (c) does require information 
which does not belong to the system, i.e., pQ, but describes an important work- 
irreversibi1itv. In (c) of an irreversible process,

P i d a  =  ( p i  -  p 0 ) d a  +  p Qd a .  ( p r =  p Q) (1.25)

(non-work) (work transferred)

When Pi = p0 or the process is reversible, pQda = p rda = dw becomes the largest, 
explaining the nature of the Carnot cycle. The relationship

Pr = Po < Pi. (1.26)

is the missing link in non-phenomenological irreversible thermodynamics . 5 When 
applied to the work irreversible process with the condition of Eq. (1.26), in the 
present treatment of "reversible process-defined" entropy, there appears a term 
arising from the non-work terms of Eq. (1.25), which is termed "hypertrophy . " 5 
Hypertrophy, B, describes the concentration change without energy transfer, 
together with calorimetric entropy which describes energy transfer. Ordinary 
entropy thus consists of the sum of calorimetric entropy and hypertrophy as

dS = dSc + dB. (1.27)

Then, it is clear that while the second law is often stated as "a mere transfer 
of heat from a colder to a hotter body, without assistance from some other 
process, is not possible" (Clausius), it is not sufficient. An additional 
expression, "And a mere transfer of molecules or particles from a system of low 
concentration to that of high concentration without assistance from some other 
process, is also not possible" has to be added for completion. With this 
information, the thermodynamics, structured both in reversible and irreversible 
processes, is complete, because it now describes all the possible cases.

For the irreversible process, a determining operation

5 Fukuta, to be published.
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(non-work) (work)

may be introduced in the ordinary thermodynamic functions, starting from Eq. 
(1.27), to see what portion is controlled by energy (Sc) and the rest by the 
concentration (B), and to define the meaning and proportion of terms in the 
characteristic function of thermodynamics to be described below.

From Expression (1.23) and Eq. (1.2), for natural change we obtain

du - Tds < - dw. (< sign is for irreversible processes) (1.29)

Note that when operation (1.28) is applied, some of the above terms become partly 
or wholly non-energy and reduce the reversible work term (pida) .

Absolute temperature

From Eqs. (1.2) and (1.6), the first law may be expressed as

dq = du + pda. (1.30)

Using Eqs. (1.30) and (1.23) for the reversible process, we may define the 
absolute temperature

T = ( ^ ) a. (1.31)

1.4 Thermodynamic Functions and Equilibrium 

Adiabatic change

From Eq. (1.2) applied to the irreversible or natural process, with dq =
0, and Eq. (1.29)

ds > 0. (1.32)

This is to say that in adiabatic change, entropy increases unless the process is 
reversible. Thus, entropy will reach a maximum value (the equilibrium condition 
in adiabatic process).

Isothermal and isochoric change and Helmholtz free energy

For isothermal natural change, Eq. (1.29) may be written as

d(u - Ts) < - dw, (1.33)

and the quantities in the parenthesis are state variables. So we express them 
as

f - u - Ts or F - U - TS, (1.34)

1 .1 0

where f and F are specific and molar Helmholtz free energies, respectively. 
Then, Eq. (1.33) reduces to
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df < - dw = -pda. (1.35)

This is to say that the amount of f increase is smaller than the actual work 
added to the system. For an isothermal change, the maximum work the system can 
do to the outside is -df; and d(Ts) - Tds remains in the system.

Under isothermal and isochoric condition (da = 0, dw — 0) , Eq. (1.35) 
becomes

df < 0. (1.36)

This suggests that for isothermal and isochoric conditions, the change always 
takes place in the direction of f reduction, and the system takes f minimum under 
equilibrium. Only for the reversible process, f remains constant.

Isothermal and isobaric change and Gibbs' free energy

Under isothermal and isobaric conditions, Eqs. (1.29) and (1.6) lead to

d(u - Ts + pa) < 0. (1.37)

Here, again, we define the quantity in the parenthesis as

g = u - Ts + pa or G = U - TS + pV, (1.38)

where g and G are specific and molar Gibbs' free energies, respectively. Then, 
for natural change, Eq. (1.37) becomes

dg < 0. (1.39)

This implies that, under isothermal and isobaric conditions, unless reversible, 
the natural change is towards a decrease in Gibbs' free energy.

Isobaric change and enthalpy

For reversible change under isobaric condition, Eq. (1.30) may be written
as

dq = d(u + p a ) .

So we define the quantity in the parenthesis as

h - u + pa or H = U + pV,

where h and H are specific and molar enthalpies, respectively.
(1.29), (1.40), and (1.41) under isobaric condition

Tds = dh or ds > 0 for dh = dq + adp > 0.

Characteristic functions

Considering the first law relationship given in Eqs. (1.23) and (1.30), and 
taking total (exact) differentials, Eqs. (1.30), (1.34), (1.38), and (1.41) may

(1.40)

(1.41) 

Then, from Eqs.

(1.42)
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be expressed as

du = Tds - pda, (1.43)

df - -sdT - pda, (1.44)

dg - -sdT + adp, (1.45)

dh - Tds + adp, (1.46)

Among these characteristic functions, f and g decrease under the conditions 
respectively assigned above when natural changes take place. We shall see 
application of some of these functions later.

Chemical potential (open system)

The properties of characteristic functions we have seen above may be 
transferred with the ma s s . The mass transfer is rather common in chemical 
systems where reactions cause the shift of mass and development of the chemical 
potential concept.

For Gibbs' free energy, for example, using Eq. (1.45), we can write

dG = -SdT + Vdp + C1 -47)

where dm is the mass added to the system and

(■ ® l.T  ’  '  ’  g ' ( 1 4 8 )

where jjl is the chemical potential defined for unit mass . 6

Since all the characteristic functions express energy in different forms, 
their increases due to the mass addition are all the same if the conditions of 
their own definition are taken:

“  ■ (^L ■ (̂ L.» ■ (^L ■ (1.49)

P

For the system involving the number of phases, i, Eq. (1.47) becomes

dG = -SdT + Vdp + (1.50)

Partial quantities

6 Chemical potential can also be defined for a mole or for a molecule. 
Chemical potential is in essence hypertropy-derived potential, and as the 
latter clearly describes the mechanical nature of energy (or non-energy) 
transfer, direct use of the latter is more advantageous.
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In the system with T, p, and mi as independent variables, we can define 
partial quantities for extensive properties. The partial properties thus derived 
are now intensive properties.

Example:

au

u = 5 ^%^.

(1.51)

(1.52)

Phase equilibrium

For two phase equilibria consisting of a single substance,

G — niigi + mz&2* (1.53)

where subscripts 1 and 2 stand for phases 1 and 2, respectively. Under 
equilibrium and dT - 0 and dp - 0, transfer of dm from phase 1 to phase 2 results 
in dG - 0 or

(gi - g2)dm - 0 or 

gi = &2- (1.54)

1. 5 Thermodynamics of Air and Water Vapor 

Air and water molecules

Table 1.2 Main components of dry atmospheric air.

Gas Molecular
weight*

Molar (or
volume)
fraction

Mass
fraction

Specific gas 
constant 
(J kg"1 K"1)

m & / m

(J kg'1 K"1)

Nitrogen (N2) 28.013 0.7809 0.7552 296.80 224.15
Oxygen (02) 31.999 0.2095 0.2315 259.83 60.15

Argon (Ar) 39.948 0.0093 0.0128 208.13 2.66
Carbon dioxide (C02) 44.010 0.0003 0.0005 188.92 0.09

1.0000 1.0000
287.05

m

♦Based on 12.000 for Cn (Iribame and Godson, 1981).
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N,

(Kihara, 1976)

o. co2

Water molecule

Fig. 1.5 Two dimensional geometry of a single water molecule. The 0-H 
distance (in 10~8 cm) and the H— 0—H angle are indicated, as are radii 
of the hydrogen and oxygen atoms (Pruppacher and Klett, 1978).

\
\

...  \

Fig. 1.6 Behavior of van der Waals equation.



1.15

Water molecule 

Molecular weight; 18.015
Exact 041 distance; 0.95718 A, H— 0-H angle; 104.523° (tetrahedron; 109°28') 
Dipole moment; /i - 1.834 x 10~18 e.s.u.-cm (Debye)
Critical point; 374.2°C, 218 atm.
Dielectric constant; 81 (18°C)
VERY HIGH LATENT AND SPECIFIC HEATS; (only in condensed phases) due to hydrogen- 

bonding .
Polar n a t u r e ----dissolve and dissociate various salts

-► Conduction of electric current

Equations of state: ideal and real gases

Ideal gas law (Perfect gas law or Bovle-Charles' law)

The empirical relationship between p and V under constant T or Boyle's law 
and that between V and T under constant p or Charles' law or Gay-Lusac's law lead 
to a combined relationship known as ideal gas law or Boyle - Charles' law;

pV - nR*T, (1.55)

where n is the number of moles of the gas and R* the molar (universal) gas 
constant.

R* = 8.31441 x 107 erg mol-1 K-1 - 8.3144 J mol-1 IT1 
= 1.9858 calIT mol-1 K"1.

Standard volume of ideal gas
V 0 - 2.24136 x 10”2 m 3 mol" 1 (at 273.15 K, 1 atm)

Ideal gas: molecules are assumed to have no volume and no molecular 
interaction. Real gas will approach to ideal gas at low pressure 
and high temperature.

Real (imperfect) gas law: van der Waals' equation

Real gas

Real gas molecules have finite sizes so that actual space volume for the 
molecules to fly is smaller than the total space volume. In addition, 
intermolecular forces pull molecules back which are colliding with the wall to 
exert pressure. The pull is proportional to the density of molecules near the 
wall and to the density of molecules inside, or

p a 1 /V or pz a 1 /V2.

Therefore, the true pressure can be expressed as p + a/V2. Then, Eq. (1.55) 
becomes

+ -^J(v - b) = nR*T, (1.56)

which is called Van der Waals' equation of state (1873) , and is one of the 
earliest of its kind.
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There are other equations of state for real gas. Equation (1.55) may be 
written as (for n - 1 )

V(p/R*T) = 1 - a/VR*T + b(p/R*T) + ab/V2R*T

= 1 * (1/ , , (l - F f ] * ? ------------
= 1 + B/V + C/V2 +

(1.57)

(1.56)'

B; second virial coefficient,
C; third virial coefficient (virial; force).

Values of B, C, —  give clues for intermolecular forces

By rearranging Eq. (1.56) in the form

- R*T a 
P '  V2’

and differentiating it with V under constant temperature, we obtain

3p = -R*TV3 + 2a(V - b )2 ri.58}
"5V (V - b)2V 3

Equation (1.58) is a cubic function for V > b (see Fig. 1.5). A  cubic function 
has at most 3 roots and at least 1 root, but one of the three in Eq. (1.58) 
always appears at V » The remaining two correspond to a minimum and a maximum 
in Eq. (1.56). These two extrema lead to instability of phase and phase change. 
Thus, the van deer Waals equation describes condensation phenomena.

Air and water vapor as ideal gases (Dufour and Defay, 1963)

Setting Eq. (1.55) for one mole air, with the deviation from the ideal gas 
in Clf we write

pV - C±R*T. (1.59)

C1 = 1 is for the ideal gas.

Table 1.3 Correction coefficient C1 to the perfect gas law for dry air.

Pi(mb)
t(’C)

0 500 1000

-10 0 1 0.9958 0.9917

-50 1 0.9992 0.9984

0 1 0.9997 0.9994

+50 1 0.9999 0.9999

Similarly, for water vapor, we have

pV - C2R*T. (1.60)



C2 * 1 is for the ideal gas.

Table 1.4 Correction coefficient C2 to the perfect gas law for pure water 
vapor.

1.17

P 9 (mb)
t(’C)

0 Saturation

- 10 0 1 1 .0000
-50 1 1 .0 0 0 0

0 1 0.9995

+50 1 0.9961

Air and water vapor deviate from ideal gas law by less than 1 % . and the 
ideal gas law is a good approximation for them under atmospheric conditions.

Main temperature points of phase change for water substance are:
Melting point of ice under 1 atm. - 0°C * 273.15 K 
Boiling point of water under 1 atm. ** 100°C * 373.15 K 
Triple Point * 0.01°C * 273.16 K

(6.107 mb = 6.107 hPa)

The liquid (L) - solid (S) line tilting to the left in Fig. 1.8 is due to 
volume increase during freezing, which is rather unusual (due to hydrogen 
bonding). The L-S lines for most substances tilt to the right due to shrinkage 
when they solidify.

Clausius-Clapevron equation

For two phases under equilibrium [water vapor (1) vs. liquid water or ice
(2)], we apply Eq. (1.45) for each phase, for p,T change (reversible).

dgx * -SidT + a xdp and dg2 - -s2dT + a2dp. (own vapor)

Now, as long as the equilibrium between the two phases is maintained according 
to Eq. (1.54), the deviations d g 1 and dg2 in respective phases from an 
equilibrium point with g 1 * g2 must also be the same, or

dSi “ dg2-
Consequently,

dp _ des = (si ~ s2) (1.61) 
"3T dT (ax - a2) *

where es is the saturation vapor pressure. Equation (1.61) is called the 
Clausius-Clapevron equation. Since

S l - S 2 = ^ = L ,  (1.62)

where L is the specific latent heat of the phase change (see Fig. 1.9), and



Phase equilibria of water 1.18

Superheated 
liquid

Fig. 1.7

1/p =  Specific Volume (cm 3g“’)

P -V - T surface for H20. (The dashed lines are isotherms.) Adopted 
with changes from Slater (1939).
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Tilted

Vapour pressure 
£----of liquid water

(0.01 °C, 4.58 mmHg)

VAPOUR

Vapour pressure 
o f Ice I

-20 -16 -12 -8 -4  0  4 8 
Temperature (°C)

12 16

Fig. 1.8 P-T diagram for H20 in the region of the triple point.
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^ > ^ 2 , (low p)

using the ideal gas law,

where (=R*/M, M the molecular weight of water) is the specific gas constant 
for water vapor, we have

Integration of Eq. (1.62') yields a useful formula for the Clausius-Clapeyron 
equation

where eso is the saturation vapor pressure at temperature T0, and L is the 
specific latent heat of phase change (condensation or deposition) averaged over 
the temperature range in question.

Kirchhoff's equation

The specific latent heat L is a function of T, although very mild. Here, 
we obtain the temperature dependency.

By differentiating Eq. (1.62) with T

where cp is the specific heat at constant pressure: and from Eq. (1.45),

Inserting Eqs. (1.64) and (1.65) into Eq. (1.63) and using Eq. (1.61) and the 
ideal gas law, we obtain

(1.62')
~3T R J 2 '

In
e,

e,

SO

s L
(1.62")

1 dL _ L 
T dT " Y 5

Under p = const, (1.46) gives

(1.64)

and by differentiating under T-const with respect to p,

(1.65)
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K Specific latent heats of phase change for water substance.
Lc; specific latent heat of condensation (heat per unit mass) 
Ld; specific latent heat of deposition 
Lf — Ld - Lc; specific latent heat of fusion

( Vx

Fig. 1.10. A  gas molecule in the "mean free path" box.
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cpi " c p2 ” -gif > (1 . 66)

which is called Kirchhoff's law and describes the temperature dependency of the 
latent heats of phase changes.

The specific heat at constant volume can also be defined as [cf. (1.64)]

Thermodynamic relationship between c„ and cr

Equation (1.30) (the first law) under the condition of Eq. (1.67) yields

Further insertion of the differential form of the ideal gas law into Eq. (1.68) 
results in

Thermodynamics does not provide further information about the absolute 
value of cv or cp (p=const), and we have to resort to atomic and molecular 

processes.

Specific heats: molecular aspects

In the above section, specific heats of gases are thermodynamically 
defined, but detailed knowledge cannot be obtained by thermodynamics alone. 
Here, we look into micromechanisms that contribute storage of heat energy in 
gaseous molecules.

Kinetic energy and temperature of a gas molecule

First of all, from the viewpoint of gas kinetics, we derive the 
relationship between the kinetic energy and thermal energy of a gas molecule.

(1.67)

dq = c^dT + pda. (1 . 68)

dq = (cv + R)dT — adp,

which, under the condition of Eq. (1.64), reduces to

cp = cv + R, 

dq = cpdT - adp.

(1.69)
or

(1.70)

A molecule in the mean free path box, colliding with a wall which is 
perpendicular to the direction of flight x, communicates its momemtum with the 
wall (see Fig. 1.10).
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fxt =* 2mvx, (1.71)

where fx is the force exerted to the molecule, t the time, m  the molecular mass, 
and vx the velocity component in the x direction.

If ii* represents the number of collisions the molecule makes with the wall 
per second,

t ■= 1/n* = 2 t / v x . (1.72)

Then, from Eqs. (2.46) and (2.47),

£, -  <!•»>

Since

Vjf + Vy + vz2 = v 2, (1-74)

where vy and v 2 are y and z components of the molecular velocity v, and

vx = vy = vz. (1.75)

Equation (1.74) reduces to

vx = i ( v 2) .
7 (1.76)

Then, the pressure p on the wall, using Eqs. (1.73) and (1.76), may be expressed 
as

p (1.77)
F 1 * 7  I *

From the ideal gas law for 1 mole of gas and V = NJ!3, where N is Avogadro's 
number,

N = 6.022045 x 1023 mol"1, 

pV = .ImZf N «3 = R*T or
F  3 2 3

^ m v 2 = |kT, (1.78)

and where k is Boltzmann's constant;

k = 1.380662 x 10“23 J K -1 = 1.3807 x 10~16 erg K" 1 (=R*/N).

From Eqs. (1.76) and (1.78),

-imv* = *kT.
T ^ (1.79)

This is to say that the kinetic energy of a molecule in one direction corresponds
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to HkT of thermal energy and explains the relationship between the molecular 
kinetic energy and the temperature. (A more rigorous treatment produces the same 
result) (see Chapman and Cowling, 1970).

When a gas molecule reflects from the wall upon collision, an energy shock 
(temporary transfer), 2 x %nv2 - kT, is given to the wall at least temporarily 
(e.g. billiard ball collision). Physically, this kT, instead of HkT, seems to 
activate microkinetic processes, such as nucleations. However, derivation of the 
term involving kT does not physically state the molecular mechanism.

Specific heats of gases

Here, we shall examine how heat energy is stored in molecular motions.

A monatomic gas, has no motions other than the translational (flying). So, 
under a - const, du - dq, and the total kinetic energy, i.e. , Eq. (1.78), becomes 
the internal energy for heat storage, i.e.,

u = |kT |  = |RT, (1.80)

where M is the molecular weight of the gas, or under the condition of Eq. (1.67),

Cy = .|R. (monatomic gases) (1-81)

Since cp is larger than cv by R, Eq. (1.81) gives
- (1.82) 

cp = ^R. (monatomic gases)

For polyatomic gases, three kinds of motion normally contribute to specific
heats:

(1 ) translational
The motion is not quantized.

(2 ) rotational
Below characteristic temperature, the motion is quantized, and above 
the temperature, equipartition of energy applies. No gas molecules 
are quantized under atmospheric temperature.

(3) vibrational
Below characteristic temperature, 0V , quantized and above it, 
equipartition of energy applies. Most of the gases under room 
temperature are quantized, and equipartition of energy does not 
apply.

Quantization of molecular and atomic motions restricts the motions and reduces 
the number of motions and energies involved. In order for quantization to occur, 
atoms in motion must be under restoring forces. A restoring force is the reason 
for wave development, and quantum mechanics is a wave mechanics under the 
restriction of the wave behavior.
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Equipartition of energy:

Total energy is equally divided among each degree of freedom (of motion), 
and each component of energy is *skT (equipartition principle of energy, only 
applicable to simple molecules) . If the number of degrees of freedom is defined 
as the number of coordinates which is necessary to describe the motion, the 
number of degrees of freedom or the number of independent motions for a gas 
molecule in three different motions are:

Number of independent motions

Translational: 3 (maximum)
Rotational: 3* (maximum)
Vibrational: 3 n(trans) - 3 - 3* (maximum)

(liquid and solid)
(n: number of atoms in the molecule. * for linear molecules, 
use 2 instead.) *

Dry a i r :

Cp = 1005 J k g -1 K '1 = 0 . 2 4  c a l  g ^ K " 1 ( = *R) 

= 718 J k g '1 K '1 = 0 .1 7 1  c a l g"1 K’ 1 j = Ir )

Water vapor:

Cp = 1850 J k g -1 K ’ 1 = 0.443 c a l g ’ 1 K "1 (= ^ K )

CV = 1390 J k g ’ 1 K _1 = 0.332 c a l  g"1 K _1 (=-§Rv)

Rotational and vibrational motions receive quantum mechanical restrictions and 
reduce their energy contribution at low temperatures. The equipartition 
principle applies only to simple molecules and as the molecular size increases, 
the principle should be eventually overtaken by the Dulong-Petit' s law (solid at 
high temperature; 3kT/atm).

Table 1.5 Molecular properties of atmospheric gases.

Gas

Degrees of Freedom C-| OQ
1

*

■ CpCv
(obs., 

18-25°C)‘
*v
(K)

trans. rot . vib. R
R7M=J/gK

°P cv

Monatomic gases
Helium (He) 3 2.076 5.226 3.148 1.63
Argon (Ar) 3 0.2081 0.531 0.318 1.648

Diatomic gases
Hydrogen (H2) 3 2 + 4.124 14.058 9.970 1.407 6140

Nitrogen (N2) 3 2 0.2967 1.004 0.746 1.401 3180

Oxygen (02) 3 2 0.2598 1.05 0.750 1.396 2260

Triatomic gases
Water vapor (H20) 3 3 3* 0.4617 1.912 1.450 [1.32]
Carbon

dioxide (C02) 3 2 4* 0.1889 0.822 0.632 1.293
Ozone (03) 3 3 0.1732

Dry air 0.2870 1.402

aJ. D'ans and E. Lax, "Taschenbuch fur Chemiker und Fhysiker." Springer, Berlin, p. 1052, 1943. 
♦quantized. * less than %kT for each freedom. + lowest energy.
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WATER MOLECULE 

/ * x °

C02 MOLECULE

Fig. 1.11 Vibrational modes of H20 and C02 molecules.

o-o o-i
■T/ev

0-3 0*4 0*5 0*6 0*7 0*8 0*9 1-0

Fig. 1.12 Molecular heat capacities of diatomic gases; quantum mechanical 
effect.

The specific heat of dry air at constant pressure, cp, varies less than 
0.4% for the ranges p; 0 - 1,100 mb and T; -40 - +30°C. For more confined ranges 
of p; 300 - 1,100 mb and T; -30 - +30°C, the deviation reduces to less than 0.3% 
(Smithsonian Meteor. Table).

Thermodynamics of gases

There are two forms of the first law commonly applied to gases;

dq = cvdT + pda, (1.68)
and

dq = CpdT - adp. (1.70)

We proceed from these.

Special processes may be described as



(a) Isobaric processes: dp = 0

(1. 70) -+ dq = c dT = du.
P °v

(b) Isothermal processes: dT — 0

(1.70) -+ dq = -adp,

(1 .68) -+ dq = pda. (=dw)

(c) Isochoric processes: da * 0

(1.68) -+ dq = cvdT - du.

(d) Adiabatic processes: dq — 0

(1.70) -+ CpdT = adp,

(1.68) -+ cvdT = -pda.

Adiabatic processes

Adiabatic processes often occur under meteorological conditions.

From Eq. (1.86) and the ideal gas law,

c^dT = R T ^ E . 
p P

By integration, Eq. (1.88) yields

^  ( I n T  -  ln T 0) = ln p  -  ln p 0 ,

Equation (1.89) is called Poisson's equation for adiabatic process.

k = Cp " °V . ( = 0.286 = 2/7 for dry air) 
c p

Potential temperature

(1.83)

(1.84)

(1.85)

(1 . 86)

(1.87)

(1 . 88) 

(1.89)

1.26

For the purpose of describing atmospheric processes, we introduce a 
standardized temperature called potential temperature 9 . From Eq. (1.89)
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T
1 ( l o f p ; ]  = (lU O O lnb ) ’

or

= T f 1000 mb]"
I P

(1.90)

The potential temperature is a temperature which a parcel of air would have at 
1000 mb or 105 Pa through adiabatic process. Thus, when entropy change is zero, 
potential temperature remains constant.

Entropy

When the potential temperature changes, entropy change also happens through 
heat exchange. From Eqs. (1 .7 0 ) ,  ( 1 .2 3 ) ,  and the ideal gas law,

ds = * (CjdT - adp) = cpi £  -  R i E  = cp^  . ( 1 .9 1 ) 7

By integration, (1 .91)  gives

s = cpln0 + const. (1.92)

For reversible adiabatic process (dq=0 or ds=0), potential temperature and 
entropy remain unchanged (isentropic process) . 8

Moist air

In meteorology, moist air is considered to be a mixture of dry air and 
water vapor. When we deal with moist air, the subscript, a, will be used. 
Similarly, d is used for dry air and v for water vapor.

(a) Mixing ratio: w

Under varying temperature, pressure, and volume in the atmosphere, the 
condition of water vapor can be described relative to dry air:

w _ mass of water vapor _ Pv _ “v (1 .93)
mass of dry air

7 Exact differential of Eq. (1 .90)  yields

d* . 4 » d i . |£dp -
^p r T[

5 Pa"*dT - k T 105 pa dp

which combines with Eq. (1.90) and « = R/cp to yield

dO dT R iE
p

8 The isentropic process used here is strictly for dsc = 0 and not 
necessarily ds = 0 as long as dq is a real heat exchanged instead of 
reversible heat (see Eq. 1 .2 7 ) .
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Pv = T ljr  ’ and Pd = (\ V ) ’

where Ra is the specific gas constant for dry air and p the total pressure. Ra 
is also used for moist air unless there is a specific need to express the effect 
of moisture. Then,

w = - €±, (1.94)
RvP - e p

where

e - fs - 5: - 0.622. (1-95)
Rv A

From the ideal gas law,

(b) Specific humidity: q

A slightly different definition can be used to describe the moist air: 
specific humidity = mass of water vapor per unit mass of moist air.

q = fl = Pv = ee « II (~ W ) . d-96)
P a Pi* Pv P - e + ee p

The saturation mixing ratio ws and the saturation specific humidity qs are 
defined by Eqs. (1.94) and (1.96), with e -► es. Since es = f(T) , then ws and qs 
are functions of T and p only and do not depend on the vapor content of air.

(c) Relative humidity. RH

Relative humidity RH is expressed as the ratio of the mixing ratio to its 
saturation value in %:

RH = 100 —  = 100 —  . (1.97)
we e.

Effects of moisture on dry air characteristics

The moisture content in the air affects the air characteristics; and when 
accuracy is needed, corrections as a function of w have to be given.

(a) Gas constant

For air of volume V, total pressure p and water vapor pressure e,



From Eq. (1.98), one can write

where is the specific gas constant for moist air; and

R* - Ra(l + 0.6w). (1.100)

(b) Specific heats

Suppose we have a system consisting of 1 g of dry air and w g of water 
vapor, under the constant volume,

(1 + w)dq - cvdT + wcw dT,

where cv is for dry air and cw  is cv for water vapor. Then,

dq = c f 1 + w rl  (1.101)

pa = R.T, (1.99)

cvm -g j

where is cv for moist air and

r = « 1 .9 . (1 .102)

Thus,

cvm ~ cv(! + 1. 9w - w) * cv(l + 0. 9w). (1.103) 

Similarly, one can obtain

c ^  « cp(l + 0. 8w ) . (1.104) 

Using the relationship in exponent of the Poisson equation, Eq. (1.89),

^  = K +  i n  = Km = -16(1 - 0. 2w) . (1.105)
Cp Cpin m C p ( l  + 0.8w) v '

(c) Viritual temperature. Tv

The virtual temperature is defined to account for the effect of moisture 
in the air buoyancy. It is the temperature of dry air having the same density 
as the air in question under the same pressure.
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From the equation of state given in (1.98),

TV = T - T(1 + 0. 6w) . (1.106)

Because w is often of the order of 10*"2 or less, the correction factors in 
Eqs. (1.100) through (1.106) can be neglected.

Meteorological temperatures

Temperature is almost always a great concern in meteorology. A variety of 
temperatures are defined under different conditions such as isothermal or 
adiabatic.

Pseudoadiabatic (— saturated adiabatic) process

We have already seen the behavior of air that undergoes an adiabatic change 
without involving any phase change [Eqs. (1.89) through (1.92)]. When a phase 
change such as condensation or evaporation takes place, heat generation or 
absorption accompanies; and the air condition changes. When a cloud parcel is 
cooled adiabatically due to lifting, water condenses out of it. The latent heat 
released during the process slows the adiabatic cooling of the parcel. It is a 
common practice to assume that after the water condensation, heat is generated; 
but water is removed out of the system.

Suppose we have 1 g of dry air mixed with ws g of water vapor (in cloud 
condition), and it undergoes a change of dp, dT, and dws. Applying the first 
law, Eq. (1.70), we have

With this in mind, we now examine temperatures of meteorological interest,

(a) Dew point temperature: Td

Frost point temperature: Tf

At these temperatures, saturation, with respect to liquid water (Td) and 
that with respect to ice (Tf), is reached when cooled under constant p and w. 
Since p is held constant,

dry adiabatic (1.107)

ws = w(Td) .

(b) Equivalent temperature: Te (two definitions)

Equivalent potential temperature: 9e

Isobaric definition: the temperature which an air parcel would attain if 
entire moisture were condensed out under constant pressure.
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T = const

r  pseudoadiabatic 
\

'Cloud \\ /x x (T ,PJ

Dry adiabatic
Pseudoadiabatic process9 is 
warmer than the dry adiabatic 
process.

Fig. 1.13 Cloud processes on tephigram.

Suppose 1 g of dry air mixed with w g of water vapor experiences heating 
due to condensation of dw g of water. From Eq. (1.104),

dq = c^dT - C p d T , and (1 + w)dq = - Ldw,

we have

cpdT = - Ldw. (1.108)

After integration from (T, w) to (Te, 0) ,

Te = T + Lw (1.109)

Adiabatic definition

W

^  Dry adiabat 
\ \

Fig. 1.14 Adiabatic definition of 
equivalent temperature.

In this definition, Te is the 
temperature an air mass reaches when 
it is cooled to a very low 
temperature saturated adiabatically 
to precipitate all the moisture out 
and returns to the original pressure.

For equivalent potential 
temperature. 0e, the air mass should 
be brought to 1000 mb level.

9 Condensed water is assumed to be precipitated.



1.32

(c) Isentropic condensation temperature: Tc

This is the temperature at which saturation is reached when moist air is 
cooled adiabatically with w - const. Since it is adiabatic, 6 remains constant 
until the saturation value of the given w is reached. It is the temperature of 
cloud condensation for adiabatic lifting of moist air.

(d) Wet bulb temperature: Tw (thermodynamic and kinetic definitions) 

Adiabatic (Pseudo) wet bulb temperature: Tsw

Wet bulb potential temperature: 0W

Tw in thermodynamic definition is the temperature to which air is cooled 
by evaporation of water at constant pressure until the saturation is reached. 
Since w is not held constant,

Trf * Tw And Tw > Td.

Integration of Eq. (1.108)

T  ^ r V -^ c o n s t ^ p s e u d o a d ia b a t ic )  y le lds

(tL V \ t ’p)sw 
1QQQ mb \

e.

= J l .  (1.110)

Therefore,

Fig. 1.15 Wet bulb temperatures.
Tw = f (T, w) .

Among the non-potential temperature we have the following inequality relations:

Ts < Td < Taw < Tiw < T < Tv < Tie < Tae.

Dry temperatures
Tv - virtual temperature
Te = Tie = (isobaric) equivalent temperature
Tae = adiabatic equivalent, or pseudo-equivalent, temperature

Saturation temperatures
Td * dew point temperature
Tf = frost point temperature
Tw = Tiw = (isobaric) wet-bulb temperature
Taw - adiabatic wet-bulb, or pseudo-wet-bulb, temperature
Ts = saturation temperature

Potential temperatures
6 = potential temperature
0V = virtual potential temperature
de = 0ie - (isobaric) equivalent potential temperature*
0ae — adiabatic equivalent, or pseudo-equivalent, potential temperature 

= ^iw = (isobaric) wet-bulb potential temperature*
0aw ™ adiabatic wet-bulb, or pseudo-wet-bulb, potential temperature



1000 mb

Fig. 1.16 Summary of temperature humidity parameters (Iribarne and Godson,

^Defined in a similar way to the corresponding pseudo-potential temperature.

Tw in the kinetic definition (see the section for Maxwellian droplet growth 
theory) is

The difference between the thermodynamic definition and the kinetic one is D//c 
(/c: the thermal diffusivity, see Section 2.4). D/k « 1.19 at -10°C.

Tsw is defined as the temperature which air attains after being cooled dry- 
adiabatically to (Tc, pc) and then warmed pseudoadiabatically until the initial 
pressure is reached. Tsw is within 0.5°C of Tw and Tsw < Tw (see Fig. 1.16).

0SW is the temperature if the pressure were brought to 1000 mb level.

1.6 Thermodynamics of Atmosphere

In sections above, we have seen the basic thermodynamic behaviors of air

1981).

T - Tw = D L
W s - W  K Cp
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and water vapor as gases. In this section, we look into their behaviors as 
components of our atmosphere.

Thermodynamic diagrams

(a) Stube diagram [adiabatic chart based on Eq. (1.90)]
T - p* diagram, having 6 as the parameter.

Fig. 1.17 Stube diagram, 

(b) Emagram

1 2

Fig. 1.18 Emagram.
Ra is the specific gas constant for air 
(moist).

The product of T and In p has the property of work.

(c) Tephigram

T — </> diagram (<j> oc cpln0, <j> is often used for entropy)

t
From the definition of entropy Eqs. (1.23) 
and (1.91)

lne f dq = f Tds = c j  Tdln0 .
Jc H Jo ^Jc (1.113)

Normally the tephigram is rotated so 
that isobars end u p  more or less horizontal 
with pressure decreasing upwards.

1

2
Fig. 1.19 Tephigram.
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CHAPTER 2 KINETIC THEORY OF GASES AND TRANSPORT 
PHENOMENA

In the preceding chapter, we have examined characteristics of air and water 
vapor thermodynamically and macroscopically. In this chapter, we shall look into 
their microscopic or gas kinetic behaviors and try to understand the basic 
transport processes of various thermodynamic properties.

2.1 Intermolecular Potentials

The van der Waal equation showed that vapor molecules may condense due to 
intermolecular attractive forces when the temperature becomes sufficiently low. 
Condensation occurs when the kinetic energy of vapor molecules is lost normally 
in the form of heat in the potential well consisting of long range attractive and 
short range repulsive forces. The molecules which lost a part of the kinetic 
energy in the condensed phase still maintain their thermal motions in the 
potential well, and their escaping from the well due to the thermal motion 
constitutes the vapor pressure of the condensed phase.

The intermolecular potential is 
due to an attraction force of various 
origins and a repulsive force. 
Attractive force is caused by 
interactions among permanent and 
induced electric charges, dipoles, 
quadrapoles, etc. Whereas, repulsive 
force comes from overlapping of outer 
electron orbits of molecules. An 
example is the Lenard-Jones potential 
(see Fig. 2.1), and for this 
particular potential, the range of 
interaction is about a few molecular 
diameters. Potential that develops 
among electric charges reaches 
deeper.

For complex molecules, the 
potential depends on the orientation 
of molecules and the additivity does 
not necessarily hold. For appli
cation to water molecules, potential 
proposed by Stillinger and Rahman is 
known.

2.2 Property Distribution under Thermal Equilibrium

Heat is a random form of energy, and under thermal equilibrium, 
thermodynamic quantities of seemingly uniform value actually deviate in molecular 
scale in space and time. Only the average of the molecular distribution 
corresponds to a thermodynamic value.

Fig. 2.1 Intermolecular potential 
for a rare gas 
U(r)=U0[ (r0/r)12-2(r0/r)6] .
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Historically, J.C. Maxwell (1859) first obtained the velocity distribution 
of gas. Later, L. Boltzmann (1868) generalized it to the probability 
distribution of molecular states under thermal equilibrium. Let us call it 
thermal ensemble . 1

The distribution of energy (kinetic only) in an ideal gas is given by (see 
Appendix A ) ,

dn. m 2«*» c - , a i  d £ f  ( A .8)

75T(kT)3/2

where dn is the number of gas molecules whose momenta are between pz and px+dpx, 
py and py+dpy, and p2 and p2+dp2 or energies between e and e+de and N the total 
number of molecules. This is known as Boltzmanns distribution of energy. For 
molecular velocity,

\l/2 ( _ -p/2 . 1 mv»
v z dv,I T ■ (C  ( 4f  w z  .  x  m V  / A  T O N

dn . | 2 | I m I . 2 i t  ,y2 (A. 12)

where m is the molecular mass and v the velocity. It is called Maxwell's law of 
velocity distribution.

If a unit volume is taken for the system, n and N correspond to 
concentration or density. Then, the probability of finding molecules with energy 

is

n, _ _ i\ f 2 e ^
I T  = 1/2 -cA* = f  1 (2 .0)

where nj, and are the number and the energy of i identical molecules and f the 
partition function (this is a new partition function and different from the 
conventional one) . This is to say that the probability of finding a microscopic 
state of molecules is solely determined by its energy level and temperature. The 
probability is proportional to the factor, €|/2exp(-€i/kT), instead of the 
commonly practiced Boltzmann factor, exp(-ei/kT).

2.3 Mean Free Path

The distance a molecule flies between two consecutive collisions is called 
the free path, and its average value plays a role in a simple theory of molecular 
transport processes. Therefore, we shall estimate it in a simplified manner 
below. The concept involved in the collision process will apply, with some 
refinements, to coagulation of aerosols, collision-coalescence of cloud droplets, 
and ice crystal riming and aggregation.

Suppose molecules of identical mass and size flying at an average speed of 
v. A molecular collision will occur when a molecule comes within 2r distance

1 A term called canonical ensemble, said to be due to Gibbs, has been 
commonly used, but it contains a historical and fundamental
misconception. The grand canonical ensemble concept, also due to Gibbs, 
describes only systems without surfaces and it cannot apply to the 
cluster system. So, we refrain from using them here.

. r , i! 0 /  v
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from the line of flight of another molecule, where r is the radius of the 
molecules. In time t, the molecule flies a distance vt. During the time, it 
sweeps a collision volume of Denoting the number concentration of the
molecules by n, the total number of molecules in the collision volume is 
expressed as bxr^tn. Hence, the mean free path

vt

(A f r r ^ tn )
1

4*r2n
( 2 . 1)

However, Eq. (2.1) overestimates the length of the mean free path by assuming 
that all the molecules but one in question (the one flying) are at rest. In real 
gas, the moving molecule in question is hit from the side, front, and rear, 
making the t value smaller. A more rigorous treatment gives (Chapman and 
Cowling, 1970)

t =
4^2:wr2n

(2 . 2)

For a binary gas mixture of species 1 and 2, the mean free path of the 
species 1 is given as (Chapman and Cowling, 1970)

*

r ^1/2
4)/2jrn1ri + 4wn2(r1 + r2)2 1 +

m2

1-1

(2.3)

Fig. 2.2 Sweeping volume of a flying molecule.

2.4 Transport Processes and Transport Constants

Consider a system consisting of molecules carrying an average 
characteristic property Q. The characteristic property can be mass, momemtum, 
or kinetic energy. The flying molecules carry the property in the x-direction

nv Q

-►

X -  £

Fig. 2.3 Distribution of the nvx Q and the transport through the distance t .
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across a unit area. Since both vx component and vx component of velocity are 
assigned to n molecules, they both carry the property Q, where vx is the average 
molecular velocity in positive x-direction and vx in the negative x-direction.

Hence, Q transportation from left to right is

nvx Q - t.
3nvxQ

~3x~ ’

and from right to left,

nv, Q + t
3nvxQ

~5x

Observing that vx - -vx, the net rate of Q transport toward right is

(2 .4 )a

where vx »= kv (Eq. A.24), and

(2 - 5)

and L,j,k being respective unit vectors. This case, V =

Note the relationships among various velocities are (see Appendix A) ;

(^2)1/2 = r 3kr (1>78) ( V = [ (A.16), vx = [ (A.22),
J m J 7rm J ?rm

vx = J (A. 23) , and v = 2vx = 4vx (A. 24) .

(vx includes the effect of number concentration and this is why vx = 2vx.)

We now estimate fluxes of quantities basic to the cloud physical processes below.

Flux densities for ideal gas

Mass flux density: Q = m

The mass flux density may be obtained by replacing Q in Eq. (2.4) with m

2 Note a factor % is sometimes used erroneously instead of h (Moelwyn 
Hughes, 1957). This view is also supported by Chapman and Cowling (1970).
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Fm = -2£V(nmvx) (g en era l exp ression )

= -^ v (V p  + ^pVlnT). ( 2 . 6 ) 3

From Eq. (2.6), it is clear that the mass flux results, not only from the density 
gradient, but from the temperature gradient. the latter involving so-called 
"Soret effect" (Soret, 1879-1881).

Momentum flux density: Q * mv

The momentum flux density which describes_the momentum transfer, or viscous 
effect, may be obtained by replacing Q with mv

Fmv = -^ V (nm v2)

- -|«vP. <2-7>*

The momentum flux is thus proportional to pressure gradient.

Internal energy flux density (heat) : Q = ^jkT= ^ m v 2

Under steady heat conduction through the air, due to no continuing volume 
expansion, the heat flow carries the internal energy. The heat flux density may 
therefore be expressed by replacing Q in Eq. (2.4) with the internal energy

Fq = -i^V^nmv* ̂ .v2j (j ; number of degrees of freedom)

= -jj £vR/3(VT + 2TVlnp) . ( 2 -8)5

The heat flux is thus a function of gradients of pressure p and temperature T . 
the former involving "diffusion thermoeffect" or "Dufour effect" (Dufour, 1873).

nm = p , v = I" (A.16)
J

V(nmv) = I —  VpJT = —  f t V/j + [ —  />v/r = vV /o + ^V in T  
J Trm J Trm J Trm 2

ilE y/f = v  and v / F  = **_L*VT = ^ V T  = ^  
a iii 2

V*nT

-imv2 = IkT 
2 2

v 2 = m
3RT nmv2 = 3/jRT = 3p (nm=p)

-*«vfnmv 4-v21 = - * *jV(nmvv2) v = [ /r , v 2 = 2^1 = 3RT2 I 6 J 12 J ?nn m

■ - i « v r a I l ’ '/ f - 3RT ■ ^  ’  - t ‘ 4  H  ^

= ^ [ 7T + ^ Vp] = + 2TV£np)

B  = v and P = pR\
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Heat conduction and thermal conductivity

We now proceed to estimate the heat flux under no mass flux, i.e., Eq.
(2.6) = 0, or converting In p to In p using p = pRT

V(ln p) = ^V(lnT) . (2 -9)

Using Eq. (2.9) in Eq. (2.8) to eliminate V (In p ) , i.e.,

Fq = j «vRpVT

and recalling that

°v = - j jR

one obtains

Fq = -^ivpCyVT. (2.10)

Since the ratio of heat flux density to the temperature gradient defines the 
thermal conductivity. K. under no mass flux (Fourier's law of heat conduction)

Fq * -KVT, (2.11)

and from Eq. (2.10), we have

K = ^VyOCy,

or using Eq. (2.2)

K = M ^v 

Z sfln r 2

Thermal conductivity of air. Sutherland's formula

From Eq. (2.13), the thermal conductivity K a v/r2. Since v a vf and the 
effective radius varies according to the empirical relation,

r 2 = r„2|l +

where r, is r at T - «, and C a constant,

^  ^ , (Sutherland's formula) (2.14)

is C - 398 K for air, and K<, is K at T - 273.15 K. It is important to note that 
K = f(T) * f(d). Unit of K is J/(m s K ).

For air in the temperature range between -20 and +40°C, K a T1'80.

(2 .12)

(2.13)6

6 For rigid spheres, K a T1/z due to v a T1/2.
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Shear stress and dynamic viscosity

Z

Under vertical shear of 
x-component of velocity 
(linearly varying, see the Fig. 
2 .4), the time rate change of 
x-component of momentum or 
force per unit area may be 
expressed by Eq. (2.4) with mvx

* - 1 —y/vxW - £  i

Fig. 2.4 Velocity profile [vx(z)] for the case of linear shear.

(2.15)

On the other hand, viscosity is defined in relation with viscous force as

F, , =-f?aVx (2.16)(mvx>z V~Sz'

where rj is called viscosity coefficient or (dynamic) viscosity.

Equating Eq. (2.15) with Eq. (2.16) and replacing Eq. (A. 16), we obtain

Thus, for the same reason as K, rj * f(p); and the temperature dependency of rj is 
given by an equation similar to Eq. (2.14)

Diffusion and diffusivity (diffusion coefficient)

The diffusion of water molecules always takes place when cloud droplets and 
ice crystals grow or evaporate in the air environment. We first look into the 
self diffusion process, i.e., diffusion of water molecules through themselves.

Diffusion flux density of water vapor may be expressed by Eq. (2.6)

(2.17)

Unit of rj\ poise = 1 dyne s/cm2 = 1 g (cm s) 1 = 10 1 kg (m s) 1

(2, v, p for water vapor)

(2.18)
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where the subscript v stands for water vapor. The second term of Eq. (2.18) 
amounts 2-3% of the first term for saturated vapor (Soret effect) . 7

Since the diffusivity of water vapor is defined by Fick's first law of 
diffusion,

where D is the self-diffusion coefficient (diffusivity) of water vapor. Then, 
from Eq. (2.18) under constant temperature and Eq. (2.19), we have

Equation Eq. (2.20) is a self-diffusion equation. Using Eq. (2.2) and v 
expression in Appendix A

and for gases in general, since n - p/m and p = p/RT and D <x f(T)/p. Thus, D 
increases as the pressure drops. In reality, the power of T is larger than 1.5 
due to r2 term contribution. D unit is cm2/s or m2/s

Mutual diffusivity of air and water vapor

For air-water vapor system, assuming that molecules are rigid elastic 
spheres, the mutual diffusion coefficient may be expressed as (Chapman and 
Cowling, 1970)

Fv ---DVpv, (2.19)

(2 . 20)

( 2 . 21)

r^- ( 2 . 22 )

where d12 = (<*i + d2)/2. D12 a T1*94 (Pruppacher and Klett, 1978).

Relationship among transport constants (single component gas)

Using Eqs. (2.12) and (2.17),

K = rj cv. (2.23)

From Eqs. (2.17) and (2.20),

Dp = rj. (2.24)

7 Ve de From Eq. (1.63), since 

are coupled at droplet

in cloud physics, T and e 

surface,^eV(inT) ^ed(«nT)

des _ 2L 

^esd«nT '

At 20°C for water, the ratio is 1/0.0276; -30°C ice, it is 1/0.0198.
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Hence,

D - K/pcv.

D may be compared with the thermal diffusivity

k = K/pcp,

to give

D//c * cp/cv.

(2.25)

(2.31)

(2.26)

/c applied to transient or non-steady state process of heat conduction where air 
continues to expand due to the increased temperature under the given pressure.

Equations (2.23), (2.24) and (2.25) are applicable for low pressure gases 
and deviate when the pressure is high.

Molecular diffusion and heat conduction equations

Continuity equation The accumulation of mass due to the 
flow of density p in the x-direction is

pudydz - pu + dxjdydz = dxdydz.

Considering the accumulation in y- and z- 
direction flows, we have

-^ d x d y d z  =

Fig. 2.5 Mass flow economy in or the continuity equation 
the x-direction of 
t h e  e l e m e n t a r y  
volume, dx dy dz.

dp x d(pu) x 3(pv) + d (pw) =0 (2 26, v 
~5t 5x” 3y~ dz *

For incompressible fluid,

Transport of conservative property

du . dv . 3w 
"55E l y  TE

(2.26")

When Fq alone is responsible for the time variation of conservative 
property Q in a unit volume of open system,

8 = -V • Fn. (2.27)8

For a closed system, since n remains constant,

n 3Q _= ~V*Fn. (2.28)

Convective transport

If convective motion of air further carries F q , a term

8 V*Fq is the scalar product of V and a vector Fq or 9F q x/ 3 x  +  S F g y / d y  +  
3Fqz/3z .
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where u, v, and w are x, y, and z components of velocity, can be added to Eq.
(2.27) or Eq. (2.28). Such an equation may be called a convective diffusion (or 
conduction) equation.

For water vapor diffusion without simultaneous heat conduction, nQ = pv\ 
and using Eq. (2.19) in Eq. (2.27), we have

= V*(DVpv)(+ sources or sinks, if they exist).

For isotropic diffusion without sources and sinks,

Sfv

where

fv2 = J L  + J L  + J L ]  (Laplacian) . 9 (2.29)
[ dx2 3y2 dz2J

For non-steady heat conduction under constant pressure, expansion of air 
accompanies (see Fig 2.5). Then, from Eq. (1.46), dh = dq = cpdT. Then, 
inserting mcpT = Q into Eq. (2.28) with Eq. (2.11),

4 ^  = —  V2T, (2.30)/5aCp

where
K = k (2.31)

P ac p

is the thermal diffusivity10. with dimension of m2/s, and plays an identical role 
as D in the diffusion of mass. /c is thus involved in transient (non-steady 
state) phenomena.

Under steady state, since the property involved in the transportation at 
an arbitrary space point does not change with time, Eqs. (2.29) and (2.30) become

V2T = V2p = 0. (2.32)

Transport processes in free molecule regime

When the distance involved in the transport process is much shorter than 
the mean free path, the molecular transfer process takes place without 
collisions, and the process is said to be in the free molecule regime.

Applying a concept similar to that described above, the free molecular flux 
density of mass may be expressed as (1 , left; and 2 , right)

9 For the spherical coordinate, see Appendix B.

10 Diffusivity was used by Kelvin and thermometric conductivity by Maxwell 
(Carslaw and Jaeger, 1959).



Similarly, the free molecular flux density of heat without mass transfer may be 
expressed as

Ffq = nv^jkTi) + nvx^ j k T 2)

°vP (T 2 “ T x)
(27rRaT)1/2 ' (2.34)

It is said that because of a larger contribution from faster and hotter 
molecules, instead of cv, (cv + ^Ra) describes the process better.

2.5 Accommodation coefficients

When properties, such as mass, momentum, or heat are to be transferred 
across the boundaries between the gaseous phase and walls or condensed phases,
!inefficiencies normally appear.

Momentum accommodation and slip flow (Chapman and Cowling, 1970)

i ■

Mean velocities

Let Vx and v” denote the mean x-velocites of molecules before striking and 
just after leaving the wall that is moving with the velocity vQ. Then, the 
average x-velocity of the gas at the wall is H(vx + vx) . This can be interpreted 
as some of the molecules hitting the moving wall, leave (8 proportion) it with 
the velocity of the wall, and the mean x-velocity is equal to the wall velocity 
v0. The remainder ( 1 — 0) is reflected elastically. Therefore, v” (leaving) is 
given by the weighted sum of vx and vQ, i.e. ,

v" - (1 - B) v* + 0vo. (2.35)

Then the difference between v* at the mean free path distance away from the wall 
and the average at the wall ^(v* + v”) is given as

vx " ^(vx + v'') = *(dvx/dz). (2.36)

From Eqs. (2.35) and (2.36)
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+ vx ) = v0 + 2 -  9  ,  3vx 
d ~Sz '

(2.37) 11

(Thermal) accommodation coefficient, a

T1
T77T77TTJ

Similarly to what applied above,

' T _ t
T2 = (1 - a)T2 * aTi or a = 2— J.

i2 ~ il

Condensation coefficient. S12 and deposition coefficient, y

(2.38)

F = Fs 
F  >  F .

F < F.

equilibrium

condensation

evaporation

Suppose a vapor flux condenses across the interface between the air and the 
condensed phase. Under equilibrium, the condensing flux F/3 matches the 
evaporating flux Fs/3, where /3 is the condensation coefficient. Under that

i i Setting vx + vx — x,

(2.35) -*• x-vx =(l-0)vx +0vc

(2.36) -*• vx = ^ x + « ^ E

eliminating

T ~  S I + v ----(2.37)

12 Just above the surface, the average water vapor density

ix = i [/0 + p(l-0) + ps/3] . Then,

4’

2 "  2 1

p - .*x = tljL (incoming),

Eliminating p from these equations, ^x - ps = t
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condition, the flux F arriving at the interface from the gaseous phase equals the 
saturation vapor flux (pressure) of the condensed phase Fs. Whenever the 
condition shifts from equilibrium, (F - Fs)fi controls the net flux instead of (F
- Fs).

Table 2.1 Condensation coefficient for water (Pruppacher and Klett, 1978).

(a)

Evaporation From A Quasi-Quiescent Water Surface

OBSERVER TEMPERATURE (°C) P

Alty (1931) 18 to 60 0.006 to 0.016
Alty and Nicholl (1931) 18 to 60 0 .0 1 to 0.02
Alty (1933) —8 to +4 0.04
Alty and Mackay (1935) 15 0.036
Baramaev (1939) - 0.033
Pruger (1940 100 0.02
Yamamoto and Miura (1949) - 0.023
Hammeke and Kappler (1953) 20 0.045
Delaney et al. (1964) 0 to 43 0.0415
Kiriukhin and Plaude (1965) 7 0.019
Chodes et al. (1974) 20 0.033
Rogers and Squires (1974) - 0.065
Narusawa and Springer (1975) 18 to 27 0.038
Sinarwalla et al. (1975) 22.5 to 25.7 0.026

Table 2.1 Continued.

(b)

Evaporation From A Rapidly Renewing Water Surface

OBSERVER TEMPERATURE (°C) P

Hickman (1954) 0 0.42
Berman (1961) - 1 . 0
Nabavian and Bromley (1963) 10 to 50 0.35 to 1.0
Jamieson (1965) 0 to 70 0.35
Mills and Seban (1967) 7 to 10 0.45 to 1.0
Tamir and Hasson (1971) 50 0.20
Narusawa and Springer (1975) 18 to 27 0.18

Deposition coefficient. 7 , is the same as condensation coefficient, except 
that the solid phase is involved instead of liquid phase. 7 is the result of 
integral effect of all the surface processes involved in the vapor transfer, such 
as landing, migration, two-dimensional nucleation, and leaving the surface.
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Table 2.2 Deposition coefficient for ice (Pruppacher and Klett, 1978).

Observer Temperature (#C) 7

Delaney et al. (1964) -2 to -13 0.014
Vulfson and Levin (1965) - 6 to -7 0.04
Vulfson and Levin (1965) - 1 0 to - 1 1 0.7
Fukuta and Armstrong (1974) -25 0 .12
Davy and Somorjai (1971) -45 0.36
Kramers and Stemerding (1951) -40 to -60 0.93
Tschudin (1945) -60 to -85 0.94
Davy and Somorjai (1971) -85 1 . 0
Koros et al. (1966) -115 to -140 0.83

2 .6 Relaxation of Transient Processes

In many material phenomena, against a sudden change the response takes 
place towards an equilibrium or a steady state. If the time rate of change of 
a property Q is proportional to the property difference in the form

- S - A - B Q ,  (2.39)

where A and B are constants and Q - 0 at time t - 0, the solution of this 
differential equation may be readily obtained by the method of separation of 
variables as

Q - .£(1 - e-Bt), (2.40)

where
r - 1/B, (2.41)

is called the relaxation time. Then, the ratio of the Q difference at t - r and 
that at t - 0 may be obtained as

Qt = e-t/T - 1/e - 0.368, (2.42)

where Q, is Q at t - r. This is to say that in the period r , the difference in 
Q becomes e-1 of the initial value. Half of the initial value is reached more 
quickly at t - 0.693r.

In a transport phenomenon such as heat conduction without involving 
advective or radiative transfer, source or sink,

4 1  - «V2T. (2.30)

If a sudden conduction takes place from the surface of a semi-infinite body into 
the quiescent, isotropic medium of uniform temperature in contact under an 
initial temperature difference (AT)0#
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(AT) o - (AT)

( a t T T = erfc x
(2.43)

(Carslaw and Jaeger, 1959), where subscript 0 stands for t = 0, erfc the 
complimentary error function, and x the distance from the surface. Then, one can 
define another relaxation time for this transport process

T T = (2.44)

At t — rT, the above equation gives

•(AT)A t ) <AT) = e r fc  (1/2) = ° -480,

which is close to the half value. The true half value corresponds to t = 0.954 
rT.

2.7 Radiative Heat Transfer

Thermal radiation continuously leaves the surface of a body as long as it 
is warmer than OK. In relation with the incident radiative energy, the fraction 
that reflects is called reflectivity p, the one that is absorbed is called 
absorptivity a, and the one that passes through is called transmissivitv r. So

p + a + r = 1 .

For non-transparent body, r = 0 or

p + a = 1 .

The ratio between the emitted energy and the incident one is called emissivitv 
e and e = a. Since shiny metals reflect radiation, their emissivities are low. 
For most of the non-metallic materials, e - 0 .8 .  For water and ice, e is 
probably around 0.95 in the range of atmospheric temperatures.

Stefan-Boltzmann's law

The radiation flux density emitted by a blackbody is given by Stefan- 
Boltzmann's law

F = aT\ (2.45)

where a is the Stefan-Boltzmann constant; and

o = 5.67032 x 10”8 J s^nf^K”4.

For heat transfer from a surface, in addition to considering the above 
factors, both incident and reflected energies on all the surfaces involved, the 
solid angles and angles from the surfaces have to be considered. For the 
intensity of radiation energy coming out of a flat surface, the Lambert cosine 
law applies for blackbody (e = a = 1 )
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Ie = Incos0 , (2.46)

where Ie and In are radiation intensities at an angle 6 (from the normal line) 
and on the normal line, respectively.
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CHAPTER 3 MOTIONS OF ATMOSPHERIC PARTICLES

One of the outstanding features of the aerodisperse system is the large 
density difference between the air medium and the dispersed particles, which 
leads to their relative motions under the existing gravitional field. Particles 
interact with each other under the moving or quiescent air medium. In this 
chapter, we look into fundamental processes that describe motions of atmospheric 
particles.

3.1 Knudsen Number

When the size of atmospheric particles reaches the length of the mean free 
path, the dynamic behaviors of the particles change. The extent of this effect 
is a function of the Knudsen number:

K* - */r, (3.1)

where I is the mean free path length of the air molecules and r the radius of the 
particle.

Fig. 3.1 Ranges of gas dynamic behavior for aerosol particles in terms of 
radius and mean free path (Hidy and Brock, 1970).

3.2 The Navier-Stokes Equation

The motion of fluid medium, e.g. , the air flow around a falling particle, 
can be derived from Newton's second law: the product of mass and acceleration 
is equal to the sum of external forces. Considering the fluid in an elementary 
volume of dxdydz, the products in x, y, and z direction are, respectively,

P a ^ dxdy d z - P a -^ dxdy d z » and Pa -j^dxdy d z .

where
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D d d d d_ = _ * _  + u_J__ + v_T_ + w J _ .
Dt Tt ^x  ^y ^z (3.2)

The operation of Eq. (3.2) is called Lagrangian differentiation.

For external forces acting, the force proportional to the fluid mass and 
that which acts at the fluid boundary normally have to be considered. The former 
may be expressed as

pafxdxdydz, /oafydxdydz, and /oafzdxdydz, 

where fx, fy, and fz are x, y, and z components of acceleration based on the

force acting on the fluid. The force acting on dydz plane in the x-direction is dxjdydz.

Considering also y and z directions, the force acting at the fluid boundary may 
be expressed as

( t £  * * ■ ^ r]d*dy<i z -

For the Newtonian fluid, Eq. (2.16) of incompressible nature and constant 
viscosity, the term in this bracket is expressed as

dp* _ dp V2 ___ ___
- W  "35 v ’ ’ ’

where p is the static pressure.

Combining all these terms, we have the Navier-Stokes equation (in x- 
direction)

= f* -  IE  + i/v2u,
Dt pa ’ (3.3)

where v = ri/pa is the kinematic viscosity, and fz (in z-direction) corresponds 
to g under the gravitational force only. For the steady state, du/dt = 0 should 
apply to Du/Dt. Furthermore, it is the normal procedure to ignore fx unless 
there exist specific reasons for it. Then, Eq. (3.3) becomes

uVu = -ZE + i/V2u.
Pa (3 .4)

3.3 Flow Around a Sphere

In Eq. (3.4), the convective acceleration term on the left-hand side and 
the linear viscous acceleration term, the second on the right, are of relative 
importance as far as the flow around a sphere is concerned. Since the former is 
on the order of w^/d, where d is the diameter, and the latter ywto/d2, the ratio,
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wa/d ^ W^d

l ^ - l  ~  6 ’ (3.5)

is called the Reynolds number. The smaller the diameter of the sphere is, the 
smaller the Reynolds number.

Stokes approximation

When Re is small, it is immediately apparent that the term on the left-hand 
side of Eq. (3.4) can be ignored, which is called the Stokes approximation. 
Solution of the Navier-Stokes equation under this approximation gives the drag 
force

D - 6^rWco, (3.6)

where r is the radius of the sphere (see Appendix C).

Since the non-dimensional drag coefficient is defined by the ratio of the 
drag to the product of cross section and dynamic pressure,

CD - D/(hpaw5-A), (3.7)

for a sphere of the Stokes drag,

C. - 24
^  Ri* (3.8)

For Re < 1, Eq. (3.8) holds well.

Oseen's approximation

The Stokes approximation creates a problem at large distance from the 
surface. To ease this difficulty, Oseen introduced the following approximation,

wVw “ WcqVw . (3.9)

This approximation results in

^  ’  H  f1 * T C Re ‘  'm a Re‘  * —  ]• (3 . io )

Equation (3.10) describes the observed data well if Re < 3.

3.4 Settling

When a particle is at its terminal velocity of settling, the viscous 
resistance force is balancing with the gravitational force. Then, we have

w = 2&(Pp -  P a > r 2
95------  (3.11)
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which is called the Stokes equation of 
particle settling. It is applicable where 
the Stokes approximation is valid.

For particles whose radii are 
comparable to the mean free path length, 
the medium is no longer considered to be 
continuous, and particles accelerate 
between collisions. Due to this "slip," w 
value becomes larger than that predicted by 
Eq. (3.11). Cunningham (1910) introduced 
an empirical correction for the effect so 
that Eq. (3.11) writes

„ 2 g(PP ~ Pa)r2

Fig. 3.2 Force balance within a 
particle falling at the 
terminal velocity.

where A is a numerical factor near unity and called Cunningham's constant, and 
pp the density of particle. This is, therefore, called the Stokes - Cunningham 
equation.

3.5 Coagulation

Particles, small relative to the mean free path, move randomly due to
unbalanced molecular bombardments. This phenomenon is called the Brownian
motion. The mean displacement x is expressed as .

x2 = 2Dt, (3.13)1

where D is the diffusion coefficient of the particle. Considering the effect of
small particle size or large (Einstein, 1905, 1906, 1907 and Stokes- 
Cunningham),

D =kT^l + (3.1.4)2

Due to collision caused by the Brownian motion, particles tend to coagulate.

For uniform size particles. the rate of decrease in the number 
concentration n, since it is doubly proportional to concentrations of both 
particles in collision, is expressed as

(3.12)

VISCOUS RESISTANCE FORCE

0
= -6-nnrw

(n; viscosity)

GRAVITATIONAL FORCE 
* 4 3

- 3'7ir «9*(pp- Pa)

1 See Appendix D.

2 See Appendix D.



where K is the coagulation constant. 3 Upon integration, it yields

(3.16)

where is n at t - 0 .

There is another way to describe the coagulation rate based on the 
diffusion flux of aerosol particles. Since the total flux of particles to the 
surface of other aerosol particle is 47rD(2r)(n - ns) , 4 where ns - 0 is the 
particle number concentration at the aerosol particle surface and 2 r the radius 
of the sphere of influence, we have

For small particles, the Cunningham correction factor (1 + AKh) is needed for D. 

For different size particles, similar to Eq. (3.17),

For Dx and D2, Eq. (3.14) may be applied. 2D * Dx + D2.

K value varies with the nature and slightly with the weight concentration 
of aerosol particles. For NHAC1 smoke, K — 7 x 10“10 cm3s“1; and for coagulation 
of Aitken nuclei, K — 1.4 x 10~9 cm3s“1. As can be seen from Eq. (3.14), small 
particles coagulate rapidly.

(3.17)

(3.18)

o
2

l

Fig. 3.3 Particle coagulation.

3 Also known as coagulation kernel.

4 See Section 5.3.
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Table 3.1 Terminal velocities, wp, and diffusion coefficients of rigid spheres 
of unit density in air, D, at 1013 hPa pressure and 20°C (Green and 
Lane, 1964).

Diameter wp D
/xm cm/s cm2/s

0*1 8*71 X  10-5 6*84 X 10-6
0*2 2*27 X  10~4 2*02 X 10"6
0*4 6*85 X  10-4 8*42 X 10-7
1*0 3*49 X 10-3 2*76 X 10"7
2 1*29 X 10-2 1*28 X  10~7
4 5*00 X 10' 2 6*16 X 10“8

10 3*03 X 10_1 2*41 X 10~8
20 1*20 -  -

40 4*71 -  -

100 24*7 -  -

3.6 Phoretic processes

Small aerosol particles move under influences of thermal and vapor density 
gradients and under irradiation of light. They are called thermophoresis, 
diffusiophoresis, and photophoresis, respectively.

Photophoresis

WARMED

LIGHT

RADIOMETRIC 
REFLECTED MOLECULE FORCE

Fig. 3.4 Photophoresis.

Photophoresis is due to the gas molecules rebounding from the hotter, 
illuminated side of the particle with greater velocities than from the 
unilluminated side. The photophoretic force is

e 7rr3ap f dTl
f p (3 .1 9 )

where a is the thermal accommodation coefficient, and i stands for inside (Fuchs, 
1964).

Thermophoresis

An aerosol particle, when placed under a temperature gradient of the 
gaseous medium is known to move toward the colder region like the inner wall of 
a fireplace. This phenomenon is called " thermophores is . 11 The origin of the 
force may be understood from the following simple treatment:
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v x, v2: x components

Pi >P2 • pressure forces
acting on the particle

Fig. 3.5 Origin of thermophoretic force.

Since

(1) Tx < T2 and Hmv* = HkT, v x < v2
(2) nxv x = n2v2 (no net flow of gas), and
(3) p = nkT = nmv*,

we have

2
Pi n , m V i  v-i
— z = _ — i * _i <  1, or the net force is toward Tx.
P2 n2nrv2 v 2

The general expressions for thermophoretic force and velocity in the slip- 
flow regime are obtained by Brock (1962):

Air flow

(1) T : Navier-Stokes eq. 
for heat conduct, 
through moving 
air(gas)

(3) Surface:
Temperature jump
Cp, 2~L2) G

(4) Heat energy continuity . ,t 
K„VT=K VT, 9‘' a' at 
P P  ̂  ̂ S  GO

^  CO

T -*• grcosQcl

T : high 
di 

(5) V2v = (viscous resistance force balances with pressure grad.)

(6) Vv = 0 (momentum conservation)

Fig. 3.6 Thermophoretic system.
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Solving the temperature jump and integrating x-component of force due to the
temperature difference over the particle surface, thermophoretic force is

(0 < K n < 0 .2) (3.20)1 (1 •> SlUUIl ♦ 2K,/'Kp ♦ ! W  ' v ^  '

where u — v/Pa is the kinematic viscosity of air, Cs, Cm, and Ct are numerical
factors of order unity obtainable from kinetic theory, and — 2/r is the 
Knudsen number, or

-2C ,„ (K ./K ,.C tiy (8 /T „ )  ,3 .2 1 )
1 <1 * 2 < y y u  + 2K,/KP ♦ 2 < y o '  <u '

For the continuum flow regime. -► 0 or 2 < r (large particle)

fT . ~9y re . , (Epstein's equation, 1929) (3.22)

where Cs = 3/4 is taken; and Ka and Kp are thermal conductivities of air and 
particle, respectively.

For the free molecule regime. « or 2 > r, particles are small; and the
force is (Waldmann, 1959)

fT » -4przg/T0. (3.23)

The thermal force expressed by Eq. (3.22) for the continuum regime and that 
expressed by Eq. (3.23) for the free molecule regime may also be equated with the 
respective drag forces to obtain the steady thermophoretic velocity of aerosol 
particles:

fD = 6?r^rv, (Stokes drag, continuum regime) (3.24)

fD = -|r2p + “jrjv ’ (free molecule regime) (3.25)

where am is the momentum accommodation coefficient.

Epstein's equation (3.22) has been widely referenced, but the theory failed 
to account for the case of thermally conducting spheres like NaCl or metal. The 
observed force was a few tens times larger than what the theory predicts. In 
this regard, Eq. (3.21) obtained from Eq. (3.20), can account for the discrepancy 
better, although it still underestimates the thermophoretic velocity of particle 
for Kn > 0.2. An expression that is made to fit experimental data for aerosol 
particles with high thermal conductivity is available (Hidy and Brock, 1970).



3.9

In all the treatments of thermophoresis, there appears to be violation of 
all the first law of thermodynamics ! 5

Diffus iophores is

When an aerosol particle is placed in a concentration gradient of gaseous 
mixture, the particle moves. This phenomenon is called diffusiophoresis. Unlike 
thermophoresis, two effects contribute to the process: one is the mass-average 
hydrodynamic flow of diffusing gas (vapor) called Stefan flow and the other the 
impaction of molecules of different masses in the concentration gradient. The 
former produces a force that acts in the direction of vapor diffusion through a 
stagnant gas and the latter in the direction of diffusion of the heavy component 
of gas mixture.

Stefan's flow (Fuchs, 1964)

or
P

A _
STAGNANT STAGNANT

AIR TRANSPORTED
VAPOR

AIR

- ^ ^ vapoT AT p
^ V A P O R ^t----©-----J

Fig. 3.7 Stefan's flow.

Stefan flow of water vapor in air is then

J.
*Pa

-_i_DVp = -_±_D dp1
W S 'S r ' (3.26)

where --- is the specific volume of vapor at p and r the radial distance. At
eP a

around a growing droplet of radius r,

, ,  = "  P « )r
---------------2-----  1epar 2 (3.27)

where pA and p* are the vapor pressure just above the droplet surface and in the 
environment, respectively (see Chapter 5). Stefan flow is responsible for a 
large particle movement in a diffusing gas mixture.

Diffusion molecular impact effect

This effect is similar to that of thermophoresis. A simple treatment is 
given as follows.

5 In the thermophoretic theories, continuity of thermal flux is assumed on 
the particle surface, which is the sole source of driving force for the 
process. The thermal force is then assumed to balance with the (viscous) 
resistance force in which particle kinetic energy dissipates away from 
the particle. Thus, the dissipating energy appears from nowhere, a clear 
violation of the energy conservation law. The culprit is the continuity 
assumption. However, in our atmospheric environment, the error is 
negligible (Fukuta, 1984).
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Fig. 3.8 Diffusion molecular impact effect.

(1) < m2
(2) n x + n2 = const

(n: number concentration)
(3) In x direction, using Eq. (1.79)

mn (3.28)
^ i v i = = 1m2v| -

From (2), the difference of force acting in unit time is

2[(n1 - A r O m ^  + (n2 + An)m2v2] - 2(n1m1v 1 + n2m2v2)
= 2An(m2v2 - m ^ )

= 2Anm2v2( 1 - y/m1/m2) > 0 when m2 > .

Therefore, the force is in the direction of diffusion of heavy molecules.

The diffusiophoretic force, considering both the Stefan flow and the 
diffusion molecular impact effect for slip flow regime, may be taken from 
Waldmann and Schmitt (1967) as

- • fD = -67r»7r(l + avaXa) (0 < K„ < 0.25)

where

(3.29)

-0.26 (Pruppacher and Klett, 1978) and Xa and are the mole fraction
of air molecules and of vapor molecules, respectively.

For the free molecule regime (Hidy and Brock, 1970),

fD = - 4 r2P[$r(i * (3.30)

where is the momentum accommodation coefficient of vapor on the aerosol
particle surface.
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The diffusiophoretic force may be combined with the drag force to obtain 
the diffusiophoretic velocity of aerosol particles.

Fig. 3.9 Theory and experiments for the thermal force in the slip flow region

loo io l o.i o.oi
KNU0SEN NUMBER X/a

Fig. 3.10 Phoretic flux ratio as a function of Knudsen number (Slinn and 
Hales, 1971).

Diffusiophoresis occurs towards lower vapor density such as toward the 
surface of the growing droplet. However, from the growing droplet, heat flows 
out; and this thermophoretic effect appears to dominate the diffusiophoretic 
effect, at least for aerosol particles with a radius smaller than a few microns. 
As a result, under the growing condition, the chance of particle coagulation to 
the droplets reduces. On the other hand, evaporating cloud elements, including 
melting, attract small particles on them (Fuchs, 1964).
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CHAPTER 4 SURFACE AND DISPERSE SYSTEMS
The aerodisperse system involves a large area of the phase boundaries. 

Clarification of the surface structure and properties is essential to understand 
the system.

4.1. Surface Structure and Surface Energies

Surface is a place of space asymmetry. Due to this asymmetry, many unusual 
processes, such as adsorption and catalysis, take place. The surface structure 
may best be understood through its creation, i.e., by cutting the bulk of 
condensed phase with an infinite plane and letting the surface molecules settle 
down to an equilibrium position, or to the lowest (free) energy places.

The condensed phase is a state of lowered potential energy. Creation of 
the surface reduces this lowering or increases the potential energy, which is the 
reason for the appearance of surface energy. Adsorption of the molecule takes 
place so as to reduce this potential difference. Adsorbed molecules also receive 
forces in the directions tangential to the surface. With the help of thermal 
motions under the surface forces, the molecules are sometimes torn apart. If 
torn and activated molecules of other species exist, they may combine to form 
molecules of a new species which is called catalysis.

When one tries to expand the surface of the condensed phase in the 
tangential direction, a resisting force appears due to the unbalanced potential 
in the normal direction because the expansion requires transfer of molecules to 
the surface from the bulk or deep inside the phase to the surface against the

Fig. 4.1 Surface forces.

force in the normal direction. Increase of the potential energy in the 
tangential direction also exists. It is always balanced with another in a 
symmetrical position, so that it does not contribute to the force appearance 
against the surface expansion, although it does influence the non-directional 
energy balance or heat. The non-directional heat energy and the directional work 
energy are the only two that are exchanged with the system in question in 
thermodynamics. This is to say that the normal, unbalanced portion of the 
increase of surface energy acts against the surface expansion, and it is called 
(specific) surface free energy or surface tension. This and the tangential, 
balanced portion make up the total surface energy. If the surface reduces its 
area under constant temperature, this free energy portion that exerts the force 
against molecules coming from the bulk to the surface, increases the pressure p
— nkT. This will be observed when the molecule reduces a portion of this surface
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layer by leaving the surface in the form of increased number density in the 
gaseous phase at constant temperature. The surface is thus a layer in which 
imbalanced external force is acting on each molecule, and the commonly exercised 
method of estimating total potential lost due to surface formation for surface 
free energy is incorrect.

4.2 Variation of Surface Free Energy with Cluster Size

When the surface is highly curved, a 
portion of interaction (AB') that existed 
in the flat surface will be lost, causing a 
reduction of surface free energy . 1

Our recent study shows that the 
nearest neighbor interaction model for 
rigid, spherical molecules gives oz/o* « 
0.07, where a is the surface free energy 
and subscripts 2 and °o stand for dimer and 
flat surface, respectively. For longer 
range and more realistic interactions, this 
ratio goes down as low as 0.05.

decreases.

0.

0.
a

°oo
0.

0.

R [cm]

Fig. 4.3 Surface free energy ratio for the nearest neighbor interaction 
model. Dotted line indicates dimer position.

1 The frequently quoted work for size dependency of surface free energy by 
Tolman (1949) is in error, because his treatment assumes no size 
dependence of a in the total differential of ok (cf. Eqs. 4.3 and 4.5).

Fig. 4.2 Surface free energy, 
a, of curved surface. 
The normal component 
of interaction AB' 
disappears to cause a 
reduction as the size
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When the radius of a sphere becomes smaller, the surface to volume ratio 
increases. The surface free energy acts to reduce the surface area. A sphere 
shows the smallest surface area for a given volume, and it is the shape of small 
drops for this reason.

A liquid surface carries energy. The free energy that exists in a unit 
area of the surface is called surface free energy or surface tension, with the 
unit of J/m2, and expressed by a.

4.3 The Equation of (Young-) Laplace

and

Using (j for the solid angle,

. wr 2 = A, dA = 2cjrdr, (4.1)

.^r3 = V, dV = a>r2dr. (4.2)

Fig. 4.4 Pressure force balance 
at curved surface.

If the volume increases against the 
external pressure caused by the 
surface free energy, the expended 
energy is converted into the 
increased free energy at the surface. 
Then, since

Fs/A -  a,

(dF) T ---pdV = -dW

(4.3)

(4.4)

and

dFs = adA + Ada = (pL - pa)dV. (4.5)5

Using Eqs. (4.1) and (4.2) in Eq. (4.5), we obtain the generalized (Young-) 
Laplace equation.

(PL “ Pa) = —  + T r  ' (4.6)!

For large particle, da/dr 0 and Eq. (4.6) becomes Laplace equation.

For a relatively large, non-spherical particle, ignoring term,
or

= —  + —  , (Theorem of Euler)
(4.7)

2 pda is a work and adp is not in thermodynamics. adA corresponds to pda 
and represents free energy increase by surface expansion under constant 
temperature, but unlike adp, Ada is also a free energy because a itself 
is a free energy or a work potential per unit area (see Section 4.1).

3 da/dr is known as the Ono-Kondo factor (Ono and Kondo, 1960).

(
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where rx is the principal radius of 
curvature, and r2 the radius 
perpendicular to it may be used. 
Then the Laplace equation for non- 
spherical particle of relatively 
large size is expressed as

(PL ~ Pa) = a ( r»  * r j ' (4.8)

where (pL - pa) is the net pressure 
due to surface free energy and can 
become very large when r becomes 
small . 4

Fig. 4.5 Non-spherical surface.

4.4 The Kelvin Equation

We have seen above that increase in volume of small droplet requires 
relatively large energy. It is conceivable that when a molecule leaves from such 
a surface, it takes a relatively large energy away in terms of pressure under 
reversible change.

o ’

VAPOR MOLECULE

Fig. 4.6 Vapor equilibrium at the droplet surface.

The energy one molecule takes away, Fv , by evaporation from the droplet of 
radius, r, corresponds to the free energy loss at the surface;

Fv = Fx - F2 * (free energy change per unit volume)x(molecular volume)
3 / ff_8irrdr_ + jw rrzJdo_ 

4jrrz3r 4jrr29r

(4.9)

where vL is the molecular volume of liquid. When r -*■ « or flat surface, Fv
- F, -> 0.

4 r = 10 8 m. a — 7.57xl0-2 J  m-2 (©"C) for water. 1 atm — 1.014xl05 J  m-3. 
PL-Pa “ 7.57xl0-2 x 2/10-8 - 1.51xl07 J  m-3 -  1.5xl02 atm.

(
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The process we are dealing with here is an isothermal change where for the 
ideal gas, -pda = adp. Then, the specific Helmholtz free energy change of Eq.
(1.44) becomes

df = adp = R^Tdlnp. (4.10)

Upon integration from r = «>, p = e<0, f - f*, to r = r, p = e, and f = f,

, f  -  f« = iy r in |.± .J ,  (4  11}

where subscript « stands for flat surface.

Substitution of Eq. (4.11) into Eq. (4.9), with M(f - f*) = NFV and R^ 
R*/M, results in

In —  = A  [ l l  + ^ 1 ,  
e<o R * T  [ r or J

(4.12)

where VL is the molar volume of liquid. Equation (4.12) is the generalized 
Kelvin equation valid down to very small sizes (see Fig. 4.7). For a relatively 
large particle where a « a* holds,

Fig. 4.7 The Kelvin equation (a = a*) and the generalized form [a = f(r) , the 
nearest neighbor interaction model] as a function of droplet radius. 
Note the maximum in saturation ratio, S, for o = f(r) curve.

(
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i n _e = 2g«,Vi, = 2 am = 2g00vL
e« rR*T PLrRvT rkT

(4.13)

where VL and vL are the molar and molecular volume of liquid and pL the density. 
Equation (4.13) is called the Kelvin equation.

From Eq. (4.13), it is apparent that small droplets have high vapor 
pressure . 5 As the particle size decreases towards molecular dimensions, the 
Kelvin equation begins to fail due to the fact that the surface free energy is 
the result of molecular interactions at the surface and the surface of tension 
takes different thickness. The different thickness of the surface is due to a 
= f(r), and the Ono-Kondo factor begins to play an important role resulting in 
a maximum (newly discovered) (cf. Fig. 4.2).

Equations (4.12) and (4.13) also apply to a surface outwardly concave or 
negatively curved (r < 0) , such as a cavity or a contact point. In such a case, 
vapor molecules can condense below the saturation over the flat surface, and the 
process is called capillary condensation.

4.5 Adsorption

As we have seen above, the surface or the phase boundary is under the 
attractive force arising from the intermolecular potential, and molecules tend 
to transfer there to cause a phenomenon called adsorption and accumulate.

At constant temperature, terms involved in Gibbs free energy for a surface 
with area A is

where a is the specific surface free energy, n the number of mole, and 1 and 2 
the condensed and the gaseous phases for gaseous adsorption, respectively. 
Complete differential is therefore

On a flat surface, adsorption occurs with dA - 0, and under equilibrium or dGs 
= 0, Eq. (4.15) yields

If we choose the dividing surface of Gibbs, then d/^ = 0, and we can write Eq.
(4.16) as

Gs - ok + nidi + /x2n2, (4.14)

dGs — <rdA + Ada + n 1d̂ L1 + n2d/x2. (4.15)

Ada = -n^d/*! - n2d/x2. (4.16)

da - - r 2d/i2 , (4.17)

5

Since ln-^-
®co

For e/e* = 2

= 1.20x10-3 1  (r in Mm)(0°C)

ln2 = 0.6932, then r = 1.73x10"3 fim = 17. 3A
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where V2 is the concentration of component (2) adsorbed at the interface. The 
chemical potential of the species (2) changes due to transfer of the species 
under constant temperature and total pressure (Eq. 1.50). Then, from Eq. (1.45) 
with dT = 0 and the ideal gas law (Eq. 1.55), we have

da - -RT r2 d In n2, (4.18)

where R is the specific gas constant of species (2). Equation (4.18) is Gibbs 
adsoprtion isotherm and expresses the adsorption process.

The concept of Gibbs dividing plane to represent a surface is useful so 
long as the surface is flat or only gently curved. When the surface is highly 
curved, the concept no longer applies in the manner same as Eq. (4.17).

There exist two main mechanisms of adsoprtion. The first is the physical 
adsorption in which a relatively small amount of energy is involved and the 
process is reversible. The process is similar to condensation, except that the 
vapor pressure of adsorbate (adsorbed molecules) is a function of the amount of 
adsorbed molecules. The other is chemisorption as a result of a stronger binding 
force, leading to formation of chemical compounds. The process is seldom 
reversible.

Fig. 4.8 Five types of adsorption isotherm (Brunauer et al., 1940).
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CHAPTER 5 LIQUID PHASE MICRO CLOUD-PROCESSES AND 
AEROSOLS

Clouds form shortly after the water vapor pressure in air exceeds its 
saturation due to cooling by the air parcel lifting. Initiation of a new phase 
is called nucleation, and small droplets of the new phase continue to grow. This 
nucleation process is almost always assisted by a special kind of aerosol, the 
small particles existing in the atmosphere. Fog formation requires the same 
condition, although the process is often different from that of clouds. We shall 
look into these processes below, including precipitation formation by collision- 
coalescence mechanism.

5.1 Nucleation of Water Vapor Condensation

5.1.1 Thermodynamic conditions for condensation and fluctuation phenomena

Cloud and fog condensation
The ratio of vapor pressure e or vapor density p to their saturation es or 

ps is defined as saturation ratio,

S — e/es p/ps • (-*•!)

Condensation or formation of clouds and fogs requires RH to exceed 100% or 
the S to exceed 1. There are two basic ways to do it. One is to increase the 
numerator of the saturation ratio by adding the vapor and the other to decrease 
the denominator by reducing the temperature.

In the atmosphere, these processes occur in mixed manners. Three of such 
processes are commonly observed:

(1) Adiabatic expansion, where cooling effect dominates the opposing effect of 
dilution to cause condensation,

(2) Mixing of warm moist and cold air masses.

(3) Radiative cooling of the ground which lowers the temperature of the air 
above. This process often and subsequently leads to Process (2).

When a change of phase is thermodynamically favored, small particles of new 
phase are thought to keep forming and disintegrating in the mother phase being 
indicated by appearance of opalescence. Phase change does not happen unless 
those small particles of new phase start growing spontaneously.

There are also some reports about lack of spontaneous growth. Under 1 atm, 
water was kept without boiling at 137°C (Donney). Similarly, water drops of 1 
to 3 mm size were reportedly kept without boiling up to 178°C (Dufour) . Liquid 
was reported to have been kept under negative pressure up to 10 atm or more 
without boiling.

The spontaneous growth process under the thermodynamic condition in favor 
of the phase change is termed as nucleation.

(
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Fluctuation phenomena

Air mass A

Radiative 
coolino

Mixing

Air mass B

Fig. 5.1 Three common ways to exceed the 
saturation for cloud and fog 
formation.

1 In a macroscopically
uniform system, various thermo
dynamic properties, such as 
pressure, temperature, density, 
etc. , are observed to deviate 
microscopically around the 
average macroscopic values. 
The fluctuation happens on the 
Brownian motion of colloid. 
Opalescence near the critical 
point of solution is the result 
of fluctuation. Fluctuations 
are also seen with atomic and 
molecular separations, free 
electron density, and various 
radioactivities.

5.1.2 Homogeneous nucleation of water vapor condensation

When the saturation ratio of the water vapor exceeds 1 or S > 1 under 
constant temperature and total pressure (dSc = 0) , the condition AB > 0 appears 
for the vapor to change into the saturation value, or hypertrophy (one of the two 
entropy components) of the (closed) system to increase, the direction of natural 
change. The single molecules in the supersaturated environment will stick 
together one by one to create clusters which become droplets of visible size. 
This process or nucleation begins to take place when S exceeds a critical value.

+ A i * A2
+ Ai Ao

Ai-1 + A1 ** Ai
(5.2)

where subscript i stands for the number of molecules in the cluster. Other 
routes such as A2 + A2 ** A4 are much less probable and do not significantly 
contribute to the nucleation (see Appendix E) .

In the process of nucleation, a steady state current of clusters develops, 
and the current gives the nucleation rate only at the critical size or i * i*.

J = Ai • (Anu)± • Ni? (5.3)

(SURFACE AREA) x (NET NUMBER FLUX DENSITY) x (CLUSTER NUMBER CONCENTRATION) 

where

Ai - 4*r2, 5.4)

= e^° ~ eift« (seep. E.4) (5.5)
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e* = ea exp -g—  • vL/kT , (cf. Eq. 4.12) (5.6)

and /?ic and /?ie the condensation and evaporation coefficients of water vapor and 
N± the number concentration of the cluster consisting of i molecules (i-mer or 
i-cluster).

When i = 1, or for single molecule collision, Eq. (5.3) gives

where u3 is the ternary collision rate of single molecules in a unit volume, v2 
the binary one, d the molecular diameter and t the mean free path length.

where n is the number concentration of the monomers. The ternary collision is 
considered necessary in order to take the heat of condensation away or else the 
collision ends up as elastic and the collided molecules do not stay together. 
Condensation coefficient J3 for very small clusters including single molecule- 
single molecule collision may take a very small value and not be equal between 
the condensation and evaporation.

At 0°C, for the saturated water vapor

The nucleation is controlled by the critical embryo of the maximum vapor 
pressure (see Fig. 4.7). Then

where subscript c stands for critical. The nucleation starts at J = 0 and 
rapidly enhances as e exceeds eL in (Anu)c. At around J = 0 of this 
thermodynamic nucleation current, the statistical mechanical fluctuation 
mentioned earlier provides a weak current to the nucleation.

The nucleation rate shown above should be exact, at least in concept, but 
it has not been sufficiently developed at this moment. Therefore, from here on, 
we shall follow the classical theory which contains a number of contradictions 
but has been shown to give an approximate match to experimental rate of 
nucleation. There exists an approximate, parallel relationship for free energy 
of embryo formation between the new and classical theories (space beteen S* and 
curves in Fig. 4.7) which is likely the reason for the latter usefulness.

5.1.3 Heteromolecular homogeneous nucleation of vapor condensation

(5.7)

v2 u (cf. Eqs. 2.1 and 2.2)

(see p. 2.4) , (5.8)

v2 « 4.9 x 1024 (cm 3 s x) 
i/3 - 2.8 x 1020 ( " ) 
n « 1 .6 x 1017 (cm~3)
t ^ 0 . 0 5  (/im) (H20-air molecule collision, 1 atm)

J - Ac • (Anu)c • Nc, (5.9)
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The homogeneous nucleation of vapor condensation we have seen above 
concerns single molecular species. It may, therefore, be called homomolecular 
homogeneous nucleation. When two or more molecular species are simultaneously 
involved in the nucleation, the process is called heteromolecular homogeneous 
nucleation, and such processes may take place in the atmosphere.

In the homomolecular nucleation, the vapor has to be supersaturated with 
respect to the species over the flat surface. Whereas, in the heteromolecular 
nucleation, due to the vapor pressure depression effect of a species in the 
solution droplets which are to be nucleated (see Section 5.1.6), the nucleation 
becomes possible even if the vapor is undersaturated with the species over the 
flat surface, as long as it is above the vapor pressure of the species in the 
solution droplets. The most common type of heteromolecular nucleation involves 
two different vapor species and accordingly it is called binary homogeneous 
nucleation. We look into this binary homogeneous nucleation process in the air 
below.

Suppose we have a solution droplet of two vapor species A and B with 
respective number of molecules in the droplet nA and nB. The free energy of 
embryo formation1 is given as

AG -kT i ^ r 3 nA «n
e A, sol, «o

+ nB Zn eB

e B,sol,<o
+ 4w r2asol, (5 .10)

where e is the vapor pressure and subscripts A, B, sol and °o stand for species 
A and B, solution that has the droplet composition and flat surface, respectively 
(cf. Eq. E.4). The term in the bracket on the right-hand side of Eq. (5.10) 
shows a minimum with respect to variation of n of one species, and the whole AG 
gives a maximum with respect to the radius (Eq. E.8). This is to say that AG in 
Eq. (5.10) has a saddle point for free energy carrier of critical embryo 
formation.

In the contemporary binary homogeneous nucleation of vapors with nA > nB, 
the nucleation rate is constructed with respect to the saddle point, which gives 
AG = AG* as

4itr*2 • - P • nAexp (-AG */kT) 
^7rmBkT

SURFACE ARRIVAL RATE # OF CRITICAL EMBRYOS (5.11)
AREA OF OF SPECIES B PER UNIT VOL . IN THE

CRIT. EMBRYO VAPOR PHASE

H20 - H2S04 system is an example of this binary homogeneous nucleation with A and 
B corresponding to water and H2S04 vapors, respectively. The arrival rate of the 
species with lower number concentration (H2S04) at the critical embryo surface 
determines the nucleation rate.

5.1.4 Heterogeneous nucleation of water vapor condensation - on ions

1 The criticism of the contemporary theory given in Appendix E' also
applies here.
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The two homogeneous condensation nucleation processes we have seen above 
occur unassisted by foreign particles. In the atmosphere, there are a variety 
of particles and ions which assist the nucleation of water condensation. Such 
a process is called heterogeneous nucleation of condensation. We shall look into 
several typical heterogeneous nucleation mechanisms of water condensation in this 
and the following few sections.

Ions are charged particles, and they are known to assist nucleation of 
water condensation. To examine condensation around the ions, we describe the

electrostatic field around 
them. The electrostatic
potential V, similar to T or p, 
as we shall see in later 

z' - sections, is connected to the
electrostatic field E as

Ion

dV
"3?

= E.
(5.12)

The work or energy of placing 
charge Q against electrostatic 
potential field is

Water condensed 
on ion

w = J0QvdQ.
(5.13)

Whereas,

Fig. 5.2 Nucleation of water 
condensation on an ion.

vapor

J

»00
*

dr,
er* (5.14)

where e is the dielectric constant. Then from Eqs. (5.13) and (5.14), we obtain

(5.15)

Since FREE ENERGY OF FORMATION - G (FINAL) - G (INITIAL) , we can write the free 
energy under the influence of the electrostatic field

AGe = (5.16)

Then, the total free energy of embryo formation on the charged droplet (ion) is

AG = -.̂ .7rr3 (5.17)

which is due to J.J. Thomson. The critical embryo conditions can be obtained as 
before by differentiation or

3AGZjjZ. = 0 . (see figure below)



Fig. 5.3 Saturation ratio as a Fig. 5.4 Th e  s y s t e m  of
function of radius for nucleating insoluble
charged and uncharged particle, 
water droplets.

5.1.5 Heterogeneous nucleation of water vapor condensation - on insoluble 
particles

On particles

Insoluble particles can serve as the centers of condensation nucleation 
depending on their surface characteristics. The concept of this nucleation is 
also the backbone of ice nucleation and is largely due to Fletcher (1958 and 
1960). In this treatment, there exists the same conceptual problem as discussed 
in Section 5.1.2.

As explained above
FREE ENERGY OF EMBRYO FORMATION ON AN INSOLUBLE PARTICLE =
G (FINAL STATE) - G (INITIAL STATE).

Observing the right-hand side of Fig. 5.4, the free energy of embryo formation

(
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VL
AG = aLVALV + ^lna ln + (A*l “ /*v) —  "  aVNALN* (5 .18) 2

After a tedious derivation, one obtains

AG* = AG^*f(m,x) , (5.19)

where AG£ is the free energy of critical embryo formation 
process, and f(m,x) is the geometrical factor.

m =  C O S0 *  (<7vN "" a LN )/a LV>
and

x - rn/r\

where rn is the radius of the nucleus particle.

Fig. 5.5 Force balance at the vapor-liquid-nucleus interface.

Equation (5.20) is known as the Young-Dupre equation and is derived from 
the following relationship (see the figure)

°VN “ 0LVCOS0 "*■ °ln* (5.22)

Equation (5.19) suggests that the free energy of critical embryo formation on a 
nucleus particle surface can be expressed by the product between that for 
homogeneous process and f(m,x). The geometrical factor f(m,x) is 
given as

for homogeneous

(5.20)

(5.21)

1 + (5.23)

ALV = 27rr2(l-cos^), <fi = 0+$, rnsin$ = rsin0, rn -rn cos2$ = r 2-r2cos2$, m = cos0,

ALv = 2wr 2

7T

1 -
r -
~T(r2+r,f-2riyn)1/2 l> ^ ln = 1 -

(r 2+r2-2rrnm)1/2

(
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Fig. 5.6 The geometrical factor 

where

g = (1 + x2 - 2mx)1/2.

On flat surface

(5.24)

On a flat surface, the geometry is different (see figures below); and the 
geometrical factor takes the form

(5.25)

The rate of heterogeneous nucleation on a particle may, therefore, be 
written as

J = 7rr*2 • 47rrn2 • naexp ( -AG */kT) ,
(27rmkT)1/z

rate to receive molecules # of critical embryo on 

on critical embryo nucleus surface (5.26)

where na is the number of water molecules adsorbed on the unit area of nucleus 
surface. The pre-exponential term ~ 1025*47rr2.

Main features of nucleation by insoluble particles
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Fig. 5.7 Nucleation of water vapor condensation on a flat surface and the 
geometrical factor as a function of the contact angle.

The main features of condensation nucleation on insoluble particles are

(1 ) r* of the liquid embryo on the nucleus surface is the same as that for 
homogeneous nucleation embryo, showing the same vapor pressure.

(2) AG£ is reduced by the factor f(m,x) so that a smaller amount of AG 
suffices to overcome the barrier of activation for nucleation, making the 
nucleation easier.

(3) A completely wettable nucleus nucleates best, and it becomes a Kelvin 
particle (same as water droplet). Whereas, with a completely non-wettable 
nucleus particle (m = - 1 ) , the nucleation becomes most difficult or the 
same as homogeneous nucleation because the nucleus surface provides no 
assistance to the nucleation.

5.1.6 Heterogeneous nucleation of water vapor condensation - on soluble 
particles

In this heterogeneous nucleation on soluble particles, there appears no 
conceptual problem as discussed in Section 5.1.2.

Water molecules 

WATER SOLUTION

Solute 
ions or 

molecules

Fig. 5.8 Vapor pressure of solution.

Water soluble particles 
exist in the atmosphere. Since 
water soluble compounds attract 
water vapor, depending on their 
solubility in water, the 
particles consisting of such 
materials are capable of 
assisting the heterogeneous 
n u c l e a t i o n  o f  w a t e r  
condensation. We shall begin 
here to examine the basic 
behaviors of water soluble 
compounds.



Raoult's law

Raoult's law states that the vapor pressure of solvent molecules (water) 
in the solution is proportional to the mole fraction of solvent, or

ei _ n
e* n + in' ’ (5.27)

where n and n' are the number of mole of solvent (water) and of solute, 
respectively, and i the van't Hoff factor describing the effective dissociation 
rate of solute molecules in the case of electrolyte. For non-electrolyte, it is 
an efficiency factor.

Vapor pressure of solution droplets

In order to estimate the vapor pressure of solution droplets which 
determines the growth (or evaporation) behaviors with respect to the water vapor 
pressure in the environment, we take the following route considering the Kelvin 
effect of droplet curvature and the solute effect given by the Raoult law.

PURE
WATER
DROPLET

t

SOLUTION
DROPLET

KELVIN EFFECT

WATER

Y77777777777777T 
RAOULT*S LAW SOLUTION

To estimate the 
vapor pressure of the 
solution droplet, there 
are two ways to do it, 
one passing through the 
pure water droplet and 
the other through the 
s o l u t i o n  of flat 
surface. We take the 
latter here. Then

Fig. 5.9 Relationship between the vapor pressure of 
water over the flat surface and that of 
solution droplet.

e'
e«

e'
ei

—
em (5.28)

where ' means solution and the subscript « stands for flat surface. Using the 
generalized Kelvin equation for the solution droplet, Eq. (5.28) writes

where v£ is the molecular volume of the solvent or water in the solution, and a' 
the surface free energy of the solution, respectively. Frequently v£ < vL due 
to hydration. Since the number of mole of solute is given as
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n' = nr
W  ’

where m' and M' are the mass and the molecular weight of the solute,

n = |i£ r 3p£ - m'j/M.

Inserting these relations into Eq. (5.27), we have

im'Mi  +
M' r 3p£ -m'j (5.30)

Substitution of Eqs. (5.29) and (5.30) into Eq. (5.28) then yields

—  = exp ^TET (^ )l
1 + imr M

M' | - ^ r 3p£ - m'j (5.31)

which is the general form of the vapor pressure of solution droplet relative to 
that over a flat surface of pure water, and applicable to atmospheric conditions.

For dilute solution, by expanding Eq. (5.31) and taking the first three
terms,

or

e' _-| 2a 1 1 _ f im'M 1
.3 * (5.32)

(5.33)

where a = 2a/nLkT, expressing the Kelvin effect; and b = ira' M/ j ,

expressing the solute effect. Their values may be taken as

a - 3.3 x 10“5 T_1 and b ~ 4.3m'/M' . (r in m)

The plot of Eq. (5.33), or the original expression, is called the Kohler curve 
(see below).

As can be seen in Fig. 5.10, there is a maximum in the curve; and if the 
environmental vapor pressure exceeds the maximum value of the curve, the droplet 
grows. To find the maximum, by differentiating Eq. (5.33) with r and setting 
3(e'/e<0)/3r — 0 , we have

and

[■fc] ■ 1 * ( ™ )  •

(5.34)

(5.34')
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Fig. 5.10 The equilibrium relative humidity (or supersaturation) as a function 
of droplet radius for solution droplets containing the indicated 
masses of sodium chloride.

Number of nucleation in a unit volume

For heterogeneous condensation nucleation, the total number of nuclei 
activated in a unit volume, N, may be expressed as

N ’J'Jo‘J< r ) n ( r > d t d r ' (5.35)

where n(r) is the number of nuclei between r and r + dr in the unit volume, r* 
= f(S*), and S* the critical saturation ratio. For the water soluble nuclei, the 
nucleus population is given; and at a given supersaturation, the only time- 
dependent process is their swelling to the critical sizes. Therefore, if the 
condition were held constant, the activated nuclei will reach rapidly to a level. 
Thereafter, the number does not increase.
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Table 5.1 Water activities and van't Hoff factors of electrolytes at 25C and 
1 atm (Low, 1969).

Sodium chloride Ammonium sulfate Magnesium sulfate Calcium chloride

V = 2 v  = 3 v = 2 V = 3

Molality a i a i a i a i

0.1 0.9966 1.867 0.9959 2.306 0.9978 1.213 0.9954 2.568
0.2 0.9933 1.856 0.9921 2.202 0.9960 1.126 0.9907 2.598
0.3 0.9901 1.853 0.9886 2.133 0.9942 1.083 0.9859 2.647
0.4 0.9868 1.852 0.9852 2.086 0.9924 1.062 0.9809 2.708
0.5 0.9836 1.857 0.9819 2.050 0.9906 1.049 0.9755 2.785
0.6 0.9802 1.864 0.9786 2.023 0.9889 1.042 0.9700 2.863
0.7 0.9769 1.874 0.9754 1.999 0.9870 1.041 0.9642 2.942
0.8 0.9736 1.883 0.9722 1.984 0.9852 1.044 0.9582 3.028
0.9 0.9702 1.892 0.9691 1.969 0.9833 1.049 0.9517 3.128
1.2 0.9668 1.904 0.9660 1.954 0.9813 1.060 0.9450 3.228
1.1 0.9600 1.925 0.9598 1.935 0.9768 1.097 0.9307 3.443
1.4 0.9532 1.948 0.9536 1.930 0.9718 1.150 0.9152 3.673
1.6 0.9460 1.978 0.9475 1.923 0.9662 1.215 0.8986 3.917
1.8 0.9389 2.007 0.9412 1.927 0.9600 1.286 0.8808 4.174
2.0 0.9316 2.037 0.9349 1.933 0.9531 1.364 0.8618 4.451
2.5 0.9128 2.121 0.9189 1.960 0.9322 1.616 0.8091 5.239
3.0 0.8932 2.213 0.0922 2.006 0.9052 1.939 0.7494 6.186
3.5 0.8727 2.314 0.8848 2.065 — — 0.6875 7.210
4.0 0.8514 2.422 0.8670 2.128 — — 0.6239 8.364
4.5 0.8295 2.536 0.8490 2.194 -- -- 0.5602 9.686
5.0 0.8068 2.659 0.8308 2.261 — — 0.4988 11.155
5.5 0.7835 2.788 0.8124 2.331 — — 0.4425 12.716
6.0 0.7598 2.926 — — — — 0.3916 14.372

Table 5.2 Solubility of Inorganic Compounds in Water (Handbook of Chemistry 
and Physics, 1961).

The table shows the number of grams of the anhydrous substance indicated in the first column which can 
be dissolved in 100 grams of water at the temperature in degrees Centigrade given at the top. When the formula 
is preceded by a * the solubility is stated in grams of anhydrous substance in 100 grams of saturated solution; 
when preceded by ** the solubility is stated in grams of anhydrous substance in 100 c.c. of the saturated 
solution. The column headed with S.P. shows the solid phase hydrated form in equilibrium with the saturated 
solution.

Substance S.P. 0° 10° 20°

eOCO 40° 50* 60° 70° 80° 90° 100°

Agl — ___ ___ — 3x10 "7 ___ — 3x10 "3 — — — —

Cdl2 — 79.8 83.2 86.2 89.7 93.8 97.4 — — — — 127.6
C0276 0mm -- 0.3346 0.2318 0.1688 0.1257 0.0973 0.0761 0.0576 — -- — --

CuS — — 3.3xl0~5 at 18° — — — — — — — —

NaCl -- 35.7 35.8 36.0 36.3 36.6 37.0 37.3 37.3 38.4 39.0 39.8
(NH4)2S04 -- 70.6 73.0 75.4 81.0 81.0 -- 88.0 -- 95.3 — 103.3
Pbl2 — 0.0442 — 0.068 0.125 0.125 0.164 0.197 — 0.302 — 0.436
S02760mm -- 22.83 16.21 11.29 5.41 5.41 4.5 -- -- — -- --



Table 5.3 Critical radii and supersaturations for nuclei of various sizes (T 
= 273 K) (Mason, 1971).

(a) Hygroscopic nuclei of NaCl

log m(g) -16 -15 -14 -13 -12 -11 -10 -9 -8

r(jxm)at H 
= 78% 0.039 0.084 0.185 0.39 0.88 1.85 4.1 8.8 18.5

rc(/im) f 0.20 0.62 0.62 6.2 20 62 200 620 2000
Hc-100

(^supersat.) 

*)* 0.42 0.13 4.2x10 ~2 1.3xl0~2 4.2x10 _3 1.3xl0"3 4.2x10 ”4 1.3xl0~4 4.2x10 ~5
r(of crystal) 

(Mm) 0.022 0.048 0.103 0.22 0.48 1.03 2.2 4.8 10.3

r at H = 100% is approx. rc/y[c. 
f For other nuclear substances of molecular weight W, multiple by (58.5/W)1/2. 
$ For other nuclear substances of molecular weight W, multiple by (w/58.5)1/2.

(b) Insoluble wettable nuclei (same as Kelvin, e.g. 9 - 0°)

log r (cm) -7 -6 -5 -4 -3

100pr/p® 323 112.5 101.2 100.12 100.01
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Table 5.4 Surface Tension of Inorganic Solutes in Water (Handbook of Chemistry 
and Physics, 1961).

% - Weight % of solute 
o = Surface tension in dynes/cm.

Solute T°C %
a

HC1 20 % 1.78 3.52 6.78 12.81 16.97 23.74 35.29
a 72.55 72.45 72.25 71.85 71.75 70.55 65.75

hno3 20 % 4.21 8.64 14.99 34.87
a 72.15 71.65 70.95 68.75

h2so4 25 % 4.11 8.26 12.18 17.66 21 .88 29.07 33.63
a 72.21 72.55 72.80 73.36 73.91 74.80 75.29

NH/,OH 18 % 1.72 3.39 4.99 9.51 17.37 34.47 54.37
a 71.65 70.65 69.95 67.85 65.25 61.05 57.05

KC1 20 % 0.74 3.60 6.93 13.88 18.77 22.97 24.70
a 72.99 73.45 74.15 75.55 76.95 78.25 78.75

NaCl 20 % 0.58 2.84 5.43 10.46 14.92 22.62 25.92
a 72.92 73.75 74.39 76.05 77.65 80.95 82.55

MgCl2 20 % 0.94 4.55 8.69 16.00 22.30 25.44
a 73.07 74.00 75.75 79.15 82.95 85.75

Na2S04 20 % 2.76 6.63 12.44
a 73.25 74.15 75.45

NaN03 20 % 0.85 4.08 7.84 14.53 29.82 37.30 47.06
a 72.87 73.75 73.95 75.15 78.35 80.25 87.05
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Table 5.5 Surface Tension of Organic Compounds in Water (Handbook of Chemistry 
and Physics, 1961).

% - Weight % of solute 
a = Surface tension in dynes/cm.

Solute T°C %
a

Acetic acid 30 % 1 .00 2.475 5.001 10 .01 30.09 49.96 69.91
a 68.00 64.40 60.10 54.60 43.60 38.40 34.30

Acetone 25 % 5.00 10 .00 20.00 50.00 75.00 95.00 100.00
a 55.50 48.90 41.10 30.40 26.80 24.20 23.00

p-Aminoben- 25 % 12.35 22.36 30.45 37.44
zoic acid a 73.38 74.79 76.32 78.20

n-Butanol 30 % 0.04 0.41 9.53 80.44 86.05 94.20 97.40
a 69.33 60.38 26.97 23.69 23.47 23.29 22.25

Glycerol 18 % 5.00 10 .00 20.00 30.00 50.00 85.00 100.00
a 72.90 72.90 72.40 72.00 70.00 66.00 63.00

Phenol 20 % 0.024 0.047 0.118 0.417 0.941 3.76 5.62
a 72.60 72.20 71.30 66.50 61.10 46.00 42.30

n-Propanol 25 % 0 .001 0.005 0 .0 1 0.50 0.60 0.80 0.90
a 67.10 56.18 49.30 24.34 24.15 23.66 23.41

Sucrose 25 % 10.00 20.00 30.00 40.00 55.00
a 72.50 73.00 73.40 74.10 75.70
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100 m'

4*r iV£
^ - - 0 . 3 8  (table)
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-900 m' . 9a' ,_1_
87ra' p£ 9C ^ 3 
-0.18 at saturation 
[-0.22 for (NH4)2S04]

Fig. 5.11 Surface free energy of solutions as a 
function of the solute concentration.

Nucleation hysteresis

For water soluble nuclei, after being grown for some time, if they 
evaporate in a drier environment, they sometimes become supersaturated solution 
due to failure of solute crystal nucleation. This may induce a hysteresis effect 
in the behavior of the solution droplets.

5.2 The Nuclei of Atmospheric Condensation and Aerosols

As we have seen above, in the particle free air, condensation occurs only 
when supersaturation reaches several hundred percent. In the real atmosphere, 
particles serve as nuclei for condensation and prevent such a high 
supersaturation from being achieved. The environmental variables controlling the 
nuclei activation are the temperature and supersaturation which change depending 
on the vapor pressure and cooling rate. Whereas, the nucleus conditions also 
vary, such as the number concentration, size and distribution, and their nature, 
in terms of chemical and physical characteristics.

(
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Radius (arbitrary units)

Fig. 5.12 Experimental values of the equilibrium radii of artificial nuclei as 
a function of relative humidity, and the corresponding theoretical 
curves: (a) a nucleus of pure CaCl2 solution became supersaturated 
at H > 35%. (b) A nucleus of pure NaCl--crystallization did not 
occur until humidity fell below 30%. The theoretical curve predicts 
that crystallization should have occurred at 78% relative humidity, 
(c) Artificial nucleus composed of mixture of CaCl2 and CaS04 (From 
Junge, 1952).

Atmospheric nuclei are normally classified according to their sizes:

SIZE (/zm) NAME

5xl0"3 - 10"1 Aitken nuclei

0 .1 - 1  large nuclei

r > 1 giant nuclei

Some of these terms bear the names of early workers (Coulier, 1875; Aitken, 1880
81).

5.2.1 Condensation nucleus measurement

Condensation nuclei are measured by actually activating them. Activation 
of Aitken nuclei requires high supersaturation, but for cloud condensation nuclei 
(CCN), the necessary supersaturation is rather low. Naturally, generation of 
supersaturation at high or low levels in a reproducible or stable manner features 
the methods of condensation nucleus measurement.

(a) Aitken nucleus measurement

Expansion-type counters are widely used, in which a saturated sample air 
is adiabatically expanded to a predetermined level to cool. Detection method of 
formed droplets varies. Some of the early methods let all droplets fall out, and 
the number concentration of nuclei or formed droplets was estimated from the 
number of droplets fallen on a unit area. Turbulence and non-uniform droplet 
distribution were common problems with this method.

f
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One of the most successful counters for Aitken nuclei is the Nolan-Poliak 
counter. It uses a vertical tube with porous ceramic lining for humidification 
by wetting, and the top and bottom are made of glass. Allowing expansion from 
overpressure, supersaturation is rapidly established in which particles nucleate 
and grow at the same rate so that, at a given time after expansion, the light 
extinction is only a function of the number concentration of active nuclei. To 
establish the extinction-number concentration relationship, a calibration is 
needed with aerosol of known nucleus concentration. A counter developed by the 
General Electric Co. , known as the Rich counter, allows the sample air to expand 
continuously instead of intermittently.

Expansion counters are known to be rather inaccurate for generation of low 
supersaturation.

(b) Cloud condensation nucleus measurement

Determination of the characteristics of condensation nuclei is a necessary 
step to understand the cloud formation process.

Thermal diffusion chambers are most widely used for counting CCN. The 
principle was originally developed by Langdorf (1936) for cosmic ray study. In 
the thermal-gradient version of the chamber, where the top and the bottom are 
covered with water, T and e profiles are linear with height z for low (S - 1) 
operation; but es is not, inducing supersaturation inside, as can be seen from 
the Clausius-Clapeyron equation (Fig. 5.15, Wieland, 1956). The relatively 
slight supersaturation held under steady state can easily be adjusted to that in 
the cloud. For high (S - 1) operation, T and e become non-linear and a proper 
kinetic treatment becomes necessary (see Section 2.4).

Detection of activated nuclei (droplets) may be photographic or 
photoelectric. The Univ. of Washington counter makes use of the first Mie 
scattering peak to estimate the total number of activated nuclei since, at that 
peak, the total scattering intensity is proportional to the number concentration 
only if the sampling volume is fixed. In this method, during sample 
introduction, transient supersaturation (high) often introduces a serious error.

There are continuous counters allowing sample air to continuously flow. 
Some use a single supersaturation and others a range of supersaturation (Fukuta- 
Saxena, 1979, see Figs. 5.16 and 5.17).

(
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Light
sourceA

Optical

Fig. 5.13

Fig. 5.14

Schematic diagram of condensation nuclei counter (Friedlander, 
1977).

RADIUS IN MICRONS

Matching of experimentally and theoretically derived Mie peaks 
(after Vietti and Schuster, 1973). Wavelength of the scattering 
light is 632.8 A, and the angle is 30°.

(



W
at

er
-v

ap
ou

r 
pr

es
su

re
 

(m
m

H
g)

5.21

A chemical gradient 
chamber was once applied using 
HC1 solution on the bottom 
(Twomey), but possible sample 
change prevented it from being 
put to common use.

5.2.2 Particulate measurement

Atmospheric particulates 
can be measured directly while 
being suspended in air or by 
precipitating them.

(a) D i r e c t  o b s e r v a t i o n  
methods

Diffusion and mobility 
measurements. For particles 
with radii smaller than 0.1 /zm, 
the Brownian diffusion and ion 
mobility in an electric field 
are functions of the particle 
size under viscous resistance 
force with Cunningham's 
correction. Their motions can 
lead one to the corresponding 
sizes.

Fig. 5.15 The principle of the thermal gradient 
cloud chamber (Wieland, 1956).

Ultramicroscope methods use dark field illumination of smoke particles under low 
magnification and are useful for size determination of particles larger than 0.1 
/im in radius. The settling velocity measured gives the particle size through the 
Stokes-Cunningham equation.

Light scattering methods can apply to (1) whole cloud or (2) single 
particle. If monodispersed, scattering from whole cloud produces higher order 
Tyndall spectra (coloring). If particle size is close to the wavelength of 
light, the Mie scattering pattern can be observed, which may be used for particle 
size analysis (cf. Fig. 5.14).

Emission line method: Na-D line in the hydrogen flame is an example of 
identifying Na-containing particles.

Laser cavity method is applied to determine aerosol particle size.

(b) Precipitation methods 

Impaction techniques

(
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Fig. 5.16 An example of the supersaturation profile in the CCN spectrometer.
Temperatures at A and C points are respectively 36 and 29°C. Bx and 
B2 positions shown here correspond to the case where a metal side 
wall with a finite thermal conductivity is used (Fukuta and Saxena, 
1979).

Fig. 5.17 Principle of the CCN spectrometer operation (Fukuta and Saxena, 
1979).



5.23

Cascade impactor. The method is 
applicable to particles larger than 1 
jim in diameter. The principle is to 
impact particles by air jets. 
Normally, sample air passes through a 
large orifice with slow speed and 
gradually to smaller orifices with 
faster air velocities. Example of air 
velocities: 2.2, 10.2, 27.5, and 77 m 
s”1.

Centrifuge methods. Conifuge 
uses a range of centrifugal forces to 
s e t t l e  t h e  p a r t i c l e s  at 
correspondingly different positions. 
Two types exist: one uses flow of air 
to rotate and the other external force 
(motor) to rotate. Normally, 3000 RPM 
and 15 cm3 s"1 are the sampling rates. 
For smaller particles, the Goetz 
spectrometer (Goetz and Preining, 
1960) can be applied. It is a 
centrifuge of large RPM, up to 26,000 
g acceleration. 0.03 - 3 fim can be 
separated. Dark-field illumination 
(ultramicroscope principle) can be 
applied for particle examination. 
Sampling rate is about 7.5 liter min"1.

Fig. 5.18 Diagrammatic section of 
the cascade impactor (May, 
1945).

Rod and thread Thin silver rod 
or spider thread can be used in moving 
air to catch particles.

Thermal precipitation method
Thermophoretic force is used to 

precipitate particles. Sample air 
passes through a zone of high 
temperature gradient to precipitate on 
the colder surface. The temperature 
gradient is typically 50°C/0.05 cm 
with sample air flow rate of 7-500 cc 
min"1. Particles above 0.05 /im in 
diame t e r  d eposit completely. 
Deposition of smaller particles is 
more difficult.

Filter methods
Millipore filters made of 

cellulose ester (acetate) membrane are 
frequently used to catch atmospheric 
particles. Hole diameter ranges from 
0.1 to 1.5 /im. Air suction induces 
electric charge to attract particles 
to or near the pore surfaces so that 
particles smaller than pore size can

V

Fig. 5.19 Diagrammatic section of 
conifuge: — ► clean air; 
--►, particulate cloud 
(Sawyer and Walton, 1950).

(
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actually be filtered. They become 
transparent in cedar-wood oil 
(refractive index: 1.54), which is 
convenient for microscopic observation.
Millipore filters dissolve in acetone.

Nucleopore filters made of 
polycarbonate have uniform pore size and 
are advantageous for some studies.

Electron microscope can provide the 
shape and size of the aerosol sample 
held on thin plastic film. A Scanning 
electron microscope gives large depth of 
field. The electron diffraction method 
gives information about the sample 
crystal structure. An X-rav
microanalvzer allows an electron beam to 
excite the aerosol sample (~ 1 fim 
diameter) , and the resultant X-ray gives 
identification of elements in the 
aerosol particle.

p l a t e - t y p e  thermal 
precipitator.

Microchemical analysis. Sometimes called the spot test. It utilizes specific 
chemical reaction to identify the chemical species. Example: Cl“ + Hg2SiF6 
Hg2Cl24 (Liesegang ring).

5.2.3 Nuclei in the atmosphere (see also p. 5.18)

(a) Aitken nucleus concentration

Aitken nucleus concentration varies depending on the location, in 
particular, the distance from the source.

Table 5 .6 Nucleus contents of the atmosphere in different types of localities 
(Mason, 1970).

Locality
No. of 
places

No. of 
observa
tions

Average
concentra

tions
Average
maximum

Average
minimum

Average
maximum

Average
minimum

City 28 2500 147 000 379 000 49 000 4 000 000 35/OOcm3
Town 15 4700 34 300 114 000 5 900 400 000 620/cm3
Country inland 25 3500 9 500 66 500 1 050 336 000 180/cm3
Country seashore 
Mountain:

21 2700 9 500 33 400 1 560 150 000 0

500-1000 m 13 870 6 000 36 000 1 390 155 000 30
1000-2000 ra 16 1000 2 130 9 830 450 37 000 0
2000 ra 25 190 950 5 300 160 27 000 6

Islands 7 480 9 200 43 600 460 109 000 80
Ocean 21 600 940 4 860 840 39 800 2

AEROSOL 
INLET TUBE

HOT PLATE

COLD PLATE 
(BASE FOR DEPOSIT)

WATER
INLET-^

EXHAUST

WATER
OUTLET

Fig. 5.20 Cross section of a

{
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The nuclei distribution also exists with altitude. but local air stability 
often leads to unevenness in the distribution.

Table 5.7 Average vertical distribution of nuclei from balloon ascents (Mason, 
1970).

Altitude (m) 0 - 500- 1000- 2000- 3000- 4000-
500 1000 2000 3000 4000 5000 >5000

Concentration
(cm-3) 22 300 11 000 2500 780 340 170 80

Aitken nuclei distribution varies depending on the time of the day. In 
cities, a minimum is observed in the early morning before human activities start. 
After a maximum, the count decreases, probably due to enhanced upward 
transportation of air near the ground. As convective activities die down and 
vehicular activities increase towards late afternoon, an increase is observed, 
which is followed by a fall during the night (see pp. 5.34 and 5.35).

High humidity in the air seems to give low counts, presumably due to 
hygroscopic nuclei swell and coagulation of smaller Aitken nuclei on them. There 
is also the possibility of photochemical processes for particle production.

(b) Large and giant nuclei

According to Junge, the differential expression of the number concentration

^  = dN _ A
K } d(log^) (5.36)*

<5 -3?>

where N is the number of particles for the size r, A, and B constants, and m the 
mass (see Fig. 5.22).

Aitken nuclei, despite their large number, amount to only 20% of the 
aerosol mass. Aitken nuclei over the ocean seem to be independent of wind speed 
and height of waves.

5.2.4 Cloud condensation nuclei in the atmosphere

The active number of CCN depends on super saturation, and the number 
concentration is often expressed as

N « C(S - l)k, (5.38)

where C and k are constants. According to Twomey, the average of large numbers 
of observations results in k ^ h (see figures below).

In clean polar air mass, CCN concentration is as low as a few tens/cc, 
which is also the Aitken nuclei number concentration. In polluted air, the CCN 
count can be as high as 10A/cc.

*n(r) = i E  « r ‘A 
dr
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The relationship between the CCN concentration and the cloud droplet 
concentration exists through the maximum supersaturation the cloud air parcel 
experiences. However, it is the result of interaction between the nucleation and 
the growth of nucleated droplets in the changing cloud environment; and its 
estimation requires proper consideration of the process and will be explained in 
a later chapter.

Fig. 5.21 A generalized representation of the size distribution of natural 
aerosols in heavily polluted air over land (Junge, 1952).

5.2.5 Chemical composition of atmospheric particles

Atmospheric particulates are physically (i) solid, (ii) liquid, or (iii) 
a mixture. Particles tend to swell as a function of humidity. Above 70% RH, the 
majority of mixed nuclei becomes droplets.

Aitken nuclei: the chemical composition is not well understood.

(NH/,)oS0/, «- NH3 + S02 + 02, mostly in large particles. Some contain excess H2S04. 
Industrialized areas produce more nuclei of this sort, causing acid rain 
problems. Sulphur has a large marine origin in the forms of dimethylsulfide 
(DMS) and the derivatives emitted from marine phytoplanktons.

Cl" exists in air mass of maritime origin and is mostly in giant nuclei.

N0X (NOJ, N02, NO etc.) is another contributor to acid rain. Particulates in the 
form of N03 exist in photochemical air pollution involving automobile exhaust.

(
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Fig. 5.22 (a) Experimentally measured supersaturation spectra from aircraft 
measurements in different geographic regions. Note the systematic 
difference between maritime and continental air. The numbers on 
these curves indicate the region, as follows: 1 = continental, 
Australia; 2 - continental, U.S.; 3 - continental, Africa; 4 = 
oceanic, South Pacific; 5 - oceanic, North Atlantic; 6 *= oceanic, 
South Atlantic; 7 — oceanic, North Pacific, (b) Distribution of the 
slope parameter k  among the data leading to the previous figure.

Fig. 5.23 Comparison of vertical profiles of cloud nuclei over Colorado and 
over the Caribbean Sea.

(
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Fig. 5.24 CCN concentration obtained by the spectrometer on 9 August 1974 for 
the Denver aerosol (18.5 m above the ground).

Fig. 5.25 CCN spectrum recorded at different times of the day on 9 August 1974 
for the Denver aerosol (18.5 m above the ground).

f
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Fig. 5.26 Comparison of cloud drop concentration directly measured in the 
cloud with predicted from measurements of cloud nuclei in air below 
the cloud base. This diagram also shows an influence of man-made 
pollution: dots refer to samples in trade wind air before crossing 
the Queensland coast, crosses to air which had crossed the coast and 
been polluted by extensive cane fires.

Combustion products are very commonly found among all particulates.

Effect of location: In mid ocean areas, mostly water soluble particles are found 
and are large. In industrial areas, only 20% of particulate weight is water 
soluble, the remainder being soot, tar, ashes, and mineral dusts.

5.2.6 Production of natural aerosol particles

There are two basic mechanisms of particle production: (i) condensation and 
(ii) dispersion. The former involves nucleation of condensation (particle) and 
the latter mechanical breaking of existing condensed phase.

(a) Particle production by combustion and by chemical reaction (condensation)

Sulphur compounds
Gases for chemical reaction:

H2S as well as DMS and the derivatives are major S-containing 
natural gases, and S02 is either their oxidation product or of 
anthropogenic origin.

(



Liquid:
H2S04 forms by oxidation of S02 and other S-containing gases, and the 
reaction is fast in solution in cloud droplets. It tends to combine 
with NH3 to form (NH4)2S04.

Solid:
(NH4)2S04 is an important CCN (for chemical constants, see p. 5.13).

Oxides of nitrogen
N20: very stable and inert 
N02: forms by reactions

NO + 02 N02 or NO + O3 N02 + 02.
N02 serves to form nitric acid (HN03) and its compounds.

HNO3 in liquid form: N02 + H20 HN03 + NOt.
NOJ: HNO3 + NaCl NaN03 + HClt. This may be one of the reasons for Cl/Na 

ratio reduction.

Ammonia. NH3
Source: decaying organic matter (protein)
Sink: ocean, acidic soil and formation of (NH4)2S04

Chlorine
Gaseous form: the origin is probably HC1 from industries and oceans -- 

H2S04 + NaCl Na2S04 + HClt 
Solid: NaCl

Sodium
Sodium exists in the form of NaCl. Others: Na2S04 (or NaHS04) , NaN03. 
Ratios K/Na and Mg/Na in aerosol particles increase with increasing 
distance from the coast. Smaller sea salt droplets are enriched with K 
and Mg during the spraying processes. They seem to be associated with 
organic compounds which adsorb at the surface.

The chemical reactions for aerosol formation can be assisted by ultraviolet light 
and ozone.

(b) Ocean contributions 

Sea salt nuclei

Bursting bubbles are supplying sources of sea salt nuclei. Small bubbles 
(smaller than 0.2 mm) do not produce nuclei. Over the areas of breaking waves, 
the concentration can be 100 cm"3, with a production rate of 103 cm”2s-1.

Derivatives of dimethvlsulfide

Although these processes take place, the major contribution of ocean to 
aerosols and CCN appears to be DMS, a product of planktonic algae (phytoplankton) 
which subsequently forms sulfate aerosol after oxidation. Clouds appear to help 
formation of sulfate-based CCN from DMS.

(c) Production of nuclei over the continents

Over the land, primary production of aerosol particles depends on



combustion
chemical reactions involving trace gases, particularly' in the 

presence of liquid water 
raising of soil and dust particles, and
emission of pollen and volatile substances, such as H2S , DMS, 

methanethiol (CH3SH) , CS2, COS and others.

Anthropogenic production of nuclei is significant.

According to Squires, CCN active at 0.5% supersaturation,
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Production rate over USA is -500 cm ‘

Production rate over northern hemisphere -200

Production rate over a city ~104

Aitken nuclei over a city ~105

Man-made CCN over USA -14%

Man-made CCN over northern hemisphere - 5%

Mineral dusts are being transported from the land surface to ocean. Quartz 
particles deposited in the Pacific Ocean are between 0.5 and 15 jim in radius.

5.2.7 Removal of aerosol particles from the troposphere

The aerosol particles can be removed from the troposphere by the following 
four possible mechanisms.

(1) Fall out: effective for large particles of 10-20 jim in radius.

(2) Washout:

® CCN and IN (ice nuclei) into cloud and subsequent precipitation
elements (cloud droplets, rain, snow, etc.) (nucleation scavenging) 

° Attachment of aerosol particles to cloud elements; by
Brownian motion 
diffusiophoresis 
thermophoresis.

® Dynamic impaction by falling cloud elements.

(3) Brownian coagulation of aerosol particles.

(4) Evaporation?

Particles in the size range between 1 and 0.1 Jim do not easily coagulate 
and the efficiency of their removal by rain and snow is also low (Greenfield gap, 
further explanation in a later chapter). In this regard, the cloud formation 
(condensation) process which increases the particle size, drastically changes the 
particle removal rate of the size range. There also exists evidence that clouds 
help CCN generation and removal. When snow crystals grow, surrounding cloud 
droplets evaporate leaving the nucleus material behind. Although the crystals 
may collide with cloud droplets later, they are relatively free from the nucleus 
material. The reverse is effective with graupel and hail.
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The nucleation process of cloud droplets discussed in the preceding section 
is immediately followed by their growth in the supersaturated environment in 
which vapor diffusion towards the droplets and condensation result in generation 
of latent heat of the phase change.

5.3.1 The system involving: a growing droplet

When a droplet is growing in the supersaturated environment, the water 
vapor arriving at the surface releases the latent heat of condensation. The 
system automatically establishes (a) a steady state balance3 between the rate 
of heat generation and that of the removal by sensible heat conduction away from 
the surface (b) by satisfying the boundary conditions at its inner surface, i.e. 
droplet surface, and at its outer extreme, i.e. the environment.

5.3 Condensation Growth and Evaporation of Cloud Droplets
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Fig. 5.27 Maxwellian system of growing droplet.

(a) Fick's law of diffusion (see Section 2.4)

The mass of water vapor m transported in the x direction in a unit time 
through an area A by molecular diffusion without temperature gradient is given 
by Fick's law

—*

^  = -AD dp a
■3t dx ’ (5.39)*

where p is the vapor density and D the diffusivity of water vapor in air. 
Equation (5.39) can be used to describe the vapor transportation process to the 
droplet.

(b) Fourier's law of heat conduction

3 Strictly speaking, this is a quasisteady state balance because the 
condensing water vapor increases the droplet radius and advances the 
surface outward. The steady state processes survive better than time- 
dependent processes and often prevail in the atmosphere. In the steady 
state, the properties at an arbitrary point of space coordinate do not 
change with time, and its domination may be compared with that of the 
highest resistance process in a sequential phenomenon.

4 Fuchs (1959) introduced an effect of the Stefan flow to alter the 
diffusional flux of vapor (see Section 3.6), and Clement (1985) and 
Seinfeld (1985) both appeared to have elaborated the effect. However, 
the effect has no physical foundation and is merely a result of 
misunderstanding the system involving the transport process.

(
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Similar to the vapor diffusion, the heat energy transported in the x- 
direction in a unit time through an area A by conduction mechanism without 
simultaneous vapor transportation is given by Fourier's law

dQ = _ak dT
"3t dx * (5.40)

where Q is the amount of heat energy and K the thermal conductivity of air.

Although vapor diffusion and heat conduction are simultaneously taking 
place during the droplet growth process, under such slight gradients of heat and 
vapor density, their influences on the others are expected to be small. 
Therefore, such secondary terms are normally ignored for atmospheric droplet 
growth processes by vapor diffusion.

5.3.2 Droplet growth: Maxwellian theory

The simplest steady-state model of droplet growth, first applied by J.C. 
Maxwell, features the continuous vapor and temperature fields at the droplet 
surface. The theory is also applicable to the wet-bulb temperature on a 
quiescent thermometer (see Section 1.6).

Suppose a single droplet grows in an infinite quiescent and supersaturated 
environment and maintaining a quasi-steady state. The space surrounding the 
droplet allows diffusion of vapor towards and conduction of heat away from the 
surface. Since there is no source or sink of vapor and heat in the space and 
there is no density change, at all the space points due to the steady states, the 
continuity equation for vapor diffusion [Eq. (2.32)] leads to

V2p - 0. (5.41)

An equation of this form is called Laplace1 s equation.

Similarly, the continuity equation for heat conduction leads to

V2T * 0. (5.42)

The solution of Laplace's equation around the droplet can be obtained from 
the form using the spherical coordinate (see Appendix B) . Here, however, to make 
the physical process more visible, we use an intuitive approach considering the 
fluxes of water vapor and heat through the spherical surface concentric to a 
quiescent droplet.

(a) The vapor density field

Using Eq. (5.39), the mass arrival rate on the surface of a spherical 
droplet of radius r is >

^  = AD.^. = 47rr2D - ^  = Clf (under steady state) (5.43)

where Cx is a constant. Integration of Eq. (5.43) yields the form

(
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(p) -
Ci fl (5.44)

47rD ( r  j

which, under the boundary conditions (r*=r, p=psr) and (r***, p^p*) leads to5

P * Pco -  (Pco - P sr)r  ~  » (5.45)

where r and r are the droplet radius and the radial distance of the coordinate 
and psr and p* the saturated vapor density at the droplet surface and that in the 
environment, respectively.

From Eq. (5.45) by differentiation, we have the vapor density gradient

dp _ (Pco ~ PSr)r (5.46)
"Hr

(b) The temperature field

Fig. 5.28 Vapor density and temperature fields 
around a Maxwellian growing droplet.

The method of obtain
ing the temperature field is 
identical to that of vapor, 
except that the direction of 
the heat flow is opposite.

Treating Eq. (5.40) in 
a way similar to Eq. (5.45), 
we have

T-T.-(T^-T.)!. (5.47)

The temperature gradi
ent can be obtained by dif
ferentiating Eq. (5.47) with 
r ;

dT (T* -  Tr) r  . % 
_j_ = ----- ^ ---(negative) (5.48)

(c) The restricting conditions for droplet growth

5 Ci f i  i l
P -  Po = I I  Where at r = rQ, p = p 0 . When r = «>, p = pa ,

t h f e f ;  o r  I h e n - p - p ‘ ' - s k \ -  T h e a

r = r, p = ps s , and C1 - 4*D(pst - pa) r. Hence p * pa -  — — P s c , r .

(



5.35

The above equations contain two unknowns, psr and Tr. In order to solve 
them, two equations describing their connection are needed. They are

(i) the equation to describe the continuity (equivalence) of the vapor and the 
heat fluxes. and

(ii) flux connection at the droplet surface with the C1aus ius-C1apevr on 
equation.

Of course, both equations should satisfy the outer boundary condition. 

Condition (i) is expressed as

[I?] " (■§) ‘ ( ^ ; absolutej- (5.49)

For condition (ii) , or the Claus ius-Clapeyron equation (1.62") , we use the 
linearized (truncated) form, including the present boundary conditions:6

ln(esr/esc0) = ^  ^  - J_j
= (e sr/e s«) - 1 - (5.50)

(d) The derivation of growth equation

Using the above relationships, we shall first solve for psr and Tr and then 
obtain the gradient term of Eq. (5.39) to describe the growth rate. We now 
change Eq. (5.50) into the vapor density equation using the ideal gas law,

e = pRvT, (5.51)

that is, if T variation is not large, Tr ~ Ta and e a p relationships may be 
applied to obtain

Lfc(Tr “ T J  _ ^ (5.52)

Ps» '

(A more accurate treatment of the e - p  relationship will be given later.) From 
Eq. (5.49), with Eqs. (5.40), (5.43), (5.46), and (5.48), we have

6 When - 1 < x < 1 ,  ln(l+x) = x - ^ x 2 + ̂ x 3 -----. Setting x = (esr/esa)) - 1 ,

ln(esr/esJ  =

r ^ r 2

I f f  - 1
_  1 e sr

- 1 + 1 1 1 n 1 
®
 

i
w 
1 
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Tr - T.

Psr P® H T ’
(5.53)7

From Eqs. (5.52) and (5.53), we can now solve p sr and Tr. Dividing Eq.
(5.52) with Eq. (5.53),

Ps°0 _ ~~ (Poo “ Psx) (PtQ ~~

(P<0 -  Psr) ’

or

P sr P°o
(S -  1) (S - 1)

7~ 9 
DLc + J _

8 1

r DLfe2  ̂ RvTa)’

K R ^ P s°o KRVT« e s« (5.54)

where S = p,a/ps« is the saturation ratio in the environment. Replacement of Eq. 
(5.54) into Eq. (5.53) leads to

Tr = T* + (S -  1)

RvTm2 DLbPs« (5.55)

The droplet growth rate can, therefore, be obtained by inserting Eq. (5.54) 
into Eq. (5.46) and using Eq. (5.43).

dm _ 4?rr(S - 1) _ 4?rr(S - 1) 
"3t 7  Ti " (a' + b')

KRyTcjf DPs.0 (5.56)

where a' = f(T) = L^/KR^T^; and b' = f(p,T) = 1/Dpsn are constants which depend 
on the environmental variables, p and T.

(e) The temperature correction (Mason, 1971)

The assumption e a p is only valid under constant temperature; and if the 
temperature variation appears in its application, a correction is necessary.

7 Tr - Too of Eq. (5.53) corresponds to the wet bulb temperature difference 
of kinetic definition, since from Eq. (2.31), Eq. (1.110) reads

- (/c: thermal diffusivity) (Thermodynamic),
\Psr ~~ Poo/ K

DLr
which is in contrast to _ i  (Kinetic).

Since D > /c, the latter is smaller than the former.
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Fig. 5.29 Terms in denominator of Eqs. (5.56) 
(a',b') and (A , B ) (for ice crystal 
growth) as function of temperature at 
a pressure (applicable to b' and B ) 
of 1000 mb. At other pressures, B 
and 6' would have p/lOOOths of the 
given values (Byers, 1965).

dine « dlnp + dlnT.

Using this in the 
C l a u s i u s - C l a p e y r o n  
equation,

dinp s + dlnT = ,
s RyT2

which, after integration 

from (To,, Ps«) t 0  ( Tr> 
psr) , results in

" i ; ( ^ " i ]  = ln 7 S + ln ^

Expanding the right-hand 
terms as shown on p . 
5.35 and taking the 
first terms, we have

From the ideal gas
law,

T -T  ■L00
T« RvT*

- 1 r s r
Ps®

(5.57)

The use of
RvT«

-  1 in place of - will make the value smaller by 5%.
RvTco

(f) Effects of the solute and the size of droplet: Maxwellian theory

In the Maxwellian theory, we have handled so far a pure water droplet 
without the surface curvature effect. If the droplet is very small and contains 
solute, the Kelvin effect and the Raoult law have to be included. The overall 
effect can be estimated in a way similar to that described in Section 5.1.6.

Expressing the vapor pressure of the droplet showing the Kelvin and Raoult 
effects by p'r in an isothermal system,

Psr _ Psr Ps°o _ + a _ b (5 .33)

Ps« Ps<° Ps® r r 3 ’

where (' ) and the subscript <» stand for solution and flat surface, respectively. 
This vapor density change will also cause T shift in the flux balance equation 
(5.53), and the equation now takes Tr and p'r (see the schematic drawing below). 
Whereas, the second equation, i.e., the Clausius-Clapeyron equation (5.52), 
describes the relationship between the vapor pressure (density) of pure water
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SOLUTION 
KELVIN EFFECT 
T-DIFFERENCE 
FLUX-CHANGE

PURE WATER .

(Nq Solution, Kelvin Effects)

Fig. 5.30 Vapor pressure of a solution droplet with an elevated temperature 
T

with flat surface and the temperature. Because of that, it takes Tr and psa>. 
Since Tr is common, we can apply the same treatment which led to Eq. (5.54).

At the surface now, psr (Eq. 5.52) * Psr/[l + —  ~ > and setting psr (Eq. 5 -52)
r r 3

= Pgr in Eq. (5.53), we have  ̂ J

Pa - p ' si / \ i  * ±
DLte2Ps.
KRyTffl

b
+ (P «  -  PSJ

P oo P sr 

~(Pm -  P'SI )  + Ps

which gives, with p'r - p s<0i

s - l  - -  + JL
/3«, -  P s

(5.58)

The growth rate is, therefore, from Eq. (5.43), with Eq. (5.58) substituted into 
Eq. (5.46) under psr (Eq. 5.52) - p'sr ,

47rr S - 1 - ± + .b ' 4?rrfs - 1 + JL
dm _ r ;r3 = I r r
dt

" * 1 1
(a' + b')

KRyTa s»

(g)

(5.59)

Time variation of mass and size for a growing droplet: constant 
supersaturation

To evaluate the time variation, we write Eq. (5.56) in the form

= 47rr2/9w4 l = Cr, (S: constant) 
dt dt

(5.60)

where pw is the density of liquid water and C is a constant. By rearranging, Eq. 
(5.60) gives
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--̂ L. = constant, (area increase rate) (5.61)

Integration of Eq. (5.60) results in

4 *Pw r 2 r o
~T ~ T = t - t0,

where rQ is r at tQ. If rQ is sufficiently small, taking tQ at the time origin,

r 2 = t or r2 oct. (5.62)
C ------

Inserting the mass m ** (4/3)7rr3pw into Eq. (5.62), we have

4*Pw j3/2 1-3/2 or m e e t 3'2. (5-63)m =

This and Eq. (5.62) are the typical feature of Maxwellian droplet growth under 
constant supersaturation.

(h) Droplet growth under a supersaturation linearly changing with time

At slightly above the cloud base, there exists a zone of linear 
supersaturation change with time (details will be given in the chapter on 
Microphysics Dynamics Interaction). Setting

S - 1 = C't, (5.64)

and using Eqs. (5.56), (5.60), and (5.64), we obtain

r "
rdr = ---  tdt,

which, by integration, yields

[r „ _ 4ttC' ]
1° ' t t t t t J

r2 - r2 - S L  (t2 - t i ) , (5.65)
4?rpw

where r = rQ at t = tQ, and C' and C" are constants. When rQ = tQ = 0, r a t .

5.3.3 Droplet growth: Diffusion-kinetic theory 
(Fukuta and Walter, 1970)

When mass or heat is being exchanged between gaseous and condensed phases, 
there normally exists inefficiency. The inefficiency is expressed by 
accommodation coefficients defined at respective interfaces (see Section 2.5). 
The effect of accommodation coefficients has to be included, and the theory which 
handles the effect is called the diffusion-kinetic theory. The droplet system, 
which deals with the effect, is shown below.
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Estimate size and mass of a droplet after 10 min growth under the following 
conditions: S-l-0.002 (0.2%), T-273.2 K (0#C), p-1 atm. K-5.73 x 10"5 cal cm-1 
s-1 K'1, D-2.25 x l O ' W 2 s*1, Lc-597.3 cal g_1, R*-8.314 J mo I'1 K_1-1.986
cal mo I-1 K_1, M-18.016 g mo I-1, pa<a—4.847 x 10-6 g cm-3, r-0 at t-0, pw- l . 0 g cm-3.

• Problem 1

C = 4x3.142x0.002

1 8 x (5.973xlO2)2 ^ 1 

5.73 x 10_5x 1.986 x (2.732 x 10z)z 4.847 x 10'6x 2.25 x 10’1 

= 1.503 x l 0 - 8.

Using Eq. (5.62)

r 2 = = 1.435 x 10"6 r = 11.97 x 10"4cm = 11.97 am 
2 x 3.142 x 1 -------------------------

2.514xl0-2 

0.756 x 10^ + 0.9166 x 10^

m 4y?r(r2)3/2 = 4 x 3 -^4 2 x l  x (1.435x 10-6)3/2 = 4.1893x 1.719x 10'9 = 7.20xlQ-9g .

Dimensions, using Eq. (5.62)

U/2

r = [■z£v]

c =

t l/2 

4ff(S-l) 

+ — , KR^Ta DPs«.

1/ (cal/g)2 + 
cal # cal # K 2 

cm#s#K g*K "T
g . cm <

cnr

cm

= -i y | cm#s ^ cm*s | _ g
L g g"” J cm*s

r 3 1̂/2
l _ g _ . c m ^  (s) i/2 = cm . 
[ c m * s  g  J

• Problem 2

Using the droplet growth equation, show why the droplet size distribution 
narrows as the growth proceeds.

Using Eq. (5.62) U/2
- 1/2

r- ( ^ r "
ri-r2 ( )i/2t i/2_( )i/2(t-t0)1/2

—  = ------------T ) 172̂ 72-----------

Fig. 5.31 Growth of Maxwellian
droplets of two different 
sizes.

= i

-*■ 0 when t -*■ «>
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CONTINUOUS
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Flux
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on the surface r , a , g
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EQUATIONS 

A = B
mass 

— (T)—  ̂ heat ^“(ij)— ) 4 eqations

------------------- ^ y -------------------

E = ©

Fig. 5.32 The system of a growing droplet; diffusion-kinetic theory.

In the systems, there are four unknowns, i.e., Tr, TA, psr, and pA, where A stands 
for the free molecular fluxes (see Section 2.5). Against these four unknowns are 
five basic equations, A through E, which give four relationships to solve. We 
now examine below the basic equations for steady-state growth.

(a) Basic equations

Since the space where Process A is taking place is the same as that around 
the Maxwellian droplet, Eqs. (5.45) and (5.46) apply to the present system with 
Psr ^Pa replacement. Then, A defined for unit area is expressed from Eq. (5.46) 
at the droplet surface as

Pa)D (5.66)

Similarly, Process D may be expressed from Eq. (5.40) for unit area and Eq. 
(5.48) at the droplet surface, with Tr — TA replacement:
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( « 1

(Ta - T J K  (5.67)

The mass exchange by the free-molecular flow of water vapor at the droplet 
surface, Process B . may be expressed by an equation identical to (2.37). By 
making replacements, **(v' + v")=pA, vQ«psr, 0=/3, vx-p, and z=r in Eq. (2.37), and 
using it in Eq. (5.43) for unit area, with v~(8kT/7rm)1/2, [Eq. (A. 16)] and Eq. 
(2 .20), we have

o ) ( 5 - 68)8f 's r /  >

where

V
2/3

"2”̂ ’ (5.69)

is the representative condensation coefficient and ft the true condensation 
coefficient. When 8 < 1. 8' = 8 .

For the free-molecular heat exchange, Process C . we can apply a treatment 
identical to Eq. (5.68). Using Eq. (2.37) with corresponding replacements in Eq. 
(5.40) for unit area,

fdQl - - 4 dT] - Q,P(cv + **R.) /T _ T %[■atju ~ t̂ J (2*1̂ )^ Ur a;’ (5.70)9
where

a  = 2a
"2”=~5 (5.71)

is the representative thermal accommodation coefficient and a the true thermal 
accommodation coefficient. When a < 1. a ' = a . The *sRa term is adjustment for 
high velocity (temperature) molecular contribution to the transport process. The 
use of representative coefficients can be justified as long as they are used for 
data analysis and application in the same equation.

From (2.37), pt-pSI=!^.t ̂ j|J. *=2D/v(2.20) and v=(8kT/jrm)1/2(A.16) . Then, 

»_ D f 2jrml1/Z _ 2-j0 1 f 2jt f /zL dpi f dm] n dp = f R^l172 2>S . ,
• pA p , r " n r 7 [ T 5 7 r J  [  ~ & y  [ ' a t j  'a ?  [ " z f J  T ^ ( P A _ P s r ) -

F ro a (2 .3 7 ) . ” -(T 1-Tr ) l ^ . - <  > ^ - <
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The last basic equation is the Claus ius - Clapevron equation (E), with 
integration limits at r * r,(Tr, psr) and at r - (T*, pse0) .

(b) Derivation of growth equation

We now obtain the four relationships necessary to solve the four unknowns 
which will give us the growth equation.

(i): (A) - (B)

Setting Eq. (5.66) - Eq. (5.68), we obtain

D<'* -  <0* -  P„> • <5' ?2)

Here, we introduce a normalization factor,

.p Pco ”  Pa

' ■  <5 - 7 3 > 

whose meaning is apparent from Fig. 5.33. Inserting Eq. (5.73) into Eq. (5.72), 
we have

P -r * D f 2* l1/z r + V  (5.74)

where, with adjustment of Tr « T*,

<5 75)

The behavior of f^ is

1 > f^ > 0 . fjo -» 1 when r -» «>. not when B -» 1 .

(ii): (C) = (D)

Setting Eq. (5.67) - Eq. (5.70), we have

,T _ T 1  _ _ ( T .  - T 4)K f5 ?6,

( 2 * R . T . ) 1«  1 *  r

Here, we again introduce another normalization factor analogous to Eq. (5.73):

f  _ T A - T«
“ “ \  "T. ’ (5.77)

and introduce it into Eq. (5.76), with Tr - T* replacement, to obtain
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y x K c a ^ T j 172"

a ' p ( C v  + HR,)

T ~ r r a ’

(5.78)

where

= K (2 jrR aT <0) 1/2 

a ' p ( c v + H R ,) (5.79)

Again,

1 > fa > 0 . f~ -» 1 . only when r -» «>. and not when a -*■ 1 .

( i i i ) :  L - (A ) =  (D )

Applying Eq. (5.49) with Eqs. (5.66), (5.67), (5.73), and (5.77), we have

_ fa(Tr ~ T.) = DLC (5.80)

f ^ (P s r  “ ~Z~ ’

which converges into Eq. (5.53) of the Maxwellian theory when r -► «>.

(iv): (E)

We can use the linearized Clausius-Clapeyron equation (5.52).

From these four relationships, we now try to solve the four unknowns. 
Using Eqs. (5.52) and (5.80), we derive

Psr P<o
(S - 1)

f ^ T 2 Ps» (5.81)

which compares with Eq. (5.54).

Then replacement of Eq. (5.81) in Eq. (5.80) yields

T_ = T „ + (S - 1)

Lb f«K

RVT 2 f /3DLcP s»

which corresponds to Eq. (5.55) in the Maxwellian theory. 

Substitution of Eq. (5.81) in Eq. (5.73) results in

(5.82)
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Pa = P«p
(S - 1)

Ta = T.

DIfc2
\ •

* z 1
f«KRvT2 S<0

.82) in Eq 

(S -

• (5.77) 

1)

K

W T 2

(5.83)

(5.84)

Using Eq. (5.66) with Eq. (5.83) over the entire droplet surface, the mass 
growth rate is obtained as

dm
■at

47rr(S - 1)

1
f/SD Ps<o

4?rr(S - 1)

(5.85)
f j a t y T :

which corresponds to Eq. (5.56) of the Maxwellian theory.

The vapor and temperature fields in the space outside the droplet are 
identical to Eqs. (5.45) and (5.47), with pA * psr and TA * Tr replacements.

It should be pointed out that use of r + t , I being the mean free path of 
the gas, taken in some other treatments in place of r is based on the erroneous 
perception of this process and introduces a large error when r < I .

(c) Effects of solute and size of droplet

The treatment is identical to that of the Maxwellian theory under Section 
5.3.2 (f). The mass growth rate is

dm
"a t

47rr 47rr i  - ±  *

_ J ^ + i
f /3DP s«

(5.86)

(d) The behavior of the diffusion-kinetic theory

(i) Temperature and vapor fields

The discreteness of the fields is entirely due to fa and f̂ .

As can be seen in Fig. 5.37, the temperature of the droplet growing under 
the steady-state at 1000 mb pressure is warmer than the environment by about 
0.1°C/1% supersaturation for the Maxwellian theory and lower for the DK theory.
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DISTANCE FROM DROPLET CENTER (Microns)

Fig. 5.33 Profiles of temperature and vapor density fields in the vicinity of 
the droplet for the diffusion kinetic and Maxwellian theories 
(Fukuta and Walter, 1970).

Fig. 5.34 Variation of fa with droplet radius: T* = 10°C, P = 1000 mb (Fukuta 
and Walter, 1970).

Fig. 5.35 Variation of f^ with droplet radius: T* = 10°C, P = 1000 mb (Fukuta 
and Walter, 1970).

(
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Fig. 5.36 Profiles of temperature and vapor fields: rs - 1, 10, and 100 /zm, 
p — 1000 mb (Fukuta and Walter, 1970).

Fig. 5.37 Temperature and vapor density of Fig. 5.38 Droplet mass as a function of time:

droplet surface and boundary as a p = 1000 mb, S = 1.01, with j8 as a
function of saturation ratio: p = variable (Fukuta and Walter, 1970). 
1000 mb (Fukuta and Walter, 1970).

(
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Fig. 5

10*

10S
m,DK

1 0 '

.39 Comparison between Maxwellian (M) and diffusion kinetic (DK) 
theories for m, dm/dt and r.
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Fig. 5.40 Comparison between Maxwellian and diffusion kinetic theories in time 
dependence of the radius.

(ii) Variation of radius as a function of time (constant S)

Similar to Eq. (5.60), we can write Eq. (5.85), including Eqs. (5.74) and 
(5.78), as

U* r 2 p ', '3E
4wr(S - 1)

1-t (r + t a) ^ (r + V  

‘ rD psar K ^ T 2

which gives, by integration with r = 0 when t = 0 ,

Pw

r
i—
1 + 

"If

£ *
r I*2*. , h  1 r

KRyTa s« KRyTa D/°s<°
= (S - l)t, (5.87)

or
(Cir + C2)r = t, (5.87')

(see Fig. 5.40).

(e) Relationship among growth equations (Special cases)

As we have seen above, the diffusion-kinetic theory is most general and 
takes two special cases:

(i) r -► «>, fa = f ^  = l; it converges to the Maxwellian theory.

(ii) r -► 0 , r < or Ip, or the free molecular flow processes become much 
slower than the continuum processes of heat and vapor transportation. 
Then from Eq. (5.85), with Eqs. (5.74) and (5.78),

(
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dm _ 4?rr2(S - 1)

^  I^f(27rRaTe0) 1/2 ^ j  f 2 7 r l 1 / 2 '

a'pRyT2^  + HR,) P' Ps» [ RvT«J (5.88)

Equation (5.88) described the mass growth rate of a very small droplet of r < 
and I p . not > 1, under the condition where the Kelvin and solute effects are 
still small. These effects can be incorporated starting from Eq. (5.86) instead 
of Eq. (5.85). Equation (5.88) is no longer a function of D and K . In addition, 
ignoring these two effects, we obtain

-̂ 3? oc r 2, or
cE ’ (5.89)

r o c t  or m a t 3. (5.89')

General features of the diffusion-kinetic equation

The general features of the diffusion-kinetic equation are
(1) more accurate when r is smaller and slower in growth rate than the 

Maxwellian,
(2) includes the Maxwellian theory as the special case for large r and 

the free molecular growth theory for very small r,
(3) is sensitive to a and values, and
(4) droplets tend to become more polvdispersed after growth.

5.3.4 Competitive growth of cloud droplets

The above two theories of droplet growth assume a constant supersaturation 
and environmental conditions with the space unlimited. It is not the case of 
cloud droplet growth that occurs sometime after passing through the 
supersaturation maximum above the cloud base, and we now look into the problems 
that arise from the difference in conditions.

The cloud basically forms under two simultaneous processes, the adiabatic 
expansion of moist thermal lifting and the growth of nucleated droplets, in which

H  = kV*T + Clf = D ^ p  + C2,

where Cx and C2 are respective sinks created by the processes. Shortly after 
nucleation above the cloud base, due to still small expanse of the temperature 
and vapor fields established around the droplet and their short relaxation times, 
the cloud space does not feel the droplet growth effect and

H  = Cx or V*T = 0, and = C2 or V=*p = 0. (5.41) (5.42)

In this stage, the cloud process is essentially dry adiabatic, and the 
supersaturation increases almost linearly with time free from droplet growth 
effect. The increasing supersaturation leads to nucleation of more droplets and 
their growth, and the two fields around the droplets continue to enlarge the 
expanse. The adjacent fields of droplets begin to interact; the fields deform 
to transfer the vapor and heat being made available by adiabatic expansion within 
the vicinity of each droplet, so that

V2T = const ^ 0, V2p = const ^ 0, (5.90)

and come to following two major changes of the growth mode.
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(1) the temperature and vapor fields become confined in the volume called cell 
occupied by each droplet, and

(2) the supersaturation in the environment reaches a maximum and thereafter 
begins to slowly decrease. The latter problem will be discussed in 
Section 7.1.

The temperature and vapor fields confined in the cell volume surrounding 
the droplet are finite compared with the infinitely stretching fields assumed in 
Sections 5.3.2 and 5.3.3. Within this cell volume, the vapor transfer to and 
heat transfer from the droplet take place. This should make some difference in 
the droplet growth kinetics, and we discuss the effect of the cell-boundary- 
controlled, steady-state kinetics below.

Consider a spherical surface placed at a position with radial distance r 
which lies between the droplet radius r and the radial distance of the cell 
boundary R. In a given period of time, the total amount of newly generated (S
- 1) in the space between the spherical surface of radius r and that of radius 
R must be completely removed by the transfer of vapor to and heat from the 
spherical surface of radius r. Then, at the surface,

i}E <5 - 9 1 >

where C1 is a proportional constant. Here, the volume change due to an expansion 
by lifting is ignored. After integration with respect to r and inserting the 
boundary condition at the droplet surface, r — r, p — psr and that at the cell 
boundary, r = R, p = pR, Eq. (5.91) yields

p ________ ~(Pr " P**) r ______ |2R! + ,.2-31*21+0-. (5.92)
(R - r) [2R2 

At r = r, from Eq. (5.92) we obtain

h i _____ [ « !  * _ 3r2] „

- r(R * r)] L r J

where

and

dp m Pr ~ Psr f  (5 .93)
H r  r °’

fc = 2 0 . + g + g 2) ^ 1 (5  9A) 
(2 - g - g z)

g - |  (5.95)

(see Fig. 5.41) . fc -► 1 when g -► 0 with R -► «>, or the system converges into the 
condition without cell-boundary restriction.

Similarly, one may derive
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(Tr - T,

(R - r) [2R2 - r
_________ [ i * !  + r 2 - 3R21 + Tr>

r(R + r)] L r J
(5.96)

where subscripts R and r stand for cell-boundary and droplet surface, 
respectively (see Fig. 5.42).

Fig. 5.41 fc as a function of r/R.

Fig. 5.42 Comparison of temperature field with (lower curve) and without 
(upper curve) cell-boundary restriction.

Equation (5.93) and the temperature gradient at the droplet surface derived 
from Eq. (5.96) may be combined through the latent and sensible heat flux balance 
equation (5.49). This equation, the linearized Clausius-Clapeyron equation
(5.52), and Eq. (5.43) lead to

(
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dm
ctt

_ 4jTr(SR - 1)

KRTr ^PsR (5.97)

the Maxwellian growth rate of cell-boundary-controlled, steady state kinetics 
(see Fig. 5.43). Equation (5.97) shows that use of droplet growth equation 
without the cell-boundary restriction in the cell-boundary controlled growth 
tends to give f“x of the realistic value, or an underestimation.

When accommodation coefficient effects are further 
diffusion-kinetic growth rate equation (5.85) modifies to

considered, the

dm
"3t

47rr(SR - 1)

KRTR2f;

f c

(5.98)

where

f' = a r + nr (5.99)

and

■F' -  r /* ” r +
(5.99')

Equation (5.98) converges to Eq. (5.85) when r/R 0.

If the cloud liquid water content is 1 g m“3 and droplet number 
concentration 103 cm-3, g ~ 0.01 and the use of Maxwellian rate of infinite field 
expanse will result in an underestimation by about 1.5%. The error in the 
diffusion kinetic theory will be smaller due to the compensating effect of fc in 
Eqs. (5.99) and (5.99').

5.3.5 Non-steady problem of droplet growth

If the condition of the environment surrounding a droplet or that of the 
environmental boundaries changes, the droplet can no longer maintain the steady 
state condition of growth, so that

4^  = DV2/o * 0 and 4 ^  = «V2T * 0. (5.100)
o t o t

Then, changes take place in the fields until the steady state is regained. There 
are two kinds of non-steady processes possible:

(1) 1st Kind: The condition of the outer boundary or surrounding environment 
changes suddenly.

(
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(2) 2nd Kind: The inner boundary or droplet surface changes suddenly.

The latter can indeed happen when a supercooled droplet freezes, and that 
problem will be discussed in a later chapter.

For the non-steady state of the first kind, since the condition around the 
droplet was thought to be identical to that of the thermal field internally 
bounded bv a sphere (Carslaw and Jaeger, 1959), an analogy was applied to obtain 
the vapor field,

P ~ Poo "** (P s r  ~~ P«o) ~

where erf is the error function and

erf x = —  fx e d £ .
^ J° (5.102)

erf

. 2  J i ) t
(5.101)

However, Eq. (5.101) assumes constant psr which actually changes, in the case of 
droplet growth under non-steady state, because of coupling with the surface 
temperature and psr, through the Claus ius-Clapeyron equation and that between the 
surface temperature and the external temperature field. Nix and Fukuta (1973 and 
1974) obtained a solution by considering the connection of Claus ius-Clapeyron 
equation at the droplet surface with non-steady state Maxwellian fields and 
assuming the changing environmental conditions as

- DV2*> *Aexp(-ict), (5 103)

and

V . "  -K7*T + Bexp(-«t), (5 104)

where A and B are constants and k is a constant describing the rate of change of 
the environmental conditions. The results are shown in Figs. 5.43 and 5.44. 
Note that use of steady state equation in a step-wise manner in the non-steady 
problem may cause a serious error due to the transient part in Fig. 5.43, if the 
time rate of change is large.

5.3.6 Evaporation of small drops

The droplet evaporation problem is identical to that of growth, as long as 
the signs for corresponding values are properly treated. Then, the equations 
derived above are all applicable to the evaporation problem within their limits.

(
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log /Cf

Fig. 5 . 43 Radial growth rates of a droplet 100 
/im in radius during the cooling from 
15 to 0°C under k - 1000 s"1 (Nix and 
Fukuta, 1973).

5.4 Droplet Growth by Coalescence

IM PACT A N G LE

Fig. 5.45 Experimentally determined conditions 
or permanent coalescence (disruption) 
of water drops in air for various 
relative velocities imposed on the 
drops, (f) a,=A50 /im, a2=150 fim. vT is 
the difference in terminal velocity of 
the two interacting drops (From Park, 
1970, with changes).

log K t

Fig. 5.44 Error in dm/dt vs Kt with k as the 
parameter (Nix and Fukuta, 1973).

Cloud droplets nucleated and 
grown by diffusional mechanism can 
further grow by colliding with others 
and fusing together under influences 
of gravitational, electrical, 
a c o u s t i c a l ,  t h e r m a l ,  a n d  
aerodynamical fields. After
mechanical collision with others, 
droplets

(i) coalesce and remain permanently 
fused,

(ii) rebound,
(iii) coalesce temporarily and then 

separate, retaining their 
original identities, and

(iv) coalesce first and then break 
up into a number of small 
droplets.

The total efficiency of 
droplets to fuse together after 
collision is called the collection 
efficiency.

(
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COLLECTION EFFICIENCY - (COLLISION EFFICIENCY) x (COALESCENCE EFFICIENCY) 
The latter is often assumed to be unity.

5.4.1 Liquid water content

The liquid water content WL is defined as the total weight of condensed 
water in a unit volume:

where n(r) is the number concentration (density) of droplets in the size range 
between r and r + dr.

The total number of droplets is
-200 cm-3 in continental clouds and
-several tens in maritime clouds (in Hawaii, as low as 10 cnf3)

The WT value is
-0.5 gnf3, with a maximum of 1 gm“3 in healthy cumulus.
-5 gm“3 is possible in cumulonimbi which approach the adiabatic 

value. The value is normally diluted by entrainment.
Bimodal distribution of n (Warner in cu) has been frequently reported with 

peaks at r - 6 and 12 /im.

5.4.2 Collision process

(5.105)

The concept of droplet collision is identical to 
that of molecular collision (Section 2.3) or that of 
coagulation of particles (Section 3.5).

To understand the coalescence process 
quantitatively, we define the collision efficiency as

(5.106)

where xQ is the critical value of x within which a 
collision is certain to occur and outside of which a 
collision does not take place.

E' < 1.

There are other collision efficiencies, but Eq.
(5.106) is most commonly used.

Fig. 5.46 C o l l i s i o n  
process of 
d r ops by
fall.

(
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(a) Collision efficiency: Theoretical estimation

Collision efficiency can be estimated by the method of superposition, where 
each sphere is assumed to move in the flow field generated by the other sphere 
falling separately. Collision happens when the inertia force of a droplet 
resists against the change of the stream line due to approach of the second 
droplet and mutual contact is made. To obtain the flow behavior around a falling 
sphere, the Navier-Stokes equation [Eq. (3.4)], or its simplified version 
depending on the condition surrounding the sphere, has to be solved. The Stokes 
approximation is sufficient for Re < 0.4 or r < 30 /xm.

For very small droplets whose radii are on the order of ten times the mean 
free path of air molecules or less, consideration of slip flow (momentum 
accommodation, Section 2.5) may be needed. However, for cloud droplet size 
range, it.was found to be unnecessary (Pruppacher and Klett, 1978).

E' decreases as the size of one of the droplets, or both, decreases. 
Whereas, E' is nearly unity for R > 40 /xm and r > 15 /xm, unless R « r, in which 
case E' > 1. There is generally good agreement between theory and experiment for 
drops of R < 100 /xm falling in still air, and the shape distortions of 
interacting drops are insignificant.

0 2 ( / i .m )

Fig. 5.47 Theoretical collision efficiencies of spherical water drops in calm 
air as a function of small drop radius and of large drop radius
(given by label of each curve). ----- Schlamp et al. (1976), ----
Klett and Davis (1973), — •- Lin and Lee (1975), .... Jonas (1972)

(Pruppacher and Klett, 1978).

(



(b) Drop coalescence behavior

A falling drop leaves wake behind, and the wake enhances collision 
efficiency. For large drops, complications appear due to wake oscillation, eddy 
shedding, and shape deformation.

When rebounding occurs, air film trapped between the drop surfaces plays 
an important role in coalescence. Its drainage or disruption is needed for 
coalescence to occur.

Drop break-up occurs following coalescence of two large drops. Bag-type, 
dumbbell-type, neck-type, sheet-type, and disk-type have been observed.

Turbulence is known to enhance the drop coalescence, in general, although 
one theoretical study indicates possible reduction under high turbulence.

5.4.3 Fall velocity of drops

Coalescence of droplets occurs primarily due to their fall velocity 
difference. So, we now examine the variation of drop fall velocity with respect 
to size and environmental conditions.

A drop falls due to the gravitational pull, and air surrounding the drop 
exerts resistance to it. When the resistance force balances with the gravita-

>v
O
Z
LlJ
O
Ll
Ll.
LU

2
O
cn

O
o

a 2/O i

Fig. 5.48 Theoretical collision efficiencies of spherical water drops in calm 
air as a function of p-ratio and of collector drop radius (given by
label of each curve); ----- Schlamp et al. (1976), ----Klett and

Davis (1973), ----- Lin and Lee (1975), ....  Jonas (1972)
(Pruppacher and Klett, 1978).
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Fig. 5.49 Comparison of theoretical collision efficiencies with experimentally 
determined collection efficiencies, for water drop pairs of small p- 
ratio. Label of each curve and data point gives large drop radius 
in fim (Pruppacher and Klett, 1978).

tional force, the fall velocity attains a constant value or terminal velocity. 
Then,

GRAVITATIONAL FORCE - RESISTANCE FORCE (fR)

The nature of the resistance force changes from viscous (frictional) to 
turbulent via an extensive intermediate region as the drop size and, therefore, 
Re increase (see Table 5.8).

The resistance force is defined as the product of dynamic pressure, 
horizontal cross-sectional area A and the drag coefficient CD:

fR = k p tw 2A(^, (5.107)

where h p aw2 is the dynamic pressure. Using the definition of Re (- paw(2r)/»j) 
in Eq. (5.107), we have

fR - 6jr»jwr(ReCD/24). (spherical case)

Since fR is equal to the gravitational force for a falling sphere,

(5.108)

(
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Table 5.8 Variation of drop fall behavior.

Resistance Force Flow
Terminal Velocity 

(Rigid Body) Water Drops

Molecular
hitting
(random) « ^

Ii
Viscous r 
(slip)  ̂ J

Free-
molecular

Slip

Stokes law with 
Cunningham's correction

A varies 
(small size) 

(i)'
0 -10 Jim

Viscous
(frictional

& <x rjwr 
continuous)

Stream
line

Stokes law 

„ <<’»- '•> r!
V

(i)

1 - 100 fim

Intermediate 
a Pa/2*?1/2w 3/2r3/2

Intermediate

-P v T ;. (ii) 
100-500 fim

Turbulent
OC n 'ŴTĈ

(inertial) p r

Turbulent Newton's parabolic law 

11/2
n- P p “ Pa y. 1/2 

Pa

(iii)
> 500 fim 

Drop deforms

wmax

Turbulent Turbulent No terminal velocity 
Continuous increase

fG = 3 »rr3(pw - pa)g,

Fig. 5.50 Laws that apply 
t o  f r e e  
f a l l i n g  , 
s p h e r i c a l  
particles.

and since pw > pa, Eq. (5.108) becomes

.2
w = 2 gPwr ‘

7  ^ (R e C o /2 4 )  •
(5.109)

For very small Reynolds numbers, the Stokes 
solution to the flow field around a sphere gives 
<ReCD/24) - 1, or

ws = -g
(3.11)

which is independent of pa, and the subscript s 
stands for Stokes.

For high Reynolds numbers or turbulent 
regime of hard spheres, CD becomes independent of 
Re and CD « 0.45. Then,

w oc r1̂ 2
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For CD of spherical particles, an empirical expression proposed by White 
(1974) agrees well with experimental data for Re < 5 x 103;

(see Table 5.8) and w depends on pa.

Cb = 0.25 + | i + --- £ _ ,  (5.110)
Re 1 + f i e

(see Fig. 5.51).

The turbulence alters the vertical movement of particles: If the particles 
are small, the average vertical velocity becomes smaller than the terminal 
velocity in the still air but when the velocity scale of the turbulent air 
approaches the terminal velocity, the average fall velocity becomes larger than 
that of the still air (see Fig. 5.52).

For water drops in the atmosphere:

(i) Regime 0.5 < r < 10 mn (1(T6 < Re < IQ"2)

w — (1 + 1.26l/r)ws» (Stokes-Cunningham Equation) (5.111)

where ws is the Stokes terminal velocity, Eq. (3.11).

(ii) Regime 10 < r < 535 am (10~2 < Re < 3«102)

As r increases from 10 /im, r dependence of w begins to shift from the 
quadratic to linear. For the range 100 < r < 500 /im, w increases almost linearly 
with r (see Table 5.8).

(iii) Regime 535 zzm < r < 3.5 mm (3«102 < Re < 4>103^

The drops are no longer spherical. Velocity of large drops increases 
markedly with altitude (decreasing pressure) in the atmosphere (r - 3.5 mm, 9 m/s 
at sea level to a value in excess of 12 m/s at 500 mb). The w value becomes 
eventually independent of size for r > 2.5 mm due to a flattening effect. This 
flattening is often followed by sudden development of a concave depression and 
becomes a bag and bursts. The maximum fall velocity corresponding to the maximum 
stable size is

where a and b are the minor and major axis of oblate drop, a the surface tension, 
and it is no longer a function of size. For Re > 300, drops tend to shed 
vortices and vibrate.

Pruppacher and Klett (1978) provide some empirical expressions for the last 
two regimes.



5.62

Reynolds number

Fig. 5.51 Comparison between experimental data of drag coefficient compiled by 
Zahm (1926) and the empirical equation proposed by White (1974).

suspension

WT

preferential sweeping eddy crossing

Fig. 5.52 Three regimes of heavy particle motion (after Stout et al., 1995).
a; the velocity scale of the fluid and Wr the terminal velocity of 
the particle.



um
iNA

i 
mo

cm
 

(■

5.63

O
IQ )

O  1
(b)

o  i
(CJ 

Id)

Fig. 5.53 Drop break-up stages (Pruppacher and Klett, 1978),

Fig. 5.54a, b, c, d Numerically computed distribution of stream function and 
vorticity inside and outside a circulating spherical 
water drop in air at Re - 30(a,b) and at Re - 300(c,d) 
(Pruppacher and Klett, 1978).

Slow down due 
to flattening

Fig. 5.55 Terminal velocity of water drops (Pruppacher and Klett, 1978).



5.4.4 Drop growth by collision and coalescence (Rogers. 1976)

Suppose a drop of radius R is falling at a terminal velocity w(R) through 
a population of smaller droplets. The sweep-out volume during the fall of a unit 
distance is

’<R * r>2 i1 - < 5 - 1 1 4 )

where r is the radius of smaller droplets and w(r) their terminal velocity. The 
average number of droplets with radii between r and r + dr collected in a unit 
distance of fall is

7r(R + r)2 jl - '^(r) J  n(r)E(Rfr)dr, (5.115)

where E is the product of E' and the coalescence efficiency. When R < 100 /im, 
the coalescence efficiency is often assumed to be unity (no rebound or 
disruption). The total increase in volume of the collector drop within the unit 
distance of fall is

= J* jr(R + r)2 *jrr3E(R,r)n(r) Jl - j dr, (5.116)

5.64

or

dR
H i

(5.117)

where V is the volume of large drop.

Table 5.9 Characteristics of typical clouds (Rogers, 1976).

Cloud
type

Droplet
number
density
(cm-3)

Median 
droplet 
radius 
(i m )

Liquid
water

content*
(g/m3)

Thickness for 
20% precip. 
probability 

(km)

Hawaiian Orographic 10 20 0.5 t
Maritime Cumulus 50 15 0.5 2.5
Continental Cumulus 200 5 0.3-3.0 6

*These figures are quite variable, depending upon extent of cloud development 
f Although probability estimates are not available, clouds of this type no thicker 
than 2 km frequently produce light rain.



If the cloud droplets are much smaller than the collector drop, or

|w(r) | < |w(R) | and r + R “ R,

5.65

then Eq. (5.117) becomes

dR
■ai

EWt /t .  .— z., (Lagrangian system) (5.118)

where E is the effective average collection efficiency for the population of the 
droplets. From Eq. (5.118), we have

dR
"3t

■-r± w(R) (5.119)

Under an updraft velocity, wu, Eq. (5.119) has to be expressed by the Eulerian 
velocity, dz/dt = wu + w(R). Then, Eq. (5.119) becomes

dR EWt w(R) (Eulerian system) (5.120)
ctz 4pw wu + w(R) ’ 

which is called the Bowen equation.

5.4.5 The Bowen model: Eq. (5.120) (Continuous model)

In Eq. (5.120), important parameters are wu and WL. Under a slow updraft, 
premature fallout occurs. Although droplets are smaller under a fast updraft for 
a given altitude, they tend to experience greater sweep out and result in larger 
droplet size at a given height at their return.

Tim e , min

Fig. 5.56 Drop trajectories calculated 
assuming a coalescence efficiency of 
unity. Initial drop radius 20 /xm. 
Cloud water content 1 g/m3; all cloud 
droplets of 10 /xm radius (Rogers, 
1976).

Fig. 5.57

D iam eter, mm

Drop diameters for the trajectories 
of Fig. 5.57 (Rogers, 1976).
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5.4.6 The stochastic coalescence process

Equation (5.120) shows only an average growth rate. Rain development 
depends on statistical fluctuation for a small number of special drops. If one 
out of 105 or 106 (r — 10 jim 1 mm) happens to be such a fortunate drop, rain 
can develop from it. Although the treatment in Eq. (5.120) is continuous, in 
reality, particularly at the beginning, the growth is discrete. However, the 
discrete treatment is important only for the first 20 collisions. Thereafter, 
there is little difference between discrete and continuous treatments.

We now treat evolution of droplet size distribution based on the 
probability of collision (and coalescence) with others.

(a) Collection kernel

Similar to the coagulation constant Eq. (3.17), we can define the 
collection kernel as

K(R,r) - jt(R + r)2E(R,r) |w(R) - w(r) | , (5.121)

which is the effective sweep-out volume per second per drop. It is equivalent 
to 4fl-(r + r)2D(dn/dr) of aerosol particle coagulation in Section 3.2. Diffusion 
moves the particles toward coagulation, and here the difference of w moves the 
droplets toward coalescence. K also represents the probability of drop with 
radius R collides with a droplet of radius r in unit time, provided that both 
exist with unit concentration.

Instead of K(R,r), a volume function may be used as

H(VR,Vr) = K(R,r) = K (5.122)

Since the number of droplets per unit volume of space between Vr and Vr + dVr is

n(Vr)dVr,

the total number of coalescence per unit time experienced by drops with droplets 
of this size range is

n(Vr)dVr J" H(VR, Vr)n (VR) dVR.
(5.123)

This accounts for all possible capture of the droplets in dVr by larger drops (Vr 
< VR < oo) as well as smaller droplets by the droplets in dVr (0 < VR < Vr) .

By replacing Vr with V1 and VR with V2 , the rate of increase of droplets 
with volume Vr = V1 + V2 (a droplet of volume V1 collides with that of volume V2) 
is

* J0Vr H(U1,F2)n(V1)n(U2)dU1dU2.
(5.124)

f
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h is the factor to avoid double counting of the event. Then, the total rate of 
change of droplet concentration in the size interval dVr is

n(Vr)dVr = 4 JqV'

(rate to create droplets in dVr interval from smaller droplets)

- n(Vr)dVr £  H (VR, Vr)n (VR) dVR.

(rate to lose the droplets by growing bigger due to coalescence)
(5.125)

Equation (5.125) is called the STOCHASTIC COALESCENCE EQUATION. Examples of 
computations are given in Figs. 5.58-5.60.

5.4.7 Condensation and stochastic coalescence

After nucleation, initial growth of droplets takes place by a vapor 
diffusion mechanism; and there is a general tendency for the droplet population 
towards monodispersity (Problem 2 on p. 5.44). The coalescence process is very 
slow at the beginning. However, once it starts, it becomes very fast.

It is known that rain development takes as short a time as 15 min after 
start of condensation in some cumuliform clouds. At this moment, theory takes 
longer than the observation. For initiation of the coalescence process, 
broadening of spectrum is important to satisfy the fall velocity difference 
requirement.

5.5 Scavenging of Aerosol Particles by Precipitation Elements

Aerosol particles larger than about 1 /zm in diameter can be easily 
collected by falling precipitation elements. On the other hand, those smaller 
than about 0.1 /zm coagulate well with the elements by Brownian motion. Aerosol 
particles in between 0.1 and 1 um are too small for aerodynamical impaction and 
too large for effective Brownian coagulation, leaving a gap in collision 
efficiency (Greenfield, 1957). In the Greenfield gap, phoretic (Section 3.6) and 
Brownian capture on cloud droplets and their formation on nucleus particles help 
the aerosol removal from this zone to some extent.

5 .6 Evaporation of Rain Drops

Evaporation of an isolated rain drop is basically the same as that of a 
cloud droplet, except that because of the larger size, the temperature and vapor 
fields are distorted due to the air ventilation around it. The ventilation makes 
the evaporation considerably faster than the theory in quiescent air predicts. 
We shall next treat this ventilation effect of evaporating rain drop.

At around a falling rain drop, there exists an air flow. The flow brings 
about an advective transportation of the vapor and heat (see Appendix F) so that, 
for the case of vapor transportation (see Section 2.4),

a p  =

TE
wVp + D V2/o.

(F.l)
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Fig. 5.58 Time evolution of the liquid water spectrum; af(0)— 12 fim, var x=l 
(Berry and Reinhardt, 1974).
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Fig. 5.59 Evolution of a maritime cloud liquid water spectrum for different 
levels of turbulence (de Almeida, 1975).

Fig. 5.60

DR O P  R A D IU S  (yxm)
Evolution of a continental cloud liquid water spectrum for different 
levels of turbulence (de Almeida, 1975).

Fig. 5.61 Condensation growth of droplets vs. coalescence.
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Fig. 5.62 Numerically computed efficiency with which water drops collide by 
inertial impaction with aerosol particles in air of 10°C and 900 mb; 
(1) Re-200 (a-438 /*m) , (2) Re-100 (a-310 m )  , (3) Re -30 (a-173 /an) , 
(4) Re-10 (a-106 fim) , (5) Re-4 (a-72 fim) (Grover, 1978).

PARTICLE RADIUS (/xm)

Fig. 5.63 Scavenging coefficient as a function of aerosol particle size for 
Brownian diffusion, inertial capture, and thermo- and 
diffusiophoresis; AT-Tfl0-T-3°C, precipitation rate R-10 mm If1; 
raindrop size distribution n(a)da-(10”AR/6 7ra^a3c)a2exp(-2a/amax)da, 
with R in cm s”1; drop terminal velocity Vc-SOOOa (s”1) with a in cm, 
collision efficiency for inertial impaction based on values of Zimin 
(1964) (Slinn and Hales, 1971).

The air flow creates specific boundary layers depending on the quantities 
transported. Considering the conditions at the top of the boundary layers where 
the advectional [1st term on the right-hand side of Eq. (F.l)] and the 
diffusional terms become about the same in their magnitude and by introducing 
corresponding non-dimensional numbers, one can estimate the extent of the field 
deformation. The resultant evaporation equation for a falling rain drop is

(
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dm
Ht

dm
■at f* . ( f v = f h )

(F.14)

where

fv - 1 + C2Re1/2Sc1/3, (F. 10' )

where C2 is a constant. Since Sc = i//D - 0.6 at 0°C, 1000 mb, C2 Sc1/3 = 0.23 is
often taken under the condition. Then Re = 18.4 gives fv = 2. It is clear that 
fv becomes a large factor for large drop.

Falling rain drops cool the air by evaporation. The rate of cooling by 
individual drop can be determined by Eq. (F.14), but the total cooling depends 
on the thermodynamic treatment (see Section 1.5). The lowering of the cooled 
layer will be discussed later. Because of fv - fh> the temperature of the 
ventilated drop remains essentially the same as that of the Maxwellian drop in 
quiescent air [cf. Section 5.3.2(d)]. The air cooled by evaporation of falling 
drops causes downward air motion such as micro and macro bursts of clouds.

(
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APPENDIX A 

Velocities of Gas Molecules
The number of gas molecules, dn, whose momenta are lying between the limits 

px and px+dpx, py and py+dpy, and p2 and p2+dpz may be expressed as,

dn = e-</kTdpxdpydpz 
I T  «

SSS  e~€/kTdpxdp dp.y'+b'z

( A . l )

Since

2me = p 2 + py2 + p 2 = r 2, (A -2)

dpxdoydp2, the volume element in phase space, may be expressed by the volume 
element in polar coordinates,

dpxdpydp2 = 4jrr2dr. (A. 3)

Then, from Eq. (A.2),

dr = ( 2 m O '1/2 mdc . (A.4)

Replacing Eq. (A.4) into Eq. (A.3), we have

dpxdpydpz = 2jr(2m)3/2£1/2d€ . (A. 5)

Then, using Eq. (A.5), the denominator of Eq. (A.l) becomes

2jr(2m )3/2 J™ e"</kT£1/2d£,

where the integral is the form

JJ* e'“ x n dx = n!/an+1, (A. 6)

and in this case, x - €, a - 1/kT, n - h , and (H)! - Jk / 2 .  Hence,

CO •

SSS  e " e / k T  dPxdPydPz * (2jnnkT)3/2. (A .7)

Applying Eqs. (A.5) and (A.7) into Eq. (A.l), we obtain
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dn _ 2e1/2 0 -(a i ^  
-IT ------------------ e  a c  •

\fn (kT)3/2 (A>8)

which is Maxwell-Boltzmann's distribution of energy. 

Since

<a -9>

and introducing Eq. (A.8), we have

-  2 J* e'e/kT €3/2 d€,

Vir (kT)3/2 (A. 10)

which, again, using Eq. (A.6), leads to
(A. 11)

as we have seen on p . 2.15.

The velocity distribution of gas molecules may be obtained by observing

6 = ^ mv2 v 2 = v 2 + v 2 + v 2,

where vx, vy, and vz are velocity components in x, y, and z directions, 
respectively, and replacing

de - mvdv

in Eq. (A.8) results in

( a i 2 >

Similar to Eq. (A.9), using

’ -JT’ tt <a13)
in Eq. (A.12) results in

-(Cm _  1 mv*
1  "ET v 3 (A.14)

The integral is in the form
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f” e x 3 dx = . , . (A. 15)
Jo 2 p

Hence,

(« r (A.16)

which is the accurate expression for the average velocity of an ideal gas 
molecule, with mass m under temperature T.

We now try to obtain the average value of the component of the velocity. 
Rewriting Eq. (A.l) by introducing Eq. (A. 7) results in

dpx = mdvx, dpy = mdvy, and dpz = mdvz,

dnx _____
I "TITTr I w ~ vx | _ w *̂vy \ w

, r  \3 /2  _ 1 nxv*x lmvj _ 1 mv2,

= (-m) e ^  dv* J-« e ^  dVyJ- e 7TT dVz
Since

j: *  ■ (i)1"

Eq. (A.17) writes

n r  " [t ^ t] 6 71ET dVx> (A-19>
"\l/2 _ 1 mv*.

As before

-  f “ v xd n x

x J-« IT
(A. 20)

Applying the relation

we have

■ (-P

(A. 17)

(A. 18)

r e-rf Ixldx = 1, (A.21)
J-« 11 a

(A.22)

For positive component of vx, as opposed to negative component,
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v . r  vxdnx , f kT 11/2 (A.23)
jo  u  y 27011 j  '

Comparison of Eqs. (A.16), (A.22), and (A.23) yields

v  = 2vx = 4vx. (A. 24)
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APPENDIX B

The temperature change in the elementary volume in flt time is 

Cp/oCdr^rdfl *rsin0d0 ) = (rd0*rsinSd^)^Frdr + (dr*rsintfd0 ) -^.Fed0

elementary volume area ± r area 1 dfl

+ ( d r » r d 0 ) - ^ F 0d ^ ,  

area 1 d</>
(B.l)

where

3T 3T K0 . dTFr , Ffl Kd T M , Fe ^ (B.2)

For an isotropic space,

Kj. * K„ = K 0 = K ,  and k = K /C p p , (B.3)

( '



3T
T t

= * a L  9t1 . 1 a f .  1 fa2T]
"  7* [3r[ T i \  T W ^ [ Sln^ J

The Laplacian of T for the spherical coordinate from Eq. (2.30) is

V2T = - p [ ^ ( r 2! l )  + -£TE7 - ^ ( s in * l l )  +

Other orthogonal systems can be treated the same.

(B.4)

(B. 5)

B.2
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Steady Flow Past a Rigid Sphere - Stokes Drag

In the two-dimensional motion of incompressible fluid, stream function r/> 
is defined to represent the flux by the difference between ^2A at Point A and ^2b 
at Point B. ^2A ~ V*2B = 0 or ^  “ const gives the streamline.

If ds is an arc of a curve and the direction of the fluid motion is 
perpendicular to the arc, it becomes clear that

dV>2/ d s = v 2, (C.l)

where v2 is the fluid velocity.

On the x-z plane of the cartesian coordinate,

di/>2 di>2 
" W  S F ’ (C.2)

where w and u are velocity components in z- and x-directions, respectively.

When a solid of revolution moves in the direction of its axis of rotation 
in a fluid, or vice versa, and the motion is irrotional, similarly Stokes' stream 
function (sometimes known as the current function), 2? r m a y  be defined in 
relation with the axisymmetric flux. = const also gives _the streamline. For 
ds element of a curve with a radial distance from the axis, w, to which the fluid 
motion is perpendicular with the velocity, vn, similarly to Eq. (C.l), the flux 
connects to the stream function as

27rw(ds)vn = 2tt dV>, (C.3)

where d^ is the difference of ^ on ds, or

( c -4)

In the spherical coordinate with z as the axis of rotation, w = r sin 0 , r being 
the radial distance, and Eq. (C.4) becomes

vr = - } W ,  ve = } , W '  (c.5)
r r s m e T f f i  9 rsinfl T r

APPENDIX C

The Stokes stream function far away from the sphere can be obtained by 
integration of Eq. (C.5) and setting v# = w® sin 6 at r = «, as

* ■ . ( c 6 )

where w#, is w of the uniform stream.



For steady, creeping flow around the sphere, it was shown (Milne-Thomson, 
1955) that, by neglecting the quadratic terms in the equation of motion,

Ety = 0, (C.7)

holds, where, in the spherical coordinates,

1 al sin 6 ~ST)
(C. 8)

Equation (C.7) has to be solved with 3 boundary conditions;

(1) vr = 0 at r = r r:radius of the sphere (C.9)

(2) v* - 0 at r * r (C.10)

(3) yj> = - -̂ .WooẐ sin2# as r -* « (C.6)

Condition (3) suggests that Tp(r ,$) is of the form

yj> = f(r) sin20. (C.ll)

Substitution of Eq. (C.ll) in Eq. (C.7) with Eq. (C.8) gives

<ci 2>

A trial solution of the form f(r) = C^r11 may be applied to Eq. (C.12);

[(n - 2)(n - 3) - 2] C^ " 3 [n(n - 1) - 2] = 0,
or

[(n - 4)(n - 1)] [(n - 2)(n + 1)] = 0. (C.13)

n = -1, 1, 2 and 4 satisfy Eq. (C.13). This is to say that f(r) is a linear 
combination of these terms, i.e.,

f ( r )  = - 1  + C3r + C ur 2 + C5r A. (C.14)

In order for Condition (3) to be satisfied, C5 = 0, and C4 = -^Wa,. Then Eq. 

(C.ll) becomes

r/>(r,0) = + C3r - ^.w^r2! sin20 . (C.15)

Replacing Eq. (C.15) into Eq. (C.5), we have



C.3

(C.17)

w _ r‘
Equations (C.16) and (C.17) under Conditions (1) and (2) yield C2 - ^— and C3

3w,or ,
— —  , so that

I i
wm

1 - cos 6 , (C.18)

and

Z l l - 4 l  -i l l sin 0, (C.19)

and

~T (** -  7 "  * £ ] s i r f '

(Bird, et al., 1960).

(C.20)

The viscous stress tensor tangential to the spherical surface on the 
meridian plane may be obtained applying Eq. (2.16) to Eq. (C.20), with r » r, as

3 *?weo f r l  . , 
- ‘ 7  —  r  S ln '

( C . 21)

Under the present slow flow condition or small Re, uVu term in Eq. (3.4) 
etc. can be ignored compared with i/V2u term etc. Then, the Navier-Stokes 
equation condenses into the form

(C.22)

where v is the velocity component in the y-direction. By differentiation of the 
continuity equation for incompressible fluid,

d n  3v . dw _ n
"3x "3y TS ’

(C.23)

and comparing it with Eq. (C.22), we have

V2p * 0. (C.24)

Considering that the pressure is higher on the upwind surface (lower side) 
of the sphere, the simplest solution of Eq. (C.24) or the pressure field takes 
the form



p - T , . - 2 $ ,  (C.25)
r 3

where

z = r cos $, (C.26)

and

r = ̂ x2 + y 2 + z2 . (C-27)

C.4

Equation (C.25) may readily be shown to satisfy Eq. (C.24) in the spherical
coordinate with dp/d<j> — 0 , where ^ is the longitudinal angle, with the
axisymmetry of the flow. C4 may thus be determined from Eqs. (C.18) and (C.22) 
as

C4 -|«?w.r, (C. 28)

or Eq. (C.25) becomes

„ „ _ 3 *?w«i I rl2 a (C.29)
P " Poo = ~ -2 -^-1 — I cos0.

The pressure force acts normal to the spherical surface and the z-component 
of this force is -(p - p*) cos $ per unit area of the surface, and the surface 
area element is rd0 • r sin 6 d</>. Then the drag force due to this pressure force 
may be integrated over the spherical surface:

Dn = Jq2* J* [-(p - Poo | r=r cos 0]r2sin0 d6 d</>. (C.30)

= 27rrjw«r, (C.30')

which is called "form drag."

The z-component of viscous stress tensor r sin 6 may be similarly 
integrated over the surface of the sphere to yield "frictional drag"

Df = 47rrj Wc r. (C.31)

The Stokes drag is therefore obtained as

D * Dn + Df = 6nrj w* r. (C.32)
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APPENDIX D 

Diffusion of Aerosol Particles

To describe the diffusion of small particles by Brownian motion, we shall 
follow the treatment of Einstein and Smoluchowski:

Let A denote the molecule (aerosol particle) displacement on either side 
of the plane of transit in a horizontal cylinder of unit cross- sectional area. 
On both sides of the plane, compartments of depth A exist.

The average rate of displacement of molecules in either compartment is A/t; but, 
as both forward and backward directions of motion are equally probable, the 
number of molecules crossing the plane of transit per unit time from the left 
compartment is only (1/2) n x(A/t) , where nx is the concentration of molecules in 
that compartment. Similarly, the number crossing the boundary per unit time from 
the right-hand side to the left is only (1/2) n2(A/t) . Hence, the number flux 
from the left to the right is

F = 1 A(ni 
n 1 ---- i

n 2) (D.l)

However, the gradient of number concentration is

dn _ n2 - 
"3x A ’

(D.2)

On substituting these expressions into Fick's first law of diffusion, Eq. (2.19), 
with nm = p ,

A2
TE ’ (3.13)

which is the diffusion law of Einstein and Smoluchowski. 
applicable to aerosol particles.

Equation (3.13) is also

Next, let us describe D for aerosol particles, again following Einstein. 
Suppose diffusion aerosol particles move across the boundary with the steady 
velocity u, so that we have, with viscous resistance force of Eq. (3.6),



D . 2

Fn "  nU "5 lO ir (D.3)

In the atmosphere, the concentration gradient of air molecules is supported 
by the gravitational force. Then, the force acting on the boundary of unit area 
is

dp = R,Tdpa = padzg = f. (D.4)
Since the number of molecules in the volume in question is padz/m, Eq. (D.4) can 
be written for a single molecule as

(D.5)
The same concept is applicable to the aerosol particles in their number 
concentration gradient. Substitution of Eqs. (D.3) and (D.5) expressed in the 
x-direction into Fick's first law of the form

(D. 6)
yields

(D. 7)
For small particle size or large Kn, with Cunningham's correction factor to 
account for the slip flow, Eq. (D.7) becomes

D = kT^l + M . (3.14)

( :
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APPENDIX E

Classical Theory of Homogeneous Nucleation 
of Water Vapor Condensation

(cf. Appendix E')

Distribution of molecules in phase equilibrium
In thermodynamic equilibrium of two phases, the number concentration of 

molecules, n, takes the forms for species A and B;

and
nA = C exp (—Ea/TcT) , (E.l)
nB = C exp (-EB/kT) , (E.2)

where EA and EB are free energies of the respective states and C a constant.
If Ea < Eb, 
for low T, nA »  nB 
for high T, nA ^ nB.
Under the equilibrium, the molecular 

fluxes from State A and those from State B 
are matching. Thus, for the given 
temperature, the lower the energy level is, 
the more abundant the molecules are. A 
similar relationship was assumed between 
the number concentration of clusters and 
their free energy level.1 Under
equilibrium, the larger clusters carry more 
energy, and they are scarce. Growth of a 
new phase or nucleation is thought to 
start from the larger and more scarce

Fig. E.l T h e r m o d y n a m i c  
relationship beween 
t h e  n u m b e r  
concentration of 
molecules, n, and the 
energy level, E.

critical clusters, as the thermodynamic condition becomes favorable for the 
change. To examine the problematic contemporary or classical nucleation theory, 
we shall look into the homogeneous nucleation of water vapor condensation.

Strictly speaking, this relationship applies only to number 
concentration of molecules in the equilibrium of two phases divided by 
a flat surface. As shown in Section 5.1, the equilibrium distribution 
of clusters is decided by the rate balance between the formation and 
disintegration of clusters. The critical embryo of classical theory is 
merely the Kelvin particle of the nucleation environment which does not 
possess a critical nature, the vapor pressure maximum. As explained in 
Section 4.4, the cluster of the true vapor pressure maximum plays the 
role of critical embryo.



Equilibrium distribution of molecular clusters (Cluster Ensemble)2
In the cluster ensemble, the forming and disintegrating molecular clusters 

are said to be under equilibrium according to their number concentration and 
energy level as shown above.

Ai + Ax 5* A2 (Ax: a single molecule)
A-2 + A-i ** A3

A ^  + A2 ** Ai (Ail a cluster consisting of i molecules)
There are other routes for forming the cluster distribution, such as 

A-i-2 + A2 ** Ai, etc. ; 
but they are much less probable compared with the single molecule steps.

Using the assummed feature of the ensemble,
rii/ri! = expf-CGi - G^/kT], (E.3)

where Gi — Gx = AG is the Gibbs free energy for formation of a cluster consisting 
of i molecules (i-cluster). According to Abraham, the Helmholtz free energy 
should be used instead of the Gibbs, but the amounts of their variations are the 
same when AT = 0. Therefore, we proceed with Gibbs free energy. Equation (E.3) 
is used to describe the equilibrium distribution of clusters as mentioned above. 
As can be seen from Eq. (E.3), the number concentration of single molecules 
(monomers) is by far the largest; and as the size of the clusters increases, the 
concentration rapidly decreases. In order to accurately estimate the cluster 
concentration, the free energy of formation must be evaluated.
Free energy of embryo formation

When a molecular cluster forms, there are two kinds of energy involved, one 
associated with the bulk volume and the other with the surface. The free energy 
of embryo formation may be expressed as

AG — nL(/iL — /iy)V + 0lvA, (E.4)3
where nL is the number of molecules per unit volume of liquid water, /zL the 
Gibbs' free energy per molecule in liquid of flat surface, fiv G per molecule in 
the vapor (supersaturated), and aLV the surface free energy per unit area at the 
liquid (L)-vapor (V) interface. Using Eq. (4.12) with e* for liquid water of 
flat surface, the free energy difference may be given as

2 A controversy exists over the replacement free energy (Lothe and Pound, 
1962) in argument between thermodynamic and statistical-mechanical 
theories. In addition, the equlibrium distribution of clusters appears 
impossible even in statistical mechanics violating the laws governing it 
(cf. Appendix E' ) .

3 Note <jlv — f(r), although it is treated as a — a* * constant here.
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Fig. E.2 The equilibrium distribution of droplets: curve (a) in a saturated 
system; curve (b) in a supersaturated system. ng is the number of 
droplets that contain g molecules, n0 is the total number of 
molecules in the system, g is the critical size (From Farley, 
1952).4

(Ml - Mv) = -jj(gL " Sv> “ -kTln(e/e„) . (E.5)
Inserting Eq. (E.5) into Eq. (E.4), and using spherical expressions for V and A,

4?r 3  l r T l - n /  o  / o  N x  / * f l r v 2 / -AG « -I^_r3nLkTln(e/e<0) + 4?rrzaLV. (E.6)

Fig. E.3 The free energy of embryo formation, AG, as 
radius, r.

a function of the

Nucleation
From Eq. (E.6), it is immediately apparent that AG is a cubic function of 

r, passing the coordinate origin with a maximum in the zone where r is positive. 
If there is a maximum in the r-positive zone, G decreases beyond the point 
indicating the possibility of automatic growth or nucleation. To find the

4 This relationship does not satisfy the steady state current requirement.



critical condition for nucleation, assuming a to remain constant, by 
differentiating Eq. (E.6) with r and setting it to be zero or d(AG)/dr = 0,

# _ 2 aLV
r r^kTln^/e*) ’ (E.7)5

E.4

where r* is the critical radius of the embryo. Equation (E.7) is also the Kelvin 
equation. Replacement of Eq. (E.7) into Eq. (E.6) yields

A G * = -----------1 6 ™ l v --------  = * n r * z o L V ,3[ r^kTln (e/e*) ] 1 (E.8)

where AG* is the free energy of critical embryo formation.
Nucleation rate (see Appendix E' )

When nucleation happens in the ensemble, through the subsequent growth, the 
embryo is removed and molecular clusters redistribute to establish the original 
status. Thus, a current of critical embryos appears.

For the nucleation, the critical embryo has to acquire molecules so that 
the growth becomes thermodynamically possible. This rate of molecular 
acquisition by the embryo is proportional to the arrival rate of molecules at the 
surface. Since the number of molecules hitting per unit area per unit time is 
given as,6

nvx = e/v̂ 27rmkT , (E.9)

the forward nucleation rate ? — (the rate of molecular acquisition over the 
entire embryo surface) x (the number of critical embryos per unit volume), or

? - B*n1exp(-AG*/kT) , (E.10)

A  = n(r*)
where

B = (e/V2wmkT) »4irr*2»/9f (E.ll)

In the zone of r < r*, AG decreases (the direction of natural change) 
with r decrease, i.e., evaporation of the critical embryo has to be 
thermodynamically enforced. It has been assumed that the nucleation 
current (formation of clusters through the route starting from monomers 
to dimers to trimers and so on with each cluster interacting with the 
monomers, as shown on p. E.3), is supplied by "fluctuation" against this 
thermodynamic barrier. However, such a statistical-mechanical 
fluctuation is also virtually impossible (see Appendix E').

e = pRyT = run* = nkT nvx = e/^jrmkT

(



P being the condensation coefficient, 
nucleation rate is

E. 5
Considering the backward rate, the net

J = [ln(e/e<o)/8r*3nL]1/2*? • (s m3)”1 
=*0.1 (Zeldovitch factor) 

Computation of homogeneous nucleation rate
Using Eqs. (E.7), (E.8), (E.10), and (E.12),

0. Iej847rr *2nx J =  i exp
y/lirrnkf""

16na3 m 1
3 [ i \k T ln ( e / e a ) ] z "ET

Setting [ln(e/em]2 = X and taking the logarithmic form,

(E.12)

(E.13)

In J = In 0.1 epUitmb(j2,'n1

V2jnnkT ‘ (t^kT)2
In X - 16?T<73

3(i^kT)2kT

b

1
TL'

Conditions: T=273,2 K , e«,=6. lxlO3 dyne cm-2, /J=l, a—75.7 dyne cm x 
k=1.38xl0-16 erg K-1 (assume e = e* in a)

a = In
0. 1 x6 . 1 x 103 xlx4x3.14x4x75. 72x ̂ 6.02xl023x 1 22400
. 14 x 18xl.38xl0-«„„, f 6.02xl023 v 1 .38x10 "16 x 273.2]|̂ 2x3

6 .02xl023 J I 18

= In (6 . 7 185 x 1024) = 1.905 + 55 . 2 62 = 57.167 
lnx = 2 . 302585 log10x, log10x = 0.4342945 lnx

b =
3 | u • 021̂ 1023 x 1.38 x 10

16 x 3 .14x 75.73 
T~

ln J = 57.167 - lnx - 
x 1.0

121.2
x
1.5

16x2 7 3 .2 j
=121.2

x 1.38 x 10'16 x 273.2

2.0 2.5 3.0
e / e a 2.718 3.403 4.113 4.861 5.652 
InJ -64.03 -24.04 -4.126 7.77 15.668
J 1.55xl0-28 3.63xl0_n 1.61x10~2 2.37xl03 6.38xl06

(
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Fig. E.4 Homogeneous nucleation of water vapor in air. Calculated values of 
natural logarithm of nucleation rate J as a function of saturation 
ratio (J is the number of germs formed per second in 1 cm3 of air 
calculated for = 1) (Dufour and Defay, 1963).

Dimensions
Using Eq. (E.13),

0. Iey84jrr *2nx J =  i exp (number)
^2jrmkT

_ kg m m2 f s 2 y /2 _ 1
= s*  m* m3 lk g -k g .m 2J " 7 ^  •

f
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Problems and Controversies Associated with Theories 
of Homogeneous Nucleation

(a) Cluster distribution in the nucleation current
The cluster distribution expressed by Eq. (5.3) was thought to have been 

originally derived by Becker and Doring (1935) by a thermodynamic method with 
considerable approximations, but the method contains a serious contradiction. 
Thermodynamics deals only with average and equilibrium values. The relationship 
between number concentration of particles and free energy holds for the exchange 
of molecules in phase equilibrium, and the free energy difference describes the 
distribution of the molecules among the phases without involving surface free 
energy change (see Section 1.4). Application of the mass action law for 
description of number concentration of clusters faces the same restriction. The 
vapor pressure or the number concentration of molecules (not the clusters) (cf. 
p — nkT) only indirectly contributes formation of clusters and their 
concentration during nucleation, so as to satisfy the steady-state requirements 
of the current. Thus, the a priori distribution of clusters like Eq. (5.3) 
regardless of nucleation current in the classical nucleation theory is a 
violation for the condition of the current, the steady state.
(b) Replacement free energy controversy

Conventional statistical mechanics states that the partition function 
(p.f.) describes the probability or the number of state. If so, the number of 
state or clusters in Eq. (5.3) could be obtained by p.f. as was pointed out by 
Frenkel (1946). Later, Lothe and Pound (1962) actually carried out the 
computation, which resulted in a large discrepancy with the thermodynamic 
(classical) theory of Becker and Doring (the replacement free energy 
controversy) . Two books (Abraham, 1974; Zettlemoyer, 1977), as well as numerous 
papers, have been published regarding this controversy. Experimental evidence 
appears in general to favor the classical theory, while Abraham takes a totally 
conventional statistical mechanical view; and the matter has remained unsettled 
for a long time.

Although the statistical mechanical probability is restricted to phase 
equilibrium where no surface area change is involved in molecular exchange or 
with the flat surface only. For cluster formation, surface free energy change 
is involved being associated with the surface area change, and the conventional 
statistical-mechanical method does not apply. Furthermore, misconception in the 
fundamental structure of statistical mechanics has recently been found. Its 
restructuring is currently underway, together with the refinement of 
thermodynamics.

APPENDIX E'
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(c) The nucleation current leading to the so-called "critical embryo"

Experimental results are said to be in favor of the classical theory, but 
a close examination of the theory has revealed another fundamental misconception. 
The classical theory of nucleation relies on the concept of critical embryo 
formation which is a function of the environmental condition (supersaturation). 
Nonetheless, the clusters that are smaller than the critical one must carry a 
current from the monomers. As their vapor pressures are higher than that of 
critical embryos (see Fig. 4.7), the latter being approximately the vapor 
pressure of the nucleating environment in question, such small clusters face 
extreme difficulty for their growth from the environmental vapor. For the dimer 
formation in the environment, the vapor molecules must flow from the saturation 
ratio S « 5 to the dimer surface with S « 140. It is normally stated that the 
statistical mechanical fluctuation would provide such a current towards the 
critical embryo by growing smaller clusters, but the current cannot be sustained 
because there always exists another and far larger fluctuation current towards 
subcritical clusters in the reverse direction and the net nucleation current is 
given by the difference of these two fluctuations.
(d) The "critical embryo"

In the classical nucleation theory, a concept of "critical embryo" was 
included, apparently influenced by the "activated complex" in chemical reaction 
at the time of the theoretical development. An activated complex shows both 
energy and vapor pressure maxima, and clearing of the energy maximum permits the 
change to proceed further. In the classical theory, a cluster which has vapor 
pressure the same as the nucleating environment, or the Kelvin particle under the 
condition, is called the critical embryo. The embryo does show a maximum in the 
free energy of its formation but it does not for the vapor pressure. Therefore, 
the embryo does not possess the critical nature, or in the classical theory of 
homogeneous nucleation, the "critical embrvo" does not exist. In this regard, 
the classical theory is inconsistent with the theory of solution droplet 
nucleation or Kohler equation (see Section 5.1.6).

This contradiction is due to the use of a - a*, and it has been recently 
resolved by the use of the new generalized Kelvin equation (4.12) with the help 
of the new relationship for a - f(r) (see Figs. 4.3 and 4.7). The cluster with 
the new vapor pressure maximum must be the true critical embrvo (heptamer for 
nearest neighbor interaction model and the larger for long range interactions). 
The true critical embryo does not change size according to environmental 
supersaturation and is a property of the chemical substance facing the 
nucleation.

The new theory also explains the appearance of opalescence, the dependence 
of rate on carrier gas pressure, and time lag phenomenon near but slightly below 
the supersaturation of homogeneous nucleation.
(e) Temperature of clusters

Growing droplets sustain higher temperatures under steady state in order 
to allow the generated heat of condensation to escape from the surface so that 
vapor arrival or condensation can continue (see Section 5.3). This heating 
amounts to about 0.1°C per 1% supersaturation at an environmental temperature of
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10°C, pressure 1 atm, droplet radius 10 /xm, a' - 1.0, f)' - 0.0415. While 
existence of the condition, a' < 1 and /}' <1, reduces the surface temperature 
to some extent, the heating reaches as much as 40#C if S * 5 occurs for 
homogeneous nucleation. Nevertheless, small clusters cool down to a temperature 
close to that of the environment under the steady state as shown in Section 
5.3.3. On the other hand, they receive shocks of heating and cooling whenever 
a molecule is received or lost. Since the classical nucleation theory assumes 
an isothermal condition in the system, this heating may bring some error.

(f) The empirical nature of classical nucleation theory
The classical theory takes the condition of a - a*, which holds 

approximately for large clusters. Since the problematic critical embryo of the 
theory places itself somewhat close to the real one, the former behavior is 
reasonably close to the latter. With the accidental coincidence in the rate, the 
classical theory is usable as an approximation.
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APPENDIX F

The Effects of Air Ventilation Around a Falling Rain Drop

Suppose a rain drop falls and evaporates in air which is assumed to be 
incompressible. The vapor transportation away from the surface is carried out 
by diffusion as well as advection. By placing the coordinate origin at the 
center of the drop, the time rate of change of vapor density at an arbitrarily 
fixed space point in the flowing air is expressed by two terms, one by advective 
transportation and the other by diffusion (see Section 2.4);

4^ = -wVp + DV2p. /
T t  H * (F.l)

Under the steady state or d p / dt = 0, (F.l) becomes
wVp = D V2p . (F.l')

Now, as we have done in Sections 3.2 and 3.3, we try to estimate the relative 
magnitude of the molecular diffusion and advective transport processes by 
introducing the dimensionless Peclet number, expressing the ratio of the terms 
involved in Eq. (F.l');

I I a WaB̂ ” ~ Psr)/^ _ m p e  ( F .2 )1
DV2p D (pa - psr/d2 D ’

where d = 2r is the diameter of the rain drop.
Since the dimensionless Schmidt number is defined as

S c "T5’ (F. 3)

from Eqs. (3.5), (F.2), and (F.3), we have
„ „ Wad „ „Pe = _ •--  = ScRe. /ND u (F.4)

For the momentum transportation, Eq. (F.l) can be modified, by replacing 
p with w and D with u,

4^ = -wVw +^t * (F. 5)

1 Using (5.46) at r - 2r, we have

P = ^(P« Psr) »

which is the average of vapor density at the environment and that at the 
surface. Knowing at the surface p - psr and the distance from that point 
is r, the average gradient is |p«, - psr|/2r.
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MOMENTUM BOUNDARY 
LAYER

CONCENTRATION BOUNDARY^
LAYER

Fig. F.l Schematic diagram of the development of momentum and concentration 
boundary layers over a flat plate at high values of the Peclet 
number.

which under steady state, reduces to [cf. Eq. (3.4)]
wVw = (F.5')

In Eq. (F.5'), the left-hand term represents the inertia effect and the right- 
hand one the viscous effect. When Re > 1, a momentum boundary layer exists; and 
both terms are considered to be in the same magnitude:

I wVw | _ w2 Sly _ Re 5,
"3"

2
rav -| (F .6)

or

(F.6')
where <5̂  is the thickness of the momentum boundary layer.

For vapor diffusion, a boundary layer also exists, with a thickness <5D 
within <5̂ . Inside the boundary, the diffusion process dominates, and outside, 
the advection process controls the vapor transport. At the boundary layer, both 
processes have comparable magnitudes, so that for Re «  1,

I wVp i , „  (w«5D/ d ) [  (P® "  P s r ) / 11] _ 5D
I T\n2 _ I ZTZ v / j  3 9DVzp Psr)/5S (F.7)

or

ZR - Pe ~1/3. d (F.7')

Equation (F.7') suggests that since the vapor density gradient at the 
surface of the rain drop is inversely proportional to <5D, the steady state vapor 
flux in the quiescent air Fvo is enhanced by a factor proportional to Pe1/3 or

Fv = Fvo(l + CjPe1/3) , (F .8)

where Cx is a constant. Cx has been experimentally estimated to be about 0.5.
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For larger drops with Re > 1, Eq. (F.7) becomes

I wVp I w ̂  a (wa)i5|j/6niv)[ (pa) — Pgj)/dJ 
DV^ D(p.  -  p .r) /« g  (F .9 )

or using Eqs. ( F . 2 ) ,  ( F . 4 ) ,  and ( F . 6 ' ) ,  we have
ij “Sc"1/3Re_1/2. ,^  ( F .10)

Then Eq. ( F .8 )  may be modified to
Fv = Fvo( l  + C2Sc1/3Re1/2) + F ^ ,  ( F . l l )

where C2 is a constant and fv the ventilation factor for vapor transport. 
Experimentally, it was determined that 0.25 < C2 < 0.5. C2 — 0.276 is used in 
Green and Lane (1964).

For the heat conduction process, k — K/cppa corresponds to D in the vapor 
diffusion. So, similar to Sc, we can define the non-dimensional Prandtl number 
as

Pr = (F.12)
Then, the corresponding correction for the heat flux due to the drop fall, for 
Re > 1, is

Fq = FQo(1 + C3Pr 1/3Re1/2) = FQofh, (F.13)

where C3 is a constant and fh the ventilation factor for heat conduction.
The corrections for Fvo and Fqo, i.e., fv and fh, can be attached to D and 

k (or K) , since D and dp/dr are mathematically equivalent and fv modifies dp/dr. 
Similarly, fh can be combined to K to yield, from Eq. (5.53),

_ Tr - T* _ DL^l + C2Re1/2Sc1/3)
Psr " P« K(1 + C3Re 1/zSc1/3) ' (F. 14)

Since D « k , Pr ^ Sc. Then, fv « fh. Hence, the two bracketed terms on the 
right-hand side of Eq. (F.13) can be set to unity, which is the normal practice. 
This is to say that the deformations to the vapor and temperature fields around 
the falling rain drop are about the same. Thus, for the falling rain drop

dm _ f dm 1 . ̂
■at ['atJM (f .is)

where (dm/dt)M is the Maxwellian evaporation rate of rain drop in the quiescent 
air.


