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A b stract
W hen applying tex t learning algorithm s to  
com plex tasks, it is tedious and expensive to  
hand-label the large am ounts of tra in ing  d a ta  
necessary for good perform ance. This pa­
per presents boo tstrapping  as an alternative 
approach to  learning from  large sets of la­
beled d a ta . Instead of a large quan tity  of la­
beled d a ta , this paper advocates using a small 
am ount of seed inform ation and a large collec­
tion  of easily-obtained unlabeled d a ta . B oot­
strapping  initializes a learner w ith the seed in­
form ation; it then  iterates, applying the learner 
to  calculate labels for the unlabeled d a ta , and 
incorporating some of these labels into the 
tra in ing  inpu t for the learner. Two case studies 
of this approach are presented. B ootstrapping 
for inform ation extraction provides 76% preci­
sion for a 250-word dictionary for extracting  
locations from  web pages, when sta rting  w ith 
ju s t a few seed locations. B ootstrapping a tex t 
classifier from  a few keywords per class and 
a class hierarchy provides accuracy of 66%, a 
level close to  hum an agreem ent, when placing 
com puter science research papers into a topic 
hierarchy. The success of these two examples 
arffues for the  strength  of the ffeneral boot-O O O
strapping  approach for tex t learning tasks.

1 In trodu ction
Text learning algorithm s today are reasonably successful 
when provided w ith enough labeled or anno ta ted  tra in ­
ing examples. For instance, tex t classifiers [Lewis, 1998; 
Joachim s, 1998; Yang, 1999; Cohen and Singer, 1996; 
Schapire and Singer, 1999] reach high accuracy from 
large sets of class-labeled docum ents; inform ation ex­
trac tion  algorithm s [Califf, 1998; Riloff, 1993; Soder- 
land, 1999; Freitag, 1998] perform  well when given m any 
tagged docum ents or large sets of rules as input. How­
ever, as m ore com plex dom ains are considered, the req­
uisite size of these tra in ing  sets gets prohibitively large. 
C reating these tra in ing  sets becomes tedious and expen­
sive, since typically they m ust be labeled by a person.

This leads us to  consider learning algorithm s th a t do not 
require such large am ounts of labeled data .

W hile labeled d a ta  is difficult to  obtain , unlabeled  
d a ta  is readily available and plentiful. Castelli and Cover
[1996] show in a theoretical framework th a t unlabeled 
d a ta  can be used in some settings to  improve classifi­
cation, although it is exponentially less valuable th an  
labeled d a ta . Fortunately, unlabeled d a ta  can often be 
obtained by com pletely au tom ated  m ethods. Consider 
the problem  of classifying news articles: a short Perl 
script and a night of au tom ated  In ternet downloads can 
fill a hard  disk w ith unlabeled examples of news a rti­
cles. In contrast, it m ight take several days of hum an 
effort and tedium  to  label even one thousand  of these, 
depending on the natu re  of the task.

However, one cannot learn to  perform  classification 
from  ju s t unlabeled d a ta  alone. By itself, unlabeled d a ta  
describe the d o m a in  of the problem , bu t not the  ta sk  over 
the  dom ain. Thus, unlabeled d a ta  m ust be coupled w ith 
a t least some inform ation about the target function for 
the learning task. This ta rget, or seed, inform ation can 
come in m any different forms, such as keywords or fea­
tures which m ay appear in examples of the target classes, 
or a sm all num ber of examples of the target classes.

This paper advocates using a boo tstrapping  fram e­
work for tex t learning tasks th a t would otherwise re­
quire large tra in ing  sets. The inpu t to  the b oo tstrap ­
ping process is a large am ount of unlabeled d a ta  and a 
sm all am ount of seed inform ation to  inform  the learner 
about the specific task  a t hand. In this paper we con­
sider seed inform ation in the form  of keywords associated 
w ith classes. B ootstrapping initializes a learner w ith the 
keywords. I t then  iterates, applying the learner to  hy­
pothesize labels for unlabeled d a ta , and building a new 
learner from  these boo tstrapped  labels.

We present two instan tia tions of the boo tstrapping  ap­
proach for different tex t learning tasks. The first case 
study is learning extraction patterns and dictionaries 
for inform ation extraction, using keywords and a parser 
as the  only knowledge supplied. We use a com bination 
of two classifiers: a noun-phrase classifier and a noun­
phrase context classifier based on extraction  patterns. 
T he seeding gives us a sm all num ber of relatively reliable 
tra in ing  examples (noun phrases), which we then  use to
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boo tstrap  the two classifiers. During the bootstrapping  
process the ou tp u t of one classifier becomes the input 
for the  other. The noun phrases help us identify good 
extraction patterns, and the extraction patterns help us 
identify new noun phrases. This com bined b oo tstrap ­
ping is nested inside a higher level of bootstrapping, 
called m eta-bootstrapping , which identifies the m ost reli­
able noun phrases generated by the inner bootstrapping  
loop.

We perform  experim ental evaluation of the inform a­
tion  extraction boo tstrapping  algorithm  by generating 
dictionaries for locations from  corporate web pages used 
in the  W ebKB project [Craven et ah, 1998], M eta­
boo tstrapping  identifies 191 location phrases in the web 
pages. After 50 iterations, 76% of the  hypothesized loca­
tion  phrases on the web pages were true  locations. This 
algorithm  has been described in isolation in [Riloff and 
Jones, 1999]; here we place it in to  the larger context of 
boo tstrapping  for tex t learning.

The second case study of boo tstrapping  is docum ent 
classification using a naive Bayes classifier, where knowl­
edge about the classes of interest is provided in the  form 
of a few keywords per class and a class hierarchy. We 
present extensions to  naive Bayes th a t succeed in this 
task  w ithout requiring sets of labeled tra in ing  d a ta . The 
extensions reduce the need for hum an effort by (1) using 
keyword m atching to  autom atically  assign approxim ate 
labels, (2) using a sta tistical technique called shrinkage 
th a t finds m ore robust param eter estim ates by taking 
advantage of the hierarchy, and (3) increasing accuracy 
further by itera ting  E xpectation-M axim ization to  prob­
abilistically reassign approxim ate labels and incorporate 
unlabeled data .

Experim ental evaluation of the docum ent classifica­
tion  boo tstrapping  approach is perform ed on a d a ta  set 
of com puter science research papers, A 70-leaf hierarchy 
of com puter science and a few keywords for each class are 
provided as input. T h irty  thousand  unlabeled research 
papers are also provided. Keyword m atching alone pro­
vides 45% accuracy. Our boo tstrapping  algorithm  uses 
this as inpu t and ou tpu ts a naive Bayes tex t classifier 
th a t achieves 66% accuracy. Interestingly, this accuracy 
approaches estim ated  hum an agreem ent levels of 72%.

This paper proceeds as follows. Section 2 discusses 
the general fram ework of the boo tstrapping  process and 
outlines the  design space of boo tstrapping  algorithm s. 
Section 3 presents one in stan tia tion  of boo tstrapping  for 
inform ation extraction. A second exam ple, for tex t clas­
sification, is given in Section 4. R elated work is presented 
in Section 5, and discussion follows in Section 6.

2 O verview  o f B ootstrap p in g  A lgorith m
B ootstrapping is a general fram ework for im proving a 
learner using unlabeled d a ta . Typically, bootstrapping  
is an iterative process where labels for the unlabeled d a ta  
are estim ated  a t each round in the process, and the labels 
are then  incorporated as tra in ing  d a ta  into the learner. 
T he boo tstrapping  described in this paper consists of the

* In itia liza tion :  A sm all num ber of hand-chosen seed 
inform ation (in this paper, keywords) for each class 
are applied to  the entire set of unlabeled examples, 
resulting in labels for those examples m atching the 
keywords.

* Itera te  Bootstrapping:

— Using Labels to Im prove the Model: The infor­
m ation  from  the labeled examples is used to  
generate a new, m ore reliable, model.

— Relabeling: The model is used to  generate new 
labels for the unlabeled data .

2 .1  I n i t i a l i z a t i o n

In bo th  instan tia tions of boo tstrapping  in this paper, 
seed inform ation is provided in the form  of keywords. 
The text-learning tasks we address involve the con­
ten t and topics of docum ents and parts of docum ents, 
which previous research on feature selection has shown 
to  be a t least partia lly  discernible from  a few individ­
ual words w ithin the tex t [Lewis and R inguette, 1994; 
Cohen, 1996]. We do not require the keywords to  label 
all examples, nor do we require every label they provide 
to  be correct. Instead, we expect these labels to  give us 
areas of greater-then-random  confidence from  which to  
begin a clustering process.

In general, keywords tend  to  have the natu re  of high 
precision and low recall. For exam ple, Cohen [1996] 
showed th a t his system  R IP P E R ,, using only five words 
in the feature set, can grow rules which classify titles 
of A P news articles w ith 86% precision, a t a recall level 
of 18%. This property is often an im portan t feature of 
the seed inform ation for bootstrapping , because it allows 
boo tstrapping  to  iteratively trade  off some precision for 
significantly higher recall.

The individual dom ain and learning task  will deter­
m ine the num ber of words in an exam ple and their dis­
tribu tion , thus affecting precision and recall of the initial 
labeling. For this reason, our m ethods need to  be robust 
to  variations in the reliability of the  initial set. The al­
gorithm  described in Section 3 assumes a relatively reli­
able initial set of examples. Given the dom ain and task 
(finding place-nam es as substrings of docum ents while 
avoiding false hits) this is a fair assum ption. The task 
described in Section 4 involves distinguishing between 
docum ents in related  fields in com puter science. Here 
we m ight expect greater am biguity in the keyword as­
signm ent, and the algorithm  we use there is m ore robust 
to  such ambiguity.

2 .2  B o o t s t r a p p i n g
We can regard boo tstrapping  as iterative clustering. 
Given the initial class-based clusters of labeled exam ­
ples provided as input, we re-cluster, and ou tp u t a new 
set of labeled examples.

B ootstrapping can relabel examples in different ways. 
In Section 3 we describe an approach which relabels some
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examples w ith high confidence, effectively adding exam ­
ples to  the tra in ing  pool iteratively. This algorithm  relies 
on restarting  the process a t periodic intervals, to  resume 
w ith the m ost confident predictions. In Section 4, we 
describe an algorithm  th a t uses Expectation M axim iza­
tion  to  relabel all examples probabilistically— expressing 
weaker confidence in those labels.

These are two points in a continuum  we can trace be­
tween high-confidence labeling and low-confidence label­
ing, and using few or all labeled examples to  re tra in  the 
m odels. Note th a t m ore com putation  is required when 
all examples are used to  re tra in  models, and m ore confi­
dently labeled examples are required when we use fewer.

3 B ootstrap p in g  D iction aries for 
Inform ation  E xtraction

The w ealth of on-line tex t has produced widespread in­
terest in the problem  of in fo rm a tio n  extraction . Infor­
m ation  extraction  (IE) system s try  to  identify and ex­
trac t specific types of inform ation from  n a tu ra l language 
tex t. M ost IE  system s focus on inform ation th a t is rel­
evant to  a particu lar dom ain or topic. For exam ple, IE 
system s have been bu ilt to  ex tract the  nam es of perpe­
tra to rs  and victim s of terrorist incidents, and the names 
of people and companies involved in corporate acquisi­
tions. IE  system s have also been developed to  extract 
inform ation about jo in t venture activities [MUC-5 Pro­
ceedings, 1993], m icroelectronics [MUC-5 Proceedings, 
1993], jo b  postings [Califf, 1998], rental ads [Soderland, 
1999], and sem inar announcem ents [Freitag, 1998].

Most inform ation extraction  system s rely on two dic­
tionaries: a dictionary of extraction  patterns and a se­
m antic lexicon.1 In the past few years, several tech­
niques have been developed to  au tom ate  the construc­
tion  of these dictionaries. However, m ost of these m eth­
ods rely on special tra in ing  d a ta . For exam ple, Au­
toSlog "[Riloff, 1993; 1996a], CRYSTAL [Soderland et 
a l ,  1995], RAPIER, [Califf, 1998], SRV [Freitag, 1998], 
and W HISK [Soderland, 1999] need a tra in ing  corpus 
th a t includes annotations for the desired extractions, and 
PALKA [Kim and M oldovan, 1993] and LIEP [Huffman, 
1996]) require m anually  defined keywords, fram es, or ob­
jec t recognizers. AutoSlog-TS [Riloff, 1996b] has simpler 
needs bu t still requires a corpus of texts th a t have been 
labeled as relevant and irrelevant to  the dom ain.

Using boo tstrapping  techniques described in section 
2, we have developed an algorithm  th a t can learn dic­
tionaries for inform ation extraction  w ithout any special 
tra in ing  resources. Our boo tstrapping  technique gener­
ates extraction  patterns and a sem antic lexicon sim ulta­
neously, using only texts th a t are representative of the 
dom ain and sm all set of seed words. Our approach is 
based two observations.

1. Objects tha t belong to a sem a n tic  category can be 
used to id en tify  extraction  p a tte rn s  fo r  tha t cate-

xFor our purposes, a semantic lexicon simply refers to a 
dictionary of words or phrases with semantic category labels.

gory. For exam ple, suppose we know th a t the words 
‘:schnauzer” , “terrier” , and “dalm ation” all refer to  
dogs. We m ay then  discover th a t the  p a tte rn  ‘:< X >  
barked” extracts m any instances of these words and 
infer th a t it is a useful p a tte rn  for extracting refer­
ences to  dogs.

2, E xtrac tion  p a tte rn s fo r  a sem a n tic  category can be 
used to id en tify  new  m em bers o f  tha t category. For 
exam ple, suppose we know th a t ‘:< X >  barked” is a 
good p a tte rn  for extracting  dogs. T hen we can infer 
th a t every noun phrase th a t it extracts is a reference 
to  a dog. (This inference will not always be correct, 
bu t it should be correct m ore often th an  not.)

Our boo tstrapping  algorithm  begins w ith a sm all set 
of seed words th a t belong to  a sem antic category of in­
terest. These seed words are used to  learn extraction  
patterns th a t reliably ex tract m em bers of the sam e se­
m antic class. The learned extraction patterns are then 
used to  generate new category m em bers, and the pro­
cess repeats. We call this process m utua l bootstrapping  
because it generates b o th  a sem antic lexicon and a dic­
tionary  of extraction  patterns a t the sam e tim e. We 
have also found it useful to  introduce a second level of 
boo tstrapping  th a t retains only the m ost reliable lexicon 
entries produced by the m utual boo tstrapping  process 
and then  re-starts it from  scratch. This tw o-tiered boo t­
strapping  process is m ore robust th an  a single level of 
boo tstrapping  and produces highly-quality dictionaries.

3 .1  M u t u a l  B o o t s t r a p p i n g

The m utual boo tstrapping  process begins w ith a tex t 
corpus and a sm all set of predefined seed words for the 
sem antic category of interest. F irst, a set of candi­
date  extraction  patterns is generated by running Au­
toSlog [Riloff, 1993; 1996a] exhaustively over the  tex t 
corpus. Given a noun phrase (NP) to  ex tract, AutoSlog 
uses heuristics to  generate a linguistic expression th a t 
represents relevant context for extracting  the NP. This 
linguistic expression should be general enough to  extract 
other relevant noun phrases as well. By applying Au­
toSlog exhaustively, it generates a p a tte rn  to  extract 
every noun phrase in the corpus. Once all candidate 
extraction  patterns have been generated, we apply them  
to  the corpus and record the noun phrases (NPs) th a t 
they extract.

We now have all possible extraction  patterns for the 
corpus2 and all noun phrases th a t they ex tract, so one 
can view the next step as the  process of labeling this 
d a ta . T h a t is, we w ant to  determ ine which noun phrases 
belong to  the  sem antic category of interest, and which 
extraction patterns will reliably ex tract m em bers of the 
category. W hen we say th a t we ‘:learn” an extraction  
p a tte rn  or a sem antic lexicon entry, we really m ean th a t 
we are labeling the extraction p a tte rn  or noun phrase as 
belonging to  the sem antic category.

2 That is, all extraction patterns that AutoSlog can 
generate.



Generate all candidate extraction patterns from the 
training corpus using AutoSlog.

Apply the candidate extraction patterns to the 
training corpus and save the patterns with their 
extractions to EPdata

ScmLcx =  {seed_words}
Cat-EPlist =  {}

MUTUAL BOOTSTRAPPING LOOP
1. Score all extraction patterns in EPdata.
2. bcsLEP =  the highest scoring extraction 

pattern not already in Cat-EPlist
3. Add bcst-EP to Cat-EPlist
4. Add bcst-EP's extractions to ScmLcx.
5. Go to step 1

Figure 1: Mutual Bootstrapping Algorithm

Figure 1 outlines the  m utual boo tstrapping  algorithm , 
which iteratively learns extraction  patterns from  the seed 
words and then  exploits the learned extraction  patterns 
to  identify m ore words th a t belong to  the  sem antic ca t­
egory. A t each iteration , the  algorithm  saves the best 
extraction p a tte rn  for the  category to  a list ( C a t-E P lis t). 
All of its extractions are inferred to  be category m em bers 
and added to  the sem antic lexicon (Sem L ex). T hen the 
next best extraction p a tte rn  is identified, based on bo th  
the original seed words and the new words th a t were ju s t 
added to  the  lexicon, and the process repeats.

Since the sem antic lexicon is constantly  growing, the 
extraction patterns need to  be rescored after each iter­
ation. The scoring m easure counts how m any unique 
lexicon entries a p a tte rn  extracts. This m easure rewards 
generality: a p a tte rn  th a t extracts several different ca t­
egory m em bers will score higher th an  a p a tte rn  th a t ex­
trac ts  only one or two category m em bers, no m atte r how 
often. To score extractions, our scoring m etric uses head 
phrase m atching, which m eans th a t X m atches Y if X is 
the rightm ost substring of Y. For exam ple, “New York” 
will m atch  against “downtown New York” and “the fi­
nancially stable New York” . We stripped  each N P of 
articles, com m on adjectives, and num bers before m atch­
ing it w ith  other NPs and saving it to  the lexicon. We 
also used a sm all stopword list and a num ber recognizer 
to  discard general term s such as pronouns and num bers.

We scored each extraction p a tte rn  w ith the R logF  m et­
ric previously used by AutoSlog-TS [Riloff, 1996b], The 
score is com puted as:

score (p atterrii) =  Ri * log2 (F i)

where i 7,- is the  num ber of unique lexicon entries ex­
trac ted  by p a tte rr ii, N{ is the  to ta l num ber of unique 
NPs extracted  by p a tte rr ii, and R i =  This m etric 
was designed for inform ation extraction  tasks, where it 
is im portan t to  identify not only the m ost reliable ex­
trac tion  patterns bu t also patterns th a t will frequently 
ex tract relevant inform ation (even if irrelevant inform a­

tion  also will be extracted). For exam ple, the p a tte rn  
“kidnapped in < x > ” will ex tract locations bu t it will 
also ex tract dates (e.g., “kidnapped in Jan u ary ” ). The 
fact th a t it frequently extracts locations makes it essen­
tia l to  have in the dictionary, even if dates will also be 
ex tracted . The R logF  m etric tries to  strike a balance 
between reliability and frequency: R  is high when the 
p a tte rn ’s extractions are highly correlated w ith the se­
m antic category, and F  is high when the p a tte rn  extracts 
a large num ber of category m em bers.

The m utual boo tstrapping  algorithm  works quite well, 
producing good extraction  patterns and lexicon entries. 
B ut the boo tstrapping  process can be led astray  by ex­
trac tion  patterns th a t have an affinity for m ore th an  one 
type of sem antic category. For exam ple, suppose the 
p a tte rn  “shot in < x > ” is one of the  first extraction p a t­
terns learned for the location category. This p a tte rn  
frequently extracts b o th  locations and body parts (e.g., 
“shot in the back” or “shot in the arm ” ). All of its ex­
tractions are assum ed to  be locations so m any references 
to  body parts will be incorrectly added to  the location 
lexicon. In the next iteration , extraction  patterns will 
be rewarded for extracting  references to  body parts and 
the boo tstrapping  process can get derailed. To make 
the algorithm  m ore robust, we introduce a second level 
of boo tstrapping  th a t retains only the m ost reliable lex­
icon entries learned by m utual boo tstrapping  and then 
restarts the  process all over again.

Note th a t all dictionary entries and extraction p a t­
terns in the lexicons are considered to  be positive exam ­
ples, and all those outside the lexicons are considered to  
be negative examples. This m eans th a t high confidence 
is im plicitly held in those positive examples (since at 
each itera tion  we m ay relabel negative examples as pos­
itive ones, bu t not vice versa). Since the bootstrapping  
alternates between two types of classifiers the comple­
m entary  natu re  of the inform ation they use can dissi­
pate  the  effects of noise in the labeled examples so far. 
T he way we quantify our confidence in each labeled ex­
am ple by its accuracy in the a lternate  classifier reflects 
the high-accuracy low-coverage bias of this approach to  
bootstrapping.

3 .2  M u l t i - l e v e l  B o o t s t r a p p i n g
On top  of the m utual boo tstrapping  procedure, we in­
troduce a second level of boo tstrapping  which we will 
call m eta-bootstrapping. The outer boo tstrapping  mech­
anism  (m eta-bootstrapping) compiles the  results from 
the inner boo tstrapping  process (m utual bootstrapping) 
and identifies the  five m ost reliable lexicon entries. These 
five NPs are retained for the  perm anent sem antic lexi­
con and the rest of the m utual boo tstrapping  process is 
discarded. The entire m utual boo tstrapping  process is 
then  restarted  from  scratch. Figure 2 shows the m eta­
boo tstrapping  process.

To determ ine which NPs are m ost “reliable” , we score 
each N P based on the num ber of unique patterns th a t ex­
trac ted  it. Intuitively, a noun phrase extracted  by three 
different extractions patterns is m ore likely to  belong to



Figure 2: The Meta-Bootstrapping Process

the category th an  a noun phrase extracted  by a single 
pa tte rn . For tie-breaking purposes, we also add in a 
sm all factor th a t represents the  strength  of the patterns 
th a t extracted  it. The scoring m etric for noun phrases is 
shown below, where iV,- is the num ber of unique patterns 
th a t extracted  N P {.

Ni

sc o re (N  P{) =  1 +  (.01 * score (pa ttern /;))  
k= 1

The m ain  advantage of m eta-bootstrapping  comes 
from  re-evaluating the extraction  patterns after each m u­
tua l boo tstrapping  process. For exam ple, after the first 
m utual boo tstrapping  run, five new words are added to  
the perm anent sem antic lexicon. T hen m utual boo t­
strapping  is restarted  from  scratch w ith the original seed 
words plus these five new words. Now, the best p a t­
tern  selected by m utual boo tstrapping  m ight be different 
from  the best p a tte rn  selected last tim e. This produces 
a snowball effect because its extractions are added to  
the tem porary  sem antic lexicon which is the basis for 
choosing the next extraction  pa tte rn . In practice, w hat 
happens is th a t the ordering of the patterns changes 
(sometimes dram atically) between subsequent runs of 
m utual bootstrapping . In particu lar, m ore general p a t­
terns seem to  float to  the top  as the  perm anent sem antic 
lexicon grows,

3 .3  E valu ation
We evaluated our boo tstrapping  algorithm  by generat­
ing dictionaries for locations using two tex t collections: 
corporate web pages used in the  W ebKB project [Craven 
et al,, 1998] and terrorism  news articles from  the MUC-
4 corpus [MUC-4 Proceedings, 1992], For train ing, we

used 4160 of the web pages and 1500 of the terrorism  
texts. We preprocessed the web pages first by removing 
HTM L tags and adding periods to  separate independent 
phrases,3 AutoSlog generated 19,690 candidate extrac­
tion  patterns from  the web page tra in ing  set, and 14,064 
candidate extraction  patterns from  the terrorism  tra in ­
ing set,4 The seed word lists th a t we used are shown 
in Figure 3. We used different location seeds for the 
two tex t collections because the terrorism  articles were 
m ainly from  L atin  Am erica while the  web pages were 
much m ore in ternational. The seed words m ust be fre­
quent in the tra in ing  texts for the boo tstrapping  algo­
rithm  to  work well.

W eb L ocation : australia Canada ch in a cngland 
franco gcrmany jap an  m cxico  
Switzerland unitcdsta tcs  

T err. L ocation : bolivia city Colombia district
guatcm ala honduras neighborhood  
nicaragua region town

Figure 3: Seed Word Lists

We ran  the m eta-bootstrapping  algorithm  (outer 
bootstrapping) for 50 iterations. The extraction p a t­
terns produced by the last itera tion  were the ou tp u t of

“Web pages pose a problem for NLP systems because sep­
arate lines do not always end with a period (e.g., list items 
and headers). We used several heuristics to insert periods 
whenever an independent line or phrase was suspected.

4 AutoSlog actually generated many more extraction pat­
terns, but for practical reasons we only used the patterns that 
appeared with frequency > 2.



Iter 1 Iter 10 Iter 20 Iter 30 Iter 40 Iter 50
W eb L ocation 5/5 (1) 46/50 (.92) 88/100 (.88) 129/150 (.86) 163/200 (.82) 191/250 (.76)
T err. L ocation 5/5 (1) 32/50 (.64) 66/100 (.66) 100/150 (.67) 127/200 (.64) 158/250 (.63)

Table 1: Accuracy of the Semantic Lexicons

Web Location 
Patterns

Terrorism Location 
Patterns

offices in < x >  
facilities in < x >  
operations in < x >  
loans in < x >  
operates in < x >  
locations in < x >  
producer in < x >  
states of < x >  
seminars in < x >  
activities in < x >  
consulting in < x >  
countries of < x >  
rep. of < x >  
outlets in < x >  
consulting in < x >  
customers in < x >  
diensten in < x >  
distributors in < x >  
services in < x >  
expanded into < x >  
partners in < x >  
located in < x >  
plant in < x >  
dienste in < x >  
packages in < x >  
shipyards in < x >  
support in < x >  
dedicated in < x >  
testing in < x >  
manager in < x >

living in < x >  
traveled to  < x >  
become in < x >  
sought in < x >  
presidents of < x >  
parts  of < x >  
to  enter < x >  
condemned in < x >  
relations between < x >  
ministers of < x >  
p art in < x >  
taken in < x >  
returned to  < x >  
process in < x >  
involvement in < x >  
intervention in < x >  
linked in < x >  
operates in < x >  
kidnapped in < x >  
refuge in < x >  
democracy in < x >  
prevailing in < x >  
billion in < x >  
groups in < x >  
wave in < x >  
outskirts of < x >  
prevails in < x >  
percent in < x >  
stay in < x >  
heard throughout

Figure 4: Top 25 extraction patterns for locations

the  system , along w ith the perm anent sem antic lexicon. 
For each m eta-boo tstrapp ing  iteration , we ran  the m u­
tua l boo tstrapping  procedure (inner bootstrapping) un­
til it produced 10 patterns th a t extracted  a t least one 
new N P (i.e., not currently in the sem antic lexicon). B ut 
there were two exceptions: (1) if the  best p a tte rn  had 
score <  0.7 then  m utual boo tstrapping  stopped, or (2) 
if the  best p a tte rn  had  score >  1,8 then  m utual boo t­
strapping  continued.

Figure 4 shows the top  20 extraction  patterns pro­
duced by m eta-boo tstrapp ing  after 50 iterations. Most 
of these extraction  patterns are clearly useful patterns 
for extracting noun phrases th a t represent locations. It 
is also interesting to  note th a t the  location patterns gen­
erated  for the web pages are very different from  the lo­
cation patterns generated for the  terrorism  articles. The 
two tex t collections contain very different vocabulary, 
and the locations m entioned in the  texts are very dif­
ferent too. The web pages are widely in ternational and

m ention m any countries and U.S. cities, while the ter­
rorism  articles are m ostly from  Latin  Am erica and focus 
on cities and towns therein. One of the strengths of a 
corpus-based algorithm  is th a t it learns dictionary en­
tries th a t are m ost im portan t for the texts represented 
in the tra in ing  corpus.

To evaluate the  quality  of the  sem antic lexicons, we 
m anually  inspected each word. We judged a word to  be­
long to  the  category if it was a specific category m em ber 
(e.g., “Jap an ” is a specific location) or a general refer­
ent for the  category (e.g., “the area” is a referent for 
locations). A lthough referents are meaningless in iso­
lation, they are useful for inform ation extraction tasks 
because a coreference resolver should be able to  find their 
antecedent. The referents were also very useful during 
boo tstrapping  because a p a tte rn  th a t extracts “the area” 
will probably also ex tract specific locations.

Table 1 shows the accuracy of the sem antic lexicons 
after the 1st itera tion  of m eta-boo tstrapp ing  and after 
each 10th iteration . Each cell shows the num ber of true 
category m em bers am ong the entries generated thus far. 
For exam ple, 50 phrases were added to  the  web location 
lexicon after the ten th  ite ra tion  and 46 of those (92%) 
were true  location phrases. Table 1 shows th a t m eta­
boo tstrapping  identified 191 location phrases in the  web 
pages and 158 location phrases in the  terrorism  a rti­
cles. The density of good phrases was also quite high. 
Even after 50 iterations, 76% of the hypothesized loca­
tion  phrases on the web pages were true  locations, and 
63% of the hypothesized locations phrases in the terror­
ism articles were true  locations.

In sum m ary, multi-level boo tstrapping  can produce 
h igh-quality extraction patterns and sem antic lexicon 
entries using only raw texts and a sm all set of seed words 
as input. Our boo tstrapping  approach has two advan­
tages over previous techniques for learning inform ation 
extraction dictionaries: bo th  a sem antic lexicon and a 
dictionary of extraction  patterns are acquired sim ulta­
neously, and no special tra in ing  resources are needed.

4 B ootstrap p in g  a T ext C lassifier
In the previous section, we showed how an application of 
the  boo tstrapping  fram ework successfully created an in­
form ation extractor. Now, we tu rn  to  the problem  of tex t 
classification. A variety of tex t classification algorithm s, 
such as naive Bayes [Lewis, 1998], support vector m a­
chines [Joachims, 1998], k-nearest neighbor [Yang, 1999], 
rule-learning algorithm s [Cohen and Singer, 1996], and 
Boosting [Schapire and Singer, 1999] have proven adept 
a t tex t classification when provided w ith large am ounts 
of labeled tra in ing  d a ta . In recent work [Nigam et al., 
1999], we have shown th a t tex t classification error can be
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Figure 5: A subset of Cora’s topic hierarchy. Each node contains its title, and the five most probable words, as calculated by 
naive Bayes and shrinkage with vertical word redistribution [Hofmann & Puzicha, 1998]. Words among the initial keywords 
for th a t class are indicated in plain font; others are in italics.

reduced by up to  30% when a sm all am ount of labeled 
docum ents is augm ented w ith a large collection of un­
labeled docum ents. Here, we extend this approach and 
replace the task  inform ation given the labeled docum ents 
w ith seed inform ation in another form.

In this study, knowledge about the classes of in ter­
est is provided in the  form  of a few keywords per class 
and a class hierarchy. Keywords are typically generated 
m ore quickly and easily th an  even a sm all num ber of 
labeled docum ents. M any classification problem s n a tu ­
rally come w ith hierarchically-organized classes. Our al­
gorithm  proceeds by using the keywords to  generate pre­
lim inary labels for some docum ents by term -m atching. 
T hen these labels, the hierarchy and all the unlabeled 
docum ents become the inpu t to  a boo tstrapping  algo­
rithm  th a t generates a naive Bayes classifier.

The boo tstrapping  algorithm  used here combines hier­
archical shrinkage and E xpectation-M axim ization (EM) 
w ith unlabeled d a ta . EM is an iterative algorithm  for 
m axim um  likelihood estim ation in param etric  estim ation 
problem s w ith missing da ta . In our scenario, the  class la­
bels of the docum ents are trea ted  as missing d a ta . Here, 
EM works by first tra in ing  a classifier w ith only the doc­
um ents prelim inarily-labeled by the keywords, and then 
uses the classifier to  re-assign probabilistically-w eighted 
class labels to  all the  docum ents by calculating the ex­
pectation  of the missing class labels. I t then  tra ins a 
new classifier using all the  docum ents and iterates.

We further improve the classifier by also incorporating 
shrinkage, a s ta tistical technique for im proving param e­
ter estim ation in the face of sparse d a ta . W hen classes 
are provided in a hierarchical relationship, shrinkage is 
used to  estim ate new param eters by using a weighted av­
erage of the specific (but unreliable) local class estim ates 
and the m ore general (but also m ore reliable) ancestors 
of the class in the hierarchy. The optim al weights in 
the average are calculated by an EM process th a t runs 
sim ultaneously w ith the EM th a t is re-estim ating the

class labels.
Experim ental results show th a t the boo tstrapping  al­

gorithm  described here uses the unlabeled d a ta , key­
words, and class hierarchy to  ou tp u t a classifier th a t 
is close to  hum an agreem ent levels. The experim ental 
dom ain in this paper is topic identification of com puter 
science research papers. This dom ain originates as part 
of the  R a  research project, an effort to  build  dom ain- 
specific search engines on the Web w ith m achine learning 
techniques. Our dem onstration system , Cora, is a search 
engine over com puter science research papers [McCallum 
et ah, 1999]. The boo tstrapping  classification algorithm  
described in this paper is used in Cora to  place research 
papers into a Yahoo-like hierarchy of the field of com­
puter science. The search engine, w ith the hierarchy, is 
publicly available a t w w w .eora.justreseareh.com .

4 .1  G en eratin g  P re lim in a ry  Labels w ith  
K eyw ord s

The first step in the  boo tstrapping  process is to  use the 
keywords to  generate prelim inary labels for as m any of 
the  unlabeled docum ents as possible. Each class is given 
ju s t a few keywords. Figure 5 shows examples of the 
num ber and type of keywords given in our experim ental 
dom ain— the hum  an-provided keywords are shown in the 
nodes in non-italic font.

In this paper, we generate prelim inary labels from  the 
keywords by term -m atching in a rule-list fashion: for 
each docum ent, we step th rough the keywords and place 
the docum ent in the  category of the  first keyword th a t 
m atches. If an extensive keyword list were carefully cho­
sen, this m ethod  could be reasonably accurate. However, 
finding enough keywords to  ob tain  broad coverage and 
finding sufficiently specific keywords to  ob tain  high ac­
curacy is very difficult; it requires in tim ate  knowledge of 
the  d a ta  and a lot of tria l and error.

As a result, keyword m atching is b o th  an inaccurate 
and incom plete classification m ethod. Keywords tend

http://www.eora.justreseareh.com


to  be high-precision and low-recall; th is brittleness will 
leave m any docum ents unlabeled. Some docum ents will 
incorrectly m atch  keywords from  the wrong class. In 
general we expect the  brittleness of the  keywords to  be 
the dom inating  factor in overall error. In our experi­
m ental dom ain, for exam ple, 59% of the  unlabeled doc­
um ents are left unlabeled by keyword m atching.

A nother m ethod  of prim ing boo tstrapping  w ith key­
words would be to  take each set of keywords as a la­
beled m ini-docum ent containing ju s t a few words. This 
could then  be used as inpu t to  any standard  learning 
algorithm . Testing this, and other keyword labeling ap­
proaches, is an area of ongoing research,

4 .2  T h e B o o ts tra p p in g  A lgorith m
The goal of the  boo tstrapping  step is to  generate a naive 
Bayes classifier from  the inputs: the (inaccurate and in­
complete) prelim inary labels, the unlabeled d a ta  and the 
class hierarchy. One straightforw ard m ethod  would be 
to  sim ply take the unlabeled docum ents w ith prelim i­
nary labels, and trea t this as labeled d a ta  in a standard  
supervised setting. This approach provides only m ini­
m al benefit for three reasons: (1) the labels are ra ther 
noisy, (2) the  sam ple of prelim inarily-labeled docum ents 
is skewed from  the regular docum ent d istribu tion  (i.e. 
it includes only docum ents w ith known keywords), and 
(3) d a ta  is sparse in com parison to  the  size of the fea­
tu re  space. Adding the rem aining unlabeled d a ta  and 
running EM helps counter the  first and second of these 
reasons. Adding hierarchical shrinkage to  naive Bayes 
helps counter the first and th ird  of these reasons. We 
begin a detailed description of our boo tstrapping  algo­
rithm  w ith a short overview of standard  naive Bayes tex t 
classification, then  proceed to  add EM to  incorporate the 
unlabeled d a ta , and conclude by explaining hierarchical 
shrinkage. An outline of the entire algorithm  is presented 
in Table 2.

The naive Bayes fram ew ork
We use the fram ework of m ultinom ial naive Bayes tex t 
classification [Lewis, 1998; M cCallum  and N igam , 1998], 
It is useful to  th ink  of naive Bayes as estim ating the 
param eters of a probabilistic generative m odel for tex t 
docum ents. In this m odel, first the class of the docu­
m ent is selected. The words of the docum ent are then 
generated based on the param eters for the class-specific 
m ultinom ial (i.e. unigram  m odel). Thus, the classifier 
param eterizes the class prior probabilities and the class- 
conditioned word probabilities. Each class, C j ,  has a 
docum ent frequency relative to  all other classes, w ritten  
P (c j) . For every word w t in the vocabulary V , P (w t \cj) 
indicates the  frequency th a t the classifier expects word 
wt to  occur in docum ents in class Cj.

In the standard  supervised setting, learning the pa­
ram eters is accomplished using a set of labeled train ing  
docum ents, D . To estim ate the  word probability  param ­
eters, P (w t \cj), we count the frequency th a t word wt 
occurs in all word occurrences for docum ents in class Cj. 
We supplem ent this w ith Laplace sm oothing th a t primes

• In p u ts : A collection V  of unlabeled documents, a class 
hierarchy, and a few keywords for each class.

• Generate preliminary labels for as many of the unla­
beled documents as possible by term-matching with the 
keywords in a rule-list fashion.

• Initialize all the Xj ’s to be uniform along each path from 
a leaf class to the root of the class hierarchy.

• Iterate the EM algorithm:

• (M -step ) Build the maximum likelihood multino­
mial at each node in the hierarchy given the class 
probability estimates for each document (Equa­
tions 1 and 2). Normalize all the Xj's along each 
path from a leaf class to the root of the class hier­
archy so that they sum to 1.

• (E -step ) Calculate the expectation of the class 
labels using the classifier created in the M-step 
(Equation 3). Increment the new Xj's by attribut­
ing each word probabilistically to the ancestors of 
each class.

• O u tp u t:  A naive Bayes classifier that takes an unla­
beled document and predicts a class label.

Table 2: An outline of the bootstrapping algorithm described 
in Sections 4.1 and 4.2.

each estim ate w ith a count of one to  avoid probabilities 
of zero. Define N ( w t ,d i)  to  be the count of the num ­
ber of tim es word wt occurs in docum ent <f,-, and define 
P (c j\d i)  £  {0,1}, as given by the docum ent’s class label. 
Then, the estim ate of the probability  of word w t in class 
Cj is:

x 1 + J2 dl€VN (Wt ,di)P(cj\di) /1XP(Wt\Cj = ------------ Tjr,-------------------------------------- . (1)

The class prior probability  param eters are set in the 
sam e way, where \C\ indicates the  num ber of classes:

l + Frfe-nPteMi)
p t e )  =  — \c \  +  \ v \  ■ (2 )

Given an unlabeled docum ent and a classifier, we 
determ ine the probability  th a t the docum ent belongs 
in class Cj using Bayes’ rule and the naive Bayes 
assum ption— th a t the words in a docum ent occur inde­
pendently of each other given the class. If we denote 
W(it k to  be the M h word in docum ent <f,-, then  classifica­
tion  becomes:

P (c j\d i)  oc P (c j)P (d i\c j)

K l

«  p (cj )  I I  P(ŵ J cj)- (3 ) 
k=l

Em pirically, when given a large num ber of train ing  
docum ents, naive Bayes does a good jo b  of classifying 
tex t docum ents [Lewis, 1998], More com plete presenta­
tions of naive Bayes for tex t classification are provided 
by M itchell [1997] and M cCallum  and Nigam  [1998],



A dding unlabclcd  d ata  w ith EM
In the standard  supervised setting, each docum ent 
comes w ith a label. In our boo tstrapping  scenario, 
the  prelim inary keyword labels are bo th  incom plete and 
inaccurate— the keyword m atching leaves m any docu­
m ents unlabeled, and labels some incorrectly. In order 
to  use the entire d a ta  set in a naive Bayes classifier, 
we use the E xpectation-M axim ization (EM) algorithm  
to  generate probabilistically-w eighted class labels for all 
the  docum ents. This results in classifier param eters th a t 
are m ore likely given all the  data ,

EM is a class of iterative algorithm s for m axim um  
likelihood estim ation in problem s w ith incom plete d a ta  
[Dempster et al., 1977], Given a model of d a ta  genera­
tion, and d a ta  w ith some missing values, EM iteratively 
uses the current model to  estim ate the missing values, 
and then  uses the missing value estim ates to  improve 
the m odel. Using all the  available d a ta , EM will locally 
m axim ize the likelihood of the  param eters and give esti­
m ates for the missing values. In our scenario, the class 
labels of the unlabeled d a ta  are trea ted  as the  missing 
values.

In im plem entation, EM is an iterative two-step pro­
cess. Initially, the param eter estim ates are set in the 
s tandard  naive Bayes way from  ju s t the prelim inarily la­
beled docum ents. T hen we ite ra te  the E- and M-steps. 
T he E-step calculates probabilistically-w eighted class la­
bels, P (Cj |di), for every docum ent using the classifier and 
Equation 3. The M -step estim ates new classifier param ­
eters using all the  docum ents, by Equations 1 and 2, 
where P(cj|d,-) is now continuous, as given by the E­
step. We itera te  the E- and M -steps until the  classifier 
converges. The initialization step identifies each m ixture 
com ponent w ith a class and seeds EM so th a t the local 
m axim a th a t it finds correspond well to  class definitions.

In previous work [Nigam et al., 1999], we have shown 
this technique significantly increases tex t classification 
accuracy when given lim ited  am ounts of labeled d a ta  
and large am ounts of unlabeled d a ta . The expectation 
here is th a t EM will b o th  correct and com plete the labels 
for the  entire d a ta  set.

Im proving sparse d ata  estim ates w ith shrinkage
Even when provided w ith a large pool of docum ents, 
naive Bayes param eter estim ation during bootstrapping  
will suffer from  sparse d a ta  because naive Bayes has so 
m any (|V"||(7| +  |(7|) param eters to  estim ate. Using the 
provided class hierarchy, we can integrate the  s ta tis ti­
cal technique shrinkage  in to  the  EM algorithm  to  help 
alleviate the  sparse d a ta  problem .

Consider try ing to  estim ate the  probability  of the word 
“intelligence” in the  class NLP. This word should clearly 
have non-negligible probability  there; however, w ith lim ­
ited  tra in ing  d a ta  we m ay be unlucky, and the observed 
frequency of “intelligence” in NLP m ay be very far from 
its true  expected value. One level up the hierarchy, how­
ever, the Artificial Intelligence class contains m any more 
docum ents (the union of all the  children). There, the 
probability  of the word “intelligence” can be m ore reli­

ably estim ated.
Shrinkage calculates new word probability  estim ates 

for each leaf class by a w eighted  average of the estim ates 
on the p a th  from  the leaf to  the root. The technique 
balances a trade-off between specificity and reliability. 
Estim ates in the leaf are m ost specific bu t unreliable; 
further up the hierarchy estim ates are m ore reliable bu t 
unspecific. We can calculate m ixture weights for the 
averaffine: th a t are guaranteed to  m axim ize the likelihoodO O O
of the d a ta  w ith the EM algorithm .

More formally, let { P 1 (w t\c j) , . . . ,  P k (w t\c j)}  be word 
probability  estim ates, where P 1(w t \cj) is the  estim ate 
using tra in ing  d a ta  ju s t in the leaf, P k ~ 1(w t\c j)  is 
the  estim ate a t the root using all the  tra in ing  data , 
and P k (w t \Cj )  is the  uniform  estim ate (P*(u;t |cj) =  
1 /\V \) .  The in terpolation  weights am ong c j ’s “ances­
tors” (which we define to  include cj itself) are w rit­
ten  {Aj, A | , , , , ,  A*}, where A* =  1- The new 
word probability  estim ate based on shrinkage, denoted 
P(wt\Cj),  is then

P (w t \Cj) =  X1J P 1(w t \cj ) + . . .  +  Xk P k (w t \Cj). (4)

The Aj  vectors are calculated during EM. In the E­
step of bootstrapping , for every word of tra in ing  d a ta  in 
class C j ,  we determ ine the expectation th a t each ances­
tor was responsible for generating it. In the M -step, we 
norm alize the sum  of these expectations to  ob tain  new 
m ixture weights Aj .

One can th ink  of hierarchical shrinkage as defining a 
different generative model th an  the one in Section 4.2. 
As before, a class is selected first. Then, for each word 
position in the docum ent, an ancestor of the  class (in­
cluding itself) is selected according to  the  averaging 
weights. Then, the word itself is chosen based on the pa­
ram eters of th a t ancestor. For every possible generative 
model of this type, there is a corresponding model of the 
simple naive Bayes type th a t yields the sam e docum ent 
distribu tion . It is created by “flattening” the hierarchy 
according to  the weights. A m ore com plete description of 
hierarchical shrinkage for tex t classification is presented 
by M cCallum  et al. [1998].

4 .3  E x p e rim e n ta l R esu lts
In this section, we provide em pirical evidence th a t boo t­
strapping  a tex t classifier from  unlabeled d a ta  can pro­
duce a high-accuracy tex t classifier. As a test dom ain, 
we use com puter science research papers. We have cre­
ated  a 70-leaf hierarchy of com puter science topics, part 
of which is shown in Figure 5. C reating the hierarchy 
took about 60 m inutes, during which we exam ined con­
ference proceedings, and explored com puter science sites 
on the Web. Selecting a few keywords associated w ith 
each node took about 90 m inutes. A test set was created 
by expert hand-labeling of a random  sam ple of 625 re­
search papers from  the 30,682 papers in the Cora archive 
a t the  tim e we began these experim ents. Of these, 225 
(about one-third) did not fit in to  any category, and were



M ethod #  Lab #  P-Lab #  Unlab Acc
Keyword — — — 45%
NB 100 — — 30%
NB 399 — — 47%
N B +EM +S — 12,657 18,025 66%
NB — 12,657 — 47%
NB+S — 12,657 — 63%
Human — — — 72%

Table 3: Classification results w ith different techniques: key­
word matching, hum an agreement, naive Bayes (NB), and 
naive Bayes combined with hierarchical shrinkage (S), and 
EM. The classification accuracy (A cc), and the num ber of la­
beled (Lab), keyword-matched preliminarily-labeled (P-Lab), 
and unlabeled (Unlab) documents used by each m ethod are 
shown.

discarded— resulting in a 400 docum ent test set. Label­
ing these 400 docum ents took about six hours. Some of 
these papers were outside the area of com puter science 
(e.g. astrophysics papers), bu t m ost of these were pa­
pers th a t w ith a m ore com plete hierarchy would be con­
sidered com puter science papers. The class frequencies 
of the d a ta  are not too  skewed; on the test set, the  m ost 
populous class accounted for only 7% of the docum ents.

Each research paper is represented as the words of 
the  title , au thor, institu tion , references, and abstract. A 
detailed description of how these segments are au to m at­
ically extracted  is provided elsewhere [McCallum et al., 
1999; Seymore et al., 1999]. W ords occurring in fewer 
th an  five docum ents and words on a standard  stoplist 
were discarded. No stem m ing was used. B ootstrapping 
was perform ed using the algorithm  outlined in Table 2,

Table 3 shows classification results w ith different clas­
sification techniques used. The rule-list classifier based 
on the keywords alone provides 45%. (The 43% of doc­
um ents in the test set containing no keywords cannot 
be assigned a class by the rule-list classifier, and are 
counted as incorrect.) As an interesting tim e com pari­
son, about 100 docum ents could have been labeled in the 
tim e it took to  generate the keyword lists. Naive Bayes 
accuracy w ith 100 labeled docum ents is only 30%. W ith  
399 labeled docum ents (using our test set in a leave- 
one-out-fashion), naive Bayes reaches 47%. W hen run­
ning the boo tstrapping  algorithm , 12,657 docum ents are 
given prelim inary labels by keyword m atching. EM and 
shrinkage incorporate the  rem aining 18,025 docum ents, 
“fix” the prelim inary labels and leverage the hierarchy; 
the resulting accuracy is 66%. As an interesting com­
parison, agreem ent on the test set between two hum an 
experts was 72%.

A few further experim ents reveal some of the inner- 
workings of bootstrapping . If we build  a naive Bayes 
classifier in the standard  supervised way from  the 12,657 
prelim inarily labeled docum ents the  classifier gets 47% 
accuracy. This corresponds to  the perform ance for the 
first ite ra tion  of bootstrapping . Note th a t this m atches 
the accuracy of trad itional naive Bayes w ith 399 labeled 
tra in ing  docum ents, bu t th a t it requires less th an  a quar­

ter the  hum an labeling effort. If we run  bootstrapping  
w ithout the  18,025 docum ents left unlabeled by keyword 
m atching, accuracy reaches 63%. This indicates th a t 
shrinkage and EM on the prelim inarily labeled docu­
m ents is providing substantially  m ore benefit th an  the 
rem aining unlabeled docum ents.

One explanation for the sm all im pact of the 18,025 
docum ents left unlabeled by keyword m atching is th a t 
m any of these do not fall natu rally  into the hierarchy. 
Rem em ber th a t about one-third of the 30,000 docum ents 
fall outside the hierarchy. M ost of these will not be given 
prelim inary labels by keyword m atching. The presence 
of these outlier docum ents skews EM param eter estim a­
tion. A m ore inclusive com puter science hierarchy would 
allow the unlabeled docum ents to  benefit classification 
more.

However, even w ithout a com plete hierarchy, we could 
use these docum ents if we could identify these outliers. 
Some techniques for robust estim ation w ith EM are dis­
cussed by M cLachlan and Basford [1988]. One specific 
technique for these tex t hierarchies is to  add ex tra  leaf 
nodes containing uniform  word distributions to  each in­
terior node of the hierarchy in order to  capture doc­
um ents not belonging in any of the  predefined topic 
leaves. This should allow EM to  perform  well even when 
a large percentage of the docum ents do not fall into 
the given classification hierarchy. A sim ilar approach 
is also planned for research in topic detection and track­
ing (TD T) [Baker et al., 1999]. Experim entation  w ith 
these techniques is an area of ongoing research.

5 R e la te d  W o rk

O ther research efforts in tex t learning have also used 
boo tstrapping  approaches. B rin [1998] uses a b oo tstrap ­
ping approach on the W orld W ide Web to  ex tract book 
title  and au thor pairs. From a sm all set of seeded books, 
his D IPR E  algorithm  searches the Web for known pairs 
and learns new patterns th a t are com m on for these pairs. 
T hen, these new patterns are used to  identify new books, 
in an iterative fashion.

The prelim inary labeling by keywords used in this pa­
per is sim ilar to  the seed collocations used by Yarowsky 
[1995]. There, in a word sense d isam biguation task, a 
boo tstrapping  algorithm  is seeded w ith some examples 
of com m on collocations w ith the particu lar sense of some 
word (e.g. the  seed “life” for the biological sense of 
“p lan t” ).

The co-training algorithm  [Blum and M itchell, 1998] 
for classification works in cases where the feature space 
is separable into natu rally  redundant and independent 
parts. For exam ple, web pages can be thought of as 
the  tex t on the web page, and the collection of tex t in 
hyperlink anchors to  th a t page.

Unlabeled d a ta  has also been used in docum ent clas­
sification by Nigam  et al. [1999], where, as in this work, 
EM is used to  fill in the “m issing” class labels on the un­
labeled d a ta . Unlike this work, N igam  et al. begin w ith 
a few labeled docum ents instead of keywords. More im ­



portantly , they also describe two m ethods of overcoming 
problem s when the results of m axim um  likelihood clus­
tering do not correspond well to  class labels,

6 D iscu ssion
The two problem s studied in this paper work a t very dif­
ferent granularities. In the  docum ent classification do­
m ain, our granularity  of interest is the entire docum ent, 
and our feature set consists of potentially  every word 
in the  vocabulary. This m eans th a t a single keyword 
can m atch  one of several hundred words in a docum ent, 
and is chosen from  one of tens of thousands of words 
in the  vocabulary. We can view the seeding using these 
keywords as finding b etter th an  random  sta rting  points, 
which we then  exploit using Expectation-M axim ization 
(EM) and shrinkage over the class hierarchy.

In the inform ation extraction  task, the  granularity  of 
interest is a t the phrase-level. A phrase contains rela­
tively few words, so a m atch  w ith a keyword is a much 
stronger indicator of class m em bership. The feature set 
we use consists of all possible phrases w ith exact m atch, 
so our vocabulary is large, bu t the num ber of possible 
features for each exam ple is very sm all. In this s itua­
tion, we can view the seeding from  keywords as provid­
ing a sm all set of highly accurately labeled d a ta  to  begin 
bootstrapping.

Thus, the effect of initial labels is likely to  be different 
for the  two tasks; each exam ple in the extraction  task 
contains only a few words, whereas in classification an 
exam ple typically contains several hundred words. Thus, 
we expect the significance of individual keywords to  be 
lower in the docum ent setting  th an  in the  extraction  set­
ting, bu t coverage to  be higher.

In fu ture work we propose to  exam ine the effect of 
the dom ain and task  on the applicability of the seeded 
boo tstrapping  fram ework. Pure unsupervised clustering 
[Duda and H art, 1973] can be used to  find underlying 
regularities in the d a ta  dom ain. If there is a strong cor­
respondence between these regularities and our target 
task, there m ay be no need for seeds, except to  speed up 
convergence by providing a good sta rting  point for the 
clustering. However, if our da tase t could have m ulti­
ple solutions when unsupervised clustering is perform ed, 
and only a subset of these correspond to  partitions th a t 
perform  our task  well, seeding can help us to  initialize 
our clustering w ith a point close to  the target local m ax­
im um . We hypothesize th a t m any local m axim a exist in 
tex t learning tasks, which makes the seeding essential.

We will test this hypothesis in two ways. We will per­
form  unsupervised clustering on the datasets (e.g. by 
providing random  initial seeds) then  labeling the clus­
ters post-facto w ith the seeds. If the clusters produced 
this way perform  as well as those produced using seeding, 
then  our approach finds us the global m axim um  for our 
task. If this is not the  case (as we expect) we will per­
form  experim ents on providing seedwords of successively 
poorer quality  ( i. e. seedwords which are m ore and more 
am biguous or loosely related to  the target class) and ex­

am ine how the quality  of the  initial labeling using those 
seedwords affects our final task-specific results.

This paper has considered tex t learning in cases w ith­
out labeled tra in ing  d a ta . To this end, we advocate us­
ing the general boo tstrapping  process. From a small 
am ount of seed inform ation and a large collection of un­
labeled d a ta , boo tstrapping  iterates the steps of building 
a model from  generated labels, and obtain ing labeled 
d a ta  from  the m odel. In two case studies in inform a­
tion  extraction and tex t classification, the bootstrapping  
paradigm  proves successful a t learning w ithout labeled 
data .
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